4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
69 #include "qemu/mmap-alloc.h"
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
82 static MemoryRegion
*system_memory
;
83 static MemoryRegion
*system_io
;
85 AddressSpace address_space_io
;
86 AddressSpace address_space_memory
;
88 MemoryRegion io_mem_rom
, io_mem_notdirty
;
89 static MemoryRegion io_mem_unassigned
;
92 #ifdef TARGET_PAGE_BITS_VARY
94 bool target_page_bits_decided
;
97 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
98 /* current CPU in the current thread. It is only valid inside
100 __thread CPUState
*current_cpu
;
101 /* 0 = Do not count executed instructions.
102 1 = Precise instruction counting.
103 2 = Adaptive rate instruction counting. */
106 uintptr_t qemu_host_page_size
;
107 intptr_t qemu_host_page_mask
;
109 bool set_preferred_target_page_bits(int bits
)
111 /* The target page size is the lowest common denominator for all
112 * the CPUs in the system, so we can only make it smaller, never
113 * larger. And we can't make it smaller once we've committed to
116 #ifdef TARGET_PAGE_BITS_VARY
117 assert(bits
>= TARGET_PAGE_BITS_MIN
);
118 if (target_page_bits
== 0 || target_page_bits
> bits
) {
119 if (target_page_bits_decided
) {
122 target_page_bits
= bits
;
128 #if !defined(CONFIG_USER_ONLY)
130 static void finalize_target_page_bits(void)
132 #ifdef TARGET_PAGE_BITS_VARY
133 if (target_page_bits
== 0) {
134 target_page_bits
= TARGET_PAGE_BITS_MIN
;
136 target_page_bits_decided
= true;
140 typedef struct PhysPageEntry PhysPageEntry
;
142 struct PhysPageEntry
{
143 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
145 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
149 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
151 /* Size of the L2 (and L3, etc) page tables. */
152 #define ADDR_SPACE_BITS 64
155 #define P_L2_SIZE (1 << P_L2_BITS)
157 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
159 typedef PhysPageEntry Node
[P_L2_SIZE
];
161 typedef struct PhysPageMap
{
164 unsigned sections_nb
;
165 unsigned sections_nb_alloc
;
167 unsigned nodes_nb_alloc
;
169 MemoryRegionSection
*sections
;
172 struct AddressSpaceDispatch
{
173 MemoryRegionSection
*mru_section
;
174 /* This is a multi-level map on the physical address space.
175 * The bottom level has pointers to MemoryRegionSections.
177 PhysPageEntry phys_map
;
181 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
182 typedef struct subpage_t
{
186 uint16_t sub_section
[];
189 #define PHYS_SECTION_UNASSIGNED 0
190 #define PHYS_SECTION_NOTDIRTY 1
191 #define PHYS_SECTION_ROM 2
192 #define PHYS_SECTION_WATCH 3
194 static void io_mem_init(void);
195 static void memory_map_init(void);
196 static void tcg_commit(MemoryListener
*listener
);
198 static MemoryRegion io_mem_watch
;
201 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
202 * @cpu: the CPU whose AddressSpace this is
203 * @as: the AddressSpace itself
204 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
205 * @tcg_as_listener: listener for tracking changes to the AddressSpace
207 struct CPUAddressSpace
{
210 struct AddressSpaceDispatch
*memory_dispatch
;
211 MemoryListener tcg_as_listener
;
214 struct DirtyBitmapSnapshot
{
217 unsigned long dirty
[];
222 #if !defined(CONFIG_USER_ONLY)
224 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
226 static unsigned alloc_hint
= 16;
227 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
228 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
229 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
230 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
231 alloc_hint
= map
->nodes_nb_alloc
;
235 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
242 ret
= map
->nodes_nb
++;
244 assert(ret
!= PHYS_MAP_NODE_NIL
);
245 assert(ret
!= map
->nodes_nb_alloc
);
247 e
.skip
= leaf
? 0 : 1;
248 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
249 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
250 memcpy(&p
[i
], &e
, sizeof(e
));
255 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
256 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
260 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
262 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
263 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
265 p
= map
->nodes
[lp
->ptr
];
266 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
268 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
269 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
275 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
281 static void phys_page_set(AddressSpaceDispatch
*d
,
282 hwaddr index
, hwaddr nb
,
285 /* Wildly overreserve - it doesn't matter much. */
286 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
288 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
291 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
292 * and update our entry so we can skip it and go directly to the destination.
294 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
296 unsigned valid_ptr
= P_L2_SIZE
;
301 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
306 for (i
= 0; i
< P_L2_SIZE
; i
++) {
307 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
314 phys_page_compact(&p
[i
], nodes
);
318 /* We can only compress if there's only one child. */
323 assert(valid_ptr
< P_L2_SIZE
);
325 /* Don't compress if it won't fit in the # of bits we have. */
326 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
330 lp
->ptr
= p
[valid_ptr
].ptr
;
331 if (!p
[valid_ptr
].skip
) {
332 /* If our only child is a leaf, make this a leaf. */
333 /* By design, we should have made this node a leaf to begin with so we
334 * should never reach here.
335 * But since it's so simple to handle this, let's do it just in case we
340 lp
->skip
+= p
[valid_ptr
].skip
;
344 void address_space_dispatch_compact(AddressSpaceDispatch
*d
)
346 if (d
->phys_map
.skip
) {
347 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
351 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
354 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
355 * the section must cover the entire address space.
357 return int128_gethi(section
->size
) ||
358 range_covers_byte(section
->offset_within_address_space
,
359 int128_getlo(section
->size
), addr
);
362 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr addr
)
364 PhysPageEntry lp
= d
->phys_map
, *p
;
365 Node
*nodes
= d
->map
.nodes
;
366 MemoryRegionSection
*sections
= d
->map
.sections
;
367 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
370 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
371 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
372 return §ions
[PHYS_SECTION_UNASSIGNED
];
375 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
378 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
379 return §ions
[lp
.ptr
];
381 return §ions
[PHYS_SECTION_UNASSIGNED
];
385 /* Called from RCU critical section */
386 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
388 bool resolve_subpage
)
390 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
393 if (!section
|| section
== &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] ||
394 !section_covers_addr(section
, addr
)) {
395 section
= phys_page_find(d
, addr
);
396 atomic_set(&d
->mru_section
, section
);
398 if (resolve_subpage
&& section
->mr
->subpage
) {
399 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
400 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
405 /* Called from RCU critical section */
406 static MemoryRegionSection
*
407 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
408 hwaddr
*plen
, bool resolve_subpage
)
410 MemoryRegionSection
*section
;
414 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
415 /* Compute offset within MemoryRegionSection */
416 addr
-= section
->offset_within_address_space
;
418 /* Compute offset within MemoryRegion */
419 *xlat
= addr
+ section
->offset_within_region
;
423 /* MMIO registers can be expected to perform full-width accesses based only
424 * on their address, without considering adjacent registers that could
425 * decode to completely different MemoryRegions. When such registers
426 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
427 * regions overlap wildly. For this reason we cannot clamp the accesses
430 * If the length is small (as is the case for address_space_ldl/stl),
431 * everything works fine. If the incoming length is large, however,
432 * the caller really has to do the clamping through memory_access_size.
434 if (memory_region_is_ram(mr
)) {
435 diff
= int128_sub(section
->size
, int128_make64(addr
));
436 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
442 * address_space_translate_iommu - translate an address through an IOMMU
443 * memory region and then through the target address space.
445 * @iommu_mr: the IOMMU memory region that we start the translation from
446 * @addr: the address to be translated through the MMU
447 * @xlat: the translated address offset within the destination memory region.
448 * It cannot be %NULL.
449 * @plen_out: valid read/write length of the translated address. It
451 * @page_mask_out: page mask for the translated address. This
452 * should only be meaningful for IOMMU translated
453 * addresses, since there may be huge pages that this bit
454 * would tell. It can be %NULL if we don't care about it.
455 * @is_write: whether the translation operation is for write
456 * @is_mmio: whether this can be MMIO, set true if it can
457 * @target_as: the address space targeted by the IOMMU
458 * @attrs: transaction attributes
460 * This function is called from RCU critical section. It is the common
461 * part of flatview_do_translate and address_space_translate_cached.
463 static MemoryRegionSection
address_space_translate_iommu(IOMMUMemoryRegion
*iommu_mr
,
466 hwaddr
*page_mask_out
,
469 AddressSpace
**target_as
,
472 MemoryRegionSection
*section
;
473 hwaddr page_mask
= (hwaddr
)-1;
477 IOMMUMemoryRegionClass
*imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
481 if (imrc
->attrs_to_index
) {
482 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
485 iotlb
= imrc
->translate(iommu_mr
, addr
, is_write
?
486 IOMMU_WO
: IOMMU_RO
, iommu_idx
);
488 if (!(iotlb
.perm
& (1 << is_write
))) {
492 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
493 | (addr
& iotlb
.addr_mask
));
494 page_mask
&= iotlb
.addr_mask
;
495 *plen_out
= MIN(*plen_out
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
496 *target_as
= iotlb
.target_as
;
498 section
= address_space_translate_internal(
499 address_space_to_dispatch(iotlb
.target_as
), addr
, xlat
,
502 iommu_mr
= memory_region_get_iommu(section
->mr
);
503 } while (unlikely(iommu_mr
));
506 *page_mask_out
= page_mask
;
511 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
515 * flatview_do_translate - translate an address in FlatView
517 * @fv: the flat view that we want to translate on
518 * @addr: the address to be translated in above address space
519 * @xlat: the translated address offset within memory region. It
521 * @plen_out: valid read/write length of the translated address. It
522 * can be @NULL when we don't care about it.
523 * @page_mask_out: page mask for the translated address. This
524 * should only be meaningful for IOMMU translated
525 * addresses, since there may be huge pages that this bit
526 * would tell. It can be @NULL if we don't care about it.
527 * @is_write: whether the translation operation is for write
528 * @is_mmio: whether this can be MMIO, set true if it can
529 * @target_as: the address space targeted by the IOMMU
530 * @attrs: memory transaction attributes
532 * This function is called from RCU critical section
534 static MemoryRegionSection
flatview_do_translate(FlatView
*fv
,
538 hwaddr
*page_mask_out
,
541 AddressSpace
**target_as
,
544 MemoryRegionSection
*section
;
545 IOMMUMemoryRegion
*iommu_mr
;
546 hwaddr plen
= (hwaddr
)(-1);
552 section
= address_space_translate_internal(
553 flatview_to_dispatch(fv
), addr
, xlat
,
556 iommu_mr
= memory_region_get_iommu(section
->mr
);
557 if (unlikely(iommu_mr
)) {
558 return address_space_translate_iommu(iommu_mr
, xlat
,
559 plen_out
, page_mask_out
,
564 /* Not behind an IOMMU, use default page size. */
565 *page_mask_out
= ~TARGET_PAGE_MASK
;
571 /* Called from RCU critical section */
572 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
573 bool is_write
, MemTxAttrs attrs
)
575 MemoryRegionSection section
;
576 hwaddr xlat
, page_mask
;
579 * This can never be MMIO, and we don't really care about plen,
582 section
= flatview_do_translate(address_space_to_flatview(as
), addr
, &xlat
,
583 NULL
, &page_mask
, is_write
, false, &as
,
586 /* Illegal translation */
587 if (section
.mr
== &io_mem_unassigned
) {
591 /* Convert memory region offset into address space offset */
592 xlat
+= section
.offset_within_address_space
-
593 section
.offset_within_region
;
595 return (IOMMUTLBEntry
) {
597 .iova
= addr
& ~page_mask
,
598 .translated_addr
= xlat
& ~page_mask
,
599 .addr_mask
= page_mask
,
600 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
605 return (IOMMUTLBEntry
) {0};
608 /* Called from RCU critical section */
609 MemoryRegion
*flatview_translate(FlatView
*fv
, hwaddr addr
, hwaddr
*xlat
,
610 hwaddr
*plen
, bool is_write
,
614 MemoryRegionSection section
;
615 AddressSpace
*as
= NULL
;
617 /* This can be MMIO, so setup MMIO bit. */
618 section
= flatview_do_translate(fv
, addr
, xlat
, plen
, NULL
,
619 is_write
, true, &as
, attrs
);
622 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
623 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
624 *plen
= MIN(page
, *plen
);
630 typedef struct TCGIOMMUNotifier
{
638 static void tcg_iommu_unmap_notify(IOMMUNotifier
*n
, IOMMUTLBEntry
*iotlb
)
640 TCGIOMMUNotifier
*notifier
= container_of(n
, TCGIOMMUNotifier
, n
);
642 if (!notifier
->active
) {
645 tlb_flush(notifier
->cpu
);
646 notifier
->active
= false;
647 /* We leave the notifier struct on the list to avoid reallocating it later.
648 * Generally the number of IOMMUs a CPU deals with will be small.
649 * In any case we can't unregister the iommu notifier from a notify
654 static void tcg_register_iommu_notifier(CPUState
*cpu
,
655 IOMMUMemoryRegion
*iommu_mr
,
658 /* Make sure this CPU has an IOMMU notifier registered for this
659 * IOMMU/IOMMU index combination, so that we can flush its TLB
660 * when the IOMMU tells us the mappings we've cached have changed.
662 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
663 TCGIOMMUNotifier
*notifier
;
666 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
667 notifier
= &g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
, i
);
668 if (notifier
->mr
== mr
&& notifier
->iommu_idx
== iommu_idx
) {
672 if (i
== cpu
->iommu_notifiers
->len
) {
673 /* Not found, add a new entry at the end of the array */
674 cpu
->iommu_notifiers
= g_array_set_size(cpu
->iommu_notifiers
, i
+ 1);
675 notifier
= &g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
, i
);
678 notifier
->iommu_idx
= iommu_idx
;
680 /* Rather than trying to register interest in the specific part
681 * of the iommu's address space that we've accessed and then
682 * expand it later as subsequent accesses touch more of it, we
683 * just register interest in the whole thing, on the assumption
684 * that iommu reconfiguration will be rare.
686 iommu_notifier_init(¬ifier
->n
,
687 tcg_iommu_unmap_notify
,
688 IOMMU_NOTIFIER_UNMAP
,
692 memory_region_register_iommu_notifier(notifier
->mr
, ¬ifier
->n
);
695 if (!notifier
->active
) {
696 notifier
->active
= true;
700 static void tcg_iommu_free_notifier_list(CPUState
*cpu
)
702 /* Destroy the CPU's notifier list */
704 TCGIOMMUNotifier
*notifier
;
706 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
707 notifier
= &g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
, i
);
708 memory_region_unregister_iommu_notifier(notifier
->mr
, ¬ifier
->n
);
710 g_array_free(cpu
->iommu_notifiers
, true);
713 /* Called from RCU critical section */
714 MemoryRegionSection
*
715 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
716 hwaddr
*xlat
, hwaddr
*plen
,
717 MemTxAttrs attrs
, int *prot
)
719 MemoryRegionSection
*section
;
720 IOMMUMemoryRegion
*iommu_mr
;
721 IOMMUMemoryRegionClass
*imrc
;
724 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
727 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, false);
729 iommu_mr
= memory_region_get_iommu(section
->mr
);
734 imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
736 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
737 tcg_register_iommu_notifier(cpu
, iommu_mr
, iommu_idx
);
738 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
739 * doesn't short-cut its translation table walk.
741 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, iommu_idx
);
742 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
743 | (addr
& iotlb
.addr_mask
));
744 /* Update the caller's prot bits to remove permissions the IOMMU
745 * is giving us a failure response for. If we get down to no
746 * permissions left at all we can give up now.
748 if (!(iotlb
.perm
& IOMMU_RO
)) {
749 *prot
&= ~(PAGE_READ
| PAGE_EXEC
);
751 if (!(iotlb
.perm
& IOMMU_WO
)) {
752 *prot
&= ~PAGE_WRITE
;
759 d
= flatview_to_dispatch(address_space_to_flatview(iotlb
.target_as
));
762 assert(!memory_region_is_iommu(section
->mr
));
767 return &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
];
771 #if !defined(CONFIG_USER_ONLY)
773 static int cpu_common_post_load(void *opaque
, int version_id
)
775 CPUState
*cpu
= opaque
;
777 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
778 version_id is increased. */
779 cpu
->interrupt_request
&= ~0x01;
782 /* loadvm has just updated the content of RAM, bypassing the
783 * usual mechanisms that ensure we flush TBs for writes to
784 * memory we've translated code from. So we must flush all TBs,
785 * which will now be stale.
792 static int cpu_common_pre_load(void *opaque
)
794 CPUState
*cpu
= opaque
;
796 cpu
->exception_index
= -1;
801 static bool cpu_common_exception_index_needed(void *opaque
)
803 CPUState
*cpu
= opaque
;
805 return tcg_enabled() && cpu
->exception_index
!= -1;
808 static const VMStateDescription vmstate_cpu_common_exception_index
= {
809 .name
= "cpu_common/exception_index",
811 .minimum_version_id
= 1,
812 .needed
= cpu_common_exception_index_needed
,
813 .fields
= (VMStateField
[]) {
814 VMSTATE_INT32(exception_index
, CPUState
),
815 VMSTATE_END_OF_LIST()
819 static bool cpu_common_crash_occurred_needed(void *opaque
)
821 CPUState
*cpu
= opaque
;
823 return cpu
->crash_occurred
;
826 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
827 .name
= "cpu_common/crash_occurred",
829 .minimum_version_id
= 1,
830 .needed
= cpu_common_crash_occurred_needed
,
831 .fields
= (VMStateField
[]) {
832 VMSTATE_BOOL(crash_occurred
, CPUState
),
833 VMSTATE_END_OF_LIST()
837 const VMStateDescription vmstate_cpu_common
= {
838 .name
= "cpu_common",
840 .minimum_version_id
= 1,
841 .pre_load
= cpu_common_pre_load
,
842 .post_load
= cpu_common_post_load
,
843 .fields
= (VMStateField
[]) {
844 VMSTATE_UINT32(halted
, CPUState
),
845 VMSTATE_UINT32(interrupt_request
, CPUState
),
846 VMSTATE_END_OF_LIST()
848 .subsections
= (const VMStateDescription
*[]) {
849 &vmstate_cpu_common_exception_index
,
850 &vmstate_cpu_common_crash_occurred
,
857 CPUState
*qemu_get_cpu(int index
)
862 if (cpu
->cpu_index
== index
) {
870 #if !defined(CONFIG_USER_ONLY)
871 void cpu_address_space_init(CPUState
*cpu
, int asidx
,
872 const char *prefix
, MemoryRegion
*mr
)
874 CPUAddressSpace
*newas
;
875 AddressSpace
*as
= g_new0(AddressSpace
, 1);
879 as_name
= g_strdup_printf("%s-%d", prefix
, cpu
->cpu_index
);
880 address_space_init(as
, mr
, as_name
);
883 /* Target code should have set num_ases before calling us */
884 assert(asidx
< cpu
->num_ases
);
887 /* address space 0 gets the convenience alias */
891 /* KVM cannot currently support multiple address spaces. */
892 assert(asidx
== 0 || !kvm_enabled());
894 if (!cpu
->cpu_ases
) {
895 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
898 newas
= &cpu
->cpu_ases
[asidx
];
902 newas
->tcg_as_listener
.commit
= tcg_commit
;
903 memory_listener_register(&newas
->tcg_as_listener
, as
);
907 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
909 /* Return the AddressSpace corresponding to the specified index */
910 return cpu
->cpu_ases
[asidx
].as
;
914 void cpu_exec_unrealizefn(CPUState
*cpu
)
916 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
918 cpu_list_remove(cpu
);
920 if (cc
->vmsd
!= NULL
) {
921 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
923 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
924 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
926 #ifndef CONFIG_USER_ONLY
927 tcg_iommu_free_notifier_list(cpu
);
931 Property cpu_common_props
[] = {
932 #ifndef CONFIG_USER_ONLY
933 /* Create a memory property for softmmu CPU object,
934 * so users can wire up its memory. (This can't go in qom/cpu.c
935 * because that file is compiled only once for both user-mode
936 * and system builds.) The default if no link is set up is to use
937 * the system address space.
939 DEFINE_PROP_LINK("memory", CPUState
, memory
, TYPE_MEMORY_REGION
,
942 DEFINE_PROP_END_OF_LIST(),
945 void cpu_exec_initfn(CPUState
*cpu
)
950 #ifndef CONFIG_USER_ONLY
951 cpu
->thread_id
= qemu_get_thread_id();
952 cpu
->memory
= system_memory
;
953 object_ref(OBJECT(cpu
->memory
));
957 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
959 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
960 static bool tcg_target_initialized
;
964 if (tcg_enabled() && !tcg_target_initialized
) {
965 tcg_target_initialized
= true;
966 cc
->tcg_initialize();
969 #ifndef CONFIG_USER_ONLY
970 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
971 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
973 if (cc
->vmsd
!= NULL
) {
974 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
977 cpu
->iommu_notifiers
= g_array_new(false, true, sizeof(TCGIOMMUNotifier
));
981 const char *parse_cpu_model(const char *cpu_model
)
985 gchar
**model_pieces
;
986 const char *cpu_type
;
988 model_pieces
= g_strsplit(cpu_model
, ",", 2);
990 oc
= cpu_class_by_name(CPU_RESOLVING_TYPE
, model_pieces
[0]);
992 error_report("unable to find CPU model '%s'", model_pieces
[0]);
993 g_strfreev(model_pieces
);
997 cpu_type
= object_class_get_name(oc
);
999 cc
->parse_features(cpu_type
, model_pieces
[1], &error_fatal
);
1000 g_strfreev(model_pieces
);
1004 #if defined(CONFIG_USER_ONLY)
1005 void tb_invalidate_phys_addr(target_ulong addr
)
1008 tb_invalidate_phys_page_range(addr
, addr
+ 1, 0);
1012 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
1014 tb_invalidate_phys_addr(pc
);
1017 void tb_invalidate_phys_addr(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
)
1019 ram_addr_t ram_addr
;
1023 if (!tcg_enabled()) {
1028 mr
= address_space_translate(as
, addr
, &addr
, &l
, false, attrs
);
1029 if (!(memory_region_is_ram(mr
)
1030 || memory_region_is_romd(mr
))) {
1034 ram_addr
= memory_region_get_ram_addr(mr
) + addr
;
1035 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1039 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
1042 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
1043 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
1045 /* Locks grabbed by tb_invalidate_phys_addr */
1046 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
1047 phys
| (pc
& ~TARGET_PAGE_MASK
), attrs
);
1052 #if defined(CONFIG_USER_ONLY)
1053 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
1058 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
1064 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
1068 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
1069 int flags
, CPUWatchpoint
**watchpoint
)
1074 /* Add a watchpoint. */
1075 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
1076 int flags
, CPUWatchpoint
**watchpoint
)
1080 /* forbid ranges which are empty or run off the end of the address space */
1081 if (len
== 0 || (addr
+ len
- 1) < addr
) {
1082 error_report("tried to set invalid watchpoint at %"
1083 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
1086 wp
= g_malloc(sizeof(*wp
));
1092 /* keep all GDB-injected watchpoints in front */
1093 if (flags
& BP_GDB
) {
1094 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
1096 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
1099 tlb_flush_page(cpu
, addr
);
1106 /* Remove a specific watchpoint. */
1107 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
1112 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1113 if (addr
== wp
->vaddr
&& len
== wp
->len
1114 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1115 cpu_watchpoint_remove_by_ref(cpu
, wp
);
1122 /* Remove a specific watchpoint by reference. */
1123 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
1125 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
1127 tlb_flush_page(cpu
, watchpoint
->vaddr
);
1132 /* Remove all matching watchpoints. */
1133 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
1135 CPUWatchpoint
*wp
, *next
;
1137 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
1138 if (wp
->flags
& mask
) {
1139 cpu_watchpoint_remove_by_ref(cpu
, wp
);
1144 /* Return true if this watchpoint address matches the specified
1145 * access (ie the address range covered by the watchpoint overlaps
1146 * partially or completely with the address range covered by the
1149 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
1153 /* We know the lengths are non-zero, but a little caution is
1154 * required to avoid errors in the case where the range ends
1155 * exactly at the top of the address space and so addr + len
1156 * wraps round to zero.
1158 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
1159 vaddr addrend
= addr
+ len
- 1;
1161 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
1166 /* Add a breakpoint. */
1167 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
1168 CPUBreakpoint
**breakpoint
)
1172 bp
= g_malloc(sizeof(*bp
));
1177 /* keep all GDB-injected breakpoints in front */
1178 if (flags
& BP_GDB
) {
1179 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
1181 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
1184 breakpoint_invalidate(cpu
, pc
);
1192 /* Remove a specific breakpoint. */
1193 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
1197 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
1198 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1199 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1206 /* Remove a specific breakpoint by reference. */
1207 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
1209 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
1211 breakpoint_invalidate(cpu
, breakpoint
->pc
);
1216 /* Remove all matching breakpoints. */
1217 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
1219 CPUBreakpoint
*bp
, *next
;
1221 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
1222 if (bp
->flags
& mask
) {
1223 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1228 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1229 CPU loop after each instruction */
1230 void cpu_single_step(CPUState
*cpu
, int enabled
)
1232 if (cpu
->singlestep_enabled
!= enabled
) {
1233 cpu
->singlestep_enabled
= enabled
;
1234 if (kvm_enabled()) {
1235 kvm_update_guest_debug(cpu
, 0);
1237 /* must flush all the translated code to avoid inconsistencies */
1238 /* XXX: only flush what is necessary */
1244 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
1251 fprintf(stderr
, "qemu: fatal: ");
1252 vfprintf(stderr
, fmt
, ap
);
1253 fprintf(stderr
, "\n");
1254 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1255 if (qemu_log_separate()) {
1257 qemu_log("qemu: fatal: ");
1258 qemu_log_vprintf(fmt
, ap2
);
1260 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1268 #if defined(CONFIG_USER_ONLY)
1270 struct sigaction act
;
1271 sigfillset(&act
.sa_mask
);
1272 act
.sa_handler
= SIG_DFL
;
1274 sigaction(SIGABRT
, &act
, NULL
);
1280 #if !defined(CONFIG_USER_ONLY)
1281 /* Called from RCU critical section */
1282 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1286 block
= atomic_rcu_read(&ram_list
.mru_block
);
1287 if (block
&& addr
- block
->offset
< block
->max_length
) {
1290 RAMBLOCK_FOREACH(block
) {
1291 if (addr
- block
->offset
< block
->max_length
) {
1296 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1300 /* It is safe to write mru_block outside the iothread lock. This
1305 * xxx removed from list
1309 * call_rcu(reclaim_ramblock, xxx);
1312 * atomic_rcu_set is not needed here. The block was already published
1313 * when it was placed into the list. Here we're just making an extra
1314 * copy of the pointer.
1316 ram_list
.mru_block
= block
;
1320 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1327 assert(tcg_enabled());
1328 end
= TARGET_PAGE_ALIGN(start
+ length
);
1329 start
&= TARGET_PAGE_MASK
;
1332 block
= qemu_get_ram_block(start
);
1333 assert(block
== qemu_get_ram_block(end
- 1));
1334 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1336 tlb_reset_dirty(cpu
, start1
, length
);
1341 /* Note: start and end must be within the same ram block. */
1342 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1346 DirtyMemoryBlocks
*blocks
;
1347 unsigned long end
, page
;
1354 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1355 page
= start
>> TARGET_PAGE_BITS
;
1359 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1361 while (page
< end
) {
1362 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1363 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1364 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1366 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1373 if (dirty
&& tcg_enabled()) {
1374 tlb_reset_dirty_range_all(start
, length
);
1380 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1381 (ram_addr_t start
, ram_addr_t length
, unsigned client
)
1383 DirtyMemoryBlocks
*blocks
;
1384 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1385 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1386 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1387 DirtyBitmapSnapshot
*snap
;
1388 unsigned long page
, end
, dest
;
1390 snap
= g_malloc0(sizeof(*snap
) +
1391 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1392 snap
->start
= first
;
1395 page
= first
>> TARGET_PAGE_BITS
;
1396 end
= last
>> TARGET_PAGE_BITS
;
1401 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1403 while (page
< end
) {
1404 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1405 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1406 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1408 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1409 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1410 offset
>>= BITS_PER_LEVEL
;
1412 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1413 blocks
->blocks
[idx
] + offset
,
1416 dest
+= num
>> BITS_PER_LEVEL
;
1421 if (tcg_enabled()) {
1422 tlb_reset_dirty_range_all(start
, length
);
1428 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1432 unsigned long page
, end
;
1434 assert(start
>= snap
->start
);
1435 assert(start
+ length
<= snap
->end
);
1437 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1438 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1440 while (page
< end
) {
1441 if (test_bit(page
, snap
->dirty
)) {
1449 /* Called from RCU critical section */
1450 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1451 MemoryRegionSection
*section
,
1453 hwaddr paddr
, hwaddr xlat
,
1455 target_ulong
*address
)
1460 if (memory_region_is_ram(section
->mr
)) {
1462 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1463 if (!section
->readonly
) {
1464 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1466 iotlb
|= PHYS_SECTION_ROM
;
1469 AddressSpaceDispatch
*d
;
1471 d
= flatview_to_dispatch(section
->fv
);
1472 iotlb
= section
- d
->map
.sections
;
1476 /* Make accesses to pages with watchpoints go via the
1477 watchpoint trap routines. */
1478 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1479 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1480 /* Avoid trapping reads of pages with a write breakpoint. */
1481 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1482 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1483 *address
|= TLB_MMIO
;
1491 #endif /* defined(CONFIG_USER_ONLY) */
1493 #if !defined(CONFIG_USER_ONLY)
1495 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1497 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
);
1499 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
, bool shared
) =
1500 qemu_anon_ram_alloc
;
1503 * Set a custom physical guest memory alloator.
1504 * Accelerators with unusual needs may need this. Hopefully, we can
1505 * get rid of it eventually.
1507 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
, bool shared
))
1509 phys_mem_alloc
= alloc
;
1512 static uint16_t phys_section_add(PhysPageMap
*map
,
1513 MemoryRegionSection
*section
)
1515 /* The physical section number is ORed with a page-aligned
1516 * pointer to produce the iotlb entries. Thus it should
1517 * never overflow into the page-aligned value.
1519 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1521 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1522 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1523 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1524 map
->sections_nb_alloc
);
1526 map
->sections
[map
->sections_nb
] = *section
;
1527 memory_region_ref(section
->mr
);
1528 return map
->sections_nb
++;
1531 static void phys_section_destroy(MemoryRegion
*mr
)
1533 bool have_sub_page
= mr
->subpage
;
1535 memory_region_unref(mr
);
1537 if (have_sub_page
) {
1538 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1539 object_unref(OBJECT(&subpage
->iomem
));
1544 static void phys_sections_free(PhysPageMap
*map
)
1546 while (map
->sections_nb
> 0) {
1547 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1548 phys_section_destroy(section
->mr
);
1550 g_free(map
->sections
);
1554 static void register_subpage(FlatView
*fv
, MemoryRegionSection
*section
)
1556 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1558 hwaddr base
= section
->offset_within_address_space
1560 MemoryRegionSection
*existing
= phys_page_find(d
, base
);
1561 MemoryRegionSection subsection
= {
1562 .offset_within_address_space
= base
,
1563 .size
= int128_make64(TARGET_PAGE_SIZE
),
1567 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1569 if (!(existing
->mr
->subpage
)) {
1570 subpage
= subpage_init(fv
, base
);
1572 subsection
.mr
= &subpage
->iomem
;
1573 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1574 phys_section_add(&d
->map
, &subsection
));
1576 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1578 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1579 end
= start
+ int128_get64(section
->size
) - 1;
1580 subpage_register(subpage
, start
, end
,
1581 phys_section_add(&d
->map
, section
));
1585 static void register_multipage(FlatView
*fv
,
1586 MemoryRegionSection
*section
)
1588 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1589 hwaddr start_addr
= section
->offset_within_address_space
;
1590 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1591 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1595 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1598 void flatview_add_to_dispatch(FlatView
*fv
, MemoryRegionSection
*section
)
1600 MemoryRegionSection now
= *section
, remain
= *section
;
1601 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1603 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1604 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1605 - now
.offset_within_address_space
;
1607 now
.size
= int128_min(int128_make64(left
), now
.size
);
1608 register_subpage(fv
, &now
);
1610 now
.size
= int128_zero();
1612 while (int128_ne(remain
.size
, now
.size
)) {
1613 remain
.size
= int128_sub(remain
.size
, now
.size
);
1614 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1615 remain
.offset_within_region
+= int128_get64(now
.size
);
1617 if (int128_lt(remain
.size
, page_size
)) {
1618 register_subpage(fv
, &now
);
1619 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1620 now
.size
= page_size
;
1621 register_subpage(fv
, &now
);
1623 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1624 register_multipage(fv
, &now
);
1629 void qemu_flush_coalesced_mmio_buffer(void)
1632 kvm_flush_coalesced_mmio_buffer();
1635 void qemu_mutex_lock_ramlist(void)
1637 qemu_mutex_lock(&ram_list
.mutex
);
1640 void qemu_mutex_unlock_ramlist(void)
1642 qemu_mutex_unlock(&ram_list
.mutex
);
1645 void ram_block_dump(Monitor
*mon
)
1651 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1652 "Block Name", "PSize", "Offset", "Used", "Total");
1653 RAMBLOCK_FOREACH(block
) {
1654 psize
= size_to_str(block
->page_size
);
1655 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1656 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1657 (uint64_t)block
->offset
,
1658 (uint64_t)block
->used_length
,
1659 (uint64_t)block
->max_length
);
1667 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1668 * may or may not name the same files / on the same filesystem now as
1669 * when we actually open and map them. Iterate over the file
1670 * descriptors instead, and use qemu_fd_getpagesize().
1672 static int find_max_supported_pagesize(Object
*obj
, void *opaque
)
1674 long *hpsize_min
= opaque
;
1676 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1677 long hpsize
= host_memory_backend_pagesize(MEMORY_BACKEND(obj
));
1679 if (hpsize
< *hpsize_min
) {
1680 *hpsize_min
= hpsize
;
1687 long qemu_getrampagesize(void)
1689 long hpsize
= LONG_MAX
;
1690 long mainrampagesize
;
1691 Object
*memdev_root
;
1693 mainrampagesize
= qemu_mempath_getpagesize(mem_path
);
1695 /* it's possible we have memory-backend objects with
1696 * hugepage-backed RAM. these may get mapped into system
1697 * address space via -numa parameters or memory hotplug
1698 * hooks. we want to take these into account, but we
1699 * also want to make sure these supported hugepage
1700 * sizes are applicable across the entire range of memory
1701 * we may boot from, so we take the min across all
1702 * backends, and assume normal pages in cases where a
1703 * backend isn't backed by hugepages.
1705 memdev_root
= object_resolve_path("/objects", NULL
);
1707 object_child_foreach(memdev_root
, find_max_supported_pagesize
, &hpsize
);
1709 if (hpsize
== LONG_MAX
) {
1710 /* No additional memory regions found ==> Report main RAM page size */
1711 return mainrampagesize
;
1714 /* If NUMA is disabled or the NUMA nodes are not backed with a
1715 * memory-backend, then there is at least one node using "normal" RAM,
1716 * so if its page size is smaller we have got to report that size instead.
1718 if (hpsize
> mainrampagesize
&&
1719 (nb_numa_nodes
== 0 || numa_info
[0].node_memdev
== NULL
)) {
1722 error_report("Huge page support disabled (n/a for main memory).");
1725 return mainrampagesize
;
1731 long qemu_getrampagesize(void)
1733 return getpagesize();
1738 static int64_t get_file_size(int fd
)
1740 int64_t size
= lseek(fd
, 0, SEEK_END
);
1747 static int file_ram_open(const char *path
,
1748 const char *region_name
,
1753 char *sanitized_name
;
1759 fd
= open(path
, O_RDWR
);
1761 /* @path names an existing file, use it */
1764 if (errno
== ENOENT
) {
1765 /* @path names a file that doesn't exist, create it */
1766 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1771 } else if (errno
== EISDIR
) {
1772 /* @path names a directory, create a file there */
1773 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1774 sanitized_name
= g_strdup(region_name
);
1775 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1781 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1783 g_free(sanitized_name
);
1785 fd
= mkstemp(filename
);
1793 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1794 error_setg_errno(errp
, errno
,
1795 "can't open backing store %s for guest RAM",
1800 * Try again on EINTR and EEXIST. The latter happens when
1801 * something else creates the file between our two open().
1808 static void *file_ram_alloc(RAMBlock
*block
,
1816 block
->page_size
= qemu_fd_getpagesize(fd
);
1817 if (block
->mr
->align
% block
->page_size
) {
1818 error_setg(errp
, "alignment 0x%" PRIx64
1819 " must be multiples of page size 0x%zx",
1820 block
->mr
->align
, block
->page_size
);
1822 } else if (block
->mr
->align
&& !is_power_of_2(block
->mr
->align
)) {
1823 error_setg(errp
, "alignment 0x%" PRIx64
1824 " must be a power of two", block
->mr
->align
);
1827 block
->mr
->align
= MAX(block
->page_size
, block
->mr
->align
);
1828 #if defined(__s390x__)
1829 if (kvm_enabled()) {
1830 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1834 if (memory
< block
->page_size
) {
1835 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1836 "or larger than page size 0x%zx",
1837 memory
, block
->page_size
);
1841 memory
= ROUND_UP(memory
, block
->page_size
);
1844 * ftruncate is not supported by hugetlbfs in older
1845 * hosts, so don't bother bailing out on errors.
1846 * If anything goes wrong with it under other filesystems,
1849 * Do not truncate the non-empty backend file to avoid corrupting
1850 * the existing data in the file. Disabling shrinking is not
1851 * enough. For example, the current vNVDIMM implementation stores
1852 * the guest NVDIMM labels at the end of the backend file. If the
1853 * backend file is later extended, QEMU will not be able to find
1854 * those labels. Therefore, extending the non-empty backend file
1855 * is disabled as well.
1857 if (truncate
&& ftruncate(fd
, memory
)) {
1858 perror("ftruncate");
1861 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1862 block
->flags
& RAM_SHARED
);
1863 if (area
== MAP_FAILED
) {
1864 error_setg_errno(errp
, errno
,
1865 "unable to map backing store for guest RAM");
1870 os_mem_prealloc(fd
, area
, memory
, smp_cpus
, errp
);
1871 if (errp
&& *errp
) {
1872 qemu_ram_munmap(area
, memory
);
1882 /* Allocate space within the ram_addr_t space that governs the
1884 * Called with the ramlist lock held.
1886 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1888 RAMBlock
*block
, *next_block
;
1889 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1891 assert(size
!= 0); /* it would hand out same offset multiple times */
1893 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1897 RAMBLOCK_FOREACH(block
) {
1898 ram_addr_t candidate
, next
= RAM_ADDR_MAX
;
1900 /* Align blocks to start on a 'long' in the bitmap
1901 * which makes the bitmap sync'ing take the fast path.
1903 candidate
= block
->offset
+ block
->max_length
;
1904 candidate
= ROUND_UP(candidate
, BITS_PER_LONG
<< TARGET_PAGE_BITS
);
1906 /* Search for the closest following block
1909 RAMBLOCK_FOREACH(next_block
) {
1910 if (next_block
->offset
>= candidate
) {
1911 next
= MIN(next
, next_block
->offset
);
1915 /* If it fits remember our place and remember the size
1916 * of gap, but keep going so that we might find a smaller
1917 * gap to fill so avoiding fragmentation.
1919 if (next
- candidate
>= size
&& next
- candidate
< mingap
) {
1921 mingap
= next
- candidate
;
1924 trace_find_ram_offset_loop(size
, candidate
, offset
, next
, mingap
);
1927 if (offset
== RAM_ADDR_MAX
) {
1928 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1933 trace_find_ram_offset(size
, offset
);
1938 static unsigned long last_ram_page(void)
1941 ram_addr_t last
= 0;
1944 RAMBLOCK_FOREACH(block
) {
1945 last
= MAX(last
, block
->offset
+ block
->max_length
);
1948 return last
>> TARGET_PAGE_BITS
;
1951 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1955 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1956 if (!machine_dump_guest_core(current_machine
)) {
1957 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1959 perror("qemu_madvise");
1960 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1961 "but dump_guest_core=off specified\n");
1966 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1971 bool qemu_ram_is_shared(RAMBlock
*rb
)
1973 return rb
->flags
& RAM_SHARED
;
1976 /* Note: Only set at the start of postcopy */
1977 bool qemu_ram_is_uf_zeroable(RAMBlock
*rb
)
1979 return rb
->flags
& RAM_UF_ZEROPAGE
;
1982 void qemu_ram_set_uf_zeroable(RAMBlock
*rb
)
1984 rb
->flags
|= RAM_UF_ZEROPAGE
;
1987 bool qemu_ram_is_migratable(RAMBlock
*rb
)
1989 return rb
->flags
& RAM_MIGRATABLE
;
1992 void qemu_ram_set_migratable(RAMBlock
*rb
)
1994 rb
->flags
|= RAM_MIGRATABLE
;
1997 void qemu_ram_unset_migratable(RAMBlock
*rb
)
1999 rb
->flags
&= ~RAM_MIGRATABLE
;
2002 /* Called with iothread lock held. */
2003 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
2008 assert(!new_block
->idstr
[0]);
2011 char *id
= qdev_get_dev_path(dev
);
2013 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2017 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2020 RAMBLOCK_FOREACH(block
) {
2021 if (block
!= new_block
&&
2022 !strcmp(block
->idstr
, new_block
->idstr
)) {
2023 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2031 /* Called with iothread lock held. */
2032 void qemu_ram_unset_idstr(RAMBlock
*block
)
2034 /* FIXME: arch_init.c assumes that this is not called throughout
2035 * migration. Ignore the problem since hot-unplug during migration
2036 * does not work anyway.
2039 memset(block
->idstr
, 0, sizeof(block
->idstr
));
2043 size_t qemu_ram_pagesize(RAMBlock
*rb
)
2045 return rb
->page_size
;
2048 /* Returns the largest size of page in use */
2049 size_t qemu_ram_pagesize_largest(void)
2054 RAMBLOCK_FOREACH(block
) {
2055 largest
= MAX(largest
, qemu_ram_pagesize(block
));
2061 static int memory_try_enable_merging(void *addr
, size_t len
)
2063 if (!machine_mem_merge(current_machine
)) {
2064 /* disabled by the user */
2068 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
2071 /* Only legal before guest might have detected the memory size: e.g. on
2072 * incoming migration, or right after reset.
2074 * As memory core doesn't know how is memory accessed, it is up to
2075 * resize callback to update device state and/or add assertions to detect
2076 * misuse, if necessary.
2078 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
2082 newsize
= HOST_PAGE_ALIGN(newsize
);
2084 if (block
->used_length
== newsize
) {
2088 if (!(block
->flags
& RAM_RESIZEABLE
)) {
2089 error_setg_errno(errp
, EINVAL
,
2090 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2091 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
2092 newsize
, block
->used_length
);
2096 if (block
->max_length
< newsize
) {
2097 error_setg_errno(errp
, EINVAL
,
2098 "Length too large: %s: 0x" RAM_ADDR_FMT
2099 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
2100 newsize
, block
->max_length
);
2104 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
2105 block
->used_length
= newsize
;
2106 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
2108 memory_region_set_size(block
->mr
, newsize
);
2109 if (block
->resized
) {
2110 block
->resized(block
->idstr
, newsize
, block
->host
);
2115 /* Called with ram_list.mutex held */
2116 static void dirty_memory_extend(ram_addr_t old_ram_size
,
2117 ram_addr_t new_ram_size
)
2119 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
2120 DIRTY_MEMORY_BLOCK_SIZE
);
2121 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
2122 DIRTY_MEMORY_BLOCK_SIZE
);
2125 /* Only need to extend if block count increased */
2126 if (new_num_blocks
<= old_num_blocks
) {
2130 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
2131 DirtyMemoryBlocks
*old_blocks
;
2132 DirtyMemoryBlocks
*new_blocks
;
2135 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
2136 new_blocks
= g_malloc(sizeof(*new_blocks
) +
2137 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
2139 if (old_num_blocks
) {
2140 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
2141 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
2144 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
2145 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
2148 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
2151 g_free_rcu(old_blocks
, rcu
);
2156 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
, bool shared
)
2159 RAMBlock
*last_block
= NULL
;
2160 ram_addr_t old_ram_size
, new_ram_size
;
2163 old_ram_size
= last_ram_page();
2165 qemu_mutex_lock_ramlist();
2166 new_block
->offset
= find_ram_offset(new_block
->max_length
);
2168 if (!new_block
->host
) {
2169 if (xen_enabled()) {
2170 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
2171 new_block
->mr
, &err
);
2173 error_propagate(errp
, err
);
2174 qemu_mutex_unlock_ramlist();
2178 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
2179 &new_block
->mr
->align
, shared
);
2180 if (!new_block
->host
) {
2181 error_setg_errno(errp
, errno
,
2182 "cannot set up guest memory '%s'",
2183 memory_region_name(new_block
->mr
));
2184 qemu_mutex_unlock_ramlist();
2187 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
2191 new_ram_size
= MAX(old_ram_size
,
2192 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
2193 if (new_ram_size
> old_ram_size
) {
2194 dirty_memory_extend(old_ram_size
, new_ram_size
);
2196 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2197 * QLIST (which has an RCU-friendly variant) does not have insertion at
2198 * tail, so save the last element in last_block.
2200 RAMBLOCK_FOREACH(block
) {
2202 if (block
->max_length
< new_block
->max_length
) {
2207 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
2208 } else if (last_block
) {
2209 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
2210 } else { /* list is empty */
2211 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
2213 ram_list
.mru_block
= NULL
;
2215 /* Write list before version */
2218 qemu_mutex_unlock_ramlist();
2220 cpu_physical_memory_set_dirty_range(new_block
->offset
,
2221 new_block
->used_length
,
2224 if (new_block
->host
) {
2225 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
2226 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
2227 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2228 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
2229 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
2234 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
2235 uint32_t ram_flags
, int fd
,
2238 RAMBlock
*new_block
;
2239 Error
*local_err
= NULL
;
2242 /* Just support these ram flags by now. */
2243 assert((ram_flags
& ~(RAM_SHARED
| RAM_PMEM
)) == 0);
2245 if (xen_enabled()) {
2246 error_setg(errp
, "-mem-path not supported with Xen");
2250 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2252 "host lacks kvm mmu notifiers, -mem-path unsupported");
2256 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
2258 * file_ram_alloc() needs to allocate just like
2259 * phys_mem_alloc, but we haven't bothered to provide
2263 "-mem-path not supported with this accelerator");
2267 size
= HOST_PAGE_ALIGN(size
);
2268 file_size
= get_file_size(fd
);
2269 if (file_size
> 0 && file_size
< size
) {
2270 error_setg(errp
, "backing store %s size 0x%" PRIx64
2271 " does not match 'size' option 0x" RAM_ADDR_FMT
,
2272 mem_path
, file_size
, size
);
2276 new_block
= g_malloc0(sizeof(*new_block
));
2278 new_block
->used_length
= size
;
2279 new_block
->max_length
= size
;
2280 new_block
->flags
= ram_flags
;
2281 new_block
->host
= file_ram_alloc(new_block
, size
, fd
, !file_size
, errp
);
2282 if (!new_block
->host
) {
2287 ram_block_add(new_block
, &local_err
, ram_flags
& RAM_SHARED
);
2290 error_propagate(errp
, local_err
);
2298 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
2299 uint32_t ram_flags
, const char *mem_path
,
2306 fd
= file_ram_open(mem_path
, memory_region_name(mr
), &created
, errp
);
2311 block
= qemu_ram_alloc_from_fd(size
, mr
, ram_flags
, fd
, errp
);
2325 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
2326 void (*resized
)(const char*,
2329 void *host
, bool resizeable
, bool share
,
2330 MemoryRegion
*mr
, Error
**errp
)
2332 RAMBlock
*new_block
;
2333 Error
*local_err
= NULL
;
2335 size
= HOST_PAGE_ALIGN(size
);
2336 max_size
= HOST_PAGE_ALIGN(max_size
);
2337 new_block
= g_malloc0(sizeof(*new_block
));
2339 new_block
->resized
= resized
;
2340 new_block
->used_length
= size
;
2341 new_block
->max_length
= max_size
;
2342 assert(max_size
>= size
);
2344 new_block
->page_size
= getpagesize();
2345 new_block
->host
= host
;
2347 new_block
->flags
|= RAM_PREALLOC
;
2350 new_block
->flags
|= RAM_RESIZEABLE
;
2352 ram_block_add(new_block
, &local_err
, share
);
2355 error_propagate(errp
, local_err
);
2361 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2362 MemoryRegion
*mr
, Error
**errp
)
2364 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false,
2368 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, bool share
,
2369 MemoryRegion
*mr
, Error
**errp
)
2371 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false,
2375 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2376 void (*resized
)(const char*,
2379 MemoryRegion
*mr
, Error
**errp
)
2381 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true,
2385 static void reclaim_ramblock(RAMBlock
*block
)
2387 if (block
->flags
& RAM_PREALLOC
) {
2389 } else if (xen_enabled()) {
2390 xen_invalidate_map_cache_entry(block
->host
);
2392 } else if (block
->fd
>= 0) {
2393 qemu_ram_munmap(block
->host
, block
->max_length
);
2397 qemu_anon_ram_free(block
->host
, block
->max_length
);
2402 void qemu_ram_free(RAMBlock
*block
)
2409 ram_block_notify_remove(block
->host
, block
->max_length
);
2412 qemu_mutex_lock_ramlist();
2413 QLIST_REMOVE_RCU(block
, next
);
2414 ram_list
.mru_block
= NULL
;
2415 /* Write list before version */
2418 call_rcu(block
, reclaim_ramblock
, rcu
);
2419 qemu_mutex_unlock_ramlist();
2423 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2430 RAMBLOCK_FOREACH(block
) {
2431 offset
= addr
- block
->offset
;
2432 if (offset
< block
->max_length
) {
2433 vaddr
= ramblock_ptr(block
, offset
);
2434 if (block
->flags
& RAM_PREALLOC
) {
2436 } else if (xen_enabled()) {
2440 if (block
->fd
>= 0) {
2441 flags
|= (block
->flags
& RAM_SHARED
?
2442 MAP_SHARED
: MAP_PRIVATE
);
2443 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2444 flags
, block
->fd
, offset
);
2447 * Remap needs to match alloc. Accelerators that
2448 * set phys_mem_alloc never remap. If they did,
2449 * we'd need a remap hook here.
2451 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2453 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2454 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2457 if (area
!= vaddr
) {
2458 error_report("Could not remap addr: "
2459 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"",
2463 memory_try_enable_merging(vaddr
, length
);
2464 qemu_ram_setup_dump(vaddr
, length
);
2469 #endif /* !_WIN32 */
2471 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2472 * This should not be used for general purpose DMA. Use address_space_map
2473 * or address_space_rw instead. For local memory (e.g. video ram) that the
2474 * device owns, use memory_region_get_ram_ptr.
2476 * Called within RCU critical section.
2478 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2480 RAMBlock
*block
= ram_block
;
2482 if (block
== NULL
) {
2483 block
= qemu_get_ram_block(addr
);
2484 addr
-= block
->offset
;
2487 if (xen_enabled() && block
->host
== NULL
) {
2488 /* We need to check if the requested address is in the RAM
2489 * because we don't want to map the entire memory in QEMU.
2490 * In that case just map until the end of the page.
2492 if (block
->offset
== 0) {
2493 return xen_map_cache(addr
, 0, 0, false);
2496 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2498 return ramblock_ptr(block
, addr
);
2501 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2502 * but takes a size argument.
2504 * Called within RCU critical section.
2506 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2507 hwaddr
*size
, bool lock
)
2509 RAMBlock
*block
= ram_block
;
2514 if (block
== NULL
) {
2515 block
= qemu_get_ram_block(addr
);
2516 addr
-= block
->offset
;
2518 *size
= MIN(*size
, block
->max_length
- addr
);
2520 if (xen_enabled() && block
->host
== NULL
) {
2521 /* We need to check if the requested address is in the RAM
2522 * because we don't want to map the entire memory in QEMU.
2523 * In that case just map the requested area.
2525 if (block
->offset
== 0) {
2526 return xen_map_cache(addr
, *size
, lock
, lock
);
2529 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, lock
);
2532 return ramblock_ptr(block
, addr
);
2535 /* Return the offset of a hostpointer within a ramblock */
2536 ram_addr_t
qemu_ram_block_host_offset(RAMBlock
*rb
, void *host
)
2538 ram_addr_t res
= (uint8_t *)host
- (uint8_t *)rb
->host
;
2539 assert((uintptr_t)host
>= (uintptr_t)rb
->host
);
2540 assert(res
< rb
->max_length
);
2546 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2549 * ptr: Host pointer to look up
2550 * round_offset: If true round the result offset down to a page boundary
2551 * *ram_addr: set to result ram_addr
2552 * *offset: set to result offset within the RAMBlock
2554 * Returns: RAMBlock (or NULL if not found)
2556 * By the time this function returns, the returned pointer is not protected
2557 * by RCU anymore. If the caller is not within an RCU critical section and
2558 * does not hold the iothread lock, it must have other means of protecting the
2559 * pointer, such as a reference to the region that includes the incoming
2562 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2566 uint8_t *host
= ptr
;
2568 if (xen_enabled()) {
2569 ram_addr_t ram_addr
;
2571 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2572 block
= qemu_get_ram_block(ram_addr
);
2574 *offset
= ram_addr
- block
->offset
;
2581 block
= atomic_rcu_read(&ram_list
.mru_block
);
2582 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2586 RAMBLOCK_FOREACH(block
) {
2587 /* This case append when the block is not mapped. */
2588 if (block
->host
== NULL
) {
2591 if (host
- block
->host
< block
->max_length
) {
2600 *offset
= (host
- block
->host
);
2602 *offset
&= TARGET_PAGE_MASK
;
2609 * Finds the named RAMBlock
2611 * name: The name of RAMBlock to find
2613 * Returns: RAMBlock (or NULL if not found)
2615 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2619 RAMBLOCK_FOREACH(block
) {
2620 if (!strcmp(name
, block
->idstr
)) {
2628 /* Some of the softmmu routines need to translate from a host pointer
2629 (typically a TLB entry) back to a ram offset. */
2630 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2635 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2637 return RAM_ADDR_INVALID
;
2640 return block
->offset
+ offset
;
2643 /* Called within RCU critical section. */
2644 void memory_notdirty_write_prepare(NotDirtyInfo
*ndi
,
2647 ram_addr_t ram_addr
,
2651 ndi
->ram_addr
= ram_addr
;
2652 ndi
->mem_vaddr
= mem_vaddr
;
2656 assert(tcg_enabled());
2657 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2658 ndi
->pages
= page_collection_lock(ram_addr
, ram_addr
+ size
);
2659 tb_invalidate_phys_page_fast(ndi
->pages
, ram_addr
, size
);
2663 /* Called within RCU critical section. */
2664 void memory_notdirty_write_complete(NotDirtyInfo
*ndi
)
2667 assert(tcg_enabled());
2668 page_collection_unlock(ndi
->pages
);
2672 /* Set both VGA and migration bits for simplicity and to remove
2673 * the notdirty callback faster.
2675 cpu_physical_memory_set_dirty_range(ndi
->ram_addr
, ndi
->size
,
2676 DIRTY_CLIENTS_NOCODE
);
2677 /* we remove the notdirty callback only if the code has been
2679 if (!cpu_physical_memory_is_clean(ndi
->ram_addr
)) {
2680 tlb_set_dirty(ndi
->cpu
, ndi
->mem_vaddr
);
2684 /* Called within RCU critical section. */
2685 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2686 uint64_t val
, unsigned size
)
2690 memory_notdirty_write_prepare(&ndi
, current_cpu
, current_cpu
->mem_io_vaddr
,
2693 stn_p(qemu_map_ram_ptr(NULL
, ram_addr
), size
, val
);
2694 memory_notdirty_write_complete(&ndi
);
2697 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2698 unsigned size
, bool is_write
,
2704 static const MemoryRegionOps notdirty_mem_ops
= {
2705 .write
= notdirty_mem_write
,
2706 .valid
.accepts
= notdirty_mem_accepts
,
2707 .endianness
= DEVICE_NATIVE_ENDIAN
,
2709 .min_access_size
= 1,
2710 .max_access_size
= 8,
2714 .min_access_size
= 1,
2715 .max_access_size
= 8,
2720 /* Generate a debug exception if a watchpoint has been hit. */
2721 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2723 CPUState
*cpu
= current_cpu
;
2724 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2728 assert(tcg_enabled());
2729 if (cpu
->watchpoint_hit
) {
2730 /* We re-entered the check after replacing the TB. Now raise
2731 * the debug interrupt so that is will trigger after the
2732 * current instruction. */
2733 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2736 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2737 vaddr
= cc
->adjust_watchpoint_address(cpu
, vaddr
, len
);
2738 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2739 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2740 && (wp
->flags
& flags
)) {
2741 if (flags
== BP_MEM_READ
) {
2742 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2744 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2746 wp
->hitaddr
= vaddr
;
2747 wp
->hitattrs
= attrs
;
2748 if (!cpu
->watchpoint_hit
) {
2749 if (wp
->flags
& BP_CPU
&&
2750 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2751 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2754 cpu
->watchpoint_hit
= wp
;
2757 tb_check_watchpoint(cpu
);
2758 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2759 cpu
->exception_index
= EXCP_DEBUG
;
2763 /* Force execution of one insn next time. */
2764 cpu
->cflags_next_tb
= 1 | curr_cflags();
2766 cpu_loop_exit_noexc(cpu
);
2770 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2775 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2776 so these check for a hit then pass through to the normal out-of-line
2778 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2779 unsigned size
, MemTxAttrs attrs
)
2783 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2784 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2786 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2789 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2792 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2795 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2798 data
= address_space_ldq(as
, addr
, attrs
, &res
);
2806 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2807 uint64_t val
, unsigned size
,
2811 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2812 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2814 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2817 address_space_stb(as
, addr
, val
, attrs
, &res
);
2820 address_space_stw(as
, addr
, val
, attrs
, &res
);
2823 address_space_stl(as
, addr
, val
, attrs
, &res
);
2826 address_space_stq(as
, addr
, val
, attrs
, &res
);
2833 static const MemoryRegionOps watch_mem_ops
= {
2834 .read_with_attrs
= watch_mem_read
,
2835 .write_with_attrs
= watch_mem_write
,
2836 .endianness
= DEVICE_NATIVE_ENDIAN
,
2838 .min_access_size
= 1,
2839 .max_access_size
= 8,
2843 .min_access_size
= 1,
2844 .max_access_size
= 8,
2849 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
2850 MemTxAttrs attrs
, uint8_t *buf
, int len
);
2851 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2852 const uint8_t *buf
, int len
);
2853 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, int len
,
2854 bool is_write
, MemTxAttrs attrs
);
2856 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2857 unsigned len
, MemTxAttrs attrs
)
2859 subpage_t
*subpage
= opaque
;
2863 #if defined(DEBUG_SUBPAGE)
2864 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2865 subpage
, len
, addr
);
2867 res
= flatview_read(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2871 *data
= ldn_p(buf
, len
);
2875 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2876 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2878 subpage_t
*subpage
= opaque
;
2881 #if defined(DEBUG_SUBPAGE)
2882 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2883 " value %"PRIx64
"\n",
2884 __func__
, subpage
, len
, addr
, value
);
2886 stn_p(buf
, len
, value
);
2887 return flatview_write(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2890 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2891 unsigned len
, bool is_write
,
2894 subpage_t
*subpage
= opaque
;
2895 #if defined(DEBUG_SUBPAGE)
2896 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2897 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2900 return flatview_access_valid(subpage
->fv
, addr
+ subpage
->base
,
2901 len
, is_write
, attrs
);
2904 static const MemoryRegionOps subpage_ops
= {
2905 .read_with_attrs
= subpage_read
,
2906 .write_with_attrs
= subpage_write
,
2907 .impl
.min_access_size
= 1,
2908 .impl
.max_access_size
= 8,
2909 .valid
.min_access_size
= 1,
2910 .valid
.max_access_size
= 8,
2911 .valid
.accepts
= subpage_accepts
,
2912 .endianness
= DEVICE_NATIVE_ENDIAN
,
2915 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2920 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2922 idx
= SUBPAGE_IDX(start
);
2923 eidx
= SUBPAGE_IDX(end
);
2924 #if defined(DEBUG_SUBPAGE)
2925 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2926 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2928 for (; idx
<= eidx
; idx
++) {
2929 mmio
->sub_section
[idx
] = section
;
2935 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
)
2939 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2942 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2943 NULL
, TARGET_PAGE_SIZE
);
2944 mmio
->iomem
.subpage
= true;
2945 #if defined(DEBUG_SUBPAGE)
2946 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2947 mmio
, base
, TARGET_PAGE_SIZE
);
2949 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2954 static uint16_t dummy_section(PhysPageMap
*map
, FlatView
*fv
, MemoryRegion
*mr
)
2957 MemoryRegionSection section
= {
2960 .offset_within_address_space
= 0,
2961 .offset_within_region
= 0,
2962 .size
= int128_2_64(),
2965 return phys_section_add(map
, §ion
);
2968 static void readonly_mem_write(void *opaque
, hwaddr addr
,
2969 uint64_t val
, unsigned size
)
2971 /* Ignore any write to ROM. */
2974 static bool readonly_mem_accepts(void *opaque
, hwaddr addr
,
2975 unsigned size
, bool is_write
,
2981 /* This will only be used for writes, because reads are special cased
2982 * to directly access the underlying host ram.
2984 static const MemoryRegionOps readonly_mem_ops
= {
2985 .write
= readonly_mem_write
,
2986 .valid
.accepts
= readonly_mem_accepts
,
2987 .endianness
= DEVICE_NATIVE_ENDIAN
,
2989 .min_access_size
= 1,
2990 .max_access_size
= 8,
2994 .min_access_size
= 1,
2995 .max_access_size
= 8,
3000 MemoryRegionSection
*iotlb_to_section(CPUState
*cpu
,
3001 hwaddr index
, MemTxAttrs attrs
)
3003 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3004 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
3005 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
3006 MemoryRegionSection
*sections
= d
->map
.sections
;
3008 return §ions
[index
& ~TARGET_PAGE_MASK
];
3011 static void io_mem_init(void)
3013 memory_region_init_io(&io_mem_rom
, NULL
, &readonly_mem_ops
,
3014 NULL
, NULL
, UINT64_MAX
);
3015 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
3018 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3019 * which can be called without the iothread mutex.
3021 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
3023 memory_region_clear_global_locking(&io_mem_notdirty
);
3025 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
3029 AddressSpaceDispatch
*address_space_dispatch_new(FlatView
*fv
)
3031 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
3034 n
= dummy_section(&d
->map
, fv
, &io_mem_unassigned
);
3035 assert(n
== PHYS_SECTION_UNASSIGNED
);
3036 n
= dummy_section(&d
->map
, fv
, &io_mem_notdirty
);
3037 assert(n
== PHYS_SECTION_NOTDIRTY
);
3038 n
= dummy_section(&d
->map
, fv
, &io_mem_rom
);
3039 assert(n
== PHYS_SECTION_ROM
);
3040 n
= dummy_section(&d
->map
, fv
, &io_mem_watch
);
3041 assert(n
== PHYS_SECTION_WATCH
);
3043 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
3048 void address_space_dispatch_free(AddressSpaceDispatch
*d
)
3050 phys_sections_free(&d
->map
);
3054 static void tcg_commit(MemoryListener
*listener
)
3056 CPUAddressSpace
*cpuas
;
3057 AddressSpaceDispatch
*d
;
3059 assert(tcg_enabled());
3060 /* since each CPU stores ram addresses in its TLB cache, we must
3061 reset the modified entries */
3062 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
3063 cpu_reloading_memory_map();
3064 /* The CPU and TLB are protected by the iothread lock.
3065 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3066 * may have split the RCU critical section.
3068 d
= address_space_to_dispatch(cpuas
->as
);
3069 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
3070 tlb_flush(cpuas
->cpu
);
3073 static void memory_map_init(void)
3075 system_memory
= g_malloc(sizeof(*system_memory
));
3077 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
3078 address_space_init(&address_space_memory
, system_memory
, "memory");
3080 system_io
= g_malloc(sizeof(*system_io
));
3081 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
3083 address_space_init(&address_space_io
, system_io
, "I/O");
3086 MemoryRegion
*get_system_memory(void)
3088 return system_memory
;
3091 MemoryRegion
*get_system_io(void)
3096 #endif /* !defined(CONFIG_USER_ONLY) */
3098 /* physical memory access (slow version, mainly for debug) */
3099 #if defined(CONFIG_USER_ONLY)
3100 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3101 uint8_t *buf
, int len
, int is_write
)
3108 page
= addr
& TARGET_PAGE_MASK
;
3109 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3112 flags
= page_get_flags(page
);
3113 if (!(flags
& PAGE_VALID
))
3116 if (!(flags
& PAGE_WRITE
))
3118 /* XXX: this code should not depend on lock_user */
3119 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3122 unlock_user(p
, addr
, l
);
3124 if (!(flags
& PAGE_READ
))
3126 /* XXX: this code should not depend on lock_user */
3127 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3130 unlock_user(p
, addr
, 0);
3141 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
3144 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3145 addr
+= memory_region_get_ram_addr(mr
);
3147 /* No early return if dirty_log_mask is or becomes 0, because
3148 * cpu_physical_memory_set_dirty_range will still call
3149 * xen_modified_memory.
3151 if (dirty_log_mask
) {
3153 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
3155 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
3156 assert(tcg_enabled());
3157 tb_invalidate_phys_range(addr
, addr
+ length
);
3158 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3160 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
3163 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
3165 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
3167 /* Regions are assumed to support 1-4 byte accesses unless
3168 otherwise specified. */
3169 if (access_size_max
== 0) {
3170 access_size_max
= 4;
3173 /* Bound the maximum access by the alignment of the address. */
3174 if (!mr
->ops
->impl
.unaligned
) {
3175 unsigned align_size_max
= addr
& -addr
;
3176 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
3177 access_size_max
= align_size_max
;
3181 /* Don't attempt accesses larger than the maximum. */
3182 if (l
> access_size_max
) {
3183 l
= access_size_max
;
3190 static bool prepare_mmio_access(MemoryRegion
*mr
)
3192 bool unlocked
= !qemu_mutex_iothread_locked();
3193 bool release_lock
= false;
3195 if (unlocked
&& mr
->global_locking
) {
3196 qemu_mutex_lock_iothread();
3198 release_lock
= true;
3200 if (mr
->flush_coalesced_mmio
) {
3202 qemu_mutex_lock_iothread();
3204 qemu_flush_coalesced_mmio_buffer();
3206 qemu_mutex_unlock_iothread();
3210 return release_lock
;
3213 /* Called within RCU critical section. */
3214 static MemTxResult
flatview_write_continue(FlatView
*fv
, hwaddr addr
,
3217 int len
, hwaddr addr1
,
3218 hwaddr l
, MemoryRegion
*mr
)
3222 MemTxResult result
= MEMTX_OK
;
3223 bool release_lock
= false;
3226 if (!memory_access_is_direct(mr
, true)) {
3227 release_lock
|= prepare_mmio_access(mr
);
3228 l
= memory_access_size(mr
, l
, addr1
);
3229 /* XXX: could force current_cpu to NULL to avoid
3231 val
= ldn_p(buf
, l
);
3232 result
|= memory_region_dispatch_write(mr
, addr1
, val
, l
, attrs
);
3235 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3236 memcpy(ptr
, buf
, l
);
3237 invalidate_and_set_dirty(mr
, addr1
, l
);
3241 qemu_mutex_unlock_iothread();
3242 release_lock
= false;
3254 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
3260 /* Called from RCU critical section. */
3261 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
3262 const uint8_t *buf
, int len
)
3267 MemTxResult result
= MEMTX_OK
;
3270 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
3271 result
= flatview_write_continue(fv
, addr
, attrs
, buf
, len
,
3277 /* Called within RCU critical section. */
3278 MemTxResult
flatview_read_continue(FlatView
*fv
, hwaddr addr
,
3279 MemTxAttrs attrs
, uint8_t *buf
,
3280 int len
, hwaddr addr1
, hwaddr l
,
3285 MemTxResult result
= MEMTX_OK
;
3286 bool release_lock
= false;
3289 if (!memory_access_is_direct(mr
, false)) {
3291 release_lock
|= prepare_mmio_access(mr
);
3292 l
= memory_access_size(mr
, l
, addr1
);
3293 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, l
, attrs
);
3297 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3298 memcpy(buf
, ptr
, l
);
3302 qemu_mutex_unlock_iothread();
3303 release_lock
= false;
3315 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
3321 /* Called from RCU critical section. */
3322 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
3323 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3330 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
3331 return flatview_read_continue(fv
, addr
, attrs
, buf
, len
,
3335 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
3336 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3338 MemTxResult result
= MEMTX_OK
;
3343 fv
= address_space_to_flatview(as
);
3344 result
= flatview_read(fv
, addr
, attrs
, buf
, len
);
3351 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
,
3353 const uint8_t *buf
, int len
)
3355 MemTxResult result
= MEMTX_OK
;
3360 fv
= address_space_to_flatview(as
);
3361 result
= flatview_write(fv
, addr
, attrs
, buf
, len
);
3368 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
3369 uint8_t *buf
, int len
, bool is_write
)
3372 return address_space_write(as
, addr
, attrs
, buf
, len
);
3374 return address_space_read_full(as
, addr
, attrs
, buf
, len
);
3378 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
3379 int len
, int is_write
)
3381 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
3382 buf
, len
, is_write
);
3385 enum write_rom_type
{
3390 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
3391 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
3401 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true,
3402 MEMTXATTRS_UNSPECIFIED
);
3404 if (!(memory_region_is_ram(mr
) ||
3405 memory_region_is_romd(mr
))) {
3406 l
= memory_access_size(mr
, l
, addr1
);
3409 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3412 memcpy(ptr
, buf
, l
);
3413 invalidate_and_set_dirty(mr
, addr1
, l
);
3416 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
3427 /* used for ROM loading : can write in RAM and ROM */
3428 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
3429 const uint8_t *buf
, int len
)
3431 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
3434 void cpu_flush_icache_range(hwaddr start
, int len
)
3437 * This function should do the same thing as an icache flush that was
3438 * triggered from within the guest. For TCG we are always cache coherent,
3439 * so there is no need to flush anything. For KVM / Xen we need to flush
3440 * the host's instruction cache at least.
3442 if (tcg_enabled()) {
3446 cpu_physical_memory_write_rom_internal(&address_space_memory
,
3447 start
, NULL
, len
, FLUSH_CACHE
);
3458 static BounceBuffer bounce
;
3460 typedef struct MapClient
{
3462 QLIST_ENTRY(MapClient
) link
;
3465 QemuMutex map_client_list_lock
;
3466 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3467 = QLIST_HEAD_INITIALIZER(map_client_list
);
3469 static void cpu_unregister_map_client_do(MapClient
*client
)
3471 QLIST_REMOVE(client
, link
);
3475 static void cpu_notify_map_clients_locked(void)
3479 while (!QLIST_EMPTY(&map_client_list
)) {
3480 client
= QLIST_FIRST(&map_client_list
);
3481 qemu_bh_schedule(client
->bh
);
3482 cpu_unregister_map_client_do(client
);
3486 void cpu_register_map_client(QEMUBH
*bh
)
3488 MapClient
*client
= g_malloc(sizeof(*client
));
3490 qemu_mutex_lock(&map_client_list_lock
);
3492 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3493 if (!atomic_read(&bounce
.in_use
)) {
3494 cpu_notify_map_clients_locked();
3496 qemu_mutex_unlock(&map_client_list_lock
);
3499 void cpu_exec_init_all(void)
3501 qemu_mutex_init(&ram_list
.mutex
);
3502 /* The data structures we set up here depend on knowing the page size,
3503 * so no more changes can be made after this point.
3504 * In an ideal world, nothing we did before we had finished the
3505 * machine setup would care about the target page size, and we could
3506 * do this much later, rather than requiring board models to state
3507 * up front what their requirements are.
3509 finalize_target_page_bits();
3512 qemu_mutex_init(&map_client_list_lock
);
3515 void cpu_unregister_map_client(QEMUBH
*bh
)
3519 qemu_mutex_lock(&map_client_list_lock
);
3520 QLIST_FOREACH(client
, &map_client_list
, link
) {
3521 if (client
->bh
== bh
) {
3522 cpu_unregister_map_client_do(client
);
3526 qemu_mutex_unlock(&map_client_list_lock
);
3529 static void cpu_notify_map_clients(void)
3531 qemu_mutex_lock(&map_client_list_lock
);
3532 cpu_notify_map_clients_locked();
3533 qemu_mutex_unlock(&map_client_list_lock
);
3536 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, int len
,
3537 bool is_write
, MemTxAttrs attrs
)
3544 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3545 if (!memory_access_is_direct(mr
, is_write
)) {
3546 l
= memory_access_size(mr
, l
, addr
);
3547 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
, attrs
)) {
3558 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
,
3559 int len
, bool is_write
,
3566 fv
= address_space_to_flatview(as
);
3567 result
= flatview_access_valid(fv
, addr
, len
, is_write
, attrs
);
3573 flatview_extend_translation(FlatView
*fv
, hwaddr addr
,
3575 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3576 bool is_write
, MemTxAttrs attrs
)
3580 MemoryRegion
*this_mr
;
3586 if (target_len
== 0) {
3591 this_mr
= flatview_translate(fv
, addr
, &xlat
,
3592 &len
, is_write
, attrs
);
3593 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3599 /* Map a physical memory region into a host virtual address.
3600 * May map a subset of the requested range, given by and returned in *plen.
3601 * May return NULL if resources needed to perform the mapping are exhausted.
3602 * Use only for reads OR writes - not for read-modify-write operations.
3603 * Use cpu_register_map_client() to know when retrying the map operation is
3604 * likely to succeed.
3606 void *address_space_map(AddressSpace
*as
,
3624 fv
= address_space_to_flatview(as
);
3625 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3627 if (!memory_access_is_direct(mr
, is_write
)) {
3628 if (atomic_xchg(&bounce
.in_use
, true)) {
3632 /* Avoid unbounded allocations */
3633 l
= MIN(l
, TARGET_PAGE_SIZE
);
3634 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3638 memory_region_ref(mr
);
3641 flatview_read(fv
, addr
, MEMTXATTRS_UNSPECIFIED
,
3647 return bounce
.buffer
;
3651 memory_region_ref(mr
);
3652 *plen
= flatview_extend_translation(fv
, addr
, len
, mr
, xlat
,
3653 l
, is_write
, attrs
);
3654 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
, true);
3660 /* Unmaps a memory region previously mapped by address_space_map().
3661 * Will also mark the memory as dirty if is_write == 1. access_len gives
3662 * the amount of memory that was actually read or written by the caller.
3664 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3665 int is_write
, hwaddr access_len
)
3667 if (buffer
!= bounce
.buffer
) {
3671 mr
= memory_region_from_host(buffer
, &addr1
);
3674 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3676 if (xen_enabled()) {
3677 xen_invalidate_map_cache_entry(buffer
);
3679 memory_region_unref(mr
);
3683 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3684 bounce
.buffer
, access_len
);
3686 qemu_vfree(bounce
.buffer
);
3687 bounce
.buffer
= NULL
;
3688 memory_region_unref(bounce
.mr
);
3689 atomic_mb_set(&bounce
.in_use
, false);
3690 cpu_notify_map_clients();
3693 void *cpu_physical_memory_map(hwaddr addr
,
3697 return address_space_map(&address_space_memory
, addr
, plen
, is_write
,
3698 MEMTXATTRS_UNSPECIFIED
);
3701 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3702 int is_write
, hwaddr access_len
)
3704 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3707 #define ARG1_DECL AddressSpace *as
3710 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3711 #define RCU_READ_LOCK(...) rcu_read_lock()
3712 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3713 #include "memory_ldst.inc.c"
3715 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3721 AddressSpaceDispatch
*d
;
3728 cache
->fv
= address_space_get_flatview(as
);
3729 d
= flatview_to_dispatch(cache
->fv
);
3730 cache
->mrs
= *address_space_translate_internal(d
, addr
, &cache
->xlat
, &l
, true);
3733 memory_region_ref(mr
);
3734 if (memory_access_is_direct(mr
, is_write
)) {
3735 /* We don't care about the memory attributes here as we're only
3736 * doing this if we found actual RAM, which behaves the same
3737 * regardless of attributes; so UNSPECIFIED is fine.
3739 l
= flatview_extend_translation(cache
->fv
, addr
, len
, mr
,
3740 cache
->xlat
, l
, is_write
,
3741 MEMTXATTRS_UNSPECIFIED
);
3742 cache
->ptr
= qemu_ram_ptr_length(mr
->ram_block
, cache
->xlat
, &l
, true);
3748 cache
->is_write
= is_write
;
3752 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3756 assert(cache
->is_write
);
3757 if (likely(cache
->ptr
)) {
3758 invalidate_and_set_dirty(cache
->mrs
.mr
, addr
+ cache
->xlat
, access_len
);
3762 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3764 if (!cache
->mrs
.mr
) {
3768 if (xen_enabled()) {
3769 xen_invalidate_map_cache_entry(cache
->ptr
);
3771 memory_region_unref(cache
->mrs
.mr
);
3772 flatview_unref(cache
->fv
);
3773 cache
->mrs
.mr
= NULL
;
3777 /* Called from RCU critical section. This function has the same
3778 * semantics as address_space_translate, but it only works on a
3779 * predefined range of a MemoryRegion that was mapped with
3780 * address_space_cache_init.
3782 static inline MemoryRegion
*address_space_translate_cached(
3783 MemoryRegionCache
*cache
, hwaddr addr
, hwaddr
*xlat
,
3784 hwaddr
*plen
, bool is_write
, MemTxAttrs attrs
)
3786 MemoryRegionSection section
;
3788 IOMMUMemoryRegion
*iommu_mr
;
3789 AddressSpace
*target_as
;
3791 assert(!cache
->ptr
);
3792 *xlat
= addr
+ cache
->xlat
;
3795 iommu_mr
= memory_region_get_iommu(mr
);
3801 section
= address_space_translate_iommu(iommu_mr
, xlat
, plen
,
3802 NULL
, is_write
, true,
3807 /* Called from RCU critical section. address_space_read_cached uses this
3808 * out of line function when the target is an MMIO or IOMMU region.
3811 address_space_read_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3818 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, false,
3819 MEMTXATTRS_UNSPECIFIED
);
3820 flatview_read_continue(cache
->fv
,
3821 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3825 /* Called from RCU critical section. address_space_write_cached uses this
3826 * out of line function when the target is an MMIO or IOMMU region.
3829 address_space_write_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3830 const void *buf
, int len
)
3836 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, true,
3837 MEMTXATTRS_UNSPECIFIED
);
3838 flatview_write_continue(cache
->fv
,
3839 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3843 #define ARG1_DECL MemoryRegionCache *cache
3845 #define SUFFIX _cached_slow
3846 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3847 #define RCU_READ_LOCK() ((void)0)
3848 #define RCU_READ_UNLOCK() ((void)0)
3849 #include "memory_ldst.inc.c"
3851 /* virtual memory access for debug (includes writing to ROM) */
3852 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3853 uint8_t *buf
, int len
, int is_write
)
3859 cpu_synchronize_state(cpu
);
3864 page
= addr
& TARGET_PAGE_MASK
;
3865 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3866 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3867 /* if no physical page mapped, return an error */
3868 if (phys_addr
== -1)
3870 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3873 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3875 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3878 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3879 MEMTXATTRS_UNSPECIFIED
,
3890 * Allows code that needs to deal with migration bitmaps etc to still be built
3891 * target independent.
3893 size_t qemu_target_page_size(void)
3895 return TARGET_PAGE_SIZE
;
3898 int qemu_target_page_bits(void)
3900 return TARGET_PAGE_BITS
;
3903 int qemu_target_page_bits_min(void)
3905 return TARGET_PAGE_BITS_MIN
;
3910 * A helper function for the _utterly broken_ virtio device model to find out if
3911 * it's running on a big endian machine. Don't do this at home kids!
3913 bool target_words_bigendian(void);
3914 bool target_words_bigendian(void)
3916 #if defined(TARGET_WORDS_BIGENDIAN)
3923 #ifndef CONFIG_USER_ONLY
3924 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3931 mr
= address_space_translate(&address_space_memory
,
3932 phys_addr
, &phys_addr
, &l
, false,
3933 MEMTXATTRS_UNSPECIFIED
);
3935 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3940 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3946 RAMBLOCK_FOREACH(block
) {
3947 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3948 block
->used_length
, opaque
);
3957 int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func
, void *opaque
)
3963 RAMBLOCK_FOREACH(block
) {
3964 if (!qemu_ram_is_migratable(block
)) {
3967 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3968 block
->used_length
, opaque
);
3978 * Unmap pages of memory from start to start+length such that
3979 * they a) read as 0, b) Trigger whatever fault mechanism
3980 * the OS provides for postcopy.
3981 * The pages must be unmapped by the end of the function.
3982 * Returns: 0 on success, none-0 on failure
3985 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3989 uint8_t *host_startaddr
= rb
->host
+ start
;
3991 if ((uintptr_t)host_startaddr
& (rb
->page_size
- 1)) {
3992 error_report("ram_block_discard_range: Unaligned start address: %p",
3997 if ((start
+ length
) <= rb
->used_length
) {
3998 bool need_madvise
, need_fallocate
;
3999 uint8_t *host_endaddr
= host_startaddr
+ length
;
4000 if ((uintptr_t)host_endaddr
& (rb
->page_size
- 1)) {
4001 error_report("ram_block_discard_range: Unaligned end address: %p",
4006 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
4008 /* The logic here is messy;
4009 * madvise DONTNEED fails for hugepages
4010 * fallocate works on hugepages and shmem
4012 need_madvise
= (rb
->page_size
== qemu_host_page_size
);
4013 need_fallocate
= rb
->fd
!= -1;
4014 if (need_fallocate
) {
4015 /* For a file, this causes the area of the file to be zero'd
4016 * if read, and for hugetlbfs also causes it to be unmapped
4017 * so a userfault will trigger.
4019 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4020 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
4024 error_report("ram_block_discard_range: Failed to fallocate "
4025 "%s:%" PRIx64
" +%zx (%d)",
4026 rb
->idstr
, start
, length
, ret
);
4031 error_report("ram_block_discard_range: fallocate not available/file"
4032 "%s:%" PRIx64
" +%zx (%d)",
4033 rb
->idstr
, start
, length
, ret
);
4038 /* For normal RAM this causes it to be unmapped,
4039 * for shared memory it causes the local mapping to disappear
4040 * and to fall back on the file contents (which we just
4041 * fallocate'd away).
4043 #if defined(CONFIG_MADVISE)
4044 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
4047 error_report("ram_block_discard_range: Failed to discard range "
4048 "%s:%" PRIx64
" +%zx (%d)",
4049 rb
->idstr
, start
, length
, ret
);
4054 error_report("ram_block_discard_range: MADVISE not available"
4055 "%s:%" PRIx64
" +%zx (%d)",
4056 rb
->idstr
, start
, length
, ret
);
4060 trace_ram_block_discard_range(rb
->idstr
, host_startaddr
, length
,
4061 need_madvise
, need_fallocate
, ret
);
4063 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4064 "/%zx/" RAM_ADDR_FMT
")",
4065 rb
->idstr
, start
, length
, rb
->used_length
);
4072 bool ramblock_is_pmem(RAMBlock
*rb
)
4074 return rb
->flags
& RAM_PMEM
;
4079 void page_size_init(void)
4081 /* NOTE: we can always suppose that qemu_host_page_size >=
4083 if (qemu_host_page_size
== 0) {
4084 qemu_host_page_size
= qemu_real_host_page_size
;
4086 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
4087 qemu_host_page_size
= TARGET_PAGE_SIZE
;
4089 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;
4092 #if !defined(CONFIG_USER_ONLY)
4094 static void mtree_print_phys_entries(fprintf_function mon
, void *f
,
4095 int start
, int end
, int skip
, int ptr
)
4097 if (start
== end
- 1) {
4098 mon(f
, "\t%3d ", start
);
4100 mon(f
, "\t%3d..%-3d ", start
, end
- 1);
4102 mon(f
, " skip=%d ", skip
);
4103 if (ptr
== PHYS_MAP_NODE_NIL
) {
4106 mon(f
, " ptr=#%d", ptr
);
4108 mon(f
, " ptr=[%d]", ptr
);
4113 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4114 int128_sub((size), int128_one())) : 0)
4116 void mtree_print_dispatch(fprintf_function mon
, void *f
,
4117 AddressSpaceDispatch
*d
, MemoryRegion
*root
)
4121 mon(f
, " Dispatch\n");
4122 mon(f
, " Physical sections\n");
4124 for (i
= 0; i
< d
->map
.sections_nb
; ++i
) {
4125 MemoryRegionSection
*s
= d
->map
.sections
+ i
;
4126 const char *names
[] = { " [unassigned]", " [not dirty]",
4127 " [ROM]", " [watch]" };
4129 mon(f
, " #%d @" TARGET_FMT_plx
".." TARGET_FMT_plx
" %s%s%s%s%s",
4131 s
->offset_within_address_space
,
4132 s
->offset_within_address_space
+ MR_SIZE(s
->mr
->size
),
4133 s
->mr
->name
? s
->mr
->name
: "(noname)",
4134 i
< ARRAY_SIZE(names
) ? names
[i
] : "",
4135 s
->mr
== root
? " [ROOT]" : "",
4136 s
== d
->mru_section
? " [MRU]" : "",
4137 s
->mr
->is_iommu
? " [iommu]" : "");
4140 mon(f
, " alias=%s", s
->mr
->alias
->name
?
4141 s
->mr
->alias
->name
: "noname");
4146 mon(f
, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4147 P_L2_BITS
, P_L2_LEVELS
, d
->phys_map
.ptr
, d
->phys_map
.skip
);
4148 for (i
= 0; i
< d
->map
.nodes_nb
; ++i
) {
4151 Node
*n
= d
->map
.nodes
+ i
;
4153 mon(f
, " [%d]\n", i
);
4155 for (j
= 0, jprev
= 0, prev
= *n
[0]; j
< ARRAY_SIZE(*n
); ++j
) {
4156 PhysPageEntry
*pe
= *n
+ j
;
4158 if (pe
->ptr
== prev
.ptr
&& pe
->skip
== prev
.skip
) {
4162 mtree_print_phys_entries(mon
, f
, jprev
, j
, prev
.skip
, prev
.ptr
);
4168 if (jprev
!= ARRAY_SIZE(*n
)) {
4169 mtree_print_phys_entries(mon
, f
, jprev
, j
, prev
.skip
, prev
.ptr
);