2 * vm86 linux syscall support
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
31 # define LOG_VM86(...) qemu_log(__VA_ARGS__);
33 # define LOG_VM86(...) do { } while (0)
37 #define set_flags(X,new,mask) \
38 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
40 #define SAFE_MASK (0xDD5)
41 #define RETURN_MASK (0xDFF)
43 static inline int is_revectored(int nr
, struct target_revectored_struct
*bitmap
)
45 return (((uint8_t *)bitmap
)[nr
>> 3] >> (nr
& 7)) & 1;
48 static inline void vm_putw(uint32_t segptr
, unsigned int reg16
, unsigned int val
)
50 stw(segptr
+ (reg16
& 0xffff), val
);
53 static inline void vm_putl(uint32_t segptr
, unsigned int reg16
, unsigned int val
)
55 stl(segptr
+ (reg16
& 0xffff), val
);
58 static inline unsigned int vm_getb(uint32_t segptr
, unsigned int reg16
)
60 return ldub(segptr
+ (reg16
& 0xffff));
63 static inline unsigned int vm_getw(uint32_t segptr
, unsigned int reg16
)
65 return lduw(segptr
+ (reg16
& 0xffff));
68 static inline unsigned int vm_getl(uint32_t segptr
, unsigned int reg16
)
70 return ldl(segptr
+ (reg16
& 0xffff));
73 void save_v86_state(CPUX86State
*env
)
75 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
76 TaskState
*ts
= cs
->opaque
;
77 struct target_vm86plus_struct
* target_v86
;
79 if (!lock_user_struct(VERIFY_WRITE
, target_v86
, ts
->target_v86
, 0))
80 /* FIXME - should return an error */
82 /* put the VM86 registers in the userspace register structure */
83 target_v86
->regs
.eax
= tswap32(env
->regs
[R_EAX
]);
84 target_v86
->regs
.ebx
= tswap32(env
->regs
[R_EBX
]);
85 target_v86
->regs
.ecx
= tswap32(env
->regs
[R_ECX
]);
86 target_v86
->regs
.edx
= tswap32(env
->regs
[R_EDX
]);
87 target_v86
->regs
.esi
= tswap32(env
->regs
[R_ESI
]);
88 target_v86
->regs
.edi
= tswap32(env
->regs
[R_EDI
]);
89 target_v86
->regs
.ebp
= tswap32(env
->regs
[R_EBP
]);
90 target_v86
->regs
.esp
= tswap32(env
->regs
[R_ESP
]);
91 target_v86
->regs
.eip
= tswap32(env
->eip
);
92 target_v86
->regs
.cs
= tswap16(env
->segs
[R_CS
].selector
);
93 target_v86
->regs
.ss
= tswap16(env
->segs
[R_SS
].selector
);
94 target_v86
->regs
.ds
= tswap16(env
->segs
[R_DS
].selector
);
95 target_v86
->regs
.es
= tswap16(env
->segs
[R_ES
].selector
);
96 target_v86
->regs
.fs
= tswap16(env
->segs
[R_FS
].selector
);
97 target_v86
->regs
.gs
= tswap16(env
->segs
[R_GS
].selector
);
98 set_flags(env
->eflags
, ts
->v86flags
, VIF_MASK
| ts
->v86mask
);
99 target_v86
->regs
.eflags
= tswap32(env
->eflags
);
100 unlock_user_struct(target_v86
, ts
->target_v86
, 1);
101 LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
102 env
->eflags
, env
->segs
[R_CS
].selector
, env
->eip
);
104 /* restore 32 bit registers */
105 env
->regs
[R_EAX
] = ts
->vm86_saved_regs
.eax
;
106 env
->regs
[R_EBX
] = ts
->vm86_saved_regs
.ebx
;
107 env
->regs
[R_ECX
] = ts
->vm86_saved_regs
.ecx
;
108 env
->regs
[R_EDX
] = ts
->vm86_saved_regs
.edx
;
109 env
->regs
[R_ESI
] = ts
->vm86_saved_regs
.esi
;
110 env
->regs
[R_EDI
] = ts
->vm86_saved_regs
.edi
;
111 env
->regs
[R_EBP
] = ts
->vm86_saved_regs
.ebp
;
112 env
->regs
[R_ESP
] = ts
->vm86_saved_regs
.esp
;
113 env
->eflags
= ts
->vm86_saved_regs
.eflags
;
114 env
->eip
= ts
->vm86_saved_regs
.eip
;
116 cpu_x86_load_seg(env
, R_CS
, ts
->vm86_saved_regs
.cs
);
117 cpu_x86_load_seg(env
, R_SS
, ts
->vm86_saved_regs
.ss
);
118 cpu_x86_load_seg(env
, R_DS
, ts
->vm86_saved_regs
.ds
);
119 cpu_x86_load_seg(env
, R_ES
, ts
->vm86_saved_regs
.es
);
120 cpu_x86_load_seg(env
, R_FS
, ts
->vm86_saved_regs
.fs
);
121 cpu_x86_load_seg(env
, R_GS
, ts
->vm86_saved_regs
.gs
);
124 /* return from vm86 mode to 32 bit. The vm86() syscall will return
126 static inline void return_to_32bit(CPUX86State
*env
, int retval
)
128 LOG_VM86("return_to_32bit: ret=0x%x\n", retval
);
130 env
->regs
[R_EAX
] = retval
;
133 static inline int set_IF(CPUX86State
*env
)
135 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
136 TaskState
*ts
= cs
->opaque
;
138 ts
->v86flags
|= VIF_MASK
;
139 if (ts
->v86flags
& VIP_MASK
) {
140 return_to_32bit(env
, TARGET_VM86_STI
);
146 static inline void clear_IF(CPUX86State
*env
)
148 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
149 TaskState
*ts
= cs
->opaque
;
151 ts
->v86flags
&= ~VIF_MASK
;
154 static inline void clear_TF(CPUX86State
*env
)
156 env
->eflags
&= ~TF_MASK
;
159 static inline void clear_AC(CPUX86State
*env
)
161 env
->eflags
&= ~AC_MASK
;
164 static inline int set_vflags_long(unsigned long eflags
, CPUX86State
*env
)
166 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
167 TaskState
*ts
= cs
->opaque
;
169 set_flags(ts
->v86flags
, eflags
, ts
->v86mask
);
170 set_flags(env
->eflags
, eflags
, SAFE_MASK
);
171 if (eflags
& IF_MASK
)
178 static inline int set_vflags_short(unsigned short flags
, CPUX86State
*env
)
180 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
181 TaskState
*ts
= cs
->opaque
;
183 set_flags(ts
->v86flags
, flags
, ts
->v86mask
& 0xffff);
184 set_flags(env
->eflags
, flags
, SAFE_MASK
);
192 static inline unsigned int get_vflags(CPUX86State
*env
)
194 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
195 TaskState
*ts
= cs
->opaque
;
198 flags
= env
->eflags
& RETURN_MASK
;
199 if (ts
->v86flags
& VIF_MASK
)
202 return flags
| (ts
->v86flags
& ts
->v86mask
);
205 #define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
207 /* handle VM86 interrupt (NOTE: the CPU core currently does not
208 support TSS interrupt revectoring, so this code is always executed) */
209 static void do_int(CPUX86State
*env
, int intno
)
211 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
212 TaskState
*ts
= cs
->opaque
;
213 uint32_t int_addr
, segoffs
, ssp
;
216 if (env
->segs
[R_CS
].selector
== TARGET_BIOSSEG
)
218 if (is_revectored(intno
, &ts
->vm86plus
.int_revectored
))
220 if (intno
== 0x21 && is_revectored((env
->regs
[R_EAX
] >> 8) & 0xff,
221 &ts
->vm86plus
.int21_revectored
))
223 int_addr
= (intno
<< 2);
224 segoffs
= ldl(int_addr
);
225 if ((segoffs
>> 16) == TARGET_BIOSSEG
)
227 LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
228 intno
, segoffs
>> 16, segoffs
& 0xffff);
230 ssp
= env
->segs
[R_SS
].selector
<< 4;
231 sp
= env
->regs
[R_ESP
] & 0xffff;
232 vm_putw(ssp
, sp
- 2, get_vflags(env
));
233 vm_putw(ssp
, sp
- 4, env
->segs
[R_CS
].selector
);
234 vm_putw(ssp
, sp
- 6, env
->eip
);
235 ADD16(env
->regs
[R_ESP
], -6);
236 /* goto interrupt handler */
237 env
->eip
= segoffs
& 0xffff;
238 cpu_x86_load_seg(env
, R_CS
, segoffs
>> 16);
244 LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno
);
245 return_to_32bit(env
, TARGET_VM86_INTx
| (intno
<< 8));
248 void handle_vm86_trap(CPUX86State
*env
, int trapno
)
250 if (trapno
== 1 || trapno
== 3) {
251 return_to_32bit(env
, TARGET_VM86_TRAP
+ (trapno
<< 8));
257 #define CHECK_IF_IN_TRAP() \
258 if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
259 (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
262 #define VM86_FAULT_RETURN \
263 if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
264 (ts->v86flags & (IF_MASK | VIF_MASK))) \
265 return_to_32bit(env, TARGET_VM86_PICRETURN); \
268 void handle_vm86_fault(CPUX86State
*env
)
270 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
271 TaskState
*ts
= cs
->opaque
;
273 unsigned int ip
, sp
, newflags
, newip
, newcs
, opcode
, intno
;
274 int data32
, pref_done
;
276 csp
= env
->segs
[R_CS
].selector
<< 4;
277 ip
= env
->eip
& 0xffff;
279 ssp
= env
->segs
[R_SS
].selector
<< 4;
280 sp
= env
->regs
[R_ESP
] & 0xffff;
282 LOG_VM86("VM86 exception %04x:%08x\n",
283 env
->segs
[R_CS
].selector
, env
->eip
);
288 opcode
= vm_getb(csp
, ip
);
291 case 0x66: /* 32-bit data */ data32
=1; break;
292 case 0x67: /* 32-bit address */ break;
293 case 0x2e: /* CS */ break;
294 case 0x3e: /* DS */ break;
295 case 0x26: /* ES */ break;
296 case 0x36: /* SS */ break;
297 case 0x65: /* GS */ break;
298 case 0x64: /* FS */ break;
299 case 0xf2: /* repnz */ break;
300 case 0xf3: /* rep */ break;
301 default: pref_done
= 1;
303 } while (!pref_done
);
307 case 0x9c: /* pushf */
309 vm_putl(ssp
, sp
- 4, get_vflags(env
));
310 ADD16(env
->regs
[R_ESP
], -4);
312 vm_putw(ssp
, sp
- 2, get_vflags(env
));
313 ADD16(env
->regs
[R_ESP
], -2);
318 case 0x9d: /* popf */
320 newflags
= vm_getl(ssp
, sp
);
321 ADD16(env
->regs
[R_ESP
], 4);
323 newflags
= vm_getw(ssp
, sp
);
324 ADD16(env
->regs
[R_ESP
], 2);
329 if (set_vflags_long(newflags
, env
))
332 if (set_vflags_short(newflags
, env
))
338 intno
= vm_getb(csp
, ip
);
341 if (ts
->vm86plus
.vm86plus
.flags
& TARGET_vm86dbg_active
) {
342 if ( (ts
->vm86plus
.vm86plus
.vm86dbg_intxxtab
[intno
>> 3] >>
344 return_to_32bit(env
, TARGET_VM86_INTx
+ (intno
<< 8));
351 case 0xcf: /* iret */
353 newip
= vm_getl(ssp
, sp
) & 0xffff;
354 newcs
= vm_getl(ssp
, sp
+ 4) & 0xffff;
355 newflags
= vm_getl(ssp
, sp
+ 8);
356 ADD16(env
->regs
[R_ESP
], 12);
358 newip
= vm_getw(ssp
, sp
);
359 newcs
= vm_getw(ssp
, sp
+ 2);
360 newflags
= vm_getw(ssp
, sp
+ 4);
361 ADD16(env
->regs
[R_ESP
], 6);
364 cpu_x86_load_seg(env
, R_CS
, newcs
);
367 if (set_vflags_long(newflags
, env
))
370 if (set_vflags_short(newflags
, env
))
387 /* real VM86 GPF exception */
388 return_to_32bit(env
, TARGET_VM86_UNKNOWN
);
393 int do_vm86(CPUX86State
*env
, long subfunction
, abi_ulong vm86_addr
)
395 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
396 TaskState
*ts
= cs
->opaque
;
397 struct target_vm86plus_struct
* target_v86
;
400 switch (subfunction
) {
401 case TARGET_VM86_REQUEST_IRQ
:
402 case TARGET_VM86_FREE_IRQ
:
403 case TARGET_VM86_GET_IRQ_BITS
:
404 case TARGET_VM86_GET_AND_RESET_IRQ
:
405 gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction
);
406 ret
= -TARGET_EINVAL
;
408 case TARGET_VM86_PLUS_INSTALL_CHECK
:
409 /* NOTE: on old vm86 stuff this will return the error
410 from verify_area(), because the subfunction is
411 interpreted as (invalid) address to vm86_struct.
412 So the installation check works.
418 /* save current CPU regs */
419 ts
->vm86_saved_regs
.eax
= 0; /* default vm86 syscall return code */
420 ts
->vm86_saved_regs
.ebx
= env
->regs
[R_EBX
];
421 ts
->vm86_saved_regs
.ecx
= env
->regs
[R_ECX
];
422 ts
->vm86_saved_regs
.edx
= env
->regs
[R_EDX
];
423 ts
->vm86_saved_regs
.esi
= env
->regs
[R_ESI
];
424 ts
->vm86_saved_regs
.edi
= env
->regs
[R_EDI
];
425 ts
->vm86_saved_regs
.ebp
= env
->regs
[R_EBP
];
426 ts
->vm86_saved_regs
.esp
= env
->regs
[R_ESP
];
427 ts
->vm86_saved_regs
.eflags
= env
->eflags
;
428 ts
->vm86_saved_regs
.eip
= env
->eip
;
429 ts
->vm86_saved_regs
.cs
= env
->segs
[R_CS
].selector
;
430 ts
->vm86_saved_regs
.ss
= env
->segs
[R_SS
].selector
;
431 ts
->vm86_saved_regs
.ds
= env
->segs
[R_DS
].selector
;
432 ts
->vm86_saved_regs
.es
= env
->segs
[R_ES
].selector
;
433 ts
->vm86_saved_regs
.fs
= env
->segs
[R_FS
].selector
;
434 ts
->vm86_saved_regs
.gs
= env
->segs
[R_GS
].selector
;
436 ts
->target_v86
= vm86_addr
;
437 if (!lock_user_struct(VERIFY_READ
, target_v86
, vm86_addr
, 1))
438 return -TARGET_EFAULT
;
439 /* build vm86 CPU state */
440 ts
->v86flags
= tswap32(target_v86
->regs
.eflags
);
441 env
->eflags
= (env
->eflags
& ~SAFE_MASK
) |
442 (tswap32(target_v86
->regs
.eflags
) & SAFE_MASK
) | VM_MASK
;
444 ts
->vm86plus
.cpu_type
= tswapal(target_v86
->cpu_type
);
445 switch (ts
->vm86plus
.cpu_type
) {
450 ts
->v86mask
= NT_MASK
| IOPL_MASK
;
453 ts
->v86mask
= AC_MASK
| NT_MASK
| IOPL_MASK
;
456 ts
->v86mask
= ID_MASK
| AC_MASK
| NT_MASK
| IOPL_MASK
;
460 env
->regs
[R_EBX
] = tswap32(target_v86
->regs
.ebx
);
461 env
->regs
[R_ECX
] = tswap32(target_v86
->regs
.ecx
);
462 env
->regs
[R_EDX
] = tswap32(target_v86
->regs
.edx
);
463 env
->regs
[R_ESI
] = tswap32(target_v86
->regs
.esi
);
464 env
->regs
[R_EDI
] = tswap32(target_v86
->regs
.edi
);
465 env
->regs
[R_EBP
] = tswap32(target_v86
->regs
.ebp
);
466 env
->regs
[R_ESP
] = tswap32(target_v86
->regs
.esp
);
467 env
->eip
= tswap32(target_v86
->regs
.eip
);
468 cpu_x86_load_seg(env
, R_CS
, tswap16(target_v86
->regs
.cs
));
469 cpu_x86_load_seg(env
, R_SS
, tswap16(target_v86
->regs
.ss
));
470 cpu_x86_load_seg(env
, R_DS
, tswap16(target_v86
->regs
.ds
));
471 cpu_x86_load_seg(env
, R_ES
, tswap16(target_v86
->regs
.es
));
472 cpu_x86_load_seg(env
, R_FS
, tswap16(target_v86
->regs
.fs
));
473 cpu_x86_load_seg(env
, R_GS
, tswap16(target_v86
->regs
.gs
));
474 ret
= tswap32(target_v86
->regs
.eax
); /* eax will be restored at
475 the end of the syscall */
476 memcpy(&ts
->vm86plus
.int_revectored
,
477 &target_v86
->int_revectored
, 32);
478 memcpy(&ts
->vm86plus
.int21_revectored
,
479 &target_v86
->int21_revectored
, 32);
480 ts
->vm86plus
.vm86plus
.flags
= tswapal(target_v86
->vm86plus
.flags
);
481 memcpy(&ts
->vm86plus
.vm86plus
.vm86dbg_intxxtab
,
482 target_v86
->vm86plus
.vm86dbg_intxxtab
, 32);
483 unlock_user_struct(target_v86
, vm86_addr
, 0);
485 LOG_VM86("do_vm86: cs:ip=%04x:%04x\n",
486 env
->segs
[R_CS
].selector
, env
->eip
);
487 /* now the virtual CPU is ready for vm86 execution ! */