acpi: Simplify printing to dynamic string
[qemu/ar7.git] / block / io.c
blobe394d926264535e381fa6c86d2e21fff499df7b1
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "trace.h"
26 #include "sysemu/qtest.h"
27 #include "block/blockjob.h"
28 #include "block/block_int.h"
30 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
32 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
33 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
34 BlockCompletionFunc *cb, void *opaque);
35 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
36 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
37 BlockCompletionFunc *cb, void *opaque);
38 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
39 int64_t sector_num, int nb_sectors,
40 QEMUIOVector *iov);
41 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
42 int64_t sector_num, int nb_sectors,
43 QEMUIOVector *iov);
44 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
45 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
46 BdrvRequestFlags flags);
47 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
48 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
49 BdrvRequestFlags flags);
50 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
51 int64_t sector_num,
52 QEMUIOVector *qiov,
53 int nb_sectors,
54 BdrvRequestFlags flags,
55 BlockCompletionFunc *cb,
56 void *opaque,
57 bool is_write);
58 static void coroutine_fn bdrv_co_do_rw(void *opaque);
59 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
60 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
62 /* throttling disk I/O limits */
63 void bdrv_set_io_limits(BlockDriverState *bs,
64 ThrottleConfig *cfg)
66 int i;
68 throttle_config(&bs->throttle_state, cfg);
70 for (i = 0; i < 2; i++) {
71 qemu_co_enter_next(&bs->throttled_reqs[i]);
75 /* this function drain all the throttled IOs */
76 static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
78 bool drained = false;
79 bool enabled = bs->io_limits_enabled;
80 int i;
82 bs->io_limits_enabled = false;
84 for (i = 0; i < 2; i++) {
85 while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
86 drained = true;
90 bs->io_limits_enabled = enabled;
92 return drained;
95 void bdrv_io_limits_disable(BlockDriverState *bs)
97 bs->io_limits_enabled = false;
99 bdrv_start_throttled_reqs(bs);
101 throttle_destroy(&bs->throttle_state);
104 static void bdrv_throttle_read_timer_cb(void *opaque)
106 BlockDriverState *bs = opaque;
107 qemu_co_enter_next(&bs->throttled_reqs[0]);
110 static void bdrv_throttle_write_timer_cb(void *opaque)
112 BlockDriverState *bs = opaque;
113 qemu_co_enter_next(&bs->throttled_reqs[1]);
116 /* should be called before bdrv_set_io_limits if a limit is set */
117 void bdrv_io_limits_enable(BlockDriverState *bs)
119 int clock_type = QEMU_CLOCK_REALTIME;
121 if (qtest_enabled()) {
122 /* For testing block IO throttling only */
123 clock_type = QEMU_CLOCK_VIRTUAL;
125 assert(!bs->io_limits_enabled);
126 throttle_init(&bs->throttle_state,
127 bdrv_get_aio_context(bs),
128 clock_type,
129 bdrv_throttle_read_timer_cb,
130 bdrv_throttle_write_timer_cb,
131 bs);
132 bs->io_limits_enabled = true;
135 /* This function makes an IO wait if needed
137 * @nb_sectors: the number of sectors of the IO
138 * @is_write: is the IO a write
140 static void bdrv_io_limits_intercept(BlockDriverState *bs,
141 unsigned int bytes,
142 bool is_write)
144 /* does this io must wait */
145 bool must_wait = throttle_schedule_timer(&bs->throttle_state, is_write);
147 /* if must wait or any request of this type throttled queue the IO */
148 if (must_wait ||
149 !qemu_co_queue_empty(&bs->throttled_reqs[is_write])) {
150 qemu_co_queue_wait(&bs->throttled_reqs[is_write]);
153 /* the IO will be executed, do the accounting */
154 throttle_account(&bs->throttle_state, is_write, bytes);
157 /* if the next request must wait -> do nothing */
158 if (throttle_schedule_timer(&bs->throttle_state, is_write)) {
159 return;
162 /* else queue next request for execution */
163 qemu_co_queue_next(&bs->throttled_reqs[is_write]);
166 void bdrv_setup_io_funcs(BlockDriver *bdrv)
168 /* Block drivers without coroutine functions need emulation */
169 if (!bdrv->bdrv_co_readv) {
170 bdrv->bdrv_co_readv = bdrv_co_readv_em;
171 bdrv->bdrv_co_writev = bdrv_co_writev_em;
173 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
174 * the block driver lacks aio we need to emulate that too.
176 if (!bdrv->bdrv_aio_readv) {
177 /* add AIO emulation layer */
178 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
179 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
184 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
186 BlockDriver *drv = bs->drv;
187 Error *local_err = NULL;
189 memset(&bs->bl, 0, sizeof(bs->bl));
191 if (!drv) {
192 return;
195 /* Take some limits from the children as a default */
196 if (bs->file) {
197 bdrv_refresh_limits(bs->file, &local_err);
198 if (local_err) {
199 error_propagate(errp, local_err);
200 return;
202 bs->bl.opt_transfer_length = bs->file->bl.opt_transfer_length;
203 bs->bl.max_transfer_length = bs->file->bl.max_transfer_length;
204 bs->bl.min_mem_alignment = bs->file->bl.min_mem_alignment;
205 bs->bl.opt_mem_alignment = bs->file->bl.opt_mem_alignment;
206 } else {
207 bs->bl.min_mem_alignment = 512;
208 bs->bl.opt_mem_alignment = getpagesize();
211 if (bs->backing_hd) {
212 bdrv_refresh_limits(bs->backing_hd, &local_err);
213 if (local_err) {
214 error_propagate(errp, local_err);
215 return;
217 bs->bl.opt_transfer_length =
218 MAX(bs->bl.opt_transfer_length,
219 bs->backing_hd->bl.opt_transfer_length);
220 bs->bl.max_transfer_length =
221 MIN_NON_ZERO(bs->bl.max_transfer_length,
222 bs->backing_hd->bl.max_transfer_length);
223 bs->bl.opt_mem_alignment =
224 MAX(bs->bl.opt_mem_alignment,
225 bs->backing_hd->bl.opt_mem_alignment);
226 bs->bl.min_mem_alignment =
227 MAX(bs->bl.min_mem_alignment,
228 bs->backing_hd->bl.min_mem_alignment);
231 /* Then let the driver override it */
232 if (drv->bdrv_refresh_limits) {
233 drv->bdrv_refresh_limits(bs, errp);
238 * The copy-on-read flag is actually a reference count so multiple users may
239 * use the feature without worrying about clobbering its previous state.
240 * Copy-on-read stays enabled until all users have called to disable it.
242 void bdrv_enable_copy_on_read(BlockDriverState *bs)
244 bs->copy_on_read++;
247 void bdrv_disable_copy_on_read(BlockDriverState *bs)
249 assert(bs->copy_on_read > 0);
250 bs->copy_on_read--;
253 /* Check if any requests are in-flight (including throttled requests) */
254 static bool bdrv_requests_pending(BlockDriverState *bs)
256 if (!QLIST_EMPTY(&bs->tracked_requests)) {
257 return true;
259 if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
260 return true;
262 if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
263 return true;
265 if (bs->file && bdrv_requests_pending(bs->file)) {
266 return true;
268 if (bs->backing_hd && bdrv_requests_pending(bs->backing_hd)) {
269 return true;
271 return false;
274 static bool bdrv_drain_one(BlockDriverState *bs)
276 bool bs_busy;
278 bdrv_flush_io_queue(bs);
279 bdrv_start_throttled_reqs(bs);
280 bs_busy = bdrv_requests_pending(bs);
281 bs_busy |= aio_poll(bdrv_get_aio_context(bs), bs_busy);
282 return bs_busy;
286 * Wait for pending requests to complete on a single BlockDriverState subtree
288 * See the warning in bdrv_drain_all(). This function can only be called if
289 * you are sure nothing can generate I/O because you have op blockers
290 * installed.
292 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
293 * AioContext.
295 void bdrv_drain(BlockDriverState *bs)
297 while (bdrv_drain_one(bs)) {
298 /* Keep iterating */
303 * Wait for pending requests to complete across all BlockDriverStates
305 * This function does not flush data to disk, use bdrv_flush_all() for that
306 * after calling this function.
308 * Note that completion of an asynchronous I/O operation can trigger any
309 * number of other I/O operations on other devices---for example a coroutine
310 * can be arbitrarily complex and a constant flow of I/O can come until the
311 * coroutine is complete. Because of this, it is not possible to have a
312 * function to drain a single device's I/O queue.
314 void bdrv_drain_all(void)
316 /* Always run first iteration so any pending completion BHs run */
317 bool busy = true;
318 BlockDriverState *bs = NULL;
320 while ((bs = bdrv_next(bs))) {
321 AioContext *aio_context = bdrv_get_aio_context(bs);
323 aio_context_acquire(aio_context);
324 if (bs->job) {
325 block_job_pause(bs->job);
327 aio_context_release(aio_context);
330 while (busy) {
331 busy = false;
332 bs = NULL;
334 while ((bs = bdrv_next(bs))) {
335 AioContext *aio_context = bdrv_get_aio_context(bs);
337 aio_context_acquire(aio_context);
338 busy |= bdrv_drain_one(bs);
339 aio_context_release(aio_context);
343 bs = NULL;
344 while ((bs = bdrv_next(bs))) {
345 AioContext *aio_context = bdrv_get_aio_context(bs);
347 aio_context_acquire(aio_context);
348 if (bs->job) {
349 block_job_resume(bs->job);
351 aio_context_release(aio_context);
356 * Remove an active request from the tracked requests list
358 * This function should be called when a tracked request is completing.
360 static void tracked_request_end(BdrvTrackedRequest *req)
362 if (req->serialising) {
363 req->bs->serialising_in_flight--;
366 QLIST_REMOVE(req, list);
367 qemu_co_queue_restart_all(&req->wait_queue);
371 * Add an active request to the tracked requests list
373 static void tracked_request_begin(BdrvTrackedRequest *req,
374 BlockDriverState *bs,
375 int64_t offset,
376 unsigned int bytes, bool is_write)
378 *req = (BdrvTrackedRequest){
379 .bs = bs,
380 .offset = offset,
381 .bytes = bytes,
382 .is_write = is_write,
383 .co = qemu_coroutine_self(),
384 .serialising = false,
385 .overlap_offset = offset,
386 .overlap_bytes = bytes,
389 qemu_co_queue_init(&req->wait_queue);
391 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
394 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
396 int64_t overlap_offset = req->offset & ~(align - 1);
397 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
398 - overlap_offset;
400 if (!req->serialising) {
401 req->bs->serialising_in_flight++;
402 req->serialising = true;
405 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
406 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
410 * Round a region to cluster boundaries
412 void bdrv_round_to_clusters(BlockDriverState *bs,
413 int64_t sector_num, int nb_sectors,
414 int64_t *cluster_sector_num,
415 int *cluster_nb_sectors)
417 BlockDriverInfo bdi;
419 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
420 *cluster_sector_num = sector_num;
421 *cluster_nb_sectors = nb_sectors;
422 } else {
423 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
424 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
425 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
426 nb_sectors, c);
430 static int bdrv_get_cluster_size(BlockDriverState *bs)
432 BlockDriverInfo bdi;
433 int ret;
435 ret = bdrv_get_info(bs, &bdi);
436 if (ret < 0 || bdi.cluster_size == 0) {
437 return bs->request_alignment;
438 } else {
439 return bdi.cluster_size;
443 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
444 int64_t offset, unsigned int bytes)
446 /* aaaa bbbb */
447 if (offset >= req->overlap_offset + req->overlap_bytes) {
448 return false;
450 /* bbbb aaaa */
451 if (req->overlap_offset >= offset + bytes) {
452 return false;
454 return true;
457 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
459 BlockDriverState *bs = self->bs;
460 BdrvTrackedRequest *req;
461 bool retry;
462 bool waited = false;
464 if (!bs->serialising_in_flight) {
465 return false;
468 do {
469 retry = false;
470 QLIST_FOREACH(req, &bs->tracked_requests, list) {
471 if (req == self || (!req->serialising && !self->serialising)) {
472 continue;
474 if (tracked_request_overlaps(req, self->overlap_offset,
475 self->overlap_bytes))
477 /* Hitting this means there was a reentrant request, for
478 * example, a block driver issuing nested requests. This must
479 * never happen since it means deadlock.
481 assert(qemu_coroutine_self() != req->co);
483 /* If the request is already (indirectly) waiting for us, or
484 * will wait for us as soon as it wakes up, then just go on
485 * (instead of producing a deadlock in the former case). */
486 if (!req->waiting_for) {
487 self->waiting_for = req;
488 qemu_co_queue_wait(&req->wait_queue);
489 self->waiting_for = NULL;
490 retry = true;
491 waited = true;
492 break;
496 } while (retry);
498 return waited;
501 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
502 size_t size)
504 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
505 return -EIO;
508 if (!bdrv_is_inserted(bs)) {
509 return -ENOMEDIUM;
512 if (offset < 0) {
513 return -EIO;
516 return 0;
519 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
520 int nb_sectors)
522 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
523 return -EIO;
526 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
527 nb_sectors * BDRV_SECTOR_SIZE);
530 typedef struct RwCo {
531 BlockDriverState *bs;
532 int64_t offset;
533 QEMUIOVector *qiov;
534 bool is_write;
535 int ret;
536 BdrvRequestFlags flags;
537 } RwCo;
539 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
541 RwCo *rwco = opaque;
543 if (!rwco->is_write) {
544 rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
545 rwco->qiov->size, rwco->qiov,
546 rwco->flags);
547 } else {
548 rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
549 rwco->qiov->size, rwco->qiov,
550 rwco->flags);
555 * Process a vectored synchronous request using coroutines
557 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
558 QEMUIOVector *qiov, bool is_write,
559 BdrvRequestFlags flags)
561 Coroutine *co;
562 RwCo rwco = {
563 .bs = bs,
564 .offset = offset,
565 .qiov = qiov,
566 .is_write = is_write,
567 .ret = NOT_DONE,
568 .flags = flags,
572 * In sync call context, when the vcpu is blocked, this throttling timer
573 * will not fire; so the I/O throttling function has to be disabled here
574 * if it has been enabled.
576 if (bs->io_limits_enabled) {
577 fprintf(stderr, "Disabling I/O throttling on '%s' due "
578 "to synchronous I/O.\n", bdrv_get_device_name(bs));
579 bdrv_io_limits_disable(bs);
582 if (qemu_in_coroutine()) {
583 /* Fast-path if already in coroutine context */
584 bdrv_rw_co_entry(&rwco);
585 } else {
586 AioContext *aio_context = bdrv_get_aio_context(bs);
588 co = qemu_coroutine_create(bdrv_rw_co_entry);
589 qemu_coroutine_enter(co, &rwco);
590 while (rwco.ret == NOT_DONE) {
591 aio_poll(aio_context, true);
594 return rwco.ret;
598 * Process a synchronous request using coroutines
600 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
601 int nb_sectors, bool is_write, BdrvRequestFlags flags)
603 QEMUIOVector qiov;
604 struct iovec iov = {
605 .iov_base = (void *)buf,
606 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
609 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
610 return -EINVAL;
613 qemu_iovec_init_external(&qiov, &iov, 1);
614 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
615 &qiov, is_write, flags);
618 /* return < 0 if error. See bdrv_write() for the return codes */
619 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
620 uint8_t *buf, int nb_sectors)
622 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
625 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
626 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
627 uint8_t *buf, int nb_sectors)
629 bool enabled;
630 int ret;
632 enabled = bs->io_limits_enabled;
633 bs->io_limits_enabled = false;
634 ret = bdrv_read(bs, sector_num, buf, nb_sectors);
635 bs->io_limits_enabled = enabled;
636 return ret;
639 /* Return < 0 if error. Important errors are:
640 -EIO generic I/O error (may happen for all errors)
641 -ENOMEDIUM No media inserted.
642 -EINVAL Invalid sector number or nb_sectors
643 -EACCES Trying to write a read-only device
645 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
646 const uint8_t *buf, int nb_sectors)
648 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
651 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
652 int nb_sectors, BdrvRequestFlags flags)
654 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
655 BDRV_REQ_ZERO_WRITE | flags);
659 * Completely zero out a block device with the help of bdrv_write_zeroes.
660 * The operation is sped up by checking the block status and only writing
661 * zeroes to the device if they currently do not return zeroes. Optional
662 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
664 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
666 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
668 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
669 int n;
671 target_sectors = bdrv_nb_sectors(bs);
672 if (target_sectors < 0) {
673 return target_sectors;
676 for (;;) {
677 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
678 if (nb_sectors <= 0) {
679 return 0;
681 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n);
682 if (ret < 0) {
683 error_report("error getting block status at sector %" PRId64 ": %s",
684 sector_num, strerror(-ret));
685 return ret;
687 if (ret & BDRV_BLOCK_ZERO) {
688 sector_num += n;
689 continue;
691 ret = bdrv_write_zeroes(bs, sector_num, n, flags);
692 if (ret < 0) {
693 error_report("error writing zeroes at sector %" PRId64 ": %s",
694 sector_num, strerror(-ret));
695 return ret;
697 sector_num += n;
701 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
703 QEMUIOVector qiov;
704 struct iovec iov = {
705 .iov_base = (void *)buf,
706 .iov_len = bytes,
708 int ret;
710 if (bytes < 0) {
711 return -EINVAL;
714 qemu_iovec_init_external(&qiov, &iov, 1);
715 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
716 if (ret < 0) {
717 return ret;
720 return bytes;
723 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
725 int ret;
727 ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
728 if (ret < 0) {
729 return ret;
732 return qiov->size;
735 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
736 const void *buf, int bytes)
738 QEMUIOVector qiov;
739 struct iovec iov = {
740 .iov_base = (void *) buf,
741 .iov_len = bytes,
744 if (bytes < 0) {
745 return -EINVAL;
748 qemu_iovec_init_external(&qiov, &iov, 1);
749 return bdrv_pwritev(bs, offset, &qiov);
753 * Writes to the file and ensures that no writes are reordered across this
754 * request (acts as a barrier)
756 * Returns 0 on success, -errno in error cases.
758 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
759 const void *buf, int count)
761 int ret;
763 ret = bdrv_pwrite(bs, offset, buf, count);
764 if (ret < 0) {
765 return ret;
768 /* No flush needed for cache modes that already do it */
769 if (bs->enable_write_cache) {
770 bdrv_flush(bs);
773 return 0;
776 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
777 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
779 /* Perform I/O through a temporary buffer so that users who scribble over
780 * their read buffer while the operation is in progress do not end up
781 * modifying the image file. This is critical for zero-copy guest I/O
782 * where anything might happen inside guest memory.
784 void *bounce_buffer;
786 BlockDriver *drv = bs->drv;
787 struct iovec iov;
788 QEMUIOVector bounce_qiov;
789 int64_t cluster_sector_num;
790 int cluster_nb_sectors;
791 size_t skip_bytes;
792 int ret;
794 /* Cover entire cluster so no additional backing file I/O is required when
795 * allocating cluster in the image file.
797 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
798 &cluster_sector_num, &cluster_nb_sectors);
800 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
801 cluster_sector_num, cluster_nb_sectors);
803 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
804 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
805 if (bounce_buffer == NULL) {
806 ret = -ENOMEM;
807 goto err;
810 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
812 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
813 &bounce_qiov);
814 if (ret < 0) {
815 goto err;
818 if (drv->bdrv_co_write_zeroes &&
819 buffer_is_zero(bounce_buffer, iov.iov_len)) {
820 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
821 cluster_nb_sectors, 0);
822 } else {
823 /* This does not change the data on the disk, it is not necessary
824 * to flush even in cache=writethrough mode.
826 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
827 &bounce_qiov);
830 if (ret < 0) {
831 /* It might be okay to ignore write errors for guest requests. If this
832 * is a deliberate copy-on-read then we don't want to ignore the error.
833 * Simply report it in all cases.
835 goto err;
838 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
839 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
840 nb_sectors * BDRV_SECTOR_SIZE);
842 err:
843 qemu_vfree(bounce_buffer);
844 return ret;
848 * Forwards an already correctly aligned request to the BlockDriver. This
849 * handles copy on read and zeroing after EOF; any other features must be
850 * implemented by the caller.
852 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
853 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
854 int64_t align, QEMUIOVector *qiov, int flags)
856 BlockDriver *drv = bs->drv;
857 int ret;
859 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
860 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
862 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
863 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
864 assert(!qiov || bytes == qiov->size);
866 /* Handle Copy on Read and associated serialisation */
867 if (flags & BDRV_REQ_COPY_ON_READ) {
868 /* If we touch the same cluster it counts as an overlap. This
869 * guarantees that allocating writes will be serialized and not race
870 * with each other for the same cluster. For example, in copy-on-read
871 * it ensures that the CoR read and write operations are atomic and
872 * guest writes cannot interleave between them. */
873 mark_request_serialising(req, bdrv_get_cluster_size(bs));
876 wait_serialising_requests(req);
878 if (flags & BDRV_REQ_COPY_ON_READ) {
879 int pnum;
881 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
882 if (ret < 0) {
883 goto out;
886 if (!ret || pnum != nb_sectors) {
887 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
888 goto out;
892 /* Forward the request to the BlockDriver */
893 if (!bs->zero_beyond_eof) {
894 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
895 } else {
896 /* Read zeros after EOF */
897 int64_t total_sectors, max_nb_sectors;
899 total_sectors = bdrv_nb_sectors(bs);
900 if (total_sectors < 0) {
901 ret = total_sectors;
902 goto out;
905 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
906 align >> BDRV_SECTOR_BITS);
907 if (nb_sectors < max_nb_sectors) {
908 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
909 } else if (max_nb_sectors > 0) {
910 QEMUIOVector local_qiov;
912 qemu_iovec_init(&local_qiov, qiov->niov);
913 qemu_iovec_concat(&local_qiov, qiov, 0,
914 max_nb_sectors * BDRV_SECTOR_SIZE);
916 ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
917 &local_qiov);
919 qemu_iovec_destroy(&local_qiov);
920 } else {
921 ret = 0;
924 /* Reading beyond end of file is supposed to produce zeroes */
925 if (ret == 0 && total_sectors < sector_num + nb_sectors) {
926 uint64_t offset = MAX(0, total_sectors - sector_num);
927 uint64_t bytes = (sector_num + nb_sectors - offset) *
928 BDRV_SECTOR_SIZE;
929 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
933 out:
934 return ret;
938 * Handle a read request in coroutine context
940 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
941 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
942 BdrvRequestFlags flags)
944 BlockDriver *drv = bs->drv;
945 BdrvTrackedRequest req;
947 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
948 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
949 uint8_t *head_buf = NULL;
950 uint8_t *tail_buf = NULL;
951 QEMUIOVector local_qiov;
952 bool use_local_qiov = false;
953 int ret;
955 if (!drv) {
956 return -ENOMEDIUM;
959 ret = bdrv_check_byte_request(bs, offset, bytes);
960 if (ret < 0) {
961 return ret;
964 if (bs->copy_on_read) {
965 flags |= BDRV_REQ_COPY_ON_READ;
968 /* throttling disk I/O */
969 if (bs->io_limits_enabled) {
970 bdrv_io_limits_intercept(bs, bytes, false);
973 /* Align read if necessary by padding qiov */
974 if (offset & (align - 1)) {
975 head_buf = qemu_blockalign(bs, align);
976 qemu_iovec_init(&local_qiov, qiov->niov + 2);
977 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
978 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
979 use_local_qiov = true;
981 bytes += offset & (align - 1);
982 offset = offset & ~(align - 1);
985 if ((offset + bytes) & (align - 1)) {
986 if (!use_local_qiov) {
987 qemu_iovec_init(&local_qiov, qiov->niov + 1);
988 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
989 use_local_qiov = true;
991 tail_buf = qemu_blockalign(bs, align);
992 qemu_iovec_add(&local_qiov, tail_buf,
993 align - ((offset + bytes) & (align - 1)));
995 bytes = ROUND_UP(bytes, align);
998 tracked_request_begin(&req, bs, offset, bytes, false);
999 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
1000 use_local_qiov ? &local_qiov : qiov,
1001 flags);
1002 tracked_request_end(&req);
1004 if (use_local_qiov) {
1005 qemu_iovec_destroy(&local_qiov);
1006 qemu_vfree(head_buf);
1007 qemu_vfree(tail_buf);
1010 return ret;
1013 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1014 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1015 BdrvRequestFlags flags)
1017 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1018 return -EINVAL;
1021 return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
1022 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1025 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1026 int nb_sectors, QEMUIOVector *qiov)
1028 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1030 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1033 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1034 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1036 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1038 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1039 BDRV_REQ_COPY_ON_READ);
1042 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1044 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1045 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1047 BlockDriver *drv = bs->drv;
1048 QEMUIOVector qiov;
1049 struct iovec iov = {0};
1050 int ret = 0;
1052 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1053 BDRV_REQUEST_MAX_SECTORS);
1055 while (nb_sectors > 0 && !ret) {
1056 int num = nb_sectors;
1058 /* Align request. Block drivers can expect the "bulk" of the request
1059 * to be aligned.
1061 if (bs->bl.write_zeroes_alignment
1062 && num > bs->bl.write_zeroes_alignment) {
1063 if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1064 /* Make a small request up to the first aligned sector. */
1065 num = bs->bl.write_zeroes_alignment;
1066 num -= sector_num % bs->bl.write_zeroes_alignment;
1067 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1068 /* Shorten the request to the last aligned sector. num cannot
1069 * underflow because num > bs->bl.write_zeroes_alignment.
1071 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1075 /* limit request size */
1076 if (num > max_write_zeroes) {
1077 num = max_write_zeroes;
1080 ret = -ENOTSUP;
1081 /* First try the efficient write zeroes operation */
1082 if (drv->bdrv_co_write_zeroes) {
1083 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1086 if (ret == -ENOTSUP) {
1087 /* Fall back to bounce buffer if write zeroes is unsupported */
1088 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1089 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1090 num = MIN(num, max_xfer_len);
1091 iov.iov_len = num * BDRV_SECTOR_SIZE;
1092 if (iov.iov_base == NULL) {
1093 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1094 if (iov.iov_base == NULL) {
1095 ret = -ENOMEM;
1096 goto fail;
1098 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1100 qemu_iovec_init_external(&qiov, &iov, 1);
1102 ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1104 /* Keep bounce buffer around if it is big enough for all
1105 * all future requests.
1107 if (num < max_xfer_len) {
1108 qemu_vfree(iov.iov_base);
1109 iov.iov_base = NULL;
1113 sector_num += num;
1114 nb_sectors -= num;
1117 fail:
1118 qemu_vfree(iov.iov_base);
1119 return ret;
1123 * Forwards an already correctly aligned write request to the BlockDriver.
1125 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1126 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1127 QEMUIOVector *qiov, int flags)
1129 BlockDriver *drv = bs->drv;
1130 bool waited;
1131 int ret;
1133 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1134 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1136 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1137 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1138 assert(!qiov || bytes == qiov->size);
1140 waited = wait_serialising_requests(req);
1141 assert(!waited || !req->serialising);
1142 assert(req->overlap_offset <= offset);
1143 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1145 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1147 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1148 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1149 qemu_iovec_is_zero(qiov)) {
1150 flags |= BDRV_REQ_ZERO_WRITE;
1151 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1152 flags |= BDRV_REQ_MAY_UNMAP;
1156 if (ret < 0) {
1157 /* Do nothing, write notifier decided to fail this request */
1158 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1159 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_ZERO);
1160 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1161 } else {
1162 BLKDBG_EVENT(bs, BLKDBG_PWRITEV);
1163 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1165 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_DONE);
1167 if (ret == 0 && !bs->enable_write_cache) {
1168 ret = bdrv_co_flush(bs);
1171 bdrv_set_dirty(bs, sector_num, nb_sectors);
1173 block_acct_highest_sector(&bs->stats, sector_num, nb_sectors);
1175 if (ret >= 0) {
1176 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1179 return ret;
1182 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1183 int64_t offset,
1184 unsigned int bytes,
1185 BdrvRequestFlags flags,
1186 BdrvTrackedRequest *req)
1188 uint8_t *buf = NULL;
1189 QEMUIOVector local_qiov;
1190 struct iovec iov;
1191 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1192 unsigned int head_padding_bytes, tail_padding_bytes;
1193 int ret = 0;
1195 head_padding_bytes = offset & (align - 1);
1196 tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1199 assert(flags & BDRV_REQ_ZERO_WRITE);
1200 if (head_padding_bytes || tail_padding_bytes) {
1201 buf = qemu_blockalign(bs, align);
1202 iov = (struct iovec) {
1203 .iov_base = buf,
1204 .iov_len = align,
1206 qemu_iovec_init_external(&local_qiov, &iov, 1);
1208 if (head_padding_bytes) {
1209 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1211 /* RMW the unaligned part before head. */
1212 mark_request_serialising(req, align);
1213 wait_serialising_requests(req);
1214 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_HEAD);
1215 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1216 align, &local_qiov, 0);
1217 if (ret < 0) {
1218 goto fail;
1220 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1222 memset(buf + head_padding_bytes, 0, zero_bytes);
1223 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1224 &local_qiov,
1225 flags & ~BDRV_REQ_ZERO_WRITE);
1226 if (ret < 0) {
1227 goto fail;
1229 offset += zero_bytes;
1230 bytes -= zero_bytes;
1233 assert(!bytes || (offset & (align - 1)) == 0);
1234 if (bytes >= align) {
1235 /* Write the aligned part in the middle. */
1236 uint64_t aligned_bytes = bytes & ~(align - 1);
1237 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes,
1238 NULL, flags);
1239 if (ret < 0) {
1240 goto fail;
1242 bytes -= aligned_bytes;
1243 offset += aligned_bytes;
1246 assert(!bytes || (offset & (align - 1)) == 0);
1247 if (bytes) {
1248 assert(align == tail_padding_bytes + bytes);
1249 /* RMW the unaligned part after tail. */
1250 mark_request_serialising(req, align);
1251 wait_serialising_requests(req);
1252 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_TAIL);
1253 ret = bdrv_aligned_preadv(bs, req, offset, align,
1254 align, &local_qiov, 0);
1255 if (ret < 0) {
1256 goto fail;
1258 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1260 memset(buf, 0, bytes);
1261 ret = bdrv_aligned_pwritev(bs, req, offset, align,
1262 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1264 fail:
1265 qemu_vfree(buf);
1266 return ret;
1271 * Handle a write request in coroutine context
1273 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1274 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1275 BdrvRequestFlags flags)
1277 BdrvTrackedRequest req;
1278 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1279 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1280 uint8_t *head_buf = NULL;
1281 uint8_t *tail_buf = NULL;
1282 QEMUIOVector local_qiov;
1283 bool use_local_qiov = false;
1284 int ret;
1286 if (!bs->drv) {
1287 return -ENOMEDIUM;
1289 if (bs->read_only) {
1290 return -EPERM;
1293 ret = bdrv_check_byte_request(bs, offset, bytes);
1294 if (ret < 0) {
1295 return ret;
1298 /* throttling disk I/O */
1299 if (bs->io_limits_enabled) {
1300 bdrv_io_limits_intercept(bs, bytes, true);
1304 * Align write if necessary by performing a read-modify-write cycle.
1305 * Pad qiov with the read parts and be sure to have a tracked request not
1306 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1308 tracked_request_begin(&req, bs, offset, bytes, true);
1310 if (!qiov) {
1311 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1312 goto out;
1315 if (offset & (align - 1)) {
1316 QEMUIOVector head_qiov;
1317 struct iovec head_iov;
1319 mark_request_serialising(&req, align);
1320 wait_serialising_requests(&req);
1322 head_buf = qemu_blockalign(bs, align);
1323 head_iov = (struct iovec) {
1324 .iov_base = head_buf,
1325 .iov_len = align,
1327 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1329 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_HEAD);
1330 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1331 align, &head_qiov, 0);
1332 if (ret < 0) {
1333 goto fail;
1335 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1337 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1338 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1339 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1340 use_local_qiov = true;
1342 bytes += offset & (align - 1);
1343 offset = offset & ~(align - 1);
1346 if ((offset + bytes) & (align - 1)) {
1347 QEMUIOVector tail_qiov;
1348 struct iovec tail_iov;
1349 size_t tail_bytes;
1350 bool waited;
1352 mark_request_serialising(&req, align);
1353 waited = wait_serialising_requests(&req);
1354 assert(!waited || !use_local_qiov);
1356 tail_buf = qemu_blockalign(bs, align);
1357 tail_iov = (struct iovec) {
1358 .iov_base = tail_buf,
1359 .iov_len = align,
1361 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1363 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_TAIL);
1364 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1365 align, &tail_qiov, 0);
1366 if (ret < 0) {
1367 goto fail;
1369 BLKDBG_EVENT(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1371 if (!use_local_qiov) {
1372 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1373 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1374 use_local_qiov = true;
1377 tail_bytes = (offset + bytes) & (align - 1);
1378 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1380 bytes = ROUND_UP(bytes, align);
1383 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1384 use_local_qiov ? &local_qiov : qiov,
1385 flags);
1387 fail:
1389 if (use_local_qiov) {
1390 qemu_iovec_destroy(&local_qiov);
1392 qemu_vfree(head_buf);
1393 qemu_vfree(tail_buf);
1394 out:
1395 tracked_request_end(&req);
1396 return ret;
1399 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1400 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1401 BdrvRequestFlags flags)
1403 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1404 return -EINVAL;
1407 return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1408 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1411 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1412 int nb_sectors, QEMUIOVector *qiov)
1414 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1416 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1419 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1420 int64_t sector_num, int nb_sectors,
1421 BdrvRequestFlags flags)
1423 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1425 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1426 flags &= ~BDRV_REQ_MAY_UNMAP;
1429 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1430 BDRV_REQ_ZERO_WRITE | flags);
1433 int bdrv_flush_all(void)
1435 BlockDriverState *bs = NULL;
1436 int result = 0;
1438 while ((bs = bdrv_next(bs))) {
1439 AioContext *aio_context = bdrv_get_aio_context(bs);
1440 int ret;
1442 aio_context_acquire(aio_context);
1443 ret = bdrv_flush(bs);
1444 if (ret < 0 && !result) {
1445 result = ret;
1447 aio_context_release(aio_context);
1450 return result;
1453 typedef struct BdrvCoGetBlockStatusData {
1454 BlockDriverState *bs;
1455 BlockDriverState *base;
1456 int64_t sector_num;
1457 int nb_sectors;
1458 int *pnum;
1459 int64_t ret;
1460 bool done;
1461 } BdrvCoGetBlockStatusData;
1464 * Returns the allocation status of the specified sectors.
1465 * Drivers not implementing the functionality are assumed to not support
1466 * backing files, hence all their sectors are reported as allocated.
1468 * If 'sector_num' is beyond the end of the disk image the return value is 0
1469 * and 'pnum' is set to 0.
1471 * 'pnum' is set to the number of sectors (including and immediately following
1472 * the specified sector) that are known to be in the same
1473 * allocated/unallocated state.
1475 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1476 * beyond the end of the disk image it will be clamped.
1478 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1479 int64_t sector_num,
1480 int nb_sectors, int *pnum)
1482 int64_t total_sectors;
1483 int64_t n;
1484 int64_t ret, ret2;
1486 total_sectors = bdrv_nb_sectors(bs);
1487 if (total_sectors < 0) {
1488 return total_sectors;
1491 if (sector_num >= total_sectors) {
1492 *pnum = 0;
1493 return 0;
1496 n = total_sectors - sector_num;
1497 if (n < nb_sectors) {
1498 nb_sectors = n;
1501 if (!bs->drv->bdrv_co_get_block_status) {
1502 *pnum = nb_sectors;
1503 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1504 if (bs->drv->protocol_name) {
1505 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1507 return ret;
1510 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum);
1511 if (ret < 0) {
1512 *pnum = 0;
1513 return ret;
1516 if (ret & BDRV_BLOCK_RAW) {
1517 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1518 return bdrv_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
1519 *pnum, pnum);
1522 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1523 ret |= BDRV_BLOCK_ALLOCATED;
1524 } else {
1525 if (bdrv_unallocated_blocks_are_zero(bs)) {
1526 ret |= BDRV_BLOCK_ZERO;
1527 } else if (bs->backing_hd) {
1528 BlockDriverState *bs2 = bs->backing_hd;
1529 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1530 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1531 ret |= BDRV_BLOCK_ZERO;
1536 if (bs->file &&
1537 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1538 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1539 int file_pnum;
1541 ret2 = bdrv_co_get_block_status(bs->file, ret >> BDRV_SECTOR_BITS,
1542 *pnum, &file_pnum);
1543 if (ret2 >= 0) {
1544 /* Ignore errors. This is just providing extra information, it
1545 * is useful but not necessary.
1547 if (!file_pnum) {
1548 /* !file_pnum indicates an offset at or beyond the EOF; it is
1549 * perfectly valid for the format block driver to point to such
1550 * offsets, so catch it and mark everything as zero */
1551 ret |= BDRV_BLOCK_ZERO;
1552 } else {
1553 /* Limit request to the range reported by the protocol driver */
1554 *pnum = file_pnum;
1555 ret |= (ret2 & BDRV_BLOCK_ZERO);
1560 return ret;
1563 /* Coroutine wrapper for bdrv_get_block_status() */
1564 static void coroutine_fn bdrv_get_block_status_co_entry(void *opaque)
1566 BdrvCoGetBlockStatusData *data = opaque;
1567 BlockDriverState *bs = data->bs;
1569 data->ret = bdrv_co_get_block_status(bs, data->sector_num, data->nb_sectors,
1570 data->pnum);
1571 data->done = true;
1575 * Synchronous wrapper around bdrv_co_get_block_status().
1577 * See bdrv_co_get_block_status() for details.
1579 int64_t bdrv_get_block_status(BlockDriverState *bs, int64_t sector_num,
1580 int nb_sectors, int *pnum)
1582 Coroutine *co;
1583 BdrvCoGetBlockStatusData data = {
1584 .bs = bs,
1585 .sector_num = sector_num,
1586 .nb_sectors = nb_sectors,
1587 .pnum = pnum,
1588 .done = false,
1591 if (qemu_in_coroutine()) {
1592 /* Fast-path if already in coroutine context */
1593 bdrv_get_block_status_co_entry(&data);
1594 } else {
1595 AioContext *aio_context = bdrv_get_aio_context(bs);
1597 co = qemu_coroutine_create(bdrv_get_block_status_co_entry);
1598 qemu_coroutine_enter(co, &data);
1599 while (!data.done) {
1600 aio_poll(aio_context, true);
1603 return data.ret;
1606 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1607 int nb_sectors, int *pnum)
1609 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum);
1610 if (ret < 0) {
1611 return ret;
1613 return !!(ret & BDRV_BLOCK_ALLOCATED);
1617 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1619 * Return true if the given sector is allocated in any image between
1620 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1621 * sector is allocated in any image of the chain. Return false otherwise.
1623 * 'pnum' is set to the number of sectors (including and immediately following
1624 * the specified sector) that are known to be in the same
1625 * allocated/unallocated state.
1628 int bdrv_is_allocated_above(BlockDriverState *top,
1629 BlockDriverState *base,
1630 int64_t sector_num,
1631 int nb_sectors, int *pnum)
1633 BlockDriverState *intermediate;
1634 int ret, n = nb_sectors;
1636 intermediate = top;
1637 while (intermediate && intermediate != base) {
1638 int pnum_inter;
1639 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1640 &pnum_inter);
1641 if (ret < 0) {
1642 return ret;
1643 } else if (ret) {
1644 *pnum = pnum_inter;
1645 return 1;
1649 * [sector_num, nb_sectors] is unallocated on top but intermediate
1650 * might have
1652 * [sector_num+x, nr_sectors] allocated.
1654 if (n > pnum_inter &&
1655 (intermediate == top ||
1656 sector_num + pnum_inter < intermediate->total_sectors)) {
1657 n = pnum_inter;
1660 intermediate = intermediate->backing_hd;
1663 *pnum = n;
1664 return 0;
1667 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1668 const uint8_t *buf, int nb_sectors)
1670 BlockDriver *drv = bs->drv;
1671 int ret;
1673 if (!drv) {
1674 return -ENOMEDIUM;
1676 if (!drv->bdrv_write_compressed) {
1677 return -ENOTSUP;
1679 ret = bdrv_check_request(bs, sector_num, nb_sectors);
1680 if (ret < 0) {
1681 return ret;
1684 assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1686 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1689 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1690 int64_t pos, int size)
1692 QEMUIOVector qiov;
1693 struct iovec iov = {
1694 .iov_base = (void *) buf,
1695 .iov_len = size,
1698 qemu_iovec_init_external(&qiov, &iov, 1);
1699 return bdrv_writev_vmstate(bs, &qiov, pos);
1702 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1704 BlockDriver *drv = bs->drv;
1706 if (!drv) {
1707 return -ENOMEDIUM;
1708 } else if (drv->bdrv_save_vmstate) {
1709 return drv->bdrv_save_vmstate(bs, qiov, pos);
1710 } else if (bs->file) {
1711 return bdrv_writev_vmstate(bs->file, qiov, pos);
1714 return -ENOTSUP;
1717 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1718 int64_t pos, int size)
1720 BlockDriver *drv = bs->drv;
1721 if (!drv)
1722 return -ENOMEDIUM;
1723 if (drv->bdrv_load_vmstate)
1724 return drv->bdrv_load_vmstate(bs, buf, pos, size);
1725 if (bs->file)
1726 return bdrv_load_vmstate(bs->file, buf, pos, size);
1727 return -ENOTSUP;
1730 /**************************************************************/
1731 /* async I/Os */
1733 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1734 QEMUIOVector *qiov, int nb_sectors,
1735 BlockCompletionFunc *cb, void *opaque)
1737 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1739 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1740 cb, opaque, false);
1743 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1744 QEMUIOVector *qiov, int nb_sectors,
1745 BlockCompletionFunc *cb, void *opaque)
1747 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1749 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1750 cb, opaque, true);
1753 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1754 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1755 BlockCompletionFunc *cb, void *opaque)
1757 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1759 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1760 BDRV_REQ_ZERO_WRITE | flags,
1761 cb, opaque, true);
1765 typedef struct MultiwriteCB {
1766 int error;
1767 int num_requests;
1768 int num_callbacks;
1769 struct {
1770 BlockCompletionFunc *cb;
1771 void *opaque;
1772 QEMUIOVector *free_qiov;
1773 } callbacks[];
1774 } MultiwriteCB;
1776 static void multiwrite_user_cb(MultiwriteCB *mcb)
1778 int i;
1780 for (i = 0; i < mcb->num_callbacks; i++) {
1781 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1782 if (mcb->callbacks[i].free_qiov) {
1783 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1785 g_free(mcb->callbacks[i].free_qiov);
1789 static void multiwrite_cb(void *opaque, int ret)
1791 MultiwriteCB *mcb = opaque;
1793 trace_multiwrite_cb(mcb, ret);
1795 if (ret < 0 && !mcb->error) {
1796 mcb->error = ret;
1799 mcb->num_requests--;
1800 if (mcb->num_requests == 0) {
1801 multiwrite_user_cb(mcb);
1802 g_free(mcb);
1806 static int multiwrite_req_compare(const void *a, const void *b)
1808 const BlockRequest *req1 = a, *req2 = b;
1811 * Note that we can't simply subtract req2->sector from req1->sector
1812 * here as that could overflow the return value.
1814 if (req1->sector > req2->sector) {
1815 return 1;
1816 } else if (req1->sector < req2->sector) {
1817 return -1;
1818 } else {
1819 return 0;
1824 * Takes a bunch of requests and tries to merge them. Returns the number of
1825 * requests that remain after merging.
1827 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1828 int num_reqs, MultiwriteCB *mcb)
1830 int i, outidx;
1832 // Sort requests by start sector
1833 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1835 // Check if adjacent requests touch the same clusters. If so, combine them,
1836 // filling up gaps with zero sectors.
1837 outidx = 0;
1838 for (i = 1; i < num_reqs; i++) {
1839 int merge = 0;
1840 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1842 // Handle exactly sequential writes and overlapping writes.
1843 if (reqs[i].sector <= oldreq_last) {
1844 merge = 1;
1847 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
1848 merge = 0;
1851 if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1852 reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1853 merge = 0;
1856 if (merge) {
1857 size_t size;
1858 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1859 qemu_iovec_init(qiov,
1860 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1862 // Add the first request to the merged one. If the requests are
1863 // overlapping, drop the last sectors of the first request.
1864 size = (reqs[i].sector - reqs[outidx].sector) << 9;
1865 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1867 // We should need to add any zeros between the two requests
1868 assert (reqs[i].sector <= oldreq_last);
1870 // Add the second request
1871 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1873 // Add tail of first request, if necessary
1874 if (qiov->size < reqs[outidx].qiov->size) {
1875 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1876 reqs[outidx].qiov->size - qiov->size);
1879 reqs[outidx].nb_sectors = qiov->size >> 9;
1880 reqs[outidx].qiov = qiov;
1882 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1883 } else {
1884 outidx++;
1885 reqs[outidx].sector = reqs[i].sector;
1886 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1887 reqs[outidx].qiov = reqs[i].qiov;
1891 block_acct_merge_done(&bs->stats, BLOCK_ACCT_WRITE, num_reqs - outidx - 1);
1893 return outidx + 1;
1897 * Submit multiple AIO write requests at once.
1899 * On success, the function returns 0 and all requests in the reqs array have
1900 * been submitted. In error case this function returns -1, and any of the
1901 * requests may or may not be submitted yet. In particular, this means that the
1902 * callback will be called for some of the requests, for others it won't. The
1903 * caller must check the error field of the BlockRequest to wait for the right
1904 * callbacks (if error != 0, no callback will be called).
1906 * The implementation may modify the contents of the reqs array, e.g. to merge
1907 * requests. However, the fields opaque and error are left unmodified as they
1908 * are used to signal failure for a single request to the caller.
1910 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1912 MultiwriteCB *mcb;
1913 int i;
1915 /* don't submit writes if we don't have a medium */
1916 if (bs->drv == NULL) {
1917 for (i = 0; i < num_reqs; i++) {
1918 reqs[i].error = -ENOMEDIUM;
1920 return -1;
1923 if (num_reqs == 0) {
1924 return 0;
1927 // Create MultiwriteCB structure
1928 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
1929 mcb->num_requests = 0;
1930 mcb->num_callbacks = num_reqs;
1932 for (i = 0; i < num_reqs; i++) {
1933 mcb->callbacks[i].cb = reqs[i].cb;
1934 mcb->callbacks[i].opaque = reqs[i].opaque;
1937 // Check for mergable requests
1938 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
1940 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
1942 /* Run the aio requests. */
1943 mcb->num_requests = num_reqs;
1944 for (i = 0; i < num_reqs; i++) {
1945 bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
1946 reqs[i].nb_sectors, reqs[i].flags,
1947 multiwrite_cb, mcb,
1948 true);
1951 return 0;
1954 void bdrv_aio_cancel(BlockAIOCB *acb)
1956 qemu_aio_ref(acb);
1957 bdrv_aio_cancel_async(acb);
1958 while (acb->refcnt > 1) {
1959 if (acb->aiocb_info->get_aio_context) {
1960 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
1961 } else if (acb->bs) {
1962 aio_poll(bdrv_get_aio_context(acb->bs), true);
1963 } else {
1964 abort();
1967 qemu_aio_unref(acb);
1970 /* Async version of aio cancel. The caller is not blocked if the acb implements
1971 * cancel_async, otherwise we do nothing and let the request normally complete.
1972 * In either case the completion callback must be called. */
1973 void bdrv_aio_cancel_async(BlockAIOCB *acb)
1975 if (acb->aiocb_info->cancel_async) {
1976 acb->aiocb_info->cancel_async(acb);
1980 /**************************************************************/
1981 /* async block device emulation */
1983 typedef struct BlockAIOCBSync {
1984 BlockAIOCB common;
1985 QEMUBH *bh;
1986 int ret;
1987 /* vector translation state */
1988 QEMUIOVector *qiov;
1989 uint8_t *bounce;
1990 int is_write;
1991 } BlockAIOCBSync;
1993 static const AIOCBInfo bdrv_em_aiocb_info = {
1994 .aiocb_size = sizeof(BlockAIOCBSync),
1997 static void bdrv_aio_bh_cb(void *opaque)
1999 BlockAIOCBSync *acb = opaque;
2001 if (!acb->is_write && acb->ret >= 0) {
2002 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
2004 qemu_vfree(acb->bounce);
2005 acb->common.cb(acb->common.opaque, acb->ret);
2006 qemu_bh_delete(acb->bh);
2007 acb->bh = NULL;
2008 qemu_aio_unref(acb);
2011 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
2012 int64_t sector_num,
2013 QEMUIOVector *qiov,
2014 int nb_sectors,
2015 BlockCompletionFunc *cb,
2016 void *opaque,
2017 int is_write)
2020 BlockAIOCBSync *acb;
2022 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
2023 acb->is_write = is_write;
2024 acb->qiov = qiov;
2025 acb->bounce = qemu_try_blockalign(bs, qiov->size);
2026 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
2028 if (acb->bounce == NULL) {
2029 acb->ret = -ENOMEM;
2030 } else if (is_write) {
2031 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
2032 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
2033 } else {
2034 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
2037 qemu_bh_schedule(acb->bh);
2039 return &acb->common;
2042 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
2043 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2044 BlockCompletionFunc *cb, void *opaque)
2046 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
2049 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
2050 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2051 BlockCompletionFunc *cb, void *opaque)
2053 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
2057 typedef struct BlockAIOCBCoroutine {
2058 BlockAIOCB common;
2059 BlockRequest req;
2060 bool is_write;
2061 bool need_bh;
2062 bool *done;
2063 QEMUBH* bh;
2064 } BlockAIOCBCoroutine;
2066 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2067 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2070 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2072 if (!acb->need_bh) {
2073 acb->common.cb(acb->common.opaque, acb->req.error);
2074 qemu_aio_unref(acb);
2078 static void bdrv_co_em_bh(void *opaque)
2080 BlockAIOCBCoroutine *acb = opaque;
2082 assert(!acb->need_bh);
2083 qemu_bh_delete(acb->bh);
2084 bdrv_co_complete(acb);
2087 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2089 acb->need_bh = false;
2090 if (acb->req.error != -EINPROGRESS) {
2091 BlockDriverState *bs = acb->common.bs;
2093 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2094 qemu_bh_schedule(acb->bh);
2098 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2099 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2101 BlockAIOCBCoroutine *acb = opaque;
2102 BlockDriverState *bs = acb->common.bs;
2104 if (!acb->is_write) {
2105 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2106 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2107 } else {
2108 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2109 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2112 bdrv_co_complete(acb);
2115 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2116 int64_t sector_num,
2117 QEMUIOVector *qiov,
2118 int nb_sectors,
2119 BdrvRequestFlags flags,
2120 BlockCompletionFunc *cb,
2121 void *opaque,
2122 bool is_write)
2124 Coroutine *co;
2125 BlockAIOCBCoroutine *acb;
2127 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2128 acb->need_bh = true;
2129 acb->req.error = -EINPROGRESS;
2130 acb->req.sector = sector_num;
2131 acb->req.nb_sectors = nb_sectors;
2132 acb->req.qiov = qiov;
2133 acb->req.flags = flags;
2134 acb->is_write = is_write;
2136 co = qemu_coroutine_create(bdrv_co_do_rw);
2137 qemu_coroutine_enter(co, acb);
2139 bdrv_co_maybe_schedule_bh(acb);
2140 return &acb->common;
2143 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2145 BlockAIOCBCoroutine *acb = opaque;
2146 BlockDriverState *bs = acb->common.bs;
2148 acb->req.error = bdrv_co_flush(bs);
2149 bdrv_co_complete(acb);
2152 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2153 BlockCompletionFunc *cb, void *opaque)
2155 trace_bdrv_aio_flush(bs, opaque);
2157 Coroutine *co;
2158 BlockAIOCBCoroutine *acb;
2160 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2161 acb->need_bh = true;
2162 acb->req.error = -EINPROGRESS;
2164 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2165 qemu_coroutine_enter(co, acb);
2167 bdrv_co_maybe_schedule_bh(acb);
2168 return &acb->common;
2171 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2173 BlockAIOCBCoroutine *acb = opaque;
2174 BlockDriverState *bs = acb->common.bs;
2176 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2177 bdrv_co_complete(acb);
2180 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2181 int64_t sector_num, int nb_sectors,
2182 BlockCompletionFunc *cb, void *opaque)
2184 Coroutine *co;
2185 BlockAIOCBCoroutine *acb;
2187 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2189 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2190 acb->need_bh = true;
2191 acb->req.error = -EINPROGRESS;
2192 acb->req.sector = sector_num;
2193 acb->req.nb_sectors = nb_sectors;
2194 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2195 qemu_coroutine_enter(co, acb);
2197 bdrv_co_maybe_schedule_bh(acb);
2198 return &acb->common;
2201 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2202 BlockCompletionFunc *cb, void *opaque)
2204 BlockAIOCB *acb;
2206 acb = g_slice_alloc(aiocb_info->aiocb_size);
2207 acb->aiocb_info = aiocb_info;
2208 acb->bs = bs;
2209 acb->cb = cb;
2210 acb->opaque = opaque;
2211 acb->refcnt = 1;
2212 return acb;
2215 void qemu_aio_ref(void *p)
2217 BlockAIOCB *acb = p;
2218 acb->refcnt++;
2221 void qemu_aio_unref(void *p)
2223 BlockAIOCB *acb = p;
2224 assert(acb->refcnt > 0);
2225 if (--acb->refcnt == 0) {
2226 g_slice_free1(acb->aiocb_info->aiocb_size, acb);
2230 /**************************************************************/
2231 /* Coroutine block device emulation */
2233 typedef struct CoroutineIOCompletion {
2234 Coroutine *coroutine;
2235 int ret;
2236 } CoroutineIOCompletion;
2238 static void bdrv_co_io_em_complete(void *opaque, int ret)
2240 CoroutineIOCompletion *co = opaque;
2242 co->ret = ret;
2243 qemu_coroutine_enter(co->coroutine, NULL);
2246 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2247 int nb_sectors, QEMUIOVector *iov,
2248 bool is_write)
2250 CoroutineIOCompletion co = {
2251 .coroutine = qemu_coroutine_self(),
2253 BlockAIOCB *acb;
2255 if (is_write) {
2256 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2257 bdrv_co_io_em_complete, &co);
2258 } else {
2259 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2260 bdrv_co_io_em_complete, &co);
2263 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2264 if (!acb) {
2265 return -EIO;
2267 qemu_coroutine_yield();
2269 return co.ret;
2272 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2273 int64_t sector_num, int nb_sectors,
2274 QEMUIOVector *iov)
2276 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2279 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2280 int64_t sector_num, int nb_sectors,
2281 QEMUIOVector *iov)
2283 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2286 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2288 RwCo *rwco = opaque;
2290 rwco->ret = bdrv_co_flush(rwco->bs);
2293 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2295 int ret;
2297 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2298 return 0;
2301 /* Write back cached data to the OS even with cache=unsafe */
2302 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2303 if (bs->drv->bdrv_co_flush_to_os) {
2304 ret = bs->drv->bdrv_co_flush_to_os(bs);
2305 if (ret < 0) {
2306 return ret;
2310 /* But don't actually force it to the disk with cache=unsafe */
2311 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2312 goto flush_parent;
2315 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2316 if (bs->drv->bdrv_co_flush_to_disk) {
2317 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2318 } else if (bs->drv->bdrv_aio_flush) {
2319 BlockAIOCB *acb;
2320 CoroutineIOCompletion co = {
2321 .coroutine = qemu_coroutine_self(),
2324 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2325 if (acb == NULL) {
2326 ret = -EIO;
2327 } else {
2328 qemu_coroutine_yield();
2329 ret = co.ret;
2331 } else {
2333 * Some block drivers always operate in either writethrough or unsafe
2334 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2335 * know how the server works (because the behaviour is hardcoded or
2336 * depends on server-side configuration), so we can't ensure that
2337 * everything is safe on disk. Returning an error doesn't work because
2338 * that would break guests even if the server operates in writethrough
2339 * mode.
2341 * Let's hope the user knows what he's doing.
2343 ret = 0;
2345 if (ret < 0) {
2346 return ret;
2349 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2350 * in the case of cache=unsafe, so there are no useless flushes.
2352 flush_parent:
2353 return bdrv_co_flush(bs->file);
2356 int bdrv_flush(BlockDriverState *bs)
2358 Coroutine *co;
2359 RwCo rwco = {
2360 .bs = bs,
2361 .ret = NOT_DONE,
2364 if (qemu_in_coroutine()) {
2365 /* Fast-path if already in coroutine context */
2366 bdrv_flush_co_entry(&rwco);
2367 } else {
2368 AioContext *aio_context = bdrv_get_aio_context(bs);
2370 co = qemu_coroutine_create(bdrv_flush_co_entry);
2371 qemu_coroutine_enter(co, &rwco);
2372 while (rwco.ret == NOT_DONE) {
2373 aio_poll(aio_context, true);
2377 return rwco.ret;
2380 typedef struct DiscardCo {
2381 BlockDriverState *bs;
2382 int64_t sector_num;
2383 int nb_sectors;
2384 int ret;
2385 } DiscardCo;
2386 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2388 DiscardCo *rwco = opaque;
2390 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2393 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2394 int nb_sectors)
2396 int max_discard, ret;
2398 if (!bs->drv) {
2399 return -ENOMEDIUM;
2402 ret = bdrv_check_request(bs, sector_num, nb_sectors);
2403 if (ret < 0) {
2404 return ret;
2405 } else if (bs->read_only) {
2406 return -EPERM;
2409 bdrv_reset_dirty(bs, sector_num, nb_sectors);
2411 /* Do nothing if disabled. */
2412 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2413 return 0;
2416 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2417 return 0;
2420 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2421 while (nb_sectors > 0) {
2422 int ret;
2423 int num = nb_sectors;
2425 /* align request */
2426 if (bs->bl.discard_alignment &&
2427 num >= bs->bl.discard_alignment &&
2428 sector_num % bs->bl.discard_alignment) {
2429 if (num > bs->bl.discard_alignment) {
2430 num = bs->bl.discard_alignment;
2432 num -= sector_num % bs->bl.discard_alignment;
2435 /* limit request size */
2436 if (num > max_discard) {
2437 num = max_discard;
2440 if (bs->drv->bdrv_co_discard) {
2441 ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2442 } else {
2443 BlockAIOCB *acb;
2444 CoroutineIOCompletion co = {
2445 .coroutine = qemu_coroutine_self(),
2448 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2449 bdrv_co_io_em_complete, &co);
2450 if (acb == NULL) {
2451 return -EIO;
2452 } else {
2453 qemu_coroutine_yield();
2454 ret = co.ret;
2457 if (ret && ret != -ENOTSUP) {
2458 return ret;
2461 sector_num += num;
2462 nb_sectors -= num;
2464 return 0;
2467 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2469 Coroutine *co;
2470 DiscardCo rwco = {
2471 .bs = bs,
2472 .sector_num = sector_num,
2473 .nb_sectors = nb_sectors,
2474 .ret = NOT_DONE,
2477 if (qemu_in_coroutine()) {
2478 /* Fast-path if already in coroutine context */
2479 bdrv_discard_co_entry(&rwco);
2480 } else {
2481 AioContext *aio_context = bdrv_get_aio_context(bs);
2483 co = qemu_coroutine_create(bdrv_discard_co_entry);
2484 qemu_coroutine_enter(co, &rwco);
2485 while (rwco.ret == NOT_DONE) {
2486 aio_poll(aio_context, true);
2490 return rwco.ret;
2493 /* needed for generic scsi interface */
2495 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2497 BlockDriver *drv = bs->drv;
2499 if (drv && drv->bdrv_ioctl)
2500 return drv->bdrv_ioctl(bs, req, buf);
2501 return -ENOTSUP;
2504 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2505 unsigned long int req, void *buf,
2506 BlockCompletionFunc *cb, void *opaque)
2508 BlockDriver *drv = bs->drv;
2510 if (drv && drv->bdrv_aio_ioctl)
2511 return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
2512 return NULL;
2515 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2517 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2520 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2522 return memset(qemu_blockalign(bs, size), 0, size);
2525 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2527 size_t align = bdrv_opt_mem_align(bs);
2529 /* Ensure that NULL is never returned on success */
2530 assert(align > 0);
2531 if (size == 0) {
2532 size = align;
2535 return qemu_try_memalign(align, size);
2538 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2540 void *mem = qemu_try_blockalign(bs, size);
2542 if (mem) {
2543 memset(mem, 0, size);
2546 return mem;
2550 * Check if all memory in this vector is sector aligned.
2552 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2554 int i;
2555 size_t alignment = bdrv_min_mem_align(bs);
2557 for (i = 0; i < qiov->niov; i++) {
2558 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2559 return false;
2561 if (qiov->iov[i].iov_len % alignment) {
2562 return false;
2566 return true;
2569 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2570 NotifierWithReturn *notifier)
2572 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2575 void bdrv_io_plug(BlockDriverState *bs)
2577 BlockDriver *drv = bs->drv;
2578 if (drv && drv->bdrv_io_plug) {
2579 drv->bdrv_io_plug(bs);
2580 } else if (bs->file) {
2581 bdrv_io_plug(bs->file);
2585 void bdrv_io_unplug(BlockDriverState *bs)
2587 BlockDriver *drv = bs->drv;
2588 if (drv && drv->bdrv_io_unplug) {
2589 drv->bdrv_io_unplug(bs);
2590 } else if (bs->file) {
2591 bdrv_io_unplug(bs->file);
2595 void bdrv_flush_io_queue(BlockDriverState *bs)
2597 BlockDriver *drv = bs->drv;
2598 if (drv && drv->bdrv_flush_io_queue) {
2599 drv->bdrv_flush_io_queue(bs);
2600 } else if (bs->file) {
2601 bdrv_flush_io_queue(bs->file);