4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
31 #include "sysemu/kvm.h"
33 #include "qapi/visitor.h"
34 #include "hw/qdev-properties.h"
37 #ifndef CONFIG_USER_ONLY
38 static uint64_t a57_a53_l2ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
40 ARMCPU
*cpu
= env_archcpu(env
);
42 /* Number of cores is in [25:24]; otherwise we RAZ */
43 return (cpu
->core_count
- 1) << 24;
47 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo
[] = {
48 #ifndef CONFIG_USER_ONLY
49 { .name
= "L2CTLR_EL1", .state
= ARM_CP_STATE_AA64
,
50 .opc0
= 3, .opc1
= 1, .crn
= 11, .crm
= 0, .opc2
= 2,
51 .access
= PL1_RW
, .readfn
= a57_a53_l2ctlr_read
,
52 .writefn
= arm_cp_write_ignore
},
54 .cp
= 15, .opc1
= 1, .crn
= 9, .crm
= 0, .opc2
= 2,
55 .access
= PL1_RW
, .readfn
= a57_a53_l2ctlr_read
,
56 .writefn
= arm_cp_write_ignore
},
58 { .name
= "L2ECTLR_EL1", .state
= ARM_CP_STATE_AA64
,
59 .opc0
= 3, .opc1
= 1, .crn
= 11, .crm
= 0, .opc2
= 3,
60 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
62 .cp
= 15, .opc1
= 1, .crn
= 9, .crm
= 0, .opc2
= 3,
63 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
64 { .name
= "L2ACTLR", .state
= ARM_CP_STATE_BOTH
,
65 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 0, .opc2
= 0,
66 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
67 { .name
= "CPUACTLR_EL1", .state
= ARM_CP_STATE_AA64
,
68 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 0,
69 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
71 .cp
= 15, .opc1
= 0, .crm
= 15,
72 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
73 { .name
= "CPUECTLR_EL1", .state
= ARM_CP_STATE_AA64
,
74 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 1,
75 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
77 .cp
= 15, .opc1
= 1, .crm
= 15,
78 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
79 { .name
= "CPUMERRSR_EL1", .state
= ARM_CP_STATE_AA64
,
80 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 2,
81 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
82 { .name
= "CPUMERRSR",
83 .cp
= 15, .opc1
= 2, .crm
= 15,
84 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
85 { .name
= "L2MERRSR_EL1", .state
= ARM_CP_STATE_AA64
,
86 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 3,
87 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
89 .cp
= 15, .opc1
= 3, .crm
= 15,
90 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
94 static void aarch64_a57_initfn(Object
*obj
)
96 ARMCPU
*cpu
= ARM_CPU(obj
);
98 cpu
->dtb_compatible
= "arm,cortex-a57";
99 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
100 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
101 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
102 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
103 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
104 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
105 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
106 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
107 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A57
;
108 cpu
->midr
= 0x411fd070;
109 cpu
->revidr
= 0x00000000;
110 cpu
->reset_fpsid
= 0x41034070;
111 cpu
->isar
.mvfr0
= 0x10110222;
112 cpu
->isar
.mvfr1
= 0x12111111;
113 cpu
->isar
.mvfr2
= 0x00000043;
114 cpu
->ctr
= 0x8444c004;
115 cpu
->reset_sctlr
= 0x00c50838;
116 cpu
->isar
.id_pfr0
= 0x00000131;
117 cpu
->isar
.id_pfr1
= 0x00011011;
118 cpu
->isar
.id_dfr0
= 0x03010066;
119 cpu
->id_afr0
= 0x00000000;
120 cpu
->isar
.id_mmfr0
= 0x10101105;
121 cpu
->isar
.id_mmfr1
= 0x40000000;
122 cpu
->isar
.id_mmfr2
= 0x01260000;
123 cpu
->isar
.id_mmfr3
= 0x02102211;
124 cpu
->isar
.id_isar0
= 0x02101110;
125 cpu
->isar
.id_isar1
= 0x13112111;
126 cpu
->isar
.id_isar2
= 0x21232042;
127 cpu
->isar
.id_isar3
= 0x01112131;
128 cpu
->isar
.id_isar4
= 0x00011142;
129 cpu
->isar
.id_isar5
= 0x00011121;
130 cpu
->isar
.id_isar6
= 0;
131 cpu
->isar
.id_aa64pfr0
= 0x00002222;
132 cpu
->isar
.id_aa64dfr0
= 0x10305106;
133 cpu
->isar
.id_aa64isar0
= 0x00011120;
134 cpu
->isar
.id_aa64mmfr0
= 0x00001124;
135 cpu
->isar
.dbgdidr
= 0x3516d000;
136 cpu
->clidr
= 0x0a200023;
137 cpu
->ccsidr
[0] = 0x701fe00a; /* 32KB L1 dcache */
138 cpu
->ccsidr
[1] = 0x201fe012; /* 48KB L1 icache */
139 cpu
->ccsidr
[2] = 0x70ffe07a; /* 2048KB L2 cache */
140 cpu
->dcz_blocksize
= 4; /* 64 bytes */
141 cpu
->gic_num_lrs
= 4;
142 cpu
->gic_vpribits
= 5;
143 cpu
->gic_vprebits
= 5;
144 define_arm_cp_regs(cpu
, cortex_a72_a57_a53_cp_reginfo
);
147 static void aarch64_a53_initfn(Object
*obj
)
149 ARMCPU
*cpu
= ARM_CPU(obj
);
151 cpu
->dtb_compatible
= "arm,cortex-a53";
152 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
153 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
154 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
155 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
156 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
157 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
158 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
159 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
160 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A53
;
161 cpu
->midr
= 0x410fd034;
162 cpu
->revidr
= 0x00000000;
163 cpu
->reset_fpsid
= 0x41034070;
164 cpu
->isar
.mvfr0
= 0x10110222;
165 cpu
->isar
.mvfr1
= 0x12111111;
166 cpu
->isar
.mvfr2
= 0x00000043;
167 cpu
->ctr
= 0x84448004; /* L1Ip = VIPT */
168 cpu
->reset_sctlr
= 0x00c50838;
169 cpu
->isar
.id_pfr0
= 0x00000131;
170 cpu
->isar
.id_pfr1
= 0x00011011;
171 cpu
->isar
.id_dfr0
= 0x03010066;
172 cpu
->id_afr0
= 0x00000000;
173 cpu
->isar
.id_mmfr0
= 0x10101105;
174 cpu
->isar
.id_mmfr1
= 0x40000000;
175 cpu
->isar
.id_mmfr2
= 0x01260000;
176 cpu
->isar
.id_mmfr3
= 0x02102211;
177 cpu
->isar
.id_isar0
= 0x02101110;
178 cpu
->isar
.id_isar1
= 0x13112111;
179 cpu
->isar
.id_isar2
= 0x21232042;
180 cpu
->isar
.id_isar3
= 0x01112131;
181 cpu
->isar
.id_isar4
= 0x00011142;
182 cpu
->isar
.id_isar5
= 0x00011121;
183 cpu
->isar
.id_isar6
= 0;
184 cpu
->isar
.id_aa64pfr0
= 0x00002222;
185 cpu
->isar
.id_aa64dfr0
= 0x10305106;
186 cpu
->isar
.id_aa64isar0
= 0x00011120;
187 cpu
->isar
.id_aa64mmfr0
= 0x00001122; /* 40 bit physical addr */
188 cpu
->isar
.dbgdidr
= 0x3516d000;
189 cpu
->clidr
= 0x0a200023;
190 cpu
->ccsidr
[0] = 0x700fe01a; /* 32KB L1 dcache */
191 cpu
->ccsidr
[1] = 0x201fe00a; /* 32KB L1 icache */
192 cpu
->ccsidr
[2] = 0x707fe07a; /* 1024KB L2 cache */
193 cpu
->dcz_blocksize
= 4; /* 64 bytes */
194 cpu
->gic_num_lrs
= 4;
195 cpu
->gic_vpribits
= 5;
196 cpu
->gic_vprebits
= 5;
197 define_arm_cp_regs(cpu
, cortex_a72_a57_a53_cp_reginfo
);
200 static void aarch64_a72_initfn(Object
*obj
)
202 ARMCPU
*cpu
= ARM_CPU(obj
);
204 cpu
->dtb_compatible
= "arm,cortex-a72";
205 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
206 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
207 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
208 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
209 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
210 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
211 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
212 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
213 cpu
->midr
= 0x410fd083;
214 cpu
->revidr
= 0x00000000;
215 cpu
->reset_fpsid
= 0x41034080;
216 cpu
->isar
.mvfr0
= 0x10110222;
217 cpu
->isar
.mvfr1
= 0x12111111;
218 cpu
->isar
.mvfr2
= 0x00000043;
219 cpu
->ctr
= 0x8444c004;
220 cpu
->reset_sctlr
= 0x00c50838;
221 cpu
->isar
.id_pfr0
= 0x00000131;
222 cpu
->isar
.id_pfr1
= 0x00011011;
223 cpu
->isar
.id_dfr0
= 0x03010066;
224 cpu
->id_afr0
= 0x00000000;
225 cpu
->isar
.id_mmfr0
= 0x10201105;
226 cpu
->isar
.id_mmfr1
= 0x40000000;
227 cpu
->isar
.id_mmfr2
= 0x01260000;
228 cpu
->isar
.id_mmfr3
= 0x02102211;
229 cpu
->isar
.id_isar0
= 0x02101110;
230 cpu
->isar
.id_isar1
= 0x13112111;
231 cpu
->isar
.id_isar2
= 0x21232042;
232 cpu
->isar
.id_isar3
= 0x01112131;
233 cpu
->isar
.id_isar4
= 0x00011142;
234 cpu
->isar
.id_isar5
= 0x00011121;
235 cpu
->isar
.id_aa64pfr0
= 0x00002222;
236 cpu
->isar
.id_aa64dfr0
= 0x10305106;
237 cpu
->isar
.id_aa64isar0
= 0x00011120;
238 cpu
->isar
.id_aa64mmfr0
= 0x00001124;
239 cpu
->isar
.dbgdidr
= 0x3516d000;
240 cpu
->clidr
= 0x0a200023;
241 cpu
->ccsidr
[0] = 0x701fe00a; /* 32KB L1 dcache */
242 cpu
->ccsidr
[1] = 0x201fe012; /* 48KB L1 icache */
243 cpu
->ccsidr
[2] = 0x707fe07a; /* 1MB L2 cache */
244 cpu
->dcz_blocksize
= 4; /* 64 bytes */
245 cpu
->gic_num_lrs
= 4;
246 cpu
->gic_vpribits
= 5;
247 cpu
->gic_vprebits
= 5;
248 define_arm_cp_regs(cpu
, cortex_a72_a57_a53_cp_reginfo
);
251 void arm_cpu_sve_finalize(ARMCPU
*cpu
, Error
**errp
)
254 * If any vector lengths are explicitly enabled with sve<N> properties,
255 * then all other lengths are implicitly disabled. If sve-max-vq is
256 * specified then it is the same as explicitly enabling all lengths
257 * up to and including the specified maximum, which means all larger
258 * lengths will be implicitly disabled. If no sve<N> properties
259 * are enabled and sve-max-vq is not specified, then all lengths not
260 * explicitly disabled will be enabled. Additionally, all power-of-two
261 * vector lengths less than the maximum enabled length will be
262 * automatically enabled and all vector lengths larger than the largest
263 * disabled power-of-two vector length will be automatically disabled.
264 * Errors are generated if the user provided input that interferes with
265 * any of the above. Finally, if SVE is not disabled, then at least one
266 * vector length must be enabled.
268 DECLARE_BITMAP(kvm_supported
, ARM_MAX_VQ
);
269 DECLARE_BITMAP(tmp
, ARM_MAX_VQ
);
270 uint32_t vq
, max_vq
= 0;
272 /* Collect the set of vector lengths supported by KVM. */
273 bitmap_zero(kvm_supported
, ARM_MAX_VQ
);
274 if (kvm_enabled() && kvm_arm_sve_supported()) {
275 kvm_arm_sve_get_vls(CPU(cpu
), kvm_supported
);
276 } else if (kvm_enabled()) {
277 assert(!cpu_isar_feature(aa64_sve
, cpu
));
281 * Process explicit sve<N> properties.
282 * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
283 * Check first for any sve<N> enabled.
285 if (!bitmap_empty(cpu
->sve_vq_map
, ARM_MAX_VQ
)) {
286 max_vq
= find_last_bit(cpu
->sve_vq_map
, ARM_MAX_VQ
) + 1;
288 if (cpu
->sve_max_vq
&& max_vq
> cpu
->sve_max_vq
) {
289 error_setg(errp
, "cannot enable sve%d", max_vq
* 128);
290 error_append_hint(errp
, "sve%d is larger than the maximum vector "
291 "length, sve-max-vq=%d (%d bits)\n",
292 max_vq
* 128, cpu
->sve_max_vq
,
293 cpu
->sve_max_vq
* 128);
299 * For KVM we have to automatically enable all supported unitialized
300 * lengths, even when the smaller lengths are not all powers-of-two.
302 bitmap_andnot(tmp
, kvm_supported
, cpu
->sve_vq_init
, max_vq
);
303 bitmap_or(cpu
->sve_vq_map
, cpu
->sve_vq_map
, tmp
, max_vq
);
305 /* Propagate enabled bits down through required powers-of-two. */
306 for (vq
= pow2floor(max_vq
); vq
>= 1; vq
>>= 1) {
307 if (!test_bit(vq
- 1, cpu
->sve_vq_init
)) {
308 set_bit(vq
- 1, cpu
->sve_vq_map
);
312 } else if (cpu
->sve_max_vq
== 0) {
314 * No explicit bits enabled, and no implicit bits from sve-max-vq.
316 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
317 /* SVE is disabled and so are all vector lengths. Good. */
322 /* Disabling a supported length disables all larger lengths. */
323 for (vq
= 1; vq
<= ARM_MAX_VQ
; ++vq
) {
324 if (test_bit(vq
- 1, cpu
->sve_vq_init
) &&
325 test_bit(vq
- 1, kvm_supported
)) {
329 max_vq
= vq
<= ARM_MAX_VQ
? vq
- 1 : ARM_MAX_VQ
;
330 bitmap_andnot(cpu
->sve_vq_map
, kvm_supported
,
331 cpu
->sve_vq_init
, max_vq
);
332 if (max_vq
== 0 || bitmap_empty(cpu
->sve_vq_map
, max_vq
)) {
333 error_setg(errp
, "cannot disable sve%d", vq
* 128);
334 error_append_hint(errp
, "Disabling sve%d results in all "
335 "vector lengths being disabled.\n",
337 error_append_hint(errp
, "With SVE enabled, at least one "
338 "vector length must be enabled.\n");
342 /* Disabling a power-of-two disables all larger lengths. */
343 if (test_bit(0, cpu
->sve_vq_init
)) {
344 error_setg(errp
, "cannot disable sve128");
345 error_append_hint(errp
, "Disabling sve128 results in all "
346 "vector lengths being disabled.\n");
347 error_append_hint(errp
, "With SVE enabled, at least one "
348 "vector length must be enabled.\n");
351 for (vq
= 2; vq
<= ARM_MAX_VQ
; vq
<<= 1) {
352 if (test_bit(vq
- 1, cpu
->sve_vq_init
)) {
356 max_vq
= vq
<= ARM_MAX_VQ
? vq
- 1 : ARM_MAX_VQ
;
357 bitmap_complement(cpu
->sve_vq_map
, cpu
->sve_vq_init
, max_vq
);
360 max_vq
= find_last_bit(cpu
->sve_vq_map
, max_vq
) + 1;
364 * Process the sve-max-vq property.
365 * Note that we know from the above that no bit above
366 * sve-max-vq is currently set.
368 if (cpu
->sve_max_vq
!= 0) {
369 max_vq
= cpu
->sve_max_vq
;
371 if (!test_bit(max_vq
- 1, cpu
->sve_vq_map
) &&
372 test_bit(max_vq
- 1, cpu
->sve_vq_init
)) {
373 error_setg(errp
, "cannot disable sve%d", max_vq
* 128);
374 error_append_hint(errp
, "The maximum vector length must be "
375 "enabled, sve-max-vq=%d (%d bits)\n",
376 max_vq
, max_vq
* 128);
380 /* Set all bits not explicitly set within sve-max-vq. */
381 bitmap_complement(tmp
, cpu
->sve_vq_init
, max_vq
);
382 bitmap_or(cpu
->sve_vq_map
, cpu
->sve_vq_map
, tmp
, max_vq
);
386 * We should know what max-vq is now. Also, as we're done
387 * manipulating sve-vq-map, we ensure any bits above max-vq
388 * are clear, just in case anybody looks.
391 bitmap_clear(cpu
->sve_vq_map
, max_vq
, ARM_MAX_VQ
- max_vq
);
394 /* Ensure the set of lengths matches what KVM supports. */
395 bitmap_xor(tmp
, cpu
->sve_vq_map
, kvm_supported
, max_vq
);
396 if (!bitmap_empty(tmp
, max_vq
)) {
397 vq
= find_last_bit(tmp
, max_vq
) + 1;
398 if (test_bit(vq
- 1, cpu
->sve_vq_map
)) {
399 if (cpu
->sve_max_vq
) {
400 error_setg(errp
, "cannot set sve-max-vq=%d",
402 error_append_hint(errp
, "This KVM host does not support "
403 "the vector length %d-bits.\n",
405 error_append_hint(errp
, "It may not be possible to use "
406 "sve-max-vq with this KVM host. Try "
407 "using only sve<N> properties.\n");
409 error_setg(errp
, "cannot enable sve%d", vq
* 128);
410 error_append_hint(errp
, "This KVM host does not support "
411 "the vector length %d-bits.\n",
415 error_setg(errp
, "cannot disable sve%d", vq
* 128);
416 error_append_hint(errp
, "The KVM host requires all "
417 "supported vector lengths smaller "
418 "than %d bits to also be enabled.\n",
424 /* Ensure all required powers-of-two are enabled. */
425 for (vq
= pow2floor(max_vq
); vq
>= 1; vq
>>= 1) {
426 if (!test_bit(vq
- 1, cpu
->sve_vq_map
)) {
427 error_setg(errp
, "cannot disable sve%d", vq
* 128);
428 error_append_hint(errp
, "sve%d is required as it "
429 "is a power-of-two length smaller than "
430 "the maximum, sve%d\n",
431 vq
* 128, max_vq
* 128);
438 * Now that we validated all our vector lengths, the only question
439 * left to answer is if we even want SVE at all.
441 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
442 error_setg(errp
, "cannot enable sve%d", max_vq
* 128);
443 error_append_hint(errp
, "SVE must be enabled to enable vector "
445 error_append_hint(errp
, "Add sve=on to the CPU property list.\n");
449 /* From now on sve_max_vq is the actual maximum supported length. */
450 cpu
->sve_max_vq
= max_vq
;
453 static void cpu_max_get_sve_max_vq(Object
*obj
, Visitor
*v
, const char *name
,
454 void *opaque
, Error
**errp
)
456 ARMCPU
*cpu
= ARM_CPU(obj
);
459 /* All vector lengths are disabled when SVE is off. */
460 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
463 value
= cpu
->sve_max_vq
;
465 visit_type_uint32(v
, name
, &value
, errp
);
468 static void cpu_max_set_sve_max_vq(Object
*obj
, Visitor
*v
, const char *name
,
469 void *opaque
, Error
**errp
)
471 ARMCPU
*cpu
= ARM_CPU(obj
);
474 if (!visit_type_uint32(v
, name
, &max_vq
, errp
)) {
478 if (kvm_enabled() && !kvm_arm_sve_supported()) {
479 error_setg(errp
, "cannot set sve-max-vq");
480 error_append_hint(errp
, "SVE not supported by KVM on this host\n");
484 if (max_vq
== 0 || max_vq
> ARM_MAX_VQ
) {
485 error_setg(errp
, "unsupported SVE vector length");
486 error_append_hint(errp
, "Valid sve-max-vq in range [1-%d]\n",
491 cpu
->sve_max_vq
= max_vq
;
495 * Note that cpu_arm_get/set_sve_vq cannot use the simpler
496 * object_property_add_bool interface because they make use
497 * of the contents of "name" to determine which bit on which
500 static void cpu_arm_get_sve_vq(Object
*obj
, Visitor
*v
, const char *name
,
501 void *opaque
, Error
**errp
)
503 ARMCPU
*cpu
= ARM_CPU(obj
);
504 uint32_t vq
= atoi(&name
[3]) / 128;
507 /* All vector lengths are disabled when SVE is off. */
508 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
511 value
= test_bit(vq
- 1, cpu
->sve_vq_map
);
513 visit_type_bool(v
, name
, &value
, errp
);
516 static void cpu_arm_set_sve_vq(Object
*obj
, Visitor
*v
, const char *name
,
517 void *opaque
, Error
**errp
)
519 ARMCPU
*cpu
= ARM_CPU(obj
);
520 uint32_t vq
= atoi(&name
[3]) / 128;
523 if (!visit_type_bool(v
, name
, &value
, errp
)) {
527 if (value
&& kvm_enabled() && !kvm_arm_sve_supported()) {
528 error_setg(errp
, "cannot enable %s", name
);
529 error_append_hint(errp
, "SVE not supported by KVM on this host\n");
534 set_bit(vq
- 1, cpu
->sve_vq_map
);
536 clear_bit(vq
- 1, cpu
->sve_vq_map
);
538 set_bit(vq
- 1, cpu
->sve_vq_init
);
541 static bool cpu_arm_get_sve(Object
*obj
, Error
**errp
)
543 ARMCPU
*cpu
= ARM_CPU(obj
);
544 return cpu_isar_feature(aa64_sve
, cpu
);
547 static void cpu_arm_set_sve(Object
*obj
, bool value
, Error
**errp
)
549 ARMCPU
*cpu
= ARM_CPU(obj
);
552 if (value
&& kvm_enabled() && !kvm_arm_sve_supported()) {
553 error_setg(errp
, "'sve' feature not supported by KVM on this host");
557 t
= cpu
->isar
.id_aa64pfr0
;
558 t
= FIELD_DP64(t
, ID_AA64PFR0
, SVE
, value
);
559 cpu
->isar
.id_aa64pfr0
= t
;
562 void aarch64_add_sve_properties(Object
*obj
)
566 object_property_add_bool(obj
, "sve", cpu_arm_get_sve
, cpu_arm_set_sve
);
568 for (vq
= 1; vq
<= ARM_MAX_VQ
; ++vq
) {
570 sprintf(name
, "sve%d", vq
* 128);
571 object_property_add(obj
, name
, "bool", cpu_arm_get_sve_vq
,
572 cpu_arm_set_sve_vq
, NULL
, NULL
);
576 void arm_cpu_pauth_finalize(ARMCPU
*cpu
, Error
**errp
)
578 int arch_val
= 0, impdef_val
= 0;
581 /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
582 if (cpu
->prop_pauth
) {
583 if (cpu
->prop_pauth_impdef
) {
588 } else if (cpu
->prop_pauth_impdef
) {
589 error_setg(errp
, "cannot enable pauth-impdef without pauth");
590 error_append_hint(errp
, "Add pauth=on to the CPU property list.\n");
593 t
= cpu
->isar
.id_aa64isar1
;
594 t
= FIELD_DP64(t
, ID_AA64ISAR1
, APA
, arch_val
);
595 t
= FIELD_DP64(t
, ID_AA64ISAR1
, GPA
, arch_val
);
596 t
= FIELD_DP64(t
, ID_AA64ISAR1
, API
, impdef_val
);
597 t
= FIELD_DP64(t
, ID_AA64ISAR1
, GPI
, impdef_val
);
598 cpu
->isar
.id_aa64isar1
= t
;
601 static Property arm_cpu_pauth_property
=
602 DEFINE_PROP_BOOL("pauth", ARMCPU
, prop_pauth
, true);
603 static Property arm_cpu_pauth_impdef_property
=
604 DEFINE_PROP_BOOL("pauth-impdef", ARMCPU
, prop_pauth_impdef
, false);
606 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
607 * otherwise, a CPU with as many features enabled as our emulation supports.
608 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
609 * this only needs to handle 64 bits.
611 static void aarch64_max_initfn(Object
*obj
)
613 ARMCPU
*cpu
= ARM_CPU(obj
);
616 kvm_arm_set_cpu_features_from_host(cpu
);
620 aarch64_a57_initfn(obj
);
623 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
624 * one and try to apply errata workarounds or use impdef features we
626 * An IMPLEMENTER field of 0 means "reserved for software use";
627 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
628 * to see which features are present";
629 * the VARIANT, PARTNUM and REVISION fields are all implementation
630 * defined and we choose to define PARTNUM just in case guest
631 * code needs to distinguish this QEMU CPU from other software
632 * implementations, though this shouldn't be needed.
634 t
= FIELD_DP64(0, MIDR_EL1
, IMPLEMENTER
, 0);
635 t
= FIELD_DP64(t
, MIDR_EL1
, ARCHITECTURE
, 0xf);
636 t
= FIELD_DP64(t
, MIDR_EL1
, PARTNUM
, 'Q');
637 t
= FIELD_DP64(t
, MIDR_EL1
, VARIANT
, 0);
638 t
= FIELD_DP64(t
, MIDR_EL1
, REVISION
, 0);
641 t
= cpu
->isar
.id_aa64isar0
;
642 t
= FIELD_DP64(t
, ID_AA64ISAR0
, AES
, 2); /* AES + PMULL */
643 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA1
, 1);
644 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA2
, 2); /* SHA512 */
645 t
= FIELD_DP64(t
, ID_AA64ISAR0
, CRC32
, 1);
646 t
= FIELD_DP64(t
, ID_AA64ISAR0
, ATOMIC
, 2);
647 t
= FIELD_DP64(t
, ID_AA64ISAR0
, RDM
, 1);
648 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA3
, 1);
649 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SM3
, 1);
650 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SM4
, 1);
651 t
= FIELD_DP64(t
, ID_AA64ISAR0
, DP
, 1);
652 t
= FIELD_DP64(t
, ID_AA64ISAR0
, FHM
, 1);
653 t
= FIELD_DP64(t
, ID_AA64ISAR0
, TS
, 2); /* v8.5-CondM */
654 t
= FIELD_DP64(t
, ID_AA64ISAR0
, RNDR
, 1);
655 cpu
->isar
.id_aa64isar0
= t
;
657 t
= cpu
->isar
.id_aa64isar1
;
658 t
= FIELD_DP64(t
, ID_AA64ISAR1
, DPB
, 2);
659 t
= FIELD_DP64(t
, ID_AA64ISAR1
, JSCVT
, 1);
660 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FCMA
, 1);
661 t
= FIELD_DP64(t
, ID_AA64ISAR1
, SB
, 1);
662 t
= FIELD_DP64(t
, ID_AA64ISAR1
, SPECRES
, 1);
663 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FRINTTS
, 1);
664 t
= FIELD_DP64(t
, ID_AA64ISAR1
, LRCPC
, 2); /* ARMv8.4-RCPC */
665 cpu
->isar
.id_aa64isar1
= t
;
667 t
= cpu
->isar
.id_aa64pfr0
;
668 t
= FIELD_DP64(t
, ID_AA64PFR0
, SVE
, 1);
669 t
= FIELD_DP64(t
, ID_AA64PFR0
, FP
, 1);
670 t
= FIELD_DP64(t
, ID_AA64PFR0
, ADVSIMD
, 1);
671 t
= FIELD_DP64(t
, ID_AA64PFR0
, SEL2
, 1);
672 t
= FIELD_DP64(t
, ID_AA64PFR0
, DIT
, 1);
673 cpu
->isar
.id_aa64pfr0
= t
;
675 t
= cpu
->isar
.id_aa64pfr1
;
676 t
= FIELD_DP64(t
, ID_AA64PFR1
, BT
, 1);
677 t
= FIELD_DP64(t
, ID_AA64PFR1
, SSBS
, 2);
679 * Begin with full support for MTE. This will be downgraded to MTE=0
680 * during realize if the board provides no tag memory, much like
681 * we do for EL2 with the virtualization=on property.
683 t
= FIELD_DP64(t
, ID_AA64PFR1
, MTE
, 2);
684 cpu
->isar
.id_aa64pfr1
= t
;
686 t
= cpu
->isar
.id_aa64mmfr0
;
687 t
= FIELD_DP64(t
, ID_AA64MMFR0
, PARANGE
, 5); /* PARange: 48 bits */
688 cpu
->isar
.id_aa64mmfr0
= t
;
690 t
= cpu
->isar
.id_aa64mmfr1
;
691 t
= FIELD_DP64(t
, ID_AA64MMFR1
, HPDS
, 1); /* HPD */
692 t
= FIELD_DP64(t
, ID_AA64MMFR1
, LO
, 1);
693 t
= FIELD_DP64(t
, ID_AA64MMFR1
, VH
, 1);
694 t
= FIELD_DP64(t
, ID_AA64MMFR1
, PAN
, 2); /* ATS1E1 */
695 t
= FIELD_DP64(t
, ID_AA64MMFR1
, VMIDBITS
, 2); /* VMID16 */
696 t
= FIELD_DP64(t
, ID_AA64MMFR1
, XNX
, 1); /* TTS2UXN */
697 cpu
->isar
.id_aa64mmfr1
= t
;
699 t
= cpu
->isar
.id_aa64mmfr2
;
700 t
= FIELD_DP64(t
, ID_AA64MMFR2
, UAO
, 1);
701 t
= FIELD_DP64(t
, ID_AA64MMFR2
, CNP
, 1); /* TTCNP */
702 t
= FIELD_DP64(t
, ID_AA64MMFR2
, ST
, 1); /* TTST */
703 cpu
->isar
.id_aa64mmfr2
= t
;
705 /* Replicate the same data to the 32-bit id registers. */
706 u
= cpu
->isar
.id_isar5
;
707 u
= FIELD_DP32(u
, ID_ISAR5
, AES
, 2); /* AES + PMULL */
708 u
= FIELD_DP32(u
, ID_ISAR5
, SHA1
, 1);
709 u
= FIELD_DP32(u
, ID_ISAR5
, SHA2
, 1);
710 u
= FIELD_DP32(u
, ID_ISAR5
, CRC32
, 1);
711 u
= FIELD_DP32(u
, ID_ISAR5
, RDM
, 1);
712 u
= FIELD_DP32(u
, ID_ISAR5
, VCMA
, 1);
713 cpu
->isar
.id_isar5
= u
;
715 u
= cpu
->isar
.id_isar6
;
716 u
= FIELD_DP32(u
, ID_ISAR6
, JSCVT
, 1);
717 u
= FIELD_DP32(u
, ID_ISAR6
, DP
, 1);
718 u
= FIELD_DP32(u
, ID_ISAR6
, FHM
, 1);
719 u
= FIELD_DP32(u
, ID_ISAR6
, SB
, 1);
720 u
= FIELD_DP32(u
, ID_ISAR6
, SPECRES
, 1);
721 cpu
->isar
.id_isar6
= u
;
723 u
= cpu
->isar
.id_pfr0
;
724 u
= FIELD_DP32(u
, ID_PFR0
, DIT
, 1);
725 cpu
->isar
.id_pfr0
= u
;
727 u
= cpu
->isar
.id_pfr2
;
728 u
= FIELD_DP32(u
, ID_PFR2
, SSBS
, 1);
729 cpu
->isar
.id_pfr2
= u
;
731 u
= cpu
->isar
.id_mmfr3
;
732 u
= FIELD_DP32(u
, ID_MMFR3
, PAN
, 2); /* ATS1E1 */
733 cpu
->isar
.id_mmfr3
= u
;
735 u
= cpu
->isar
.id_mmfr4
;
736 u
= FIELD_DP32(u
, ID_MMFR4
, HPDS
, 1); /* AA32HPD */
737 u
= FIELD_DP32(u
, ID_MMFR4
, AC2
, 1); /* ACTLR2, HACTLR2 */
738 u
= FIELD_DP32(u
, ID_MMFR4
, CNP
, 1); /* TTCNP */
739 u
= FIELD_DP32(u
, ID_MMFR4
, XNX
, 1); /* TTS2UXN */
740 cpu
->isar
.id_mmfr4
= u
;
742 t
= cpu
->isar
.id_aa64dfr0
;
743 t
= FIELD_DP64(t
, ID_AA64DFR0
, PMUVER
, 5); /* v8.4-PMU */
744 cpu
->isar
.id_aa64dfr0
= t
;
746 u
= cpu
->isar
.id_dfr0
;
747 u
= FIELD_DP32(u
, ID_DFR0
, PERFMON
, 5); /* v8.4-PMU */
748 cpu
->isar
.id_dfr0
= u
;
751 u
= FIELD_DP32(u
, MVFR1
, FPHP
, 3); /* v8.2-FP16 */
752 u
= FIELD_DP32(u
, MVFR1
, SIMDHP
, 2); /* v8.2-FP16 */
755 #ifdef CONFIG_USER_ONLY
756 /* For usermode -cpu max we can use a larger and more efficient DCZ
757 * blocksize since we don't have to follow what the hardware does.
759 cpu
->ctr
= 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
760 cpu
->dcz_blocksize
= 7; /* 512 bytes */
763 /* Default to PAUTH on, with the architected algorithm. */
764 qdev_property_add_static(DEVICE(obj
), &arm_cpu_pauth_property
);
765 qdev_property_add_static(DEVICE(obj
), &arm_cpu_pauth_impdef_property
);
768 aarch64_add_sve_properties(obj
);
769 object_property_add(obj
, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq
,
770 cpu_max_set_sve_max_vq
, NULL
, NULL
);
773 static const ARMCPUInfo aarch64_cpus
[] = {
774 { .name
= "cortex-a57", .initfn
= aarch64_a57_initfn
},
775 { .name
= "cortex-a53", .initfn
= aarch64_a53_initfn
},
776 { .name
= "cortex-a72", .initfn
= aarch64_a72_initfn
},
777 { .name
= "max", .initfn
= aarch64_max_initfn
},
780 static bool aarch64_cpu_get_aarch64(Object
*obj
, Error
**errp
)
782 ARMCPU
*cpu
= ARM_CPU(obj
);
784 return arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
787 static void aarch64_cpu_set_aarch64(Object
*obj
, bool value
, Error
**errp
)
789 ARMCPU
*cpu
= ARM_CPU(obj
);
791 /* At this time, this property is only allowed if KVM is enabled. This
792 * restriction allows us to avoid fixing up functionality that assumes a
793 * uniform execution state like do_interrupt.
795 if (value
== false) {
796 if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
797 error_setg(errp
, "'aarch64' feature cannot be disabled "
798 "unless KVM is enabled and 32-bit EL1 "
802 unset_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
804 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
808 static void aarch64_cpu_finalizefn(Object
*obj
)
812 static gchar
*aarch64_gdb_arch_name(CPUState
*cs
)
814 return g_strdup("aarch64");
817 static void aarch64_cpu_class_init(ObjectClass
*oc
, void *data
)
819 CPUClass
*cc
= CPU_CLASS(oc
);
821 cc
->gdb_read_register
= aarch64_cpu_gdb_read_register
;
822 cc
->gdb_write_register
= aarch64_cpu_gdb_write_register
;
823 cc
->gdb_num_core_regs
= 34;
824 cc
->gdb_core_xml_file
= "aarch64-core.xml";
825 cc
->gdb_arch_name
= aarch64_gdb_arch_name
;
827 object_class_property_add_bool(oc
, "aarch64", aarch64_cpu_get_aarch64
,
828 aarch64_cpu_set_aarch64
);
829 object_class_property_set_description(oc
, "aarch64",
830 "Set on/off to enable/disable aarch64 "
834 static void aarch64_cpu_instance_init(Object
*obj
)
836 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(obj
);
838 acc
->info
->initfn(obj
);
839 arm_cpu_post_init(obj
);
842 static void cpu_register_class_init(ObjectClass
*oc
, void *data
)
844 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
849 void aarch64_cpu_register(const ARMCPUInfo
*info
)
851 TypeInfo type_info
= {
852 .parent
= TYPE_AARCH64_CPU
,
853 .instance_size
= sizeof(ARMCPU
),
854 .instance_init
= aarch64_cpu_instance_init
,
855 .class_size
= sizeof(ARMCPUClass
),
856 .class_init
= info
->class_init
?: cpu_register_class_init
,
857 .class_data
= (void *)info
,
860 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
861 type_register(&type_info
);
862 g_free((void *)type_info
.name
);
865 static const TypeInfo aarch64_cpu_type_info
= {
866 .name
= TYPE_AARCH64_CPU
,
867 .parent
= TYPE_ARM_CPU
,
868 .instance_size
= sizeof(ARMCPU
),
869 .instance_finalize
= aarch64_cpu_finalizefn
,
871 .class_size
= sizeof(AArch64CPUClass
),
872 .class_init
= aarch64_cpu_class_init
,
875 static void aarch64_cpu_register_types(void)
879 type_register_static(&aarch64_cpu_type_info
);
881 for (i
= 0; i
< ARRAY_SIZE(aarch64_cpus
); ++i
) {
882 aarch64_cpu_register(&aarch64_cpus
[i
]);
886 type_init(aarch64_cpu_register_types
)