hw/acpi/nvdimm: add a helper to augment SRAT generation
[qemu/ar7.git] / hw / i386 / x86.c
blob7a3bc7ab6639fd05037b12cdc50fece3476123b2
1 /*
2 * Copyright (c) 2003-2004 Fabrice Bellard
3 * Copyright (c) 2019 Red Hat, Inc.
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 * THE SOFTWARE.
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qapi/qapi-visit-common.h"
32 #include "qapi/visitor.h"
33 #include "sysemu/qtest.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/replay.h"
36 #include "sysemu/sysemu.h"
37 #include "trace.h"
39 #include "hw/i386/x86.h"
40 #include "target/i386/cpu.h"
41 #include "hw/i386/topology.h"
42 #include "hw/i386/fw_cfg.h"
43 #include "hw/intc/i8259.h"
45 #include "hw/acpi/cpu_hotplug.h"
46 #include "hw/irq.h"
47 #include "hw/nmi.h"
48 #include "hw/loader.h"
49 #include "multiboot.h"
50 #include "elf.h"
51 #include "standard-headers/asm-x86/bootparam.h"
52 #include "config-devices.h"
53 #include "kvm_i386.h"
55 #define BIOS_FILENAME "bios.bin"
57 /* Physical Address of PVH entry point read from kernel ELF NOTE */
58 static size_t pvh_start_addr;
60 inline void init_topo_info(X86CPUTopoInfo *topo_info,
61 const X86MachineState *x86ms)
63 MachineState *ms = MACHINE(x86ms);
65 topo_info->nodes_per_pkg = ms->numa_state->num_nodes / ms->smp.sockets;
66 topo_info->dies_per_pkg = x86ms->smp_dies;
67 topo_info->cores_per_die = ms->smp.cores;
68 topo_info->threads_per_core = ms->smp.threads;
72 * Set up with the new EPYC topology handlers
74 * AMD uses different apic id encoding for EPYC based cpus. Override
75 * the default topo handlers with EPYC encoding handlers.
77 static void x86_set_epyc_topo_handlers(MachineState *machine)
79 X86MachineState *x86ms = X86_MACHINE(machine);
81 x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx_epyc;
82 x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid_epyc;
83 x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids_epyc;
84 x86ms->apicid_pkg_offset = apicid_pkg_offset_epyc;
88 * Calculates initial APIC ID for a specific CPU index
90 * Currently we need to be able to calculate the APIC ID from the CPU index
91 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
92 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
93 * all CPUs up to max_cpus.
95 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
96 unsigned int cpu_index)
98 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
99 X86CPUTopoInfo topo_info;
100 uint32_t correct_id;
101 static bool warned;
103 init_topo_info(&topo_info, x86ms);
105 correct_id = x86ms->apicid_from_cpu_idx(&topo_info, cpu_index);
106 if (x86mc->compat_apic_id_mode) {
107 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
108 error_report("APIC IDs set in compatibility mode, "
109 "CPU topology won't match the configuration");
110 warned = true;
112 return cpu_index;
113 } else {
114 return correct_id;
119 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
121 Object *cpu = NULL;
122 Error *local_err = NULL;
124 cpu = object_new(MACHINE(x86ms)->cpu_type);
126 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
127 object_property_set_bool(cpu, true, "realized", &local_err);
129 object_unref(cpu);
130 error_propagate(errp, local_err);
133 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
135 int i;
136 const CPUArchIdList *possible_cpus;
137 MachineState *ms = MACHINE(x86ms);
138 MachineClass *mc = MACHINE_GET_CLASS(x86ms);
140 /* Check for apicid encoding */
141 if (cpu_x86_use_epyc_apic_id_encoding(ms->cpu_type)) {
142 x86_set_epyc_topo_handlers(ms);
145 x86_cpu_set_default_version(default_cpu_version);
148 * Calculates the limit to CPU APIC ID values
150 * Limit for the APIC ID value, so that all
151 * CPU APIC IDs are < x86ms->apic_id_limit.
153 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
155 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
156 ms->smp.max_cpus - 1) + 1;
157 possible_cpus = mc->possible_cpu_arch_ids(ms);
159 for (i = 0; i < ms->possible_cpus->len; i++) {
160 ms->possible_cpus->cpus[i].arch_id =
161 x86_cpu_apic_id_from_index(x86ms, i);
164 for (i = 0; i < ms->smp.cpus; i++) {
165 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
169 CpuInstanceProperties
170 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
172 MachineClass *mc = MACHINE_GET_CLASS(ms);
173 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
175 assert(cpu_index < possible_cpus->len);
176 return possible_cpus->cpus[cpu_index].props;
179 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
181 X86CPUTopoIDs topo_ids;
182 X86MachineState *x86ms = X86_MACHINE(ms);
183 X86CPUTopoInfo topo_info;
185 init_topo_info(&topo_info, x86ms);
187 assert(idx < ms->possible_cpus->len);
188 x86_topo_ids_from_idx(&topo_info, idx, &topo_ids);
189 return topo_ids.pkg_id % ms->numa_state->num_nodes;
192 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
194 X86MachineState *x86ms = X86_MACHINE(ms);
195 unsigned int max_cpus = ms->smp.max_cpus;
196 X86CPUTopoInfo topo_info;
197 int i;
199 if (ms->possible_cpus) {
201 * make sure that max_cpus hasn't changed since the first use, i.e.
202 * -smp hasn't been parsed after it
204 assert(ms->possible_cpus->len == max_cpus);
205 return ms->possible_cpus;
208 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
209 sizeof(CPUArchId) * max_cpus);
210 ms->possible_cpus->len = max_cpus;
212 init_topo_info(&topo_info, x86ms);
214 for (i = 0; i < ms->possible_cpus->len; i++) {
215 X86CPUTopoIDs topo_ids;
217 ms->possible_cpus->cpus[i].type = ms->cpu_type;
218 ms->possible_cpus->cpus[i].vcpus_count = 1;
219 x86_topo_ids_from_idx(&topo_info, i, &topo_ids);
220 ms->possible_cpus->cpus[i].props.has_socket_id = true;
221 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
222 if (x86ms->smp_dies > 1) {
223 ms->possible_cpus->cpus[i].props.has_die_id = true;
224 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
226 ms->possible_cpus->cpus[i].props.has_core_id = true;
227 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
228 ms->possible_cpus->cpus[i].props.has_thread_id = true;
229 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
231 return ms->possible_cpus;
234 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
236 /* cpu index isn't used */
237 CPUState *cs;
239 CPU_FOREACH(cs) {
240 X86CPU *cpu = X86_CPU(cs);
242 if (!cpu->apic_state) {
243 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
244 } else {
245 apic_deliver_nmi(cpu->apic_state);
250 static long get_file_size(FILE *f)
252 long where, size;
254 /* XXX: on Unix systems, using fstat() probably makes more sense */
256 where = ftell(f);
257 fseek(f, 0, SEEK_END);
258 size = ftell(f);
259 fseek(f, where, SEEK_SET);
261 return size;
264 /* TSC handling */
265 uint64_t cpu_get_tsc(CPUX86State *env)
267 return cpu_get_ticks();
270 /* IRQ handling */
271 static void pic_irq_request(void *opaque, int irq, int level)
273 CPUState *cs = first_cpu;
274 X86CPU *cpu = X86_CPU(cs);
276 trace_x86_pic_interrupt(irq, level);
277 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
278 CPU_FOREACH(cs) {
279 cpu = X86_CPU(cs);
280 if (apic_accept_pic_intr(cpu->apic_state)) {
281 apic_deliver_pic_intr(cpu->apic_state, level);
284 } else {
285 if (level) {
286 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
287 } else {
288 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
293 qemu_irq x86_allocate_cpu_irq(void)
295 return qemu_allocate_irq(pic_irq_request, NULL, 0);
298 int cpu_get_pic_interrupt(CPUX86State *env)
300 X86CPU *cpu = env_archcpu(env);
301 int intno;
303 if (!kvm_irqchip_in_kernel()) {
304 intno = apic_get_interrupt(cpu->apic_state);
305 if (intno >= 0) {
306 return intno;
308 /* read the irq from the PIC */
309 if (!apic_accept_pic_intr(cpu->apic_state)) {
310 return -1;
314 intno = pic_read_irq(isa_pic);
315 return intno;
318 DeviceState *cpu_get_current_apic(void)
320 if (current_cpu) {
321 X86CPU *cpu = X86_CPU(current_cpu);
322 return cpu->apic_state;
323 } else {
324 return NULL;
328 void gsi_handler(void *opaque, int n, int level)
330 GSIState *s = opaque;
332 trace_x86_gsi_interrupt(n, level);
333 if (n < ISA_NUM_IRQS) {
334 /* Under KVM, Kernel will forward to both PIC and IOAPIC */
335 qemu_set_irq(s->i8259_irq[n], level);
337 qemu_set_irq(s->ioapic_irq[n], level);
340 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
342 DeviceState *dev;
343 SysBusDevice *d;
344 unsigned int i;
346 assert(parent_name);
347 if (kvm_ioapic_in_kernel()) {
348 dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
349 } else {
350 dev = qdev_create(NULL, TYPE_IOAPIC);
352 object_property_add_child(object_resolve_path(parent_name, NULL),
353 "ioapic", OBJECT(dev));
354 qdev_init_nofail(dev);
355 d = SYS_BUS_DEVICE(dev);
356 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
358 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
359 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
363 struct setup_data {
364 uint64_t next;
365 uint32_t type;
366 uint32_t len;
367 uint8_t data[];
368 } __attribute__((packed));
372 * The entry point into the kernel for PVH boot is different from
373 * the native entry point. The PVH entry is defined by the x86/HVM
374 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
376 * This function is passed to load_elf() when it is called from
377 * load_elfboot() which then additionally checks for an ELF Note of
378 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
379 * parse the PVH entry address from the ELF Note.
381 * Due to trickery in elf_opts.h, load_elf() is actually available as
382 * load_elf32() or load_elf64() and this routine needs to be able
383 * to deal with being called as 32 or 64 bit.
385 * The address of the PVH entry point is saved to the 'pvh_start_addr'
386 * global variable. (although the entry point is 32-bit, the kernel
387 * binary can be either 32-bit or 64-bit).
389 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
391 size_t *elf_note_data_addr;
393 /* Check if ELF Note header passed in is valid */
394 if (arg1 == NULL) {
395 return 0;
398 if (is64) {
399 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
400 uint64_t nhdr_size64 = sizeof(struct elf64_note);
401 uint64_t phdr_align = *(uint64_t *)arg2;
402 uint64_t nhdr_namesz = nhdr64->n_namesz;
404 elf_note_data_addr =
405 ((void *)nhdr64) + nhdr_size64 +
406 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
407 } else {
408 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
409 uint32_t nhdr_size32 = sizeof(struct elf32_note);
410 uint32_t phdr_align = *(uint32_t *)arg2;
411 uint32_t nhdr_namesz = nhdr32->n_namesz;
413 elf_note_data_addr =
414 ((void *)nhdr32) + nhdr_size32 +
415 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
418 pvh_start_addr = *elf_note_data_addr;
420 return pvh_start_addr;
423 static bool load_elfboot(const char *kernel_filename,
424 int kernel_file_size,
425 uint8_t *header,
426 size_t pvh_xen_start_addr,
427 FWCfgState *fw_cfg)
429 uint32_t flags = 0;
430 uint32_t mh_load_addr = 0;
431 uint32_t elf_kernel_size = 0;
432 uint64_t elf_entry;
433 uint64_t elf_low, elf_high;
434 int kernel_size;
436 if (ldl_p(header) != 0x464c457f) {
437 return false; /* no elfboot */
440 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
441 flags = elf_is64 ?
442 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
444 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
445 error_report("elfboot unsupported flags = %x", flags);
446 exit(1);
449 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
450 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
451 NULL, &elf_note_type, &elf_entry,
452 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
453 0, 0);
455 if (kernel_size < 0) {
456 error_report("Error while loading elf kernel");
457 exit(1);
459 mh_load_addr = elf_low;
460 elf_kernel_size = elf_high - elf_low;
462 if (pvh_start_addr == 0) {
463 error_report("Error loading uncompressed kernel without PVH ELF Note");
464 exit(1);
466 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
467 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
468 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
470 return true;
473 void x86_load_linux(X86MachineState *x86ms,
474 FWCfgState *fw_cfg,
475 int acpi_data_size,
476 bool pvh_enabled,
477 bool linuxboot_dma_enabled)
479 uint16_t protocol;
480 int setup_size, kernel_size, cmdline_size;
481 int dtb_size, setup_data_offset;
482 uint32_t initrd_max;
483 uint8_t header[8192], *setup, *kernel;
484 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
485 FILE *f;
486 char *vmode;
487 MachineState *machine = MACHINE(x86ms);
488 struct setup_data *setup_data;
489 const char *kernel_filename = machine->kernel_filename;
490 const char *initrd_filename = machine->initrd_filename;
491 const char *dtb_filename = machine->dtb;
492 const char *kernel_cmdline = machine->kernel_cmdline;
494 /* Align to 16 bytes as a paranoia measure */
495 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
497 /* load the kernel header */
498 f = fopen(kernel_filename, "rb");
499 if (!f) {
500 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
501 kernel_filename, strerror(errno));
502 exit(1);
505 kernel_size = get_file_size(f);
506 if (!kernel_size ||
507 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
508 MIN(ARRAY_SIZE(header), kernel_size)) {
509 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
510 kernel_filename, strerror(errno));
511 exit(1);
514 /* kernel protocol version */
515 if (ldl_p(header + 0x202) == 0x53726448) {
516 protocol = lduw_p(header + 0x206);
517 } else {
519 * This could be a multiboot kernel. If it is, let's stop treating it
520 * like a Linux kernel.
521 * Note: some multiboot images could be in the ELF format (the same of
522 * PVH), so we try multiboot first since we check the multiboot magic
523 * header before to load it.
525 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
526 kernel_cmdline, kernel_size, header)) {
527 return;
530 * Check if the file is an uncompressed kernel file (ELF) and load it,
531 * saving the PVH entry point used by the x86/HVM direct boot ABI.
532 * If load_elfboot() is successful, populate the fw_cfg info.
534 if (pvh_enabled &&
535 load_elfboot(kernel_filename, kernel_size,
536 header, pvh_start_addr, fw_cfg)) {
537 fclose(f);
539 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
540 strlen(kernel_cmdline) + 1);
541 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
543 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
544 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
545 header, sizeof(header));
547 /* load initrd */
548 if (initrd_filename) {
549 GMappedFile *mapped_file;
550 gsize initrd_size;
551 gchar *initrd_data;
552 GError *gerr = NULL;
554 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
555 if (!mapped_file) {
556 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
557 initrd_filename, gerr->message);
558 exit(1);
560 x86ms->initrd_mapped_file = mapped_file;
562 initrd_data = g_mapped_file_get_contents(mapped_file);
563 initrd_size = g_mapped_file_get_length(mapped_file);
564 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
565 if (initrd_size >= initrd_max) {
566 fprintf(stderr, "qemu: initrd is too large, cannot support."
567 "(max: %"PRIu32", need %"PRId64")\n",
568 initrd_max, (uint64_t)initrd_size);
569 exit(1);
572 initrd_addr = (initrd_max - initrd_size) & ~4095;
574 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
575 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
576 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
577 initrd_size);
580 option_rom[nb_option_roms].bootindex = 0;
581 option_rom[nb_option_roms].name = "pvh.bin";
582 nb_option_roms++;
584 return;
586 protocol = 0;
589 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
590 /* Low kernel */
591 real_addr = 0x90000;
592 cmdline_addr = 0x9a000 - cmdline_size;
593 prot_addr = 0x10000;
594 } else if (protocol < 0x202) {
595 /* High but ancient kernel */
596 real_addr = 0x90000;
597 cmdline_addr = 0x9a000 - cmdline_size;
598 prot_addr = 0x100000;
599 } else {
600 /* High and recent kernel */
601 real_addr = 0x10000;
602 cmdline_addr = 0x20000;
603 prot_addr = 0x100000;
606 /* highest address for loading the initrd */
607 if (protocol >= 0x20c &&
608 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
610 * Linux has supported initrd up to 4 GB for a very long time (2007,
611 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
612 * though it only sets initrd_max to 2 GB to "work around bootloader
613 * bugs". Luckily, QEMU firmware(which does something like bootloader)
614 * has supported this.
616 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
617 * be loaded into any address.
619 * In addition, initrd_max is uint32_t simply because QEMU doesn't
620 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
621 * field).
623 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
625 initrd_max = UINT32_MAX;
626 } else if (protocol >= 0x203) {
627 initrd_max = ldl_p(header + 0x22c);
628 } else {
629 initrd_max = 0x37ffffff;
632 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
633 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
636 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
637 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
638 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
640 if (protocol >= 0x202) {
641 stl_p(header + 0x228, cmdline_addr);
642 } else {
643 stw_p(header + 0x20, 0xA33F);
644 stw_p(header + 0x22, cmdline_addr - real_addr);
647 /* handle vga= parameter */
648 vmode = strstr(kernel_cmdline, "vga=");
649 if (vmode) {
650 unsigned int video_mode;
651 const char *end;
652 int ret;
653 /* skip "vga=" */
654 vmode += 4;
655 if (!strncmp(vmode, "normal", 6)) {
656 video_mode = 0xffff;
657 } else if (!strncmp(vmode, "ext", 3)) {
658 video_mode = 0xfffe;
659 } else if (!strncmp(vmode, "ask", 3)) {
660 video_mode = 0xfffd;
661 } else {
662 ret = qemu_strtoui(vmode, &end, 0, &video_mode);
663 if (ret != 0 || (*end && *end != ' ')) {
664 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
665 exit(1);
668 stw_p(header + 0x1fa, video_mode);
671 /* loader type */
673 * High nybble = B reserved for QEMU; low nybble is revision number.
674 * If this code is substantially changed, you may want to consider
675 * incrementing the revision.
677 if (protocol >= 0x200) {
678 header[0x210] = 0xB0;
680 /* heap */
681 if (protocol >= 0x201) {
682 header[0x211] |= 0x80; /* CAN_USE_HEAP */
683 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
686 /* load initrd */
687 if (initrd_filename) {
688 GMappedFile *mapped_file;
689 gsize initrd_size;
690 gchar *initrd_data;
691 GError *gerr = NULL;
693 if (protocol < 0x200) {
694 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
695 exit(1);
698 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
699 if (!mapped_file) {
700 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
701 initrd_filename, gerr->message);
702 exit(1);
704 x86ms->initrd_mapped_file = mapped_file;
706 initrd_data = g_mapped_file_get_contents(mapped_file);
707 initrd_size = g_mapped_file_get_length(mapped_file);
708 if (initrd_size >= initrd_max) {
709 fprintf(stderr, "qemu: initrd is too large, cannot support."
710 "(max: %"PRIu32", need %"PRId64")\n",
711 initrd_max, (uint64_t)initrd_size);
712 exit(1);
715 initrd_addr = (initrd_max - initrd_size) & ~4095;
717 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
718 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
719 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
721 stl_p(header + 0x218, initrd_addr);
722 stl_p(header + 0x21c, initrd_size);
725 /* load kernel and setup */
726 setup_size = header[0x1f1];
727 if (setup_size == 0) {
728 setup_size = 4;
730 setup_size = (setup_size + 1) * 512;
731 if (setup_size > kernel_size) {
732 fprintf(stderr, "qemu: invalid kernel header\n");
733 exit(1);
735 kernel_size -= setup_size;
737 setup = g_malloc(setup_size);
738 kernel = g_malloc(kernel_size);
739 fseek(f, 0, SEEK_SET);
740 if (fread(setup, 1, setup_size, f) != setup_size) {
741 fprintf(stderr, "fread() failed\n");
742 exit(1);
744 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
745 fprintf(stderr, "fread() failed\n");
746 exit(1);
748 fclose(f);
750 /* append dtb to kernel */
751 if (dtb_filename) {
752 if (protocol < 0x209) {
753 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
754 exit(1);
757 dtb_size = get_image_size(dtb_filename);
758 if (dtb_size <= 0) {
759 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
760 dtb_filename, strerror(errno));
761 exit(1);
764 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
765 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
766 kernel = g_realloc(kernel, kernel_size);
768 stq_p(header + 0x250, prot_addr + setup_data_offset);
770 setup_data = (struct setup_data *)(kernel + setup_data_offset);
771 setup_data->next = 0;
772 setup_data->type = cpu_to_le32(SETUP_DTB);
773 setup_data->len = cpu_to_le32(dtb_size);
775 load_image_size(dtb_filename, setup_data->data, dtb_size);
778 memcpy(setup, header, MIN(sizeof(header), setup_size));
780 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
781 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
782 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
784 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
785 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
786 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
788 option_rom[nb_option_roms].bootindex = 0;
789 option_rom[nb_option_roms].name = "linuxboot.bin";
790 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
791 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
793 nb_option_roms++;
796 void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
798 char *filename;
799 MemoryRegion *bios, *isa_bios;
800 int bios_size, isa_bios_size;
801 int ret;
803 /* BIOS load */
804 if (bios_name == NULL) {
805 bios_name = BIOS_FILENAME;
807 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
808 if (filename) {
809 bios_size = get_image_size(filename);
810 } else {
811 bios_size = -1;
813 if (bios_size <= 0 ||
814 (bios_size % 65536) != 0) {
815 goto bios_error;
817 bios = g_malloc(sizeof(*bios));
818 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
819 if (!isapc_ram_fw) {
820 memory_region_set_readonly(bios, true);
822 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
823 if (ret != 0) {
824 bios_error:
825 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
826 exit(1);
828 g_free(filename);
830 /* map the last 128KB of the BIOS in ISA space */
831 isa_bios_size = MIN(bios_size, 128 * KiB);
832 isa_bios = g_malloc(sizeof(*isa_bios));
833 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
834 bios_size - isa_bios_size, isa_bios_size);
835 memory_region_add_subregion_overlap(rom_memory,
836 0x100000 - isa_bios_size,
837 isa_bios,
839 if (!isapc_ram_fw) {
840 memory_region_set_readonly(isa_bios, true);
843 /* map all the bios at the top of memory */
844 memory_region_add_subregion(rom_memory,
845 (uint32_t)(-bios_size),
846 bios);
849 static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
850 const char *name, void *opaque,
851 Error **errp)
853 X86MachineState *x86ms = X86_MACHINE(obj);
854 uint64_t value = x86ms->max_ram_below_4g;
856 visit_type_size(v, name, &value, errp);
859 static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
860 const char *name, void *opaque,
861 Error **errp)
863 X86MachineState *x86ms = X86_MACHINE(obj);
864 Error *error = NULL;
865 uint64_t value;
867 visit_type_size(v, name, &value, &error);
868 if (error) {
869 error_propagate(errp, error);
870 return;
872 if (value > 4 * GiB) {
873 error_setg(&error,
874 "Machine option 'max-ram-below-4g=%"PRIu64
875 "' expects size less than or equal to 4G", value);
876 error_propagate(errp, error);
877 return;
880 if (value < 1 * MiB) {
881 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
882 "BIOS may not work with less than 1MiB", value);
885 x86ms->max_ram_below_4g = value;
888 bool x86_machine_is_smm_enabled(X86MachineState *x86ms)
890 bool smm_available = false;
892 if (x86ms->smm == ON_OFF_AUTO_OFF) {
893 return false;
896 if (tcg_enabled() || qtest_enabled()) {
897 smm_available = true;
898 } else if (kvm_enabled()) {
899 smm_available = kvm_has_smm();
902 if (smm_available) {
903 return true;
906 if (x86ms->smm == ON_OFF_AUTO_ON) {
907 error_report("System Management Mode not supported by this hypervisor.");
908 exit(1);
910 return false;
913 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
914 void *opaque, Error **errp)
916 X86MachineState *x86ms = X86_MACHINE(obj);
917 OnOffAuto smm = x86ms->smm;
919 visit_type_OnOffAuto(v, name, &smm, errp);
922 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
923 void *opaque, Error **errp)
925 X86MachineState *x86ms = X86_MACHINE(obj);
927 visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
930 bool x86_machine_is_acpi_enabled(X86MachineState *x86ms)
932 if (x86ms->acpi == ON_OFF_AUTO_OFF) {
933 return false;
935 return true;
938 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
939 void *opaque, Error **errp)
941 X86MachineState *x86ms = X86_MACHINE(obj);
942 OnOffAuto acpi = x86ms->acpi;
944 visit_type_OnOffAuto(v, name, &acpi, errp);
947 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
948 void *opaque, Error **errp)
950 X86MachineState *x86ms = X86_MACHINE(obj);
952 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
955 static void x86_machine_initfn(Object *obj)
957 X86MachineState *x86ms = X86_MACHINE(obj);
959 x86ms->smm = ON_OFF_AUTO_AUTO;
960 x86ms->acpi = ON_OFF_AUTO_AUTO;
961 x86ms->max_ram_below_4g = 0; /* use default */
962 x86ms->smp_dies = 1;
964 x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx;
965 x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid;
966 x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids;
967 x86ms->apicid_pkg_offset = apicid_pkg_offset;
970 static void x86_machine_class_init(ObjectClass *oc, void *data)
972 MachineClass *mc = MACHINE_CLASS(oc);
973 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
974 NMIClass *nc = NMI_CLASS(oc);
976 mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
977 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
978 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
979 x86mc->compat_apic_id_mode = false;
980 x86mc->save_tsc_khz = true;
981 nc->nmi_monitor_handler = x86_nmi;
983 object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size",
984 x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g,
985 NULL, NULL);
986 object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G,
987 "Maximum ram below the 4G boundary (32bit boundary)");
989 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
990 x86_machine_get_smm, x86_machine_set_smm,
991 NULL, NULL);
992 object_class_property_set_description(oc, X86_MACHINE_SMM,
993 "Enable SMM");
995 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
996 x86_machine_get_acpi, x86_machine_set_acpi,
997 NULL, NULL);
998 object_class_property_set_description(oc, X86_MACHINE_ACPI,
999 "Enable ACPI");
1002 static const TypeInfo x86_machine_info = {
1003 .name = TYPE_X86_MACHINE,
1004 .parent = TYPE_MACHINE,
1005 .abstract = true,
1006 .instance_size = sizeof(X86MachineState),
1007 .instance_init = x86_machine_initfn,
1008 .class_size = sizeof(X86MachineClass),
1009 .class_init = x86_machine_class_init,
1010 .interfaces = (InterfaceInfo[]) {
1011 { TYPE_NMI },
1016 static void x86_machine_register_types(void)
1018 type_register_static(&x86_machine_info);
1021 type_init(x86_machine_register_types)