2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
23 #include <sys/types.h>
24 #include <sys/socket.h>
26 #include <arpa/inet.h>
28 #include <rdma/rdma_cma.h>
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
35 #define DPRINTF(fmt, ...) \
36 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
38 #define DPRINTF(fmt, ...) \
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
46 #define DDPRINTF(fmt, ...) \
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
54 #define DDDPRINTF(fmt, ...) \
59 * Print and error on both the Monitor and the Log file.
61 #define ERROR(errp, fmt, ...) \
63 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
64 if (errp && (*(errp) == NULL)) { \
65 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
78 * This is only for non-live state being migrated.
79 * Instead of RDMA_WRITE messages, we use RDMA_SEND
80 * messages for that state, which requires a different
81 * delivery design than main memory.
83 #define RDMA_SEND_INCREMENT 32768
86 * Maximum size infiniband SEND message
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
91 #define RDMA_CONTROL_VERSION_CURRENT 1
93 * Capabilities for negotiation.
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
98 * Add the other flags above to this list of known capabilities
99 * as they are introduced.
101 static uint32_t known_capabilities
= RDMA_CAPABILITY_PIN_ALL
;
103 #define CHECK_ERROR_STATE() \
105 if (rdma->error_state) { \
106 if (!rdma->error_reported) { \
107 fprintf(stderr, "RDMA is in an error state waiting migration" \
109 rdma->error_reported = 1; \
111 return rdma->error_state; \
116 * A work request ID is 64-bits and we split up these bits
119 * bits 0-15 : type of control message, 2^16
120 * bits 16-29: ram block index, 2^14
121 * bits 30-63: ram block chunk number, 2^34
123 * The last two bit ranges are only used for RDMA writes,
124 * in order to track their completion and potentially
125 * also track unregistration status of the message.
127 #define RDMA_WRID_TYPE_SHIFT 0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
131 #define RDMA_WRID_TYPE_MASK \
132 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
134 #define RDMA_WRID_BLOCK_MASK \
135 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
140 * RDMA migration protocol:
141 * 1. RDMA Writes (data messages, i.e. RAM)
142 * 2. IB Send/Recv (control channel messages)
146 RDMA_WRID_RDMA_WRITE
= 1,
147 RDMA_WRID_SEND_CONTROL
= 2000,
148 RDMA_WRID_RECV_CONTROL
= 4000,
151 const char *wrid_desc
[] = {
152 [RDMA_WRID_NONE
] = "NONE",
153 [RDMA_WRID_RDMA_WRITE
] = "WRITE RDMA",
154 [RDMA_WRID_SEND_CONTROL
] = "CONTROL SEND",
155 [RDMA_WRID_RECV_CONTROL
] = "CONTROL RECV",
159 * Work request IDs for IB SEND messages only (not RDMA writes).
160 * This is used by the migration protocol to transmit
161 * control messages (such as device state and registration commands)
163 * We could use more WRs, but we have enough for now.
173 * SEND/RECV IB Control Messages.
176 RDMA_CONTROL_NONE
= 0,
178 RDMA_CONTROL_READY
, /* ready to receive */
179 RDMA_CONTROL_QEMU_FILE
, /* QEMUFile-transmitted bytes */
180 RDMA_CONTROL_RAM_BLOCKS_REQUEST
, /* RAMBlock synchronization */
181 RDMA_CONTROL_RAM_BLOCKS_RESULT
, /* RAMBlock synchronization */
182 RDMA_CONTROL_COMPRESS
, /* page contains repeat values */
183 RDMA_CONTROL_REGISTER_REQUEST
, /* dynamic page registration */
184 RDMA_CONTROL_REGISTER_RESULT
, /* key to use after registration */
185 RDMA_CONTROL_REGISTER_FINISHED
, /* current iteration finished */
186 RDMA_CONTROL_UNREGISTER_REQUEST
, /* dynamic UN-registration */
187 RDMA_CONTROL_UNREGISTER_FINISHED
, /* unpinning finished */
190 const char *control_desc
[] = {
191 [RDMA_CONTROL_NONE
] = "NONE",
192 [RDMA_CONTROL_ERROR
] = "ERROR",
193 [RDMA_CONTROL_READY
] = "READY",
194 [RDMA_CONTROL_QEMU_FILE
] = "QEMU FILE",
195 [RDMA_CONTROL_RAM_BLOCKS_REQUEST
] = "RAM BLOCKS REQUEST",
196 [RDMA_CONTROL_RAM_BLOCKS_RESULT
] = "RAM BLOCKS RESULT",
197 [RDMA_CONTROL_COMPRESS
] = "COMPRESS",
198 [RDMA_CONTROL_REGISTER_REQUEST
] = "REGISTER REQUEST",
199 [RDMA_CONTROL_REGISTER_RESULT
] = "REGISTER RESULT",
200 [RDMA_CONTROL_REGISTER_FINISHED
] = "REGISTER FINISHED",
201 [RDMA_CONTROL_UNREGISTER_REQUEST
] = "UNREGISTER REQUEST",
202 [RDMA_CONTROL_UNREGISTER_FINISHED
] = "UNREGISTER FINISHED",
206 * Memory and MR structures used to represent an IB Send/Recv work request.
207 * This is *not* used for RDMA writes, only IB Send/Recv.
210 uint8_t control
[RDMA_CONTROL_MAX_BUFFER
]; /* actual buffer to register */
211 struct ibv_mr
*control_mr
; /* registration metadata */
212 size_t control_len
; /* length of the message */
213 uint8_t *control_curr
; /* start of unconsumed bytes */
214 } RDMAWorkRequestData
;
217 * Negotiate RDMA capabilities during connection-setup time.
224 static void caps_to_network(RDMACapabilities
*cap
)
226 cap
->version
= htonl(cap
->version
);
227 cap
->flags
= htonl(cap
->flags
);
230 static void network_to_caps(RDMACapabilities
*cap
)
232 cap
->version
= ntohl(cap
->version
);
233 cap
->flags
= ntohl(cap
->flags
);
237 * Representation of a RAMBlock from an RDMA perspective.
238 * This is not transmitted, only local.
239 * This and subsequent structures cannot be linked lists
240 * because we're using a single IB message to transmit
241 * the information. It's small anyway, so a list is overkill.
243 typedef struct RDMALocalBlock
{
244 uint8_t *local_host_addr
; /* local virtual address */
245 uint64_t remote_host_addr
; /* remote virtual address */
248 struct ibv_mr
**pmr
; /* MRs for chunk-level registration */
249 struct ibv_mr
*mr
; /* MR for non-chunk-level registration */
250 uint32_t *remote_keys
; /* rkeys for chunk-level registration */
251 uint32_t remote_rkey
; /* rkeys for non-chunk-level registration */
252 int index
; /* which block are we */
255 unsigned long *transit_bitmap
;
256 unsigned long *unregister_bitmap
;
260 * Also represents a RAMblock, but only on the dest.
261 * This gets transmitted by the dest during connection-time
262 * to the source VM and then is used to populate the
263 * corresponding RDMALocalBlock with
264 * the information needed to perform the actual RDMA.
266 typedef struct QEMU_PACKED RDMARemoteBlock
{
267 uint64_t remote_host_addr
;
270 uint32_t remote_rkey
;
274 static uint64_t htonll(uint64_t v
)
276 union { uint32_t lv
[2]; uint64_t llv
; } u
;
277 u
.lv
[0] = htonl(v
>> 32);
278 u
.lv
[1] = htonl(v
& 0xFFFFFFFFULL
);
282 static uint64_t ntohll(uint64_t v
) {
283 union { uint32_t lv
[2]; uint64_t llv
; } u
;
285 return ((uint64_t)ntohl(u
.lv
[0]) << 32) | (uint64_t) ntohl(u
.lv
[1]);
288 static void remote_block_to_network(RDMARemoteBlock
*rb
)
290 rb
->remote_host_addr
= htonll(rb
->remote_host_addr
);
291 rb
->offset
= htonll(rb
->offset
);
292 rb
->length
= htonll(rb
->length
);
293 rb
->remote_rkey
= htonl(rb
->remote_rkey
);
296 static void network_to_remote_block(RDMARemoteBlock
*rb
)
298 rb
->remote_host_addr
= ntohll(rb
->remote_host_addr
);
299 rb
->offset
= ntohll(rb
->offset
);
300 rb
->length
= ntohll(rb
->length
);
301 rb
->remote_rkey
= ntohl(rb
->remote_rkey
);
305 * Virtual address of the above structures used for transmitting
306 * the RAMBlock descriptions at connection-time.
307 * This structure is *not* transmitted.
309 typedef struct RDMALocalBlocks
{
311 bool init
; /* main memory init complete */
312 RDMALocalBlock
*block
;
316 * Main data structure for RDMA state.
317 * While there is only one copy of this structure being allocated right now,
318 * this is the place where one would start if you wanted to consider
319 * having more than one RDMA connection open at the same time.
321 typedef struct RDMAContext
{
325 RDMAWorkRequestData wr_data
[RDMA_WRID_MAX
];
328 * This is used by *_exchange_send() to figure out whether or not
329 * the initial "READY" message has already been received or not.
330 * This is because other functions may potentially poll() and detect
331 * the READY message before send() does, in which case we need to
332 * know if it completed.
334 int control_ready_expected
;
336 /* number of outstanding writes */
339 /* store info about current buffer so that we can
340 merge it with future sends */
341 uint64_t current_addr
;
342 uint64_t current_length
;
343 /* index of ram block the current buffer belongs to */
345 /* index of the chunk in the current ram block */
351 * infiniband-specific variables for opening the device
352 * and maintaining connection state and so forth.
354 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355 * cm_id->verbs, cm_id->channel, and cm_id->qp.
357 struct rdma_cm_id
*cm_id
; /* connection manager ID */
358 struct rdma_cm_id
*listen_id
;
361 struct ibv_context
*verbs
;
362 struct rdma_event_channel
*channel
;
363 struct ibv_qp
*qp
; /* queue pair */
364 struct ibv_comp_channel
*comp_channel
; /* completion channel */
365 struct ibv_pd
*pd
; /* protection domain */
366 struct ibv_cq
*cq
; /* completion queue */
369 * If a previous write failed (perhaps because of a failed
370 * memory registration, then do not attempt any future work
371 * and remember the error state.
377 * Description of ram blocks used throughout the code.
379 RDMALocalBlocks local_ram_blocks
;
380 RDMARemoteBlock
*block
;
383 * Migration on *destination* started.
384 * Then use coroutine yield function.
385 * Source runs in a thread, so we don't care.
387 int migration_started_on_destination
;
389 int total_registrations
;
392 int unregister_current
, unregister_next
;
393 uint64_t unregistrations
[RDMA_SIGNALED_SEND_MAX
];
395 GHashTable
*blockmap
;
399 * Interface to the rest of the migration call stack.
401 typedef struct QEMUFileRDMA
{
408 * Main structure for IB Send/Recv control messages.
409 * This gets prepended at the beginning of every Send/Recv.
411 typedef struct QEMU_PACKED
{
412 uint32_t len
; /* Total length of data portion */
413 uint32_t type
; /* which control command to perform */
414 uint32_t repeat
; /* number of commands in data portion of same type */
418 static void control_to_network(RDMAControlHeader
*control
)
420 control
->type
= htonl(control
->type
);
421 control
->len
= htonl(control
->len
);
422 control
->repeat
= htonl(control
->repeat
);
425 static void network_to_control(RDMAControlHeader
*control
)
427 control
->type
= ntohl(control
->type
);
428 control
->len
= ntohl(control
->len
);
429 control
->repeat
= ntohl(control
->repeat
);
433 * Register a single Chunk.
434 * Information sent by the source VM to inform the dest
435 * to register an single chunk of memory before we can perform
436 * the actual RDMA operation.
438 typedef struct QEMU_PACKED
{
440 uint64_t current_addr
; /* offset into the ramblock of the chunk */
441 uint64_t chunk
; /* chunk to lookup if unregistering */
443 uint32_t current_index
; /* which ramblock the chunk belongs to */
445 uint64_t chunks
; /* how many sequential chunks to register */
448 static void register_to_network(RDMARegister
*reg
)
450 reg
->key
.current_addr
= htonll(reg
->key
.current_addr
);
451 reg
->current_index
= htonl(reg
->current_index
);
452 reg
->chunks
= htonll(reg
->chunks
);
455 static void network_to_register(RDMARegister
*reg
)
457 reg
->key
.current_addr
= ntohll(reg
->key
.current_addr
);
458 reg
->current_index
= ntohl(reg
->current_index
);
459 reg
->chunks
= ntohll(reg
->chunks
);
462 typedef struct QEMU_PACKED
{
463 uint32_t value
; /* if zero, we will madvise() */
464 uint32_t block_idx
; /* which ram block index */
465 uint64_t offset
; /* where in the remote ramblock this chunk */
466 uint64_t length
; /* length of the chunk */
469 static void compress_to_network(RDMACompress
*comp
)
471 comp
->value
= htonl(comp
->value
);
472 comp
->block_idx
= htonl(comp
->block_idx
);
473 comp
->offset
= htonll(comp
->offset
);
474 comp
->length
= htonll(comp
->length
);
477 static void network_to_compress(RDMACompress
*comp
)
479 comp
->value
= ntohl(comp
->value
);
480 comp
->block_idx
= ntohl(comp
->block_idx
);
481 comp
->offset
= ntohll(comp
->offset
);
482 comp
->length
= ntohll(comp
->length
);
486 * The result of the dest's memory registration produces an "rkey"
487 * which the source VM must reference in order to perform
488 * the RDMA operation.
490 typedef struct QEMU_PACKED
{
494 } RDMARegisterResult
;
496 static void result_to_network(RDMARegisterResult
*result
)
498 result
->rkey
= htonl(result
->rkey
);
499 result
->host_addr
= htonll(result
->host_addr
);
502 static void network_to_result(RDMARegisterResult
*result
)
504 result
->rkey
= ntohl(result
->rkey
);
505 result
->host_addr
= ntohll(result
->host_addr
);
508 const char *print_wrid(int wrid
);
509 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
510 uint8_t *data
, RDMAControlHeader
*resp
,
512 int (*callback
)(RDMAContext
*rdma
));
514 static inline uint64_t ram_chunk_index(const uint8_t *start
,
517 return ((uintptr_t) host
- (uintptr_t) start
) >> RDMA_REG_CHUNK_SHIFT
;
520 static inline uint8_t *ram_chunk_start(const RDMALocalBlock
*rdma_ram_block
,
523 return (uint8_t *) (((uintptr_t) rdma_ram_block
->local_host_addr
)
524 + (i
<< RDMA_REG_CHUNK_SHIFT
));
527 static inline uint8_t *ram_chunk_end(const RDMALocalBlock
*rdma_ram_block
,
530 uint8_t *result
= ram_chunk_start(rdma_ram_block
, i
) +
531 (1UL << RDMA_REG_CHUNK_SHIFT
);
533 if (result
> (rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
)) {
534 result
= rdma_ram_block
->local_host_addr
+ rdma_ram_block
->length
;
540 static int __qemu_rdma_add_block(RDMAContext
*rdma
, void *host_addr
,
541 ram_addr_t block_offset
, uint64_t length
)
543 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
544 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
545 (void *) block_offset
);
546 RDMALocalBlock
*old
= local
->block
;
548 assert(block
== NULL
);
550 local
->block
= g_malloc0(sizeof(RDMALocalBlock
) * (local
->nb_blocks
+ 1));
552 if (local
->nb_blocks
) {
555 for (x
= 0; x
< local
->nb_blocks
; x
++) {
556 g_hash_table_remove(rdma
->blockmap
, (void *)old
[x
].offset
);
557 g_hash_table_insert(rdma
->blockmap
, (void *)old
[x
].offset
,
560 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * local
->nb_blocks
);
564 block
= &local
->block
[local
->nb_blocks
];
566 block
->local_host_addr
= host_addr
;
567 block
->offset
= block_offset
;
568 block
->length
= length
;
569 block
->index
= local
->nb_blocks
;
570 block
->nb_chunks
= ram_chunk_index(host_addr
, host_addr
+ length
) + 1UL;
571 block
->transit_bitmap
= bitmap_new(block
->nb_chunks
);
572 bitmap_clear(block
->transit_bitmap
, 0, block
->nb_chunks
);
573 block
->unregister_bitmap
= bitmap_new(block
->nb_chunks
);
574 bitmap_clear(block
->unregister_bitmap
, 0, block
->nb_chunks
);
575 block
->remote_keys
= g_malloc0(block
->nb_chunks
* sizeof(uint32_t));
577 block
->is_ram_block
= local
->init
? false : true;
579 g_hash_table_insert(rdma
->blockmap
, (void *) block_offset
, block
);
581 DDPRINTF("Added Block: %d, addr: %" PRIu64
", offset: %" PRIu64
582 " length: %" PRIu64
" end: %" PRIu64
" bits %" PRIu64
" chunks %d\n",
583 local
->nb_blocks
, (uint64_t) block
->local_host_addr
, block
->offset
,
584 block
->length
, (uint64_t) (block
->local_host_addr
+ block
->length
),
585 BITS_TO_LONGS(block
->nb_chunks
) *
586 sizeof(unsigned long) * 8, block
->nb_chunks
);
594 * Memory regions need to be registered with the device and queue pairs setup
595 * in advanced before the migration starts. This tells us where the RAM blocks
596 * are so that we can register them individually.
598 static void qemu_rdma_init_one_block(void *host_addr
,
599 ram_addr_t block_offset
, ram_addr_t length
, void *opaque
)
601 __qemu_rdma_add_block(opaque
, host_addr
, block_offset
, length
);
605 * Identify the RAMBlocks and their quantity. They will be references to
606 * identify chunk boundaries inside each RAMBlock and also be referenced
607 * during dynamic page registration.
609 static int qemu_rdma_init_ram_blocks(RDMAContext
*rdma
)
611 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
613 assert(rdma
->blockmap
== NULL
);
614 rdma
->blockmap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
615 memset(local
, 0, sizeof *local
);
616 qemu_ram_foreach_block(qemu_rdma_init_one_block
, rdma
);
617 DPRINTF("Allocated %d local ram block structures\n", local
->nb_blocks
);
618 rdma
->block
= (RDMARemoteBlock
*) g_malloc0(sizeof(RDMARemoteBlock
) *
619 rdma
->local_ram_blocks
.nb_blocks
);
624 static int __qemu_rdma_delete_block(RDMAContext
*rdma
, ram_addr_t block_offset
)
626 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
627 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
628 (void *) block_offset
);
629 RDMALocalBlock
*old
= local
->block
;
637 for (j
= 0; j
< block
->nb_chunks
; j
++) {
638 if (!block
->pmr
[j
]) {
641 ibv_dereg_mr(block
->pmr
[j
]);
642 rdma
->total_registrations
--;
649 ibv_dereg_mr(block
->mr
);
650 rdma
->total_registrations
--;
654 g_free(block
->transit_bitmap
);
655 block
->transit_bitmap
= NULL
;
657 g_free(block
->unregister_bitmap
);
658 block
->unregister_bitmap
= NULL
;
660 g_free(block
->remote_keys
);
661 block
->remote_keys
= NULL
;
663 for (x
= 0; x
< local
->nb_blocks
; x
++) {
664 g_hash_table_remove(rdma
->blockmap
, (void *)old
[x
].offset
);
667 if (local
->nb_blocks
> 1) {
669 local
->block
= g_malloc0(sizeof(RDMALocalBlock
) *
670 (local
->nb_blocks
- 1));
673 memcpy(local
->block
, old
, sizeof(RDMALocalBlock
) * block
->index
);
676 if (block
->index
< (local
->nb_blocks
- 1)) {
677 memcpy(local
->block
+ block
->index
, old
+ (block
->index
+ 1),
678 sizeof(RDMALocalBlock
) *
679 (local
->nb_blocks
- (block
->index
+ 1)));
682 assert(block
== local
->block
);
686 DDPRINTF("Deleted Block: %d, addr: %" PRIu64
", offset: %" PRIu64
687 " length: %" PRIu64
" end: %" PRIu64
" bits %" PRIu64
" chunks %d\n",
688 local
->nb_blocks
, (uint64_t) block
->local_host_addr
, block
->offset
,
689 block
->length
, (uint64_t) (block
->local_host_addr
+ block
->length
),
690 BITS_TO_LONGS(block
->nb_chunks
) *
691 sizeof(unsigned long) * 8, block
->nb_chunks
);
697 if (local
->nb_blocks
) {
698 for (x
= 0; x
< local
->nb_blocks
; x
++) {
699 g_hash_table_insert(rdma
->blockmap
, (void *)local
->block
[x
].offset
,
708 * Put in the log file which RDMA device was opened and the details
709 * associated with that device.
711 static void qemu_rdma_dump_id(const char *who
, struct ibv_context
*verbs
)
713 struct ibv_port_attr port
;
715 if (ibv_query_port(verbs
, 1, &port
)) {
716 fprintf(stderr
, "FAILED TO QUERY PORT INFORMATION!\n");
720 printf("%s RDMA Device opened: kernel name %s "
721 "uverbs device name %s, "
722 "infiniband_verbs class device path %s, "
723 "infiniband class device path %s, "
724 "transport: (%d) %s\n",
727 verbs
->device
->dev_name
,
728 verbs
->device
->dev_path
,
729 verbs
->device
->ibdev_path
,
731 (port
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) ? "Infiniband" :
732 ((port
.link_layer
== IBV_LINK_LAYER_ETHERNET
)
733 ? "Ethernet" : "Unknown"));
737 * Put in the log file the RDMA gid addressing information,
738 * useful for folks who have trouble understanding the
739 * RDMA device hierarchy in the kernel.
741 static void qemu_rdma_dump_gid(const char *who
, struct rdma_cm_id
*id
)
745 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.sgid
, sgid
, sizeof sgid
);
746 inet_ntop(AF_INET6
, &id
->route
.addr
.addr
.ibaddr
.dgid
, dgid
, sizeof dgid
);
747 DPRINTF("%s Source GID: %s, Dest GID: %s\n", who
, sgid
, dgid
);
751 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
752 * We will try the next addrinfo struct, and fail if there are
753 * no other valid addresses to bind against.
755 * If user is listening on '[::]', then we will not have a opened a device
756 * yet and have no way of verifying if the device is RoCE or not.
758 * In this case, the source VM will throw an error for ALL types of
759 * connections (both IPv4 and IPv6) if the destination machine does not have
760 * a regular infiniband network available for use.
762 * The only way to guarantee that an error is thrown for broken kernels is
763 * for the management software to choose a *specific* interface at bind time
764 * and validate what time of hardware it is.
766 * Unfortunately, this puts the user in a fix:
768 * If the source VM connects with an IPv4 address without knowing that the
769 * destination has bound to '[::]' the migration will unconditionally fail
770 * unless the management software is explicitly listening on the the IPv4
771 * address while using a RoCE-based device.
773 * If the source VM connects with an IPv6 address, then we're OK because we can
774 * throw an error on the source (and similarly on the destination).
776 * But in mixed environments, this will be broken for a while until it is fixed
779 * We do provide a *tiny* bit of help in this function: We can list all of the
780 * devices in the system and check to see if all the devices are RoCE or
783 * If we detect that we have a *pure* RoCE environment, then we can safely
784 * thrown an error even if the management software has specified '[::]' as the
787 * However, if there is are multiple hetergeneous devices, then we cannot make
788 * this assumption and the user just has to be sure they know what they are
791 * Patches are being reviewed on linux-rdma.
793 static int qemu_rdma_broken_ipv6_kernel(Error
**errp
, struct ibv_context
*verbs
)
795 struct ibv_port_attr port_attr
;
797 /* This bug only exists in linux, to our knowledge. */
801 * Verbs are only NULL if management has bound to '[::]'.
803 * Let's iterate through all the devices and see if there any pure IB
804 * devices (non-ethernet).
806 * If not, then we can safely proceed with the migration.
807 * Otherwise, there are no guarantees until the bug is fixed in linux.
811 struct ibv_device
** dev_list
= ibv_get_device_list(&num_devices
);
812 bool roce_found
= false;
813 bool ib_found
= false;
815 for (x
= 0; x
< num_devices
; x
++) {
816 verbs
= ibv_open_device(dev_list
[x
]);
818 if (ibv_query_port(verbs
, 1, &port_attr
)) {
819 ibv_close_device(verbs
);
820 ERROR(errp
, "Could not query initial IB port");
824 if (port_attr
.link_layer
== IBV_LINK_LAYER_INFINIBAND
) {
826 } else if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
830 ibv_close_device(verbs
);
836 fprintf(stderr
, "WARN: migrations may fail:"
837 " IPv6 over RoCE / iWARP in linux"
838 " is broken. But since you appear to have a"
839 " mixed RoCE / IB environment, be sure to only"
840 " migrate over the IB fabric until the kernel "
841 " fixes the bug.\n");
843 ERROR(errp
, "You only have RoCE / iWARP devices in your systems"
844 " and your management software has specified '[::]'"
845 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
854 * If we have a verbs context, that means that some other than '[::]' was
855 * used by the management software for binding. In which case we can actually
856 * warn the user about a potential broken kernel;
859 /* IB ports start with 1, not 0 */
860 if (ibv_query_port(verbs
, 1, &port_attr
)) {
861 ERROR(errp
, "Could not query initial IB port");
865 if (port_attr
.link_layer
== IBV_LINK_LAYER_ETHERNET
) {
866 ERROR(errp
, "Linux kernel's RoCE / iWARP does not support IPv6 "
867 "(but patches on linux-rdma in progress)");
877 * Figure out which RDMA device corresponds to the requested IP hostname
878 * Also create the initial connection manager identifiers for opening
881 static int qemu_rdma_resolve_host(RDMAContext
*rdma
, Error
**errp
)
884 struct rdma_addrinfo
*res
;
886 struct rdma_cm_event
*cm_event
;
887 char ip
[40] = "unknown";
888 struct rdma_addrinfo
*e
;
890 if (rdma
->host
== NULL
|| !strcmp(rdma
->host
, "")) {
891 ERROR(errp
, "RDMA hostname has not been set");
895 /* create CM channel */
896 rdma
->channel
= rdma_create_event_channel();
897 if (!rdma
->channel
) {
898 ERROR(errp
, "could not create CM channel");
903 ret
= rdma_create_id(rdma
->channel
, &rdma
->cm_id
, NULL
, RDMA_PS_TCP
);
905 ERROR(errp
, "could not create channel id");
906 goto err_resolve_create_id
;
909 snprintf(port_str
, 16, "%d", rdma
->port
);
912 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
914 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
915 goto err_resolve_get_addr
;
918 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
919 inet_ntop(e
->ai_family
,
920 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
921 DPRINTF("Trying %s => %s\n", rdma
->host
, ip
);
923 ret
= rdma_resolve_addr(rdma
->cm_id
, NULL
, e
->ai_dst_addr
,
924 RDMA_RESOLVE_TIMEOUT_MS
);
926 if (e
->ai_family
== AF_INET6
) {
927 ret
= qemu_rdma_broken_ipv6_kernel(errp
, rdma
->cm_id
->verbs
);
936 ERROR(errp
, "could not resolve address %s", rdma
->host
);
937 goto err_resolve_get_addr
;
940 qemu_rdma_dump_gid("source_resolve_addr", rdma
->cm_id
);
942 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
944 ERROR(errp
, "could not perform event_addr_resolved");
945 goto err_resolve_get_addr
;
948 if (cm_event
->event
!= RDMA_CM_EVENT_ADDR_RESOLVED
) {
949 ERROR(errp
, "result not equal to event_addr_resolved %s",
950 rdma_event_str(cm_event
->event
));
951 perror("rdma_resolve_addr");
952 rdma_ack_cm_event(cm_event
);
954 goto err_resolve_get_addr
;
956 rdma_ack_cm_event(cm_event
);
959 ret
= rdma_resolve_route(rdma
->cm_id
, RDMA_RESOLVE_TIMEOUT_MS
);
961 ERROR(errp
, "could not resolve rdma route");
962 goto err_resolve_get_addr
;
965 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
967 ERROR(errp
, "could not perform event_route_resolved");
968 goto err_resolve_get_addr
;
970 if (cm_event
->event
!= RDMA_CM_EVENT_ROUTE_RESOLVED
) {
971 ERROR(errp
, "result not equal to event_route_resolved: %s",
972 rdma_event_str(cm_event
->event
));
973 rdma_ack_cm_event(cm_event
);
975 goto err_resolve_get_addr
;
977 rdma_ack_cm_event(cm_event
);
978 rdma
->verbs
= rdma
->cm_id
->verbs
;
979 qemu_rdma_dump_id("source_resolve_host", rdma
->cm_id
->verbs
);
980 qemu_rdma_dump_gid("source_resolve_host", rdma
->cm_id
);
983 err_resolve_get_addr
:
984 rdma_destroy_id(rdma
->cm_id
);
986 err_resolve_create_id
:
987 rdma_destroy_event_channel(rdma
->channel
);
988 rdma
->channel
= NULL
;
993 * Create protection domain and completion queues
995 static int qemu_rdma_alloc_pd_cq(RDMAContext
*rdma
)
998 rdma
->pd
= ibv_alloc_pd(rdma
->verbs
);
1000 fprintf(stderr
, "failed to allocate protection domain\n");
1004 /* create completion channel */
1005 rdma
->comp_channel
= ibv_create_comp_channel(rdma
->verbs
);
1006 if (!rdma
->comp_channel
) {
1007 fprintf(stderr
, "failed to allocate completion channel\n");
1008 goto err_alloc_pd_cq
;
1012 * Completion queue can be filled by both read and write work requests,
1013 * so must reflect the sum of both possible queue sizes.
1015 rdma
->cq
= ibv_create_cq(rdma
->verbs
, (RDMA_SIGNALED_SEND_MAX
* 3),
1016 NULL
, rdma
->comp_channel
, 0);
1018 fprintf(stderr
, "failed to allocate completion queue\n");
1019 goto err_alloc_pd_cq
;
1026 ibv_dealloc_pd(rdma
->pd
);
1028 if (rdma
->comp_channel
) {
1029 ibv_destroy_comp_channel(rdma
->comp_channel
);
1032 rdma
->comp_channel
= NULL
;
1038 * Create queue pairs.
1040 static int qemu_rdma_alloc_qp(RDMAContext
*rdma
)
1042 struct ibv_qp_init_attr attr
= { 0 };
1045 attr
.cap
.max_send_wr
= RDMA_SIGNALED_SEND_MAX
;
1046 attr
.cap
.max_recv_wr
= 3;
1047 attr
.cap
.max_send_sge
= 1;
1048 attr
.cap
.max_recv_sge
= 1;
1049 attr
.send_cq
= rdma
->cq
;
1050 attr
.recv_cq
= rdma
->cq
;
1051 attr
.qp_type
= IBV_QPT_RC
;
1053 ret
= rdma_create_qp(rdma
->cm_id
, rdma
->pd
, &attr
);
1058 rdma
->qp
= rdma
->cm_id
->qp
;
1062 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext
*rdma
)
1065 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
1067 for (i
= 0; i
< local
->nb_blocks
; i
++) {
1068 local
->block
[i
].mr
=
1069 ibv_reg_mr(rdma
->pd
,
1070 local
->block
[i
].local_host_addr
,
1071 local
->block
[i
].length
,
1072 IBV_ACCESS_LOCAL_WRITE
|
1073 IBV_ACCESS_REMOTE_WRITE
1075 if (!local
->block
[i
].mr
) {
1076 perror("Failed to register local dest ram block!\n");
1079 rdma
->total_registrations
++;
1082 if (i
>= local
->nb_blocks
) {
1086 for (i
--; i
>= 0; i
--) {
1087 ibv_dereg_mr(local
->block
[i
].mr
);
1088 rdma
->total_registrations
--;
1096 * Find the ram block that corresponds to the page requested to be
1097 * transmitted by QEMU.
1099 * Once the block is found, also identify which 'chunk' within that
1100 * block that the page belongs to.
1102 * This search cannot fail or the migration will fail.
1104 static int qemu_rdma_search_ram_block(RDMAContext
*rdma
,
1105 uint64_t block_offset
,
1108 uint64_t *block_index
,
1109 uint64_t *chunk_index
)
1111 uint64_t current_addr
= block_offset
+ offset
;
1112 RDMALocalBlock
*block
= g_hash_table_lookup(rdma
->blockmap
,
1113 (void *) block_offset
);
1115 assert(current_addr
>= block
->offset
);
1116 assert((current_addr
+ length
) <= (block
->offset
+ block
->length
));
1118 *block_index
= block
->index
;
1119 *chunk_index
= ram_chunk_index(block
->local_host_addr
,
1120 block
->local_host_addr
+ (current_addr
- block
->offset
));
1126 * Register a chunk with IB. If the chunk was already registered
1127 * previously, then skip.
1129 * Also return the keys associated with the registration needed
1130 * to perform the actual RDMA operation.
1132 static int qemu_rdma_register_and_get_keys(RDMAContext
*rdma
,
1133 RDMALocalBlock
*block
, uint8_t *host_addr
,
1134 uint32_t *lkey
, uint32_t *rkey
, int chunk
,
1135 uint8_t *chunk_start
, uint8_t *chunk_end
)
1139 *lkey
= block
->mr
->lkey
;
1142 *rkey
= block
->mr
->rkey
;
1147 /* allocate memory to store chunk MRs */
1149 block
->pmr
= g_malloc0(block
->nb_chunks
* sizeof(struct ibv_mr
*));
1156 * If 'rkey', then we're the destination, so grant access to the source.
1158 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1160 if (!block
->pmr
[chunk
]) {
1161 uint64_t len
= chunk_end
- chunk_start
;
1163 DDPRINTF("Registering %" PRIu64
" bytes @ %p\n",
1166 block
->pmr
[chunk
] = ibv_reg_mr(rdma
->pd
,
1168 (rkey
? (IBV_ACCESS_LOCAL_WRITE
|
1169 IBV_ACCESS_REMOTE_WRITE
) : 0));
1171 if (!block
->pmr
[chunk
]) {
1172 perror("Failed to register chunk!");
1173 fprintf(stderr
, "Chunk details: block: %d chunk index %d"
1174 " start %" PRIu64
" end %" PRIu64
" host %" PRIu64
1175 " local %" PRIu64
" registrations: %d\n",
1176 block
->index
, chunk
, (uint64_t) chunk_start
,
1177 (uint64_t) chunk_end
, (uint64_t) host_addr
,
1178 (uint64_t) block
->local_host_addr
,
1179 rdma
->total_registrations
);
1182 rdma
->total_registrations
++;
1186 *lkey
= block
->pmr
[chunk
]->lkey
;
1189 *rkey
= block
->pmr
[chunk
]->rkey
;
1195 * Register (at connection time) the memory used for control
1198 static int qemu_rdma_reg_control(RDMAContext
*rdma
, int idx
)
1200 rdma
->wr_data
[idx
].control_mr
= ibv_reg_mr(rdma
->pd
,
1201 rdma
->wr_data
[idx
].control
, RDMA_CONTROL_MAX_BUFFER
,
1202 IBV_ACCESS_LOCAL_WRITE
| IBV_ACCESS_REMOTE_WRITE
);
1203 if (rdma
->wr_data
[idx
].control_mr
) {
1204 rdma
->total_registrations
++;
1207 fprintf(stderr
, "qemu_rdma_reg_control failed!\n");
1211 const char *print_wrid(int wrid
)
1213 if (wrid
>= RDMA_WRID_RECV_CONTROL
) {
1214 return wrid_desc
[RDMA_WRID_RECV_CONTROL
];
1216 return wrid_desc
[wrid
];
1220 * RDMA requires memory registration (mlock/pinning), but this is not good for
1223 * In preparation for the future where LRU information or workload-specific
1224 * writable writable working set memory access behavior is available to QEMU
1225 * it would be nice to have in place the ability to UN-register/UN-pin
1226 * particular memory regions from the RDMA hardware when it is determine that
1227 * those regions of memory will likely not be accessed again in the near future.
1229 * While we do not yet have such information right now, the following
1230 * compile-time option allows us to perform a non-optimized version of this
1233 * By uncommenting this option, you will cause *all* RDMA transfers to be
1234 * unregistered immediately after the transfer completes on both sides of the
1235 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1237 * This will have a terrible impact on migration performance, so until future
1238 * workload information or LRU information is available, do not attempt to use
1239 * this feature except for basic testing.
1241 //#define RDMA_UNREGISTRATION_EXAMPLE
1244 * Perform a non-optimized memory unregistration after every transfer
1245 * for demonsration purposes, only if pin-all is not requested.
1247 * Potential optimizations:
1248 * 1. Start a new thread to run this function continuously
1250 - and for receipt of unregister messages
1252 * 3. Use workload hints.
1254 static int qemu_rdma_unregister_waiting(RDMAContext
*rdma
)
1256 while (rdma
->unregistrations
[rdma
->unregister_current
]) {
1258 uint64_t wr_id
= rdma
->unregistrations
[rdma
->unregister_current
];
1260 (wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1262 (wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1263 RDMALocalBlock
*block
=
1264 &(rdma
->local_ram_blocks
.block
[index
]);
1265 RDMARegister reg
= { .current_index
= index
};
1266 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
1268 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1269 .type
= RDMA_CONTROL_UNREGISTER_REQUEST
,
1273 DDPRINTF("Processing unregister for chunk: %" PRIu64
1274 " at position %d\n", chunk
, rdma
->unregister_current
);
1276 rdma
->unregistrations
[rdma
->unregister_current
] = 0;
1277 rdma
->unregister_current
++;
1279 if (rdma
->unregister_current
== RDMA_SIGNALED_SEND_MAX
) {
1280 rdma
->unregister_current
= 0;
1285 * Unregistration is speculative (because migration is single-threaded
1286 * and we cannot break the protocol's inifinband message ordering).
1287 * Thus, if the memory is currently being used for transmission,
1288 * then abort the attempt to unregister and try again
1289 * later the next time a completion is received for this memory.
1291 clear_bit(chunk
, block
->unregister_bitmap
);
1293 if (test_bit(chunk
, block
->transit_bitmap
)) {
1294 DDPRINTF("Cannot unregister inflight chunk: %" PRIu64
"\n", chunk
);
1298 DDPRINTF("Sending unregister for chunk: %" PRIu64
"\n", chunk
);
1300 ret
= ibv_dereg_mr(block
->pmr
[chunk
]);
1301 block
->pmr
[chunk
] = NULL
;
1302 block
->remote_keys
[chunk
] = 0;
1305 perror("unregistration chunk failed");
1308 rdma
->total_registrations
--;
1310 reg
.key
.chunk
= chunk
;
1311 register_to_network(®
);
1312 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1318 DDPRINTF("Unregister for chunk: %" PRIu64
" complete.\n", chunk
);
1324 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id
, uint64_t index
,
1327 uint64_t result
= wr_id
& RDMA_WRID_TYPE_MASK
;
1329 result
|= (index
<< RDMA_WRID_BLOCK_SHIFT
);
1330 result
|= (chunk
<< RDMA_WRID_CHUNK_SHIFT
);
1336 * Set bit for unregistration in the next iteration.
1337 * We cannot transmit right here, but will unpin later.
1339 static void qemu_rdma_signal_unregister(RDMAContext
*rdma
, uint64_t index
,
1340 uint64_t chunk
, uint64_t wr_id
)
1342 if (rdma
->unregistrations
[rdma
->unregister_next
] != 0) {
1343 fprintf(stderr
, "rdma migration: queue is full!\n");
1345 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1347 if (!test_and_set_bit(chunk
, block
->unregister_bitmap
)) {
1348 DDPRINTF("Appending unregister chunk %" PRIu64
1349 " at position %d\n", chunk
, rdma
->unregister_next
);
1351 rdma
->unregistrations
[rdma
->unregister_next
++] =
1352 qemu_rdma_make_wrid(wr_id
, index
, chunk
);
1354 if (rdma
->unregister_next
== RDMA_SIGNALED_SEND_MAX
) {
1355 rdma
->unregister_next
= 0;
1358 DDPRINTF("Unregister chunk %" PRIu64
" already in queue.\n",
1365 * Consult the connection manager to see a work request
1366 * (of any kind) has completed.
1367 * Return the work request ID that completed.
1369 static uint64_t qemu_rdma_poll(RDMAContext
*rdma
, uint64_t *wr_id_out
,
1376 ret
= ibv_poll_cq(rdma
->cq
, 1, &wc
);
1379 *wr_id_out
= RDMA_WRID_NONE
;
1384 fprintf(stderr
, "ibv_poll_cq return %d!\n", ret
);
1388 wr_id
= wc
.wr_id
& RDMA_WRID_TYPE_MASK
;
1390 if (wc
.status
!= IBV_WC_SUCCESS
) {
1391 fprintf(stderr
, "ibv_poll_cq wc.status=%d %s!\n",
1392 wc
.status
, ibv_wc_status_str(wc
.status
));
1393 fprintf(stderr
, "ibv_poll_cq wrid=%s!\n", wrid_desc
[wr_id
]);
1398 if (rdma
->control_ready_expected
&&
1399 (wr_id
>= RDMA_WRID_RECV_CONTROL
)) {
1400 DDDPRINTF("completion %s #%" PRId64
" received (%" PRId64
")"
1401 " left %d\n", wrid_desc
[RDMA_WRID_RECV_CONTROL
],
1402 wr_id
- RDMA_WRID_RECV_CONTROL
, wr_id
, rdma
->nb_sent
);
1403 rdma
->control_ready_expected
= 0;
1406 if (wr_id
== RDMA_WRID_RDMA_WRITE
) {
1408 (wc
.wr_id
& RDMA_WRID_CHUNK_MASK
) >> RDMA_WRID_CHUNK_SHIFT
;
1410 (wc
.wr_id
& RDMA_WRID_BLOCK_MASK
) >> RDMA_WRID_BLOCK_SHIFT
;
1411 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[index
]);
1413 DDDPRINTF("completions %s (%" PRId64
") left %d, "
1414 "block %" PRIu64
", chunk: %" PRIu64
" %p %p\n",
1415 print_wrid(wr_id
), wr_id
, rdma
->nb_sent
, index
, chunk
,
1416 block
->local_host_addr
, (void *)block
->remote_host_addr
);
1418 clear_bit(chunk
, block
->transit_bitmap
);
1420 if (rdma
->nb_sent
> 0) {
1424 if (!rdma
->pin_all
) {
1426 * FYI: If one wanted to signal a specific chunk to be unregistered
1427 * using LRU or workload-specific information, this is the function
1428 * you would call to do so. That chunk would then get asynchronously
1429 * unregistered later.
1431 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1432 qemu_rdma_signal_unregister(rdma
, index
, chunk
, wc
.wr_id
);
1436 DDDPRINTF("other completion %s (%" PRId64
") received left %d\n",
1437 print_wrid(wr_id
), wr_id
, rdma
->nb_sent
);
1440 *wr_id_out
= wc
.wr_id
;
1442 *byte_len
= wc
.byte_len
;
1449 * Block until the next work request has completed.
1451 * First poll to see if a work request has already completed,
1454 * If we encounter completed work requests for IDs other than
1455 * the one we're interested in, then that's generally an error.
1457 * The only exception is actual RDMA Write completions. These
1458 * completions only need to be recorded, but do not actually
1459 * need further processing.
1461 static int qemu_rdma_block_for_wrid(RDMAContext
*rdma
, int wrid_requested
,
1464 int num_cq_events
= 0, ret
= 0;
1467 uint64_t wr_id
= RDMA_WRID_NONE
, wr_id_in
;
1469 if (ibv_req_notify_cq(rdma
->cq
, 0)) {
1473 while (wr_id
!= wrid_requested
) {
1474 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1479 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1481 if (wr_id
== RDMA_WRID_NONE
) {
1484 if (wr_id
!= wrid_requested
) {
1485 DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64
")\n",
1486 print_wrid(wrid_requested
),
1487 wrid_requested
, print_wrid(wr_id
), wr_id
);
1491 if (wr_id
== wrid_requested
) {
1497 * Coroutine doesn't start until process_incoming_migration()
1498 * so don't yield unless we know we're running inside of a coroutine.
1500 if (rdma
->migration_started_on_destination
) {
1501 yield_until_fd_readable(rdma
->comp_channel
->fd
);
1504 if (ibv_get_cq_event(rdma
->comp_channel
, &cq
, &cq_ctx
)) {
1505 perror("ibv_get_cq_event");
1506 goto err_block_for_wrid
;
1511 if (ibv_req_notify_cq(cq
, 0)) {
1512 goto err_block_for_wrid
;
1515 while (wr_id
!= wrid_requested
) {
1516 ret
= qemu_rdma_poll(rdma
, &wr_id_in
, byte_len
);
1518 goto err_block_for_wrid
;
1521 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
1523 if (wr_id
== RDMA_WRID_NONE
) {
1526 if (wr_id
!= wrid_requested
) {
1527 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64
")\n",
1528 print_wrid(wrid_requested
), wrid_requested
,
1529 print_wrid(wr_id
), wr_id
);
1533 if (wr_id
== wrid_requested
) {
1534 goto success_block_for_wrid
;
1538 success_block_for_wrid
:
1539 if (num_cq_events
) {
1540 ibv_ack_cq_events(cq
, num_cq_events
);
1545 if (num_cq_events
) {
1546 ibv_ack_cq_events(cq
, num_cq_events
);
1552 * Post a SEND message work request for the control channel
1553 * containing some data and block until the post completes.
1555 static int qemu_rdma_post_send_control(RDMAContext
*rdma
, uint8_t *buf
,
1556 RDMAControlHeader
*head
)
1559 RDMAWorkRequestData
*wr
= &rdma
->wr_data
[RDMA_WRID_CONTROL
];
1560 struct ibv_send_wr
*bad_wr
;
1561 struct ibv_sge sge
= {
1562 .addr
= (uint64_t)(wr
->control
),
1563 .length
= head
->len
+ sizeof(RDMAControlHeader
),
1564 .lkey
= wr
->control_mr
->lkey
,
1566 struct ibv_send_wr send_wr
= {
1567 .wr_id
= RDMA_WRID_SEND_CONTROL
,
1568 .opcode
= IBV_WR_SEND
,
1569 .send_flags
= IBV_SEND_SIGNALED
,
1574 DDDPRINTF("CONTROL: sending %s..\n", control_desc
[head
->type
]);
1577 * We don't actually need to do a memcpy() in here if we used
1578 * the "sge" properly, but since we're only sending control messages
1579 * (not RAM in a performance-critical path), then its OK for now.
1581 * The copy makes the RDMAControlHeader simpler to manipulate
1582 * for the time being.
1584 assert(head
->len
<= RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
));
1585 memcpy(wr
->control
, head
, sizeof(RDMAControlHeader
));
1586 control_to_network((void *) wr
->control
);
1589 memcpy(wr
->control
+ sizeof(RDMAControlHeader
), buf
, head
->len
);
1593 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
1596 fprintf(stderr
, "Failed to use post IB SEND for control!\n");
1600 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_SEND_CONTROL
, NULL
);
1602 fprintf(stderr
, "rdma migration: send polling control error!\n");
1609 * Post a RECV work request in anticipation of some future receipt
1610 * of data on the control channel.
1612 static int qemu_rdma_post_recv_control(RDMAContext
*rdma
, int idx
)
1614 struct ibv_recv_wr
*bad_wr
;
1615 struct ibv_sge sge
= {
1616 .addr
= (uint64_t)(rdma
->wr_data
[idx
].control
),
1617 .length
= RDMA_CONTROL_MAX_BUFFER
,
1618 .lkey
= rdma
->wr_data
[idx
].control_mr
->lkey
,
1621 struct ibv_recv_wr recv_wr
= {
1622 .wr_id
= RDMA_WRID_RECV_CONTROL
+ idx
,
1628 if (ibv_post_recv(rdma
->qp
, &recv_wr
, &bad_wr
)) {
1636 * Block and wait for a RECV control channel message to arrive.
1638 static int qemu_rdma_exchange_get_response(RDMAContext
*rdma
,
1639 RDMAControlHeader
*head
, int expecting
, int idx
)
1642 int ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RECV_CONTROL
+ idx
,
1646 fprintf(stderr
, "rdma migration: recv polling control error!\n");
1650 network_to_control((void *) rdma
->wr_data
[idx
].control
);
1651 memcpy(head
, rdma
->wr_data
[idx
].control
, sizeof(RDMAControlHeader
));
1653 DDDPRINTF("CONTROL: %s receiving...\n", control_desc
[expecting
]);
1655 if (expecting
== RDMA_CONTROL_NONE
) {
1656 DDDPRINTF("Surprise: got %s (%d)\n",
1657 control_desc
[head
->type
], head
->type
);
1658 } else if (head
->type
!= expecting
|| head
->type
== RDMA_CONTROL_ERROR
) {
1659 fprintf(stderr
, "Was expecting a %s (%d) control message"
1660 ", but got: %s (%d), length: %d\n",
1661 control_desc
[expecting
], expecting
,
1662 control_desc
[head
->type
], head
->type
, head
->len
);
1665 if (head
->len
> RDMA_CONTROL_MAX_BUFFER
- sizeof(*head
)) {
1666 fprintf(stderr
, "too long length: %d\n", head
->len
);
1669 if (sizeof(*head
) + head
->len
!= byte_len
) {
1670 fprintf(stderr
, "Malformed length: %d byte_len %d\n",
1671 head
->len
, byte_len
);
1679 * When a RECV work request has completed, the work request's
1680 * buffer is pointed at the header.
1682 * This will advance the pointer to the data portion
1683 * of the control message of the work request's buffer that
1684 * was populated after the work request finished.
1686 static void qemu_rdma_move_header(RDMAContext
*rdma
, int idx
,
1687 RDMAControlHeader
*head
)
1689 rdma
->wr_data
[idx
].control_len
= head
->len
;
1690 rdma
->wr_data
[idx
].control_curr
=
1691 rdma
->wr_data
[idx
].control
+ sizeof(RDMAControlHeader
);
1695 * This is an 'atomic' high-level operation to deliver a single, unified
1696 * control-channel message.
1698 * Additionally, if the user is expecting some kind of reply to this message,
1699 * they can request a 'resp' response message be filled in by posting an
1700 * additional work request on behalf of the user and waiting for an additional
1703 * The extra (optional) response is used during registration to us from having
1704 * to perform an *additional* exchange of message just to provide a response by
1705 * instead piggy-backing on the acknowledgement.
1707 static int qemu_rdma_exchange_send(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1708 uint8_t *data
, RDMAControlHeader
*resp
,
1710 int (*callback
)(RDMAContext
*rdma
))
1715 * Wait until the dest is ready before attempting to deliver the message
1716 * by waiting for a READY message.
1718 if (rdma
->control_ready_expected
) {
1719 RDMAControlHeader resp
;
1720 ret
= qemu_rdma_exchange_get_response(rdma
,
1721 &resp
, RDMA_CONTROL_READY
, RDMA_WRID_READY
);
1728 * If the user is expecting a response, post a WR in anticipation of it.
1731 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_DATA
);
1733 fprintf(stderr
, "rdma migration: error posting"
1734 " extra control recv for anticipated result!");
1740 * Post a WR to replace the one we just consumed for the READY message.
1742 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1744 fprintf(stderr
, "rdma migration: error posting first control recv!");
1749 * Deliver the control message that was requested.
1751 ret
= qemu_rdma_post_send_control(rdma
, data
, head
);
1754 fprintf(stderr
, "Failed to send control buffer!\n");
1759 * If we're expecting a response, block and wait for it.
1763 DDPRINTF("Issuing callback before receiving response...\n");
1764 ret
= callback(rdma
);
1770 DDPRINTF("Waiting for response %s\n", control_desc
[resp
->type
]);
1771 ret
= qemu_rdma_exchange_get_response(rdma
, resp
,
1772 resp
->type
, RDMA_WRID_DATA
);
1778 qemu_rdma_move_header(rdma
, RDMA_WRID_DATA
, resp
);
1780 *resp_idx
= RDMA_WRID_DATA
;
1782 DDPRINTF("Response %s received.\n", control_desc
[resp
->type
]);
1785 rdma
->control_ready_expected
= 1;
1791 * This is an 'atomic' high-level operation to receive a single, unified
1792 * control-channel message.
1794 static int qemu_rdma_exchange_recv(RDMAContext
*rdma
, RDMAControlHeader
*head
,
1797 RDMAControlHeader ready
= {
1799 .type
= RDMA_CONTROL_READY
,
1805 * Inform the source that we're ready to receive a message.
1807 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &ready
);
1810 fprintf(stderr
, "Failed to send control buffer!\n");
1815 * Block and wait for the message.
1817 ret
= qemu_rdma_exchange_get_response(rdma
, head
,
1818 expecting
, RDMA_WRID_READY
);
1824 qemu_rdma_move_header(rdma
, RDMA_WRID_READY
, head
);
1827 * Post a new RECV work request to replace the one we just consumed.
1829 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
1831 fprintf(stderr
, "rdma migration: error posting second control recv!");
1839 * Write an actual chunk of memory using RDMA.
1841 * If we're using dynamic registration on the dest-side, we have to
1842 * send a registration command first.
1844 static int qemu_rdma_write_one(QEMUFile
*f
, RDMAContext
*rdma
,
1845 int current_index
, uint64_t current_addr
,
1849 struct ibv_send_wr send_wr
= { 0 };
1850 struct ibv_send_wr
*bad_wr
;
1851 int reg_result_idx
, ret
, count
= 0;
1852 uint64_t chunk
, chunks
;
1853 uint8_t *chunk_start
, *chunk_end
;
1854 RDMALocalBlock
*block
= &(rdma
->local_ram_blocks
.block
[current_index
]);
1856 RDMARegisterResult
*reg_result
;
1857 RDMAControlHeader resp
= { .type
= RDMA_CONTROL_REGISTER_RESULT
};
1858 RDMAControlHeader head
= { .len
= sizeof(RDMARegister
),
1859 .type
= RDMA_CONTROL_REGISTER_REQUEST
,
1864 sge
.addr
= (uint64_t)(block
->local_host_addr
+
1865 (current_addr
- block
->offset
));
1866 sge
.length
= length
;
1868 chunk
= ram_chunk_index(block
->local_host_addr
, (uint8_t *) sge
.addr
);
1869 chunk_start
= ram_chunk_start(block
, chunk
);
1871 if (block
->is_ram_block
) {
1872 chunks
= length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
1874 if (chunks
&& ((length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
1878 chunks
= block
->length
/ (1UL << RDMA_REG_CHUNK_SHIFT
);
1880 if (chunks
&& ((block
->length
% (1UL << RDMA_REG_CHUNK_SHIFT
)) == 0)) {
1885 DDPRINTF("Writing %" PRIu64
" chunks, (%" PRIu64
" MB)\n",
1886 chunks
+ 1, (chunks
+ 1) * (1UL << RDMA_REG_CHUNK_SHIFT
) / 1024 / 1024);
1888 chunk_end
= ram_chunk_end(block
, chunk
+ chunks
);
1890 if (!rdma
->pin_all
) {
1891 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1892 qemu_rdma_unregister_waiting(rdma
);
1896 while (test_bit(chunk
, block
->transit_bitmap
)) {
1898 DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1899 " current %" PRIu64
" len %" PRIu64
" %d %d\n",
1900 count
++, current_index
, chunk
,
1901 sge
.addr
, length
, rdma
->nb_sent
, block
->nb_chunks
);
1903 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
1906 fprintf(stderr
, "Failed to Wait for previous write to complete "
1907 "block %d chunk %" PRIu64
1908 " current %" PRIu64
" len %" PRIu64
" %d\n",
1909 current_index
, chunk
, sge
.addr
, length
, rdma
->nb_sent
);
1914 if (!rdma
->pin_all
|| !block
->is_ram_block
) {
1915 if (!block
->remote_keys
[chunk
]) {
1917 * This chunk has not yet been registered, so first check to see
1918 * if the entire chunk is zero. If so, tell the other size to
1919 * memset() + madvise() the entire chunk without RDMA.
1922 if (can_use_buffer_find_nonzero_offset((void *)sge
.addr
, length
)
1923 && buffer_find_nonzero_offset((void *)sge
.addr
,
1924 length
) == length
) {
1925 RDMACompress comp
= {
1926 .offset
= current_addr
,
1928 .block_idx
= current_index
,
1932 head
.len
= sizeof(comp
);
1933 head
.type
= RDMA_CONTROL_COMPRESS
;
1935 DDPRINTF("Entire chunk is zero, sending compress: %"
1937 "bytes, index: %d, offset: %" PRId64
"...\n",
1938 chunk
, sge
.length
, current_index
, current_addr
);
1940 compress_to_network(&comp
);
1941 ret
= qemu_rdma_exchange_send(rdma
, &head
,
1942 (uint8_t *) &comp
, NULL
, NULL
, NULL
);
1948 acct_update_position(f
, sge
.length
, true);
1954 * Otherwise, tell other side to register.
1956 reg
.current_index
= current_index
;
1957 if (block
->is_ram_block
) {
1958 reg
.key
.current_addr
= current_addr
;
1960 reg
.key
.chunk
= chunk
;
1962 reg
.chunks
= chunks
;
1964 DDPRINTF("Sending registration request chunk %" PRIu64
" for %d "
1965 "bytes, index: %d, offset: %" PRId64
"...\n",
1966 chunk
, sge
.length
, current_index
, current_addr
);
1968 register_to_network(®
);
1969 ret
= qemu_rdma_exchange_send(rdma
, &head
, (uint8_t *) ®
,
1970 &resp
, ®_result_idx
, NULL
);
1975 /* try to overlap this single registration with the one we sent. */
1976 if (qemu_rdma_register_and_get_keys(rdma
, block
,
1977 (uint8_t *) sge
.addr
,
1978 &sge
.lkey
, NULL
, chunk
,
1979 chunk_start
, chunk_end
)) {
1980 fprintf(stderr
, "cannot get lkey!\n");
1984 reg_result
= (RDMARegisterResult
*)
1985 rdma
->wr_data
[reg_result_idx
].control_curr
;
1987 network_to_result(reg_result
);
1989 DDPRINTF("Received registration result:"
1990 " my key: %x their key %x, chunk %" PRIu64
"\n",
1991 block
->remote_keys
[chunk
], reg_result
->rkey
, chunk
);
1993 block
->remote_keys
[chunk
] = reg_result
->rkey
;
1994 block
->remote_host_addr
= reg_result
->host_addr
;
1996 /* already registered before */
1997 if (qemu_rdma_register_and_get_keys(rdma
, block
,
1998 (uint8_t *)sge
.addr
,
1999 &sge
.lkey
, NULL
, chunk
,
2000 chunk_start
, chunk_end
)) {
2001 fprintf(stderr
, "cannot get lkey!\n");
2006 send_wr
.wr
.rdma
.rkey
= block
->remote_keys
[chunk
];
2008 send_wr
.wr
.rdma
.rkey
= block
->remote_rkey
;
2010 if (qemu_rdma_register_and_get_keys(rdma
, block
, (uint8_t *)sge
.addr
,
2011 &sge
.lkey
, NULL
, chunk
,
2012 chunk_start
, chunk_end
)) {
2013 fprintf(stderr
, "cannot get lkey!\n");
2019 * Encode the ram block index and chunk within this wrid.
2020 * We will use this information at the time of completion
2021 * to figure out which bitmap to check against and then which
2022 * chunk in the bitmap to look for.
2024 send_wr
.wr_id
= qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE
,
2025 current_index
, chunk
);
2027 send_wr
.opcode
= IBV_WR_RDMA_WRITE
;
2028 send_wr
.send_flags
= IBV_SEND_SIGNALED
;
2029 send_wr
.sg_list
= &sge
;
2030 send_wr
.num_sge
= 1;
2031 send_wr
.wr
.rdma
.remote_addr
= block
->remote_host_addr
+
2032 (current_addr
- block
->offset
);
2034 DDDPRINTF("Posting chunk: %" PRIu64
", addr: %lx"
2035 " remote: %lx, bytes %" PRIu32
"\n",
2036 chunk
, sge
.addr
, send_wr
.wr
.rdma
.remote_addr
,
2040 * ibv_post_send() does not return negative error numbers,
2041 * per the specification they are positive - no idea why.
2043 ret
= ibv_post_send(rdma
->qp
, &send_wr
, &bad_wr
);
2045 if (ret
== ENOMEM
) {
2046 DDPRINTF("send queue is full. wait a little....\n");
2047 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2049 fprintf(stderr
, "rdma migration: failed to make "
2050 "room in full send queue! %d\n", ret
);
2056 } else if (ret
> 0) {
2057 perror("rdma migration: post rdma write failed");
2061 set_bit(chunk
, block
->transit_bitmap
);
2062 acct_update_position(f
, sge
.length
, false);
2063 rdma
->total_writes
++;
2069 * Push out any unwritten RDMA operations.
2071 * We support sending out multiple chunks at the same time.
2072 * Not all of them need to get signaled in the completion queue.
2074 static int qemu_rdma_write_flush(QEMUFile
*f
, RDMAContext
*rdma
)
2078 if (!rdma
->current_length
) {
2082 ret
= qemu_rdma_write_one(f
, rdma
,
2083 rdma
->current_index
, rdma
->current_addr
, rdma
->current_length
);
2091 DDDPRINTF("sent total: %d\n", rdma
->nb_sent
);
2094 rdma
->current_length
= 0;
2095 rdma
->current_addr
= 0;
2100 static inline int qemu_rdma_buffer_mergable(RDMAContext
*rdma
,
2101 uint64_t offset
, uint64_t len
)
2103 RDMALocalBlock
*block
;
2107 if (rdma
->current_index
< 0) {
2111 if (rdma
->current_chunk
< 0) {
2115 block
= &(rdma
->local_ram_blocks
.block
[rdma
->current_index
]);
2116 host_addr
= block
->local_host_addr
+ (offset
- block
->offset
);
2117 chunk_end
= ram_chunk_end(block
, rdma
->current_chunk
);
2119 if (rdma
->current_length
== 0) {
2124 * Only merge into chunk sequentially.
2126 if (offset
!= (rdma
->current_addr
+ rdma
->current_length
)) {
2130 if (offset
< block
->offset
) {
2134 if ((offset
+ len
) > (block
->offset
+ block
->length
)) {
2138 if ((host_addr
+ len
) > chunk_end
) {
2146 * We're not actually writing here, but doing three things:
2148 * 1. Identify the chunk the buffer belongs to.
2149 * 2. If the chunk is full or the buffer doesn't belong to the current
2150 * chunk, then start a new chunk and flush() the old chunk.
2151 * 3. To keep the hardware busy, we also group chunks into batches
2152 * and only require that a batch gets acknowledged in the completion
2153 * qeueue instead of each individual chunk.
2155 static int qemu_rdma_write(QEMUFile
*f
, RDMAContext
*rdma
,
2156 uint64_t block_offset
, uint64_t offset
,
2159 uint64_t current_addr
= block_offset
+ offset
;
2160 uint64_t index
= rdma
->current_index
;
2161 uint64_t chunk
= rdma
->current_chunk
;
2164 /* If we cannot merge it, we flush the current buffer first. */
2165 if (!qemu_rdma_buffer_mergable(rdma
, current_addr
, len
)) {
2166 ret
= qemu_rdma_write_flush(f
, rdma
);
2170 rdma
->current_length
= 0;
2171 rdma
->current_addr
= current_addr
;
2173 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2174 offset
, len
, &index
, &chunk
);
2176 fprintf(stderr
, "ram block search failed\n");
2179 rdma
->current_index
= index
;
2180 rdma
->current_chunk
= chunk
;
2184 rdma
->current_length
+= len
;
2186 /* flush it if buffer is too large */
2187 if (rdma
->current_length
>= RDMA_MERGE_MAX
) {
2188 return qemu_rdma_write_flush(f
, rdma
);
2194 static void qemu_rdma_cleanup(RDMAContext
*rdma
)
2196 struct rdma_cm_event
*cm_event
;
2199 if (rdma
->cm_id
&& rdma
->connected
) {
2200 if (rdma
->error_state
) {
2201 RDMAControlHeader head
= { .len
= 0,
2202 .type
= RDMA_CONTROL_ERROR
,
2205 fprintf(stderr
, "Early error. Sending error.\n");
2206 qemu_rdma_post_send_control(rdma
, NULL
, &head
);
2209 ret
= rdma_disconnect(rdma
->cm_id
);
2211 DDPRINTF("waiting for disconnect\n");
2212 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2214 rdma_ack_cm_event(cm_event
);
2217 DDPRINTF("Disconnected.\n");
2218 rdma
->connected
= false;
2221 g_free(rdma
->block
);
2224 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2225 if (rdma
->wr_data
[idx
].control_mr
) {
2226 rdma
->total_registrations
--;
2227 ibv_dereg_mr(rdma
->wr_data
[idx
].control_mr
);
2229 rdma
->wr_data
[idx
].control_mr
= NULL
;
2232 if (rdma
->local_ram_blocks
.block
) {
2233 while (rdma
->local_ram_blocks
.nb_blocks
) {
2234 __qemu_rdma_delete_block(rdma
,
2235 rdma
->local_ram_blocks
.block
->offset
);
2240 ibv_destroy_cq(rdma
->cq
);
2243 if (rdma
->comp_channel
) {
2244 ibv_destroy_comp_channel(rdma
->comp_channel
);
2245 rdma
->comp_channel
= NULL
;
2248 ibv_dealloc_pd(rdma
->pd
);
2251 if (rdma
->listen_id
) {
2252 rdma_destroy_id(rdma
->listen_id
);
2253 rdma
->listen_id
= NULL
;
2257 rdma_destroy_qp(rdma
->cm_id
);
2260 rdma_destroy_id(rdma
->cm_id
);
2263 if (rdma
->channel
) {
2264 rdma_destroy_event_channel(rdma
->channel
);
2265 rdma
->channel
= NULL
;
2272 static int qemu_rdma_source_init(RDMAContext
*rdma
, Error
**errp
, bool pin_all
)
2275 Error
*local_err
= NULL
, **temp
= &local_err
;
2278 * Will be validated against destination's actual capabilities
2279 * after the connect() completes.
2281 rdma
->pin_all
= pin_all
;
2283 ret
= qemu_rdma_resolve_host(rdma
, temp
);
2285 goto err_rdma_source_init
;
2288 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2290 ERROR(temp
, "rdma migration: error allocating pd and cq! Your mlock()"
2291 " limits may be too low. Please check $ ulimit -a # and "
2292 "search for 'ulimit -l' in the output");
2293 goto err_rdma_source_init
;
2296 ret
= qemu_rdma_alloc_qp(rdma
);
2298 ERROR(temp
, "rdma migration: error allocating qp!");
2299 goto err_rdma_source_init
;
2302 ret
= qemu_rdma_init_ram_blocks(rdma
);
2304 ERROR(temp
, "rdma migration: error initializing ram blocks!");
2305 goto err_rdma_source_init
;
2308 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2309 ret
= qemu_rdma_reg_control(rdma
, idx
);
2311 ERROR(temp
, "rdma migration: error registering %d control!",
2313 goto err_rdma_source_init
;
2319 err_rdma_source_init
:
2320 error_propagate(errp
, local_err
);
2321 qemu_rdma_cleanup(rdma
);
2325 static int qemu_rdma_connect(RDMAContext
*rdma
, Error
**errp
)
2327 RDMACapabilities cap
= {
2328 .version
= RDMA_CONTROL_VERSION_CURRENT
,
2331 struct rdma_conn_param conn_param
= { .initiator_depth
= 2,
2333 .private_data
= &cap
,
2334 .private_data_len
= sizeof(cap
),
2336 struct rdma_cm_event
*cm_event
;
2340 * Only negotiate the capability with destination if the user
2341 * on the source first requested the capability.
2343 if (rdma
->pin_all
) {
2344 DPRINTF("Server pin-all memory requested.\n");
2345 cap
.flags
|= RDMA_CAPABILITY_PIN_ALL
;
2348 caps_to_network(&cap
);
2350 ret
= rdma_connect(rdma
->cm_id
, &conn_param
);
2352 perror("rdma_connect");
2353 ERROR(errp
, "connecting to destination!");
2354 rdma_destroy_id(rdma
->cm_id
);
2356 goto err_rdma_source_connect
;
2359 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2361 perror("rdma_get_cm_event after rdma_connect");
2362 ERROR(errp
, "connecting to destination!");
2363 rdma_ack_cm_event(cm_event
);
2364 rdma_destroy_id(rdma
->cm_id
);
2366 goto err_rdma_source_connect
;
2369 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2370 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2371 ERROR(errp
, "connecting to destination!");
2372 rdma_ack_cm_event(cm_event
);
2373 rdma_destroy_id(rdma
->cm_id
);
2375 goto err_rdma_source_connect
;
2377 rdma
->connected
= true;
2379 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2380 network_to_caps(&cap
);
2383 * Verify that the *requested* capabilities are supported by the destination
2384 * and disable them otherwise.
2386 if (rdma
->pin_all
&& !(cap
.flags
& RDMA_CAPABILITY_PIN_ALL
)) {
2387 ERROR(errp
, "Server cannot support pinning all memory. "
2388 "Will register memory dynamically.");
2389 rdma
->pin_all
= false;
2392 DPRINTF("Pin all memory: %s\n", rdma
->pin_all
? "enabled" : "disabled");
2394 rdma_ack_cm_event(cm_event
);
2396 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2398 ERROR(errp
, "posting second control recv!");
2399 goto err_rdma_source_connect
;
2402 rdma
->control_ready_expected
= 1;
2406 err_rdma_source_connect
:
2407 qemu_rdma_cleanup(rdma
);
2411 static int qemu_rdma_dest_init(RDMAContext
*rdma
, Error
**errp
)
2413 int ret
= -EINVAL
, idx
;
2414 struct rdma_cm_id
*listen_id
;
2415 char ip
[40] = "unknown";
2416 struct rdma_addrinfo
*res
;
2419 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2420 rdma
->wr_data
[idx
].control_len
= 0;
2421 rdma
->wr_data
[idx
].control_curr
= NULL
;
2424 if (rdma
->host
== NULL
) {
2425 ERROR(errp
, "RDMA host is not set!");
2426 rdma
->error_state
= -EINVAL
;
2429 /* create CM channel */
2430 rdma
->channel
= rdma_create_event_channel();
2431 if (!rdma
->channel
) {
2432 ERROR(errp
, "could not create rdma event channel");
2433 rdma
->error_state
= -EINVAL
;
2438 ret
= rdma_create_id(rdma
->channel
, &listen_id
, NULL
, RDMA_PS_TCP
);
2440 ERROR(errp
, "could not create cm_id!");
2441 goto err_dest_init_create_listen_id
;
2444 snprintf(port_str
, 16, "%d", rdma
->port
);
2445 port_str
[15] = '\0';
2447 if (rdma
->host
&& strcmp("", rdma
->host
)) {
2448 struct rdma_addrinfo
*e
;
2450 ret
= rdma_getaddrinfo(rdma
->host
, port_str
, NULL
, &res
);
2452 ERROR(errp
, "could not rdma_getaddrinfo address %s", rdma
->host
);
2453 goto err_dest_init_bind_addr
;
2456 for (e
= res
; e
!= NULL
; e
= e
->ai_next
) {
2457 inet_ntop(e
->ai_family
,
2458 &((struct sockaddr_in
*) e
->ai_dst_addr
)->sin_addr
, ip
, sizeof ip
);
2459 DPRINTF("Trying %s => %s\n", rdma
->host
, ip
);
2460 ret
= rdma_bind_addr(listen_id
, e
->ai_dst_addr
);
2462 if (e
->ai_family
== AF_INET6
) {
2463 ret
= qemu_rdma_broken_ipv6_kernel(errp
, listen_id
->verbs
);
2473 ERROR(errp
, "Error: could not rdma_bind_addr!");
2474 goto err_dest_init_bind_addr
;
2476 ERROR(errp
, "migration host and port not specified!");
2478 goto err_dest_init_bind_addr
;
2482 rdma
->listen_id
= listen_id
;
2483 qemu_rdma_dump_gid("dest_init", listen_id
);
2486 err_dest_init_bind_addr
:
2487 rdma_destroy_id(listen_id
);
2488 err_dest_init_create_listen_id
:
2489 rdma_destroy_event_channel(rdma
->channel
);
2490 rdma
->channel
= NULL
;
2491 rdma
->error_state
= ret
;
2496 static void *qemu_rdma_data_init(const char *host_port
, Error
**errp
)
2498 RDMAContext
*rdma
= NULL
;
2499 InetSocketAddress
*addr
;
2502 rdma
= g_malloc0(sizeof(RDMAContext
));
2503 memset(rdma
, 0, sizeof(RDMAContext
));
2504 rdma
->current_index
= -1;
2505 rdma
->current_chunk
= -1;
2507 addr
= inet_parse(host_port
, NULL
);
2509 rdma
->port
= atoi(addr
->port
);
2510 rdma
->host
= g_strdup(addr
->host
);
2512 ERROR(errp
, "bad RDMA migration address '%s'", host_port
);
2517 qapi_free_InetSocketAddress(addr
);
2524 * QEMUFile interface to the control channel.
2525 * SEND messages for control only.
2526 * VM's ram is handled with regular RDMA messages.
2528 static int qemu_rdma_put_buffer(void *opaque
, const uint8_t *buf
,
2529 int64_t pos
, int size
)
2531 QEMUFileRDMA
*r
= opaque
;
2532 QEMUFile
*f
= r
->file
;
2533 RDMAContext
*rdma
= r
->rdma
;
2534 size_t remaining
= size
;
2535 uint8_t * data
= (void *) buf
;
2538 CHECK_ERROR_STATE();
2541 * Push out any writes that
2542 * we're queued up for VM's ram.
2544 ret
= qemu_rdma_write_flush(f
, rdma
);
2546 rdma
->error_state
= ret
;
2551 RDMAControlHeader head
;
2553 r
->len
= MIN(remaining
, RDMA_SEND_INCREMENT
);
2554 remaining
-= r
->len
;
2557 head
.type
= RDMA_CONTROL_QEMU_FILE
;
2559 ret
= qemu_rdma_exchange_send(rdma
, &head
, data
, NULL
, NULL
, NULL
);
2562 rdma
->error_state
= ret
;
2572 static size_t qemu_rdma_fill(RDMAContext
*rdma
, uint8_t *buf
,
2577 if (rdma
->wr_data
[idx
].control_len
) {
2578 DDDPRINTF("RDMA %" PRId64
" of %d bytes already in buffer\n",
2579 rdma
->wr_data
[idx
].control_len
, size
);
2581 len
= MIN(size
, rdma
->wr_data
[idx
].control_len
);
2582 memcpy(buf
, rdma
->wr_data
[idx
].control_curr
, len
);
2583 rdma
->wr_data
[idx
].control_curr
+= len
;
2584 rdma
->wr_data
[idx
].control_len
-= len
;
2591 * QEMUFile interface to the control channel.
2592 * RDMA links don't use bytestreams, so we have to
2593 * return bytes to QEMUFile opportunistically.
2595 static int qemu_rdma_get_buffer(void *opaque
, uint8_t *buf
,
2596 int64_t pos
, int size
)
2598 QEMUFileRDMA
*r
= opaque
;
2599 RDMAContext
*rdma
= r
->rdma
;
2600 RDMAControlHeader head
;
2603 CHECK_ERROR_STATE();
2606 * First, we hold on to the last SEND message we
2607 * were given and dish out the bytes until we run
2610 r
->len
= qemu_rdma_fill(r
->rdma
, buf
, size
, 0);
2616 * Once we run out, we block and wait for another
2617 * SEND message to arrive.
2619 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_QEMU_FILE
);
2622 rdma
->error_state
= ret
;
2627 * SEND was received with new bytes, now try again.
2629 return qemu_rdma_fill(r
->rdma
, buf
, size
, 0);
2633 * Block until all the outstanding chunks have been delivered by the hardware.
2635 static int qemu_rdma_drain_cq(QEMUFile
*f
, RDMAContext
*rdma
)
2639 if (qemu_rdma_write_flush(f
, rdma
) < 0) {
2643 while (rdma
->nb_sent
) {
2644 ret
= qemu_rdma_block_for_wrid(rdma
, RDMA_WRID_RDMA_WRITE
, NULL
);
2646 fprintf(stderr
, "rdma migration: complete polling error!\n");
2651 qemu_rdma_unregister_waiting(rdma
);
2656 static int qemu_rdma_close(void *opaque
)
2658 DPRINTF("Shutting down connection.\n");
2659 QEMUFileRDMA
*r
= opaque
;
2661 qemu_rdma_cleanup(r
->rdma
);
2671 * This means that 'block_offset' is a full virtual address that does not
2672 * belong to a RAMBlock of the virtual machine and instead
2673 * represents a private malloc'd memory area that the caller wishes to
2677 * Offset is an offset to be added to block_offset and used
2678 * to also lookup the corresponding RAMBlock.
2681 * Initiate an transfer this size.
2684 * A 'hint' or 'advice' that means that we wish to speculatively
2685 * and asynchronously unregister this memory. In this case, there is no
2686 * guarantee that the unregister will actually happen, for example,
2687 * if the memory is being actively transmitted. Additionally, the memory
2688 * may be re-registered at any future time if a write within the same
2689 * chunk was requested again, even if you attempted to unregister it
2692 * @size < 0 : TODO, not yet supported
2693 * Unregister the memory NOW. This means that the caller does not
2694 * expect there to be any future RDMA transfers and we just want to clean
2695 * things up. This is used in case the upper layer owns the memory and
2696 * cannot wait for qemu_fclose() to occur.
2698 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2699 * sent. Usually, this will not be more than a few bytes of
2700 * the protocol because most transfers are sent asynchronously.
2702 static size_t qemu_rdma_save_page(QEMUFile
*f
, void *opaque
,
2703 ram_addr_t block_offset
, ram_addr_t offset
,
2704 size_t size
, int *bytes_sent
)
2706 QEMUFileRDMA
*rfile
= opaque
;
2707 RDMAContext
*rdma
= rfile
->rdma
;
2710 CHECK_ERROR_STATE();
2716 * Add this page to the current 'chunk'. If the chunk
2717 * is full, or the page doen't belong to the current chunk,
2718 * an actual RDMA write will occur and a new chunk will be formed.
2720 ret
= qemu_rdma_write(f
, rdma
, block_offset
, offset
, size
);
2722 fprintf(stderr
, "rdma migration: write error! %d\n", ret
);
2727 * We always return 1 bytes because the RDMA
2728 * protocol is completely asynchronous. We do not yet know
2729 * whether an identified chunk is zero or not because we're
2730 * waiting for other pages to potentially be merged with
2731 * the current chunk. So, we have to call qemu_update_position()
2732 * later on when the actual write occurs.
2738 uint64_t index
, chunk
;
2740 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2742 ret = qemu_rdma_drain_cq(f, rdma);
2744 fprintf(stderr, "rdma: failed to synchronously drain"
2745 " completion queue before unregistration.\n");
2751 ret
= qemu_rdma_search_ram_block(rdma
, block_offset
,
2752 offset
, size
, &index
, &chunk
);
2755 fprintf(stderr
, "ram block search failed\n");
2759 qemu_rdma_signal_unregister(rdma
, index
, chunk
, 0);
2762 * TODO: Synchronous, guaranteed unregistration (should not occur during
2763 * fast-path). Otherwise, unregisters will process on the next call to
2764 * qemu_rdma_drain_cq()
2766 qemu_rdma_unregister_waiting(rdma);
2772 * Drain the Completion Queue if possible, but do not block,
2775 * If nothing to poll, the end of the iteration will do this
2776 * again to make sure we don't overflow the request queue.
2779 uint64_t wr_id
, wr_id_in
;
2780 int ret
= qemu_rdma_poll(rdma
, &wr_id_in
, NULL
);
2782 fprintf(stderr
, "rdma migration: polling error! %d\n", ret
);
2786 wr_id
= wr_id_in
& RDMA_WRID_TYPE_MASK
;
2788 if (wr_id
== RDMA_WRID_NONE
) {
2793 return RAM_SAVE_CONTROL_DELAYED
;
2795 rdma
->error_state
= ret
;
2799 static int qemu_rdma_accept(RDMAContext
*rdma
)
2801 RDMACapabilities cap
;
2802 struct rdma_conn_param conn_param
= {
2803 .responder_resources
= 2,
2804 .private_data
= &cap
,
2805 .private_data_len
= sizeof(cap
),
2807 struct rdma_cm_event
*cm_event
;
2808 struct ibv_context
*verbs
;
2812 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2814 goto err_rdma_dest_wait
;
2817 if (cm_event
->event
!= RDMA_CM_EVENT_CONNECT_REQUEST
) {
2818 rdma_ack_cm_event(cm_event
);
2819 goto err_rdma_dest_wait
;
2822 memcpy(&cap
, cm_event
->param
.conn
.private_data
, sizeof(cap
));
2824 network_to_caps(&cap
);
2826 if (cap
.version
< 1 || cap
.version
> RDMA_CONTROL_VERSION_CURRENT
) {
2827 fprintf(stderr
, "Unknown source RDMA version: %d, bailing...\n",
2829 rdma_ack_cm_event(cm_event
);
2830 goto err_rdma_dest_wait
;
2834 * Respond with only the capabilities this version of QEMU knows about.
2836 cap
.flags
&= known_capabilities
;
2839 * Enable the ones that we do know about.
2840 * Add other checks here as new ones are introduced.
2842 if (cap
.flags
& RDMA_CAPABILITY_PIN_ALL
) {
2843 rdma
->pin_all
= true;
2846 rdma
->cm_id
= cm_event
->id
;
2847 verbs
= cm_event
->id
->verbs
;
2849 rdma_ack_cm_event(cm_event
);
2851 DPRINTF("Memory pin all: %s\n", rdma
->pin_all
? "enabled" : "disabled");
2853 caps_to_network(&cap
);
2855 DPRINTF("verbs context after listen: %p\n", verbs
);
2858 rdma
->verbs
= verbs
;
2859 } else if (rdma
->verbs
!= verbs
) {
2860 fprintf(stderr
, "ibv context not matching %p, %p!\n",
2861 rdma
->verbs
, verbs
);
2862 goto err_rdma_dest_wait
;
2865 qemu_rdma_dump_id("dest_init", verbs
);
2867 ret
= qemu_rdma_alloc_pd_cq(rdma
);
2869 fprintf(stderr
, "rdma migration: error allocating pd and cq!\n");
2870 goto err_rdma_dest_wait
;
2873 ret
= qemu_rdma_alloc_qp(rdma
);
2875 fprintf(stderr
, "rdma migration: error allocating qp!\n");
2876 goto err_rdma_dest_wait
;
2879 ret
= qemu_rdma_init_ram_blocks(rdma
);
2881 fprintf(stderr
, "rdma migration: error initializing ram blocks!\n");
2882 goto err_rdma_dest_wait
;
2885 for (idx
= 0; idx
< RDMA_WRID_MAX
; idx
++) {
2886 ret
= qemu_rdma_reg_control(rdma
, idx
);
2888 fprintf(stderr
, "rdma: error registering %d control!\n", idx
);
2889 goto err_rdma_dest_wait
;
2893 qemu_set_fd_handler2(rdma
->channel
->fd
, NULL
, NULL
, NULL
, NULL
);
2895 ret
= rdma_accept(rdma
->cm_id
, &conn_param
);
2897 fprintf(stderr
, "rdma_accept returns %d!\n", ret
);
2898 goto err_rdma_dest_wait
;
2901 ret
= rdma_get_cm_event(rdma
->channel
, &cm_event
);
2903 fprintf(stderr
, "rdma_accept get_cm_event failed %d!\n", ret
);
2904 goto err_rdma_dest_wait
;
2907 if (cm_event
->event
!= RDMA_CM_EVENT_ESTABLISHED
) {
2908 fprintf(stderr
, "rdma_accept not event established!\n");
2909 rdma_ack_cm_event(cm_event
);
2910 goto err_rdma_dest_wait
;
2913 rdma_ack_cm_event(cm_event
);
2914 rdma
->connected
= true;
2916 ret
= qemu_rdma_post_recv_control(rdma
, RDMA_WRID_READY
);
2918 fprintf(stderr
, "rdma migration: error posting second control recv!\n");
2919 goto err_rdma_dest_wait
;
2922 qemu_rdma_dump_gid("dest_connect", rdma
->cm_id
);
2927 rdma
->error_state
= ret
;
2928 qemu_rdma_cleanup(rdma
);
2933 * During each iteration of the migration, we listen for instructions
2934 * by the source VM to perform dynamic page registrations before they
2935 * can perform RDMA operations.
2937 * We respond with the 'rkey'.
2939 * Keep doing this until the source tells us to stop.
2941 static int qemu_rdma_registration_handle(QEMUFile
*f
, void *opaque
,
2944 RDMAControlHeader reg_resp
= { .len
= sizeof(RDMARegisterResult
),
2945 .type
= RDMA_CONTROL_REGISTER_RESULT
,
2948 RDMAControlHeader unreg_resp
= { .len
= 0,
2949 .type
= RDMA_CONTROL_UNREGISTER_FINISHED
,
2952 RDMAControlHeader blocks
= { .type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
,
2954 QEMUFileRDMA
*rfile
= opaque
;
2955 RDMAContext
*rdma
= rfile
->rdma
;
2956 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
2957 RDMAControlHeader head
;
2958 RDMARegister
*reg
, *registers
;
2960 RDMARegisterResult
*reg_result
;
2961 static RDMARegisterResult results
[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
];
2962 RDMALocalBlock
*block
;
2969 CHECK_ERROR_STATE();
2972 DDDPRINTF("Waiting for next request %" PRIu64
"...\n", flags
);
2974 ret
= qemu_rdma_exchange_recv(rdma
, &head
, RDMA_CONTROL_NONE
);
2980 if (head
.repeat
> RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE
) {
2981 fprintf(stderr
, "rdma: Too many requests in this message (%d)."
2982 "Bailing.\n", head
.repeat
);
2987 switch (head
.type
) {
2988 case RDMA_CONTROL_COMPRESS
:
2989 comp
= (RDMACompress
*) rdma
->wr_data
[idx
].control_curr
;
2990 network_to_compress(comp
);
2992 DDPRINTF("Zapping zero chunk: %" PRId64
2993 " bytes, index %d, offset %" PRId64
"\n",
2994 comp
->length
, comp
->block_idx
, comp
->offset
);
2995 block
= &(rdma
->local_ram_blocks
.block
[comp
->block_idx
]);
2997 host_addr
= block
->local_host_addr
+
2998 (comp
->offset
- block
->offset
);
3000 ram_handle_compressed(host_addr
, comp
->value
, comp
->length
);
3003 case RDMA_CONTROL_REGISTER_FINISHED
:
3004 DDDPRINTF("Current registrations complete.\n");
3007 case RDMA_CONTROL_RAM_BLOCKS_REQUEST
:
3008 DPRINTF("Initial setup info requested.\n");
3010 if (rdma
->pin_all
) {
3011 ret
= qemu_rdma_reg_whole_ram_blocks(rdma
);
3013 fprintf(stderr
, "rdma migration: error dest "
3014 "registering ram blocks!\n");
3020 * Dest uses this to prepare to transmit the RAMBlock descriptions
3021 * to the source VM after connection setup.
3022 * Both sides use the "remote" structure to communicate and update
3023 * their "local" descriptions with what was sent.
3025 for (i
= 0; i
< local
->nb_blocks
; i
++) {
3026 rdma
->block
[i
].remote_host_addr
=
3027 (uint64_t)(local
->block
[i
].local_host_addr
);
3029 if (rdma
->pin_all
) {
3030 rdma
->block
[i
].remote_rkey
= local
->block
[i
].mr
->rkey
;
3033 rdma
->block
[i
].offset
= local
->block
[i
].offset
;
3034 rdma
->block
[i
].length
= local
->block
[i
].length
;
3036 remote_block_to_network(&rdma
->block
[i
]);
3039 blocks
.len
= rdma
->local_ram_blocks
.nb_blocks
3040 * sizeof(RDMARemoteBlock
);
3043 ret
= qemu_rdma_post_send_control(rdma
,
3044 (uint8_t *) rdma
->block
, &blocks
);
3047 fprintf(stderr
, "rdma migration: error sending remote info!\n");
3052 case RDMA_CONTROL_REGISTER_REQUEST
:
3053 DDPRINTF("There are %d registration requests\n", head
.repeat
);
3055 reg_resp
.repeat
= head
.repeat
;
3056 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3058 for (count
= 0; count
< head
.repeat
; count
++) {
3060 uint8_t *chunk_start
, *chunk_end
;
3062 reg
= ®isters
[count
];
3063 network_to_register(reg
);
3065 reg_result
= &results
[count
];
3067 DDPRINTF("Registration request (%d): index %d, current_addr %"
3068 PRIu64
" chunks: %" PRIu64
"\n", count
,
3069 reg
->current_index
, reg
->key
.current_addr
, reg
->chunks
);
3071 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3072 if (block
->is_ram_block
) {
3073 host_addr
= (block
->local_host_addr
+
3074 (reg
->key
.current_addr
- block
->offset
));
3075 chunk
= ram_chunk_index(block
->local_host_addr
,
3076 (uint8_t *) host_addr
);
3078 chunk
= reg
->key
.chunk
;
3079 host_addr
= block
->local_host_addr
+
3080 (reg
->key
.chunk
* (1UL << RDMA_REG_CHUNK_SHIFT
));
3082 chunk_start
= ram_chunk_start(block
, chunk
);
3083 chunk_end
= ram_chunk_end(block
, chunk
+ reg
->chunks
);
3084 if (qemu_rdma_register_and_get_keys(rdma
, block
,
3085 (uint8_t *)host_addr
, NULL
, ®_result
->rkey
,
3086 chunk
, chunk_start
, chunk_end
)) {
3087 fprintf(stderr
, "cannot get rkey!\n");
3092 reg_result
->host_addr
= (uint64_t) block
->local_host_addr
;
3094 DDPRINTF("Registered rkey for this request: %x\n",
3097 result_to_network(reg_result
);
3100 ret
= qemu_rdma_post_send_control(rdma
,
3101 (uint8_t *) results
, ®_resp
);
3104 fprintf(stderr
, "Failed to send control buffer!\n");
3108 case RDMA_CONTROL_UNREGISTER_REQUEST
:
3109 DDPRINTF("There are %d unregistration requests\n", head
.repeat
);
3110 unreg_resp
.repeat
= head
.repeat
;
3111 registers
= (RDMARegister
*) rdma
->wr_data
[idx
].control_curr
;
3113 for (count
= 0; count
< head
.repeat
; count
++) {
3114 reg
= ®isters
[count
];
3115 network_to_register(reg
);
3117 DDPRINTF("Unregistration request (%d): "
3118 " index %d, chunk %" PRIu64
"\n",
3119 count
, reg
->current_index
, reg
->key
.chunk
);
3121 block
= &(rdma
->local_ram_blocks
.block
[reg
->current_index
]);
3123 ret
= ibv_dereg_mr(block
->pmr
[reg
->key
.chunk
]);
3124 block
->pmr
[reg
->key
.chunk
] = NULL
;
3127 perror("rdma unregistration chunk failed");
3132 rdma
->total_registrations
--;
3134 DDPRINTF("Unregistered chunk %" PRIu64
" successfully.\n",
3138 ret
= qemu_rdma_post_send_control(rdma
, NULL
, &unreg_resp
);
3141 fprintf(stderr
, "Failed to send control buffer!\n");
3145 case RDMA_CONTROL_REGISTER_RESULT
:
3146 fprintf(stderr
, "Invalid RESULT message at dest.\n");
3150 fprintf(stderr
, "Unknown control message %s\n",
3151 control_desc
[head
.type
]);
3158 rdma
->error_state
= ret
;
3163 static int qemu_rdma_registration_start(QEMUFile
*f
, void *opaque
,
3166 QEMUFileRDMA
*rfile
= opaque
;
3167 RDMAContext
*rdma
= rfile
->rdma
;
3169 CHECK_ERROR_STATE();
3171 DDDPRINTF("start section: %" PRIu64
"\n", flags
);
3172 qemu_put_be64(f
, RAM_SAVE_FLAG_HOOK
);
3179 * Inform dest that dynamic registrations are done for now.
3180 * First, flush writes, if any.
3182 static int qemu_rdma_registration_stop(QEMUFile
*f
, void *opaque
,
3185 Error
*local_err
= NULL
, **errp
= &local_err
;
3186 QEMUFileRDMA
*rfile
= opaque
;
3187 RDMAContext
*rdma
= rfile
->rdma
;
3188 RDMAControlHeader head
= { .len
= 0, .repeat
= 1 };
3191 CHECK_ERROR_STATE();
3194 ret
= qemu_rdma_drain_cq(f
, rdma
);
3200 if (flags
== RAM_CONTROL_SETUP
) {
3201 RDMAControlHeader resp
= {.type
= RDMA_CONTROL_RAM_BLOCKS_RESULT
};
3202 RDMALocalBlocks
*local
= &rdma
->local_ram_blocks
;
3203 int reg_result_idx
, i
, j
, nb_remote_blocks
;
3205 head
.type
= RDMA_CONTROL_RAM_BLOCKS_REQUEST
;
3206 DPRINTF("Sending registration setup for ram blocks...\n");
3209 * Make sure that we parallelize the pinning on both sides.
3210 * For very large guests, doing this serially takes a really
3211 * long time, so we have to 'interleave' the pinning locally
3212 * with the control messages by performing the pinning on this
3213 * side before we receive the control response from the other
3214 * side that the pinning has completed.
3216 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, &resp
,
3217 ®_result_idx
, rdma
->pin_all
?
3218 qemu_rdma_reg_whole_ram_blocks
: NULL
);
3220 ERROR(errp
, "receiving remote info!");
3224 nb_remote_blocks
= resp
.len
/ sizeof(RDMARemoteBlock
);
3227 * The protocol uses two different sets of rkeys (mutually exclusive):
3228 * 1. One key to represent the virtual address of the entire ram block.
3229 * (dynamic chunk registration disabled - pin everything with one rkey.)
3230 * 2. One to represent individual chunks within a ram block.
3231 * (dynamic chunk registration enabled - pin individual chunks.)
3233 * Once the capability is successfully negotiated, the destination transmits
3234 * the keys to use (or sends them later) including the virtual addresses
3235 * and then propagates the remote ram block descriptions to his local copy.
3238 if (local
->nb_blocks
!= nb_remote_blocks
) {
3239 ERROR(errp
, "ram blocks mismatch #1! "
3240 "Your QEMU command line parameters are probably "
3241 "not identical on both the source and destination.");
3245 qemu_rdma_move_header(rdma
, reg_result_idx
, &resp
);
3247 rdma
->wr_data
[reg_result_idx
].control_curr
, resp
.len
);
3248 for (i
= 0; i
< nb_remote_blocks
; i
++) {
3249 network_to_remote_block(&rdma
->block
[i
]);
3251 /* search local ram blocks */
3252 for (j
= 0; j
< local
->nb_blocks
; j
++) {
3253 if (rdma
->block
[i
].offset
!= local
->block
[j
].offset
) {
3257 if (rdma
->block
[i
].length
!= local
->block
[j
].length
) {
3258 ERROR(errp
, "ram blocks mismatch #2! "
3259 "Your QEMU command line parameters are probably "
3260 "not identical on both the source and destination.");
3263 local
->block
[j
].remote_host_addr
=
3264 rdma
->block
[i
].remote_host_addr
;
3265 local
->block
[j
].remote_rkey
= rdma
->block
[i
].remote_rkey
;
3269 if (j
>= local
->nb_blocks
) {
3270 ERROR(errp
, "ram blocks mismatch #3! "
3271 "Your QEMU command line parameters are probably "
3272 "not identical on both the source and destination.");
3278 DDDPRINTF("Sending registration finish %" PRIu64
"...\n", flags
);
3280 head
.type
= RDMA_CONTROL_REGISTER_FINISHED
;
3281 ret
= qemu_rdma_exchange_send(rdma
, &head
, NULL
, NULL
, NULL
, NULL
);
3289 rdma
->error_state
= ret
;
3293 static int qemu_rdma_get_fd(void *opaque
)
3295 QEMUFileRDMA
*rfile
= opaque
;
3296 RDMAContext
*rdma
= rfile
->rdma
;
3298 return rdma
->comp_channel
->fd
;
3301 const QEMUFileOps rdma_read_ops
= {
3302 .get_buffer
= qemu_rdma_get_buffer
,
3303 .get_fd
= qemu_rdma_get_fd
,
3304 .close
= qemu_rdma_close
,
3305 .hook_ram_load
= qemu_rdma_registration_handle
,
3308 const QEMUFileOps rdma_write_ops
= {
3309 .put_buffer
= qemu_rdma_put_buffer
,
3310 .close
= qemu_rdma_close
,
3311 .before_ram_iterate
= qemu_rdma_registration_start
,
3312 .after_ram_iterate
= qemu_rdma_registration_stop
,
3313 .save_page
= qemu_rdma_save_page
,
3316 static void *qemu_fopen_rdma(RDMAContext
*rdma
, const char *mode
)
3318 QEMUFileRDMA
*r
= g_malloc0(sizeof(QEMUFileRDMA
));
3320 if (qemu_file_mode_is_not_valid(mode
)) {
3326 if (mode
[0] == 'w') {
3327 r
->file
= qemu_fopen_ops(r
, &rdma_write_ops
);
3329 r
->file
= qemu_fopen_ops(r
, &rdma_read_ops
);
3335 static void rdma_accept_incoming_migration(void *opaque
)
3337 RDMAContext
*rdma
= opaque
;
3340 Error
*local_err
= NULL
, **errp
= &local_err
;
3342 DPRINTF("Accepting rdma connection...\n");
3343 ret
= qemu_rdma_accept(rdma
);
3346 ERROR(errp
, "RDMA Migration initialization failed!");
3350 DPRINTF("Accepted migration\n");
3352 f
= qemu_fopen_rdma(rdma
, "rb");
3354 ERROR(errp
, "could not qemu_fopen_rdma!");
3355 qemu_rdma_cleanup(rdma
);
3359 rdma
->migration_started_on_destination
= 1;
3360 process_incoming_migration(f
);
3363 void rdma_start_incoming_migration(const char *host_port
, Error
**errp
)
3367 Error
*local_err
= NULL
;
3369 DPRINTF("Starting RDMA-based incoming migration\n");
3370 rdma
= qemu_rdma_data_init(host_port
, &local_err
);
3376 ret
= qemu_rdma_dest_init(rdma
, &local_err
);
3382 DPRINTF("qemu_rdma_dest_init success\n");
3384 ret
= rdma_listen(rdma
->listen_id
, 5);
3387 ERROR(errp
, "listening on socket!");
3391 DPRINTF("rdma_listen success\n");
3393 qemu_set_fd_handler2(rdma
->channel
->fd
, NULL
,
3394 rdma_accept_incoming_migration
, NULL
,
3395 (void *)(intptr_t) rdma
);
3398 error_propagate(errp
, local_err
);
3402 void rdma_start_outgoing_migration(void *opaque
,
3403 const char *host_port
, Error
**errp
)
3405 MigrationState
*s
= opaque
;
3406 Error
*local_err
= NULL
, **temp
= &local_err
;
3407 RDMAContext
*rdma
= qemu_rdma_data_init(host_port
, &local_err
);
3411 ERROR(temp
, "Failed to initialize RDMA data structures! %d", ret
);
3415 ret
= qemu_rdma_source_init(rdma
, &local_err
,
3416 s
->enabled_capabilities
[MIGRATION_CAPABILITY_RDMA_PIN_ALL
]);
3422 DPRINTF("qemu_rdma_source_init success\n");
3423 ret
= qemu_rdma_connect(rdma
, &local_err
);
3429 DPRINTF("qemu_rdma_source_connect success\n");
3431 s
->file
= qemu_fopen_rdma(rdma
, "wb");
3432 migrate_fd_connect(s
);
3435 error_propagate(errp
, local_err
);
3437 migrate_fd_error(s
);