target-arm: A64: Add [UF]RSQRTE (reciprocal root estimate)
[qemu/ar7.git] / target-arm / helper.c
blob55077ed1b68481a5d2c43fc23f8fa3961d009313
1 #include "cpu.h"
2 #include "exec/gdbstub.h"
3 #include "helper.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/arch_init.h"
6 #include "sysemu/sysemu.h"
7 #include "qemu/bitops.h"
8 #include "qemu/crc32c.h"
9 #include <zlib.h> /* For crc32 */
11 #ifndef CONFIG_USER_ONLY
12 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
13 int access_type, int is_user,
14 hwaddr *phys_ptr, int *prot,
15 target_ulong *page_size);
17 /* Definitions for the PMCCNTR and PMCR registers */
18 #define PMCRD 0x8
19 #define PMCRC 0x4
20 #define PMCRE 0x1
21 #endif
23 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
25 int nregs;
27 /* VFP data registers are always little-endian. */
28 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
29 if (reg < nregs) {
30 stfq_le_p(buf, env->vfp.regs[reg]);
31 return 8;
33 if (arm_feature(env, ARM_FEATURE_NEON)) {
34 /* Aliases for Q regs. */
35 nregs += 16;
36 if (reg < nregs) {
37 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
38 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
39 return 16;
42 switch (reg - nregs) {
43 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
44 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
45 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
47 return 0;
50 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
52 int nregs;
54 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
55 if (reg < nregs) {
56 env->vfp.regs[reg] = ldfq_le_p(buf);
57 return 8;
59 if (arm_feature(env, ARM_FEATURE_NEON)) {
60 nregs += 16;
61 if (reg < nregs) {
62 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
63 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
64 return 16;
67 switch (reg - nregs) {
68 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
69 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
70 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
72 return 0;
75 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
77 switch (reg) {
78 case 0 ... 31:
79 /* 128 bit FP register */
80 stfq_le_p(buf, env->vfp.regs[reg * 2]);
81 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
82 return 16;
83 case 32:
84 /* FPSR */
85 stl_p(buf, vfp_get_fpsr(env));
86 return 4;
87 case 33:
88 /* FPCR */
89 stl_p(buf, vfp_get_fpcr(env));
90 return 4;
91 default:
92 return 0;
96 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
98 switch (reg) {
99 case 0 ... 31:
100 /* 128 bit FP register */
101 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
102 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
103 return 16;
104 case 32:
105 /* FPSR */
106 vfp_set_fpsr(env, ldl_p(buf));
107 return 4;
108 case 33:
109 /* FPCR */
110 vfp_set_fpcr(env, ldl_p(buf));
111 return 4;
112 default:
113 return 0;
117 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
119 if (cpreg_field_is_64bit(ri)) {
120 return CPREG_FIELD64(env, ri);
121 } else {
122 return CPREG_FIELD32(env, ri);
126 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
127 uint64_t value)
129 if (cpreg_field_is_64bit(ri)) {
130 CPREG_FIELD64(env, ri) = value;
131 } else {
132 CPREG_FIELD32(env, ri) = value;
136 static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
138 /* Raw read of a coprocessor register (as needed for migration, etc). */
139 if (ri->type & ARM_CP_CONST) {
140 return ri->resetvalue;
141 } else if (ri->raw_readfn) {
142 return ri->raw_readfn(env, ri);
143 } else if (ri->readfn) {
144 return ri->readfn(env, ri);
145 } else {
146 return raw_read(env, ri);
150 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
151 uint64_t v)
153 /* Raw write of a coprocessor register (as needed for migration, etc).
154 * Note that constant registers are treated as write-ignored; the
155 * caller should check for success by whether a readback gives the
156 * value written.
158 if (ri->type & ARM_CP_CONST) {
159 return;
160 } else if (ri->raw_writefn) {
161 ri->raw_writefn(env, ri, v);
162 } else if (ri->writefn) {
163 ri->writefn(env, ri, v);
164 } else {
165 raw_write(env, ri, v);
169 bool write_cpustate_to_list(ARMCPU *cpu)
171 /* Write the coprocessor state from cpu->env to the (index,value) list. */
172 int i;
173 bool ok = true;
175 for (i = 0; i < cpu->cpreg_array_len; i++) {
176 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
177 const ARMCPRegInfo *ri;
179 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
180 if (!ri) {
181 ok = false;
182 continue;
184 if (ri->type & ARM_CP_NO_MIGRATE) {
185 continue;
187 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
189 return ok;
192 bool write_list_to_cpustate(ARMCPU *cpu)
194 int i;
195 bool ok = true;
197 for (i = 0; i < cpu->cpreg_array_len; i++) {
198 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
199 uint64_t v = cpu->cpreg_values[i];
200 const ARMCPRegInfo *ri;
202 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
203 if (!ri) {
204 ok = false;
205 continue;
207 if (ri->type & ARM_CP_NO_MIGRATE) {
208 continue;
210 /* Write value and confirm it reads back as written
211 * (to catch read-only registers and partially read-only
212 * registers where the incoming migration value doesn't match)
214 write_raw_cp_reg(&cpu->env, ri, v);
215 if (read_raw_cp_reg(&cpu->env, ri) != v) {
216 ok = false;
219 return ok;
222 static void add_cpreg_to_list(gpointer key, gpointer opaque)
224 ARMCPU *cpu = opaque;
225 uint64_t regidx;
226 const ARMCPRegInfo *ri;
228 regidx = *(uint32_t *)key;
229 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
231 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
232 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
233 /* The value array need not be initialized at this point */
234 cpu->cpreg_array_len++;
238 static void count_cpreg(gpointer key, gpointer opaque)
240 ARMCPU *cpu = opaque;
241 uint64_t regidx;
242 const ARMCPRegInfo *ri;
244 regidx = *(uint32_t *)key;
245 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
247 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
248 cpu->cpreg_array_len++;
252 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
254 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
255 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
257 if (aidx > bidx) {
258 return 1;
260 if (aidx < bidx) {
261 return -1;
263 return 0;
266 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
268 GList **plist = udata;
270 *plist = g_list_prepend(*plist, key);
273 void init_cpreg_list(ARMCPU *cpu)
275 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
276 * Note that we require cpreg_tuples[] to be sorted by key ID.
278 GList *keys = NULL;
279 int arraylen;
281 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
283 keys = g_list_sort(keys, cpreg_key_compare);
285 cpu->cpreg_array_len = 0;
287 g_list_foreach(keys, count_cpreg, cpu);
289 arraylen = cpu->cpreg_array_len;
290 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
291 cpu->cpreg_values = g_new(uint64_t, arraylen);
292 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
293 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
294 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
295 cpu->cpreg_array_len = 0;
297 g_list_foreach(keys, add_cpreg_to_list, cpu);
299 assert(cpu->cpreg_array_len == arraylen);
301 g_list_free(keys);
304 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
306 ARMCPU *cpu = arm_env_get_cpu(env);
308 env->cp15.c3 = value;
309 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
312 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
314 ARMCPU *cpu = arm_env_get_cpu(env);
316 if (env->cp15.c13_fcse != value) {
317 /* Unlike real hardware the qemu TLB uses virtual addresses,
318 * not modified virtual addresses, so this causes a TLB flush.
320 tlb_flush(CPU(cpu), 1);
321 env->cp15.c13_fcse = value;
325 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
326 uint64_t value)
328 ARMCPU *cpu = arm_env_get_cpu(env);
330 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
331 /* For VMSA (when not using the LPAE long descriptor page table
332 * format) this register includes the ASID, so do a TLB flush.
333 * For PMSA it is purely a process ID and no action is needed.
335 tlb_flush(CPU(cpu), 1);
337 env->cp15.c13_context = value;
340 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
341 uint64_t value)
343 /* Invalidate all (TLBIALL) */
344 ARMCPU *cpu = arm_env_get_cpu(env);
346 tlb_flush(CPU(cpu), 1);
349 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
350 uint64_t value)
352 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
353 ARMCPU *cpu = arm_env_get_cpu(env);
355 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
358 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
359 uint64_t value)
361 /* Invalidate by ASID (TLBIASID) */
362 ARMCPU *cpu = arm_env_get_cpu(env);
364 tlb_flush(CPU(cpu), value == 0);
367 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
368 uint64_t value)
370 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
371 ARMCPU *cpu = arm_env_get_cpu(env);
373 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
376 static const ARMCPRegInfo cp_reginfo[] = {
377 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
378 * version" bits will read as a reserved value, which should cause
379 * Linux to not try to use the debug hardware.
381 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
382 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
383 /* MMU Domain access control / MPU write buffer control */
384 { .name = "DACR", .cp = 15,
385 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
386 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
387 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
388 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
389 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
390 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
391 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
392 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context),
393 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
394 /* ??? This covers not just the impdef TLB lockdown registers but also
395 * some v7VMSA registers relating to TEX remap, so it is overly broad.
397 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
398 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
399 /* MMU TLB control. Note that the wildcarding means we cover not just
400 * the unified TLB ops but also the dside/iside/inner-shareable variants.
402 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
403 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
404 .type = ARM_CP_NO_MIGRATE },
405 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
406 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
407 .type = ARM_CP_NO_MIGRATE },
408 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
409 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
410 .type = ARM_CP_NO_MIGRATE },
411 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
412 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
413 .type = ARM_CP_NO_MIGRATE },
414 /* Cache maintenance ops; some of this space may be overridden later. */
415 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
416 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
417 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
418 REGINFO_SENTINEL
421 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
422 /* Not all pre-v6 cores implemented this WFI, so this is slightly
423 * over-broad.
425 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
426 .access = PL1_W, .type = ARM_CP_WFI },
427 REGINFO_SENTINEL
430 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
431 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
432 * is UNPREDICTABLE; we choose to NOP as most implementations do).
434 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
435 .access = PL1_W, .type = ARM_CP_WFI },
436 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
437 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
438 * OMAPCP will override this space.
440 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
441 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
442 .resetvalue = 0 },
443 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
444 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
445 .resetvalue = 0 },
446 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
447 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
448 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
449 .resetvalue = 0 },
450 REGINFO_SENTINEL
453 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
454 uint64_t value)
456 if (env->cp15.c1_coproc != value) {
457 env->cp15.c1_coproc = value;
458 /* ??? Is this safe when called from within a TB? */
459 tb_flush(env);
463 static const ARMCPRegInfo v6_cp_reginfo[] = {
464 /* prefetch by MVA in v6, NOP in v7 */
465 { .name = "MVA_prefetch",
466 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
467 .access = PL1_W, .type = ARM_CP_NOP },
468 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
469 .access = PL0_W, .type = ARM_CP_NOP },
470 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
471 .access = PL0_W, .type = ARM_CP_NOP },
472 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
473 .access = PL0_W, .type = ARM_CP_NOP },
474 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
475 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
476 .resetvalue = 0, },
477 /* Watchpoint Fault Address Register : should actually only be present
478 * for 1136, 1176, 11MPCore.
480 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
481 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
482 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
483 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
484 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
485 .resetvalue = 0, .writefn = cpacr_write },
486 REGINFO_SENTINEL
489 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
491 /* Performance monitor registers user accessibility is controlled
492 * by PMUSERENR.
494 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
495 return CP_ACCESS_TRAP;
497 return CP_ACCESS_OK;
500 #ifndef CONFIG_USER_ONLY
501 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
502 uint64_t value)
504 /* Don't computer the number of ticks in user mode */
505 uint32_t temp_ticks;
507 temp_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
508 get_ticks_per_sec() / 1000000;
510 if (env->cp15.c9_pmcr & PMCRE) {
511 /* If the counter is enabled */
512 if (env->cp15.c9_pmcr & PMCRD) {
513 /* Increment once every 64 processor clock cycles */
514 env->cp15.c15_ccnt = (temp_ticks/64) - env->cp15.c15_ccnt;
515 } else {
516 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
520 if (value & PMCRC) {
521 /* The counter has been reset */
522 env->cp15.c15_ccnt = 0;
525 /* only the DP, X, D and E bits are writable */
526 env->cp15.c9_pmcr &= ~0x39;
527 env->cp15.c9_pmcr |= (value & 0x39);
529 if (env->cp15.c9_pmcr & PMCRE) {
530 if (env->cp15.c9_pmcr & PMCRD) {
531 /* Increment once every 64 processor clock cycles */
532 temp_ticks /= 64;
534 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
538 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
540 uint32_t total_ticks;
542 if (!(env->cp15.c9_pmcr & PMCRE)) {
543 /* Counter is disabled, do not change value */
544 return env->cp15.c15_ccnt;
547 total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
548 get_ticks_per_sec() / 1000000;
550 if (env->cp15.c9_pmcr & PMCRD) {
551 /* Increment once every 64 processor clock cycles */
552 total_ticks /= 64;
554 return total_ticks - env->cp15.c15_ccnt;
557 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
558 uint64_t value)
560 uint32_t total_ticks;
562 if (!(env->cp15.c9_pmcr & PMCRE)) {
563 /* Counter is disabled, set the absolute value */
564 env->cp15.c15_ccnt = value;
565 return;
568 total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
569 get_ticks_per_sec() / 1000000;
571 if (env->cp15.c9_pmcr & PMCRD) {
572 /* Increment once every 64 processor clock cycles */
573 total_ticks /= 64;
575 env->cp15.c15_ccnt = total_ticks - value;
577 #endif
579 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
580 uint64_t value)
582 value &= (1 << 31);
583 env->cp15.c9_pmcnten |= value;
586 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
587 uint64_t value)
589 value &= (1 << 31);
590 env->cp15.c9_pmcnten &= ~value;
593 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
594 uint64_t value)
596 env->cp15.c9_pmovsr &= ~value;
599 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
600 uint64_t value)
602 env->cp15.c9_pmxevtyper = value & 0xff;
605 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
606 uint64_t value)
608 env->cp15.c9_pmuserenr = value & 1;
611 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
612 uint64_t value)
614 /* We have no event counters so only the C bit can be changed */
615 value &= (1 << 31);
616 env->cp15.c9_pminten |= value;
619 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
620 uint64_t value)
622 value &= (1 << 31);
623 env->cp15.c9_pminten &= ~value;
626 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
627 uint64_t value)
629 /* Note that even though the AArch64 view of this register has bits
630 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
631 * architectural requirements for bits which are RES0 only in some
632 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
633 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
635 env->cp15.c12_vbar = value & ~0x1Ful;
638 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
640 ARMCPU *cpu = arm_env_get_cpu(env);
641 return cpu->ccsidr[env->cp15.c0_cssel];
644 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
645 uint64_t value)
647 env->cp15.c0_cssel = value & 0xf;
650 static const ARMCPRegInfo v7_cp_reginfo[] = {
651 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
652 * debug components
654 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
655 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
656 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
657 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
658 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
659 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
660 .access = PL1_W, .type = ARM_CP_NOP },
661 /* Performance monitors are implementation defined in v7,
662 * but with an ARM recommended set of registers, which we
663 * follow (although we don't actually implement any counters)
665 * Performance registers fall into three categories:
666 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
667 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
668 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
669 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
670 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
672 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
673 .access = PL0_RW, .resetvalue = 0,
674 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
675 .writefn = pmcntenset_write,
676 .accessfn = pmreg_access,
677 .raw_writefn = raw_write },
678 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
679 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
680 .accessfn = pmreg_access,
681 .writefn = pmcntenclr_write,
682 .type = ARM_CP_NO_MIGRATE },
683 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
684 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
685 .accessfn = pmreg_access,
686 .writefn = pmovsr_write,
687 .raw_writefn = raw_write },
688 /* Unimplemented so WI. */
689 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
690 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
691 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
692 * We choose to RAZ/WI.
694 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
695 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
696 .accessfn = pmreg_access },
697 #ifndef CONFIG_USER_ONLY
698 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
699 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
700 .readfn = pmccntr_read, .writefn = pmccntr_write,
701 .accessfn = pmreg_access },
702 #endif
703 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
704 .access = PL0_RW,
705 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
706 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
707 .raw_writefn = raw_write },
708 /* Unimplemented, RAZ/WI. */
709 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
710 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
711 .accessfn = pmreg_access },
712 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
713 .access = PL0_R | PL1_RW,
714 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
715 .resetvalue = 0,
716 .writefn = pmuserenr_write, .raw_writefn = raw_write },
717 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
718 .access = PL1_RW,
719 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
720 .resetvalue = 0,
721 .writefn = pmintenset_write, .raw_writefn = raw_write },
722 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
723 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
724 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
725 .resetvalue = 0, .writefn = pmintenclr_write, },
726 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
727 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
728 .access = PL1_RW, .writefn = vbar_write,
729 .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
730 .resetvalue = 0 },
731 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
732 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
733 .resetvalue = 0, },
734 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
735 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
736 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
737 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
738 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
739 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
740 .writefn = csselr_write, .resetvalue = 0 },
741 /* Auxiliary ID register: this actually has an IMPDEF value but for now
742 * just RAZ for all cores:
744 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
745 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
746 /* MAIR can just read-as-written because we don't implement caches
747 * and so don't need to care about memory attributes.
749 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
750 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
751 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1),
752 .resetvalue = 0 },
753 /* For non-long-descriptor page tables these are PRRR and NMRR;
754 * regardless they still act as reads-as-written for QEMU.
755 * The override is necessary because of the overly-broad TLB_LOCKDOWN
756 * definition.
758 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
759 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
760 .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1),
761 .resetfn = arm_cp_reset_ignore },
762 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
763 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
764 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1),
765 .resetfn = arm_cp_reset_ignore },
766 REGINFO_SENTINEL
769 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
770 uint64_t value)
772 value &= 1;
773 env->teecr = value;
776 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
778 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
779 return CP_ACCESS_TRAP;
781 return CP_ACCESS_OK;
784 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
785 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
786 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
787 .resetvalue = 0,
788 .writefn = teecr_write },
789 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
790 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
791 .accessfn = teehbr_access, .resetvalue = 0 },
792 REGINFO_SENTINEL
795 static const ARMCPRegInfo v6k_cp_reginfo[] = {
796 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
797 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
798 .access = PL0_RW,
799 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
800 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
801 .access = PL0_RW,
802 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
803 .resetfn = arm_cp_reset_ignore },
804 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
805 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
806 .access = PL0_R|PL1_W,
807 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
808 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
809 .access = PL0_R|PL1_W,
810 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
811 .resetfn = arm_cp_reset_ignore },
812 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
813 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
814 .access = PL1_RW,
815 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
816 REGINFO_SENTINEL
819 #ifndef CONFIG_USER_ONLY
821 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
823 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
824 if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
825 return CP_ACCESS_TRAP;
827 return CP_ACCESS_OK;
830 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
832 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
833 if (arm_current_pl(env) == 0 &&
834 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
835 return CP_ACCESS_TRAP;
837 return CP_ACCESS_OK;
840 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
842 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
843 * EL0[PV]TEN is zero.
845 if (arm_current_pl(env) == 0 &&
846 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
847 return CP_ACCESS_TRAP;
849 return CP_ACCESS_OK;
852 static CPAccessResult gt_pct_access(CPUARMState *env,
853 const ARMCPRegInfo *ri)
855 return gt_counter_access(env, GTIMER_PHYS);
858 static CPAccessResult gt_vct_access(CPUARMState *env,
859 const ARMCPRegInfo *ri)
861 return gt_counter_access(env, GTIMER_VIRT);
864 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
866 return gt_timer_access(env, GTIMER_PHYS);
869 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
871 return gt_timer_access(env, GTIMER_VIRT);
874 static uint64_t gt_get_countervalue(CPUARMState *env)
876 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
879 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
881 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
883 if (gt->ctl & 1) {
884 /* Timer enabled: calculate and set current ISTATUS, irq, and
885 * reset timer to when ISTATUS next has to change
887 uint64_t count = gt_get_countervalue(&cpu->env);
888 /* Note that this must be unsigned 64 bit arithmetic: */
889 int istatus = count >= gt->cval;
890 uint64_t nexttick;
892 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
893 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
894 (istatus && !(gt->ctl & 2)));
895 if (istatus) {
896 /* Next transition is when count rolls back over to zero */
897 nexttick = UINT64_MAX;
898 } else {
899 /* Next transition is when we hit cval */
900 nexttick = gt->cval;
902 /* Note that the desired next expiry time might be beyond the
903 * signed-64-bit range of a QEMUTimer -- in this case we just
904 * set the timer for as far in the future as possible. When the
905 * timer expires we will reset the timer for any remaining period.
907 if (nexttick > INT64_MAX / GTIMER_SCALE) {
908 nexttick = INT64_MAX / GTIMER_SCALE;
910 timer_mod(cpu->gt_timer[timeridx], nexttick);
911 } else {
912 /* Timer disabled: ISTATUS and timer output always clear */
913 gt->ctl &= ~4;
914 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
915 timer_del(cpu->gt_timer[timeridx]);
919 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
921 ARMCPU *cpu = arm_env_get_cpu(env);
922 int timeridx = ri->opc1 & 1;
924 timer_del(cpu->gt_timer[timeridx]);
927 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
929 return gt_get_countervalue(env);
932 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
933 uint64_t value)
935 int timeridx = ri->opc1 & 1;
937 env->cp15.c14_timer[timeridx].cval = value;
938 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
941 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
943 int timeridx = ri->crm & 1;
945 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
946 gt_get_countervalue(env));
949 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
950 uint64_t value)
952 int timeridx = ri->crm & 1;
954 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
955 + sextract64(value, 0, 32);
956 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
959 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
960 uint64_t value)
962 ARMCPU *cpu = arm_env_get_cpu(env);
963 int timeridx = ri->crm & 1;
964 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
966 env->cp15.c14_timer[timeridx].ctl = value & 3;
967 if ((oldval ^ value) & 1) {
968 /* Enable toggled */
969 gt_recalc_timer(cpu, timeridx);
970 } else if ((oldval & value) & 2) {
971 /* IMASK toggled: don't need to recalculate,
972 * just set the interrupt line based on ISTATUS
974 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
975 (oldval & 4) && (value & 2));
979 void arm_gt_ptimer_cb(void *opaque)
981 ARMCPU *cpu = opaque;
983 gt_recalc_timer(cpu, GTIMER_PHYS);
986 void arm_gt_vtimer_cb(void *opaque)
988 ARMCPU *cpu = opaque;
990 gt_recalc_timer(cpu, GTIMER_VIRT);
993 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
994 /* Note that CNTFRQ is purely reads-as-written for the benefit
995 * of software; writing it doesn't actually change the timer frequency.
996 * Our reset value matches the fixed frequency we implement the timer at.
998 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
999 .type = ARM_CP_NO_MIGRATE,
1000 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1001 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1002 .resetfn = arm_cp_reset_ignore,
1004 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1005 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1006 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1007 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1008 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1010 /* overall control: mostly access permissions */
1011 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1012 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1013 .access = PL1_RW,
1014 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1015 .resetvalue = 0,
1017 /* per-timer control */
1018 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1019 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1020 .accessfn = gt_ptimer_access,
1021 .fieldoffset = offsetoflow32(CPUARMState,
1022 cp15.c14_timer[GTIMER_PHYS].ctl),
1023 .resetfn = arm_cp_reset_ignore,
1024 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1026 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1027 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1028 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1029 .accessfn = gt_ptimer_access,
1030 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1031 .resetvalue = 0,
1032 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1034 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1035 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1036 .accessfn = gt_vtimer_access,
1037 .fieldoffset = offsetoflow32(CPUARMState,
1038 cp15.c14_timer[GTIMER_VIRT].ctl),
1039 .resetfn = arm_cp_reset_ignore,
1040 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1042 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1043 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1044 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1045 .accessfn = gt_vtimer_access,
1046 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1047 .resetvalue = 0,
1048 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1050 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1051 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1052 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1053 .accessfn = gt_ptimer_access,
1054 .readfn = gt_tval_read, .writefn = gt_tval_write,
1056 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1057 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1058 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1059 .readfn = gt_tval_read, .writefn = gt_tval_write,
1061 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1062 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1063 .accessfn = gt_vtimer_access,
1064 .readfn = gt_tval_read, .writefn = gt_tval_write,
1066 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1067 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1068 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1069 .readfn = gt_tval_read, .writefn = gt_tval_write,
1071 /* The counter itself */
1072 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1073 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1074 .accessfn = gt_pct_access,
1075 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1077 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1078 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1079 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1080 .accessfn = gt_pct_access,
1081 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1083 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1084 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1085 .accessfn = gt_vct_access,
1086 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1088 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1089 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1090 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1091 .accessfn = gt_vct_access,
1092 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1094 /* Comparison value, indicating when the timer goes off */
1095 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1096 .access = PL1_RW | PL0_R,
1097 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1098 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1099 .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
1100 .writefn = gt_cval_write, .raw_writefn = raw_write,
1102 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1103 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1104 .access = PL1_RW | PL0_R,
1105 .type = ARM_CP_IO,
1106 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1107 .resetvalue = 0, .accessfn = gt_vtimer_access,
1108 .writefn = gt_cval_write, .raw_writefn = raw_write,
1110 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1111 .access = PL1_RW | PL0_R,
1112 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1113 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1114 .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
1115 .writefn = gt_cval_write, .raw_writefn = raw_write,
1117 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1118 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1119 .access = PL1_RW | PL0_R,
1120 .type = ARM_CP_IO,
1121 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1122 .resetvalue = 0, .accessfn = gt_vtimer_access,
1123 .writefn = gt_cval_write, .raw_writefn = raw_write,
1125 REGINFO_SENTINEL
1128 #else
1129 /* In user-mode none of the generic timer registers are accessible,
1130 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1131 * so instead just don't register any of them.
1133 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1134 REGINFO_SENTINEL
1137 #endif
1139 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1141 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1142 env->cp15.c7_par = value;
1143 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1144 env->cp15.c7_par = value & 0xfffff6ff;
1145 } else {
1146 env->cp15.c7_par = value & 0xfffff1ff;
1150 #ifndef CONFIG_USER_ONLY
1151 /* get_phys_addr() isn't present for user-mode-only targets */
1153 /* Return true if extended addresses are enabled, ie this is an
1154 * LPAE implementation and we are using the long-descriptor translation
1155 * table format because the TTBCR EAE bit is set.
1157 static inline bool extended_addresses_enabled(CPUARMState *env)
1159 return arm_feature(env, ARM_FEATURE_LPAE)
1160 && (env->cp15.c2_control & (1U << 31));
1163 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1165 if (ri->opc2 & 4) {
1166 /* Other states are only available with TrustZone; in
1167 * a non-TZ implementation these registers don't exist
1168 * at all, which is an Uncategorized trap. This underdecoding
1169 * is safe because the reginfo is NO_MIGRATE.
1171 return CP_ACCESS_TRAP_UNCATEGORIZED;
1173 return CP_ACCESS_OK;
1176 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1178 hwaddr phys_addr;
1179 target_ulong page_size;
1180 int prot;
1181 int ret, is_user = ri->opc2 & 2;
1182 int access_type = ri->opc2 & 1;
1184 ret = get_phys_addr(env, value, access_type, is_user,
1185 &phys_addr, &prot, &page_size);
1186 if (extended_addresses_enabled(env)) {
1187 /* ret is a DFSR/IFSR value for the long descriptor
1188 * translation table format, but with WnR always clear.
1189 * Convert it to a 64-bit PAR.
1191 uint64_t par64 = (1 << 11); /* LPAE bit always set */
1192 if (ret == 0) {
1193 par64 |= phys_addr & ~0xfffULL;
1194 /* We don't set the ATTR or SH fields in the PAR. */
1195 } else {
1196 par64 |= 1; /* F */
1197 par64 |= (ret & 0x3f) << 1; /* FS */
1198 /* Note that S2WLK and FSTAGE are always zero, because we don't
1199 * implement virtualization and therefore there can't be a stage 2
1200 * fault.
1203 env->cp15.c7_par = par64;
1204 env->cp15.c7_par_hi = par64 >> 32;
1205 } else {
1206 /* ret is a DFSR/IFSR value for the short descriptor
1207 * translation table format (with WnR always clear).
1208 * Convert it to a 32-bit PAR.
1210 if (ret == 0) {
1211 /* We do not set any attribute bits in the PAR */
1212 if (page_size == (1 << 24)
1213 && arm_feature(env, ARM_FEATURE_V7)) {
1214 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1215 } else {
1216 env->cp15.c7_par = phys_addr & 0xfffff000;
1218 } else {
1219 env->cp15.c7_par = ((ret & (1 << 10)) >> 5) |
1220 ((ret & (1 << 12)) >> 6) |
1221 ((ret & 0xf) << 1) | 1;
1223 env->cp15.c7_par_hi = 0;
1226 #endif
1228 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1229 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1230 .access = PL1_RW, .resetvalue = 0,
1231 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
1232 .writefn = par_write },
1233 #ifndef CONFIG_USER_ONLY
1234 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1235 .access = PL1_W, .accessfn = ats_access,
1236 .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1237 #endif
1238 REGINFO_SENTINEL
1241 /* Return basic MPU access permission bits. */
1242 static uint32_t simple_mpu_ap_bits(uint32_t val)
1244 uint32_t ret;
1245 uint32_t mask;
1246 int i;
1247 ret = 0;
1248 mask = 3;
1249 for (i = 0; i < 16; i += 2) {
1250 ret |= (val >> i) & mask;
1251 mask <<= 2;
1253 return ret;
1256 /* Pad basic MPU access permission bits to extended format. */
1257 static uint32_t extended_mpu_ap_bits(uint32_t val)
1259 uint32_t ret;
1260 uint32_t mask;
1261 int i;
1262 ret = 0;
1263 mask = 3;
1264 for (i = 0; i < 16; i += 2) {
1265 ret |= (val & mask) << i;
1266 mask <<= 2;
1268 return ret;
1271 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1272 uint64_t value)
1274 env->cp15.c5_data = extended_mpu_ap_bits(value);
1277 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1279 return simple_mpu_ap_bits(env->cp15.c5_data);
1282 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1283 uint64_t value)
1285 env->cp15.c5_insn = extended_mpu_ap_bits(value);
1288 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1290 return simple_mpu_ap_bits(env->cp15.c5_insn);
1293 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1294 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1295 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1296 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
1297 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1298 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1299 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1300 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
1301 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1302 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1303 .access = PL1_RW,
1304 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1305 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1306 .access = PL1_RW,
1307 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1308 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1309 .access = PL1_RW,
1310 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1311 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1312 .access = PL1_RW,
1313 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1314 /* Protection region base and size registers */
1315 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1316 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1317 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1318 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1319 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1320 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1321 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1322 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1323 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1324 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1325 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1326 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1327 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1328 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1329 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1330 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1331 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1332 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1333 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1334 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1335 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1336 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1337 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1338 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1339 REGINFO_SENTINEL
1342 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1343 uint64_t value)
1345 int maskshift = extract32(value, 0, 3);
1347 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
1348 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1349 } else {
1350 value &= 7;
1352 /* Note that we always calculate c2_mask and c2_base_mask, but
1353 * they are only used for short-descriptor tables (ie if EAE is 0);
1354 * for long-descriptor tables the TTBCR fields are used differently
1355 * and the c2_mask and c2_base_mask values are meaningless.
1357 env->cp15.c2_control = value;
1358 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1359 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1362 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1363 uint64_t value)
1365 ARMCPU *cpu = arm_env_get_cpu(env);
1367 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1368 /* With LPAE the TTBCR could result in a change of ASID
1369 * via the TTBCR.A1 bit, so do a TLB flush.
1371 tlb_flush(CPU(cpu), 1);
1373 vmsa_ttbcr_raw_write(env, ri, value);
1376 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1378 env->cp15.c2_base_mask = 0xffffc000u;
1379 env->cp15.c2_control = 0;
1380 env->cp15.c2_mask = 0;
1383 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1384 uint64_t value)
1386 ARMCPU *cpu = arm_env_get_cpu(env);
1388 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1389 tlb_flush(CPU(cpu), 1);
1390 env->cp15.c2_control = value;
1393 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1394 uint64_t value)
1396 /* 64 bit accesses to the TTBRs can change the ASID and so we
1397 * must flush the TLB.
1399 if (cpreg_field_is_64bit(ri)) {
1400 ARMCPU *cpu = arm_env_get_cpu(env);
1402 tlb_flush(CPU(cpu), 1);
1404 raw_write(env, ri, value);
1407 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1408 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1409 .access = PL1_RW,
1410 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1411 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1412 .access = PL1_RW,
1413 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1414 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
1415 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1416 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1417 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1418 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
1419 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1420 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1421 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1422 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
1423 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1424 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
1425 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1426 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1427 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1428 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write,
1429 .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
1430 .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) },
1431 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1432 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
1433 .resetvalue = 0, },
1434 REGINFO_SENTINEL
1437 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1438 uint64_t value)
1440 env->cp15.c15_ticonfig = value & 0xe7;
1441 /* The OS_TYPE bit in this register changes the reported CPUID! */
1442 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1443 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1446 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1447 uint64_t value)
1449 env->cp15.c15_threadid = value & 0xffff;
1452 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1453 uint64_t value)
1455 /* Wait-for-interrupt (deprecated) */
1456 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1459 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1460 uint64_t value)
1462 /* On OMAP there are registers indicating the max/min index of dcache lines
1463 * containing a dirty line; cache flush operations have to reset these.
1465 env->cp15.c15_i_max = 0x000;
1466 env->cp15.c15_i_min = 0xff0;
1469 static const ARMCPRegInfo omap_cp_reginfo[] = {
1470 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1471 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1472 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1473 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1474 .access = PL1_RW, .type = ARM_CP_NOP },
1475 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1476 .access = PL1_RW,
1477 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1478 .writefn = omap_ticonfig_write },
1479 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1480 .access = PL1_RW,
1481 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1482 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1483 .access = PL1_RW, .resetvalue = 0xff0,
1484 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1485 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1486 .access = PL1_RW,
1487 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1488 .writefn = omap_threadid_write },
1489 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1490 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1491 .type = ARM_CP_NO_MIGRATE,
1492 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1493 /* TODO: Peripheral port remap register:
1494 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1495 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1496 * when MMU is off.
1498 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1499 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1500 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1501 .writefn = omap_cachemaint_write },
1502 { .name = "C9", .cp = 15, .crn = 9,
1503 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1504 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1505 REGINFO_SENTINEL
1508 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1509 uint64_t value)
1511 value &= 0x3fff;
1512 if (env->cp15.c15_cpar != value) {
1513 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1514 tb_flush(env);
1515 env->cp15.c15_cpar = value;
1519 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1520 { .name = "XSCALE_CPAR",
1521 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1522 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1523 .writefn = xscale_cpar_write, },
1524 { .name = "XSCALE_AUXCR",
1525 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1526 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1527 .resetvalue = 0, },
1528 REGINFO_SENTINEL
1531 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1532 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1533 * implementation of this implementation-defined space.
1534 * Ideally this should eventually disappear in favour of actually
1535 * implementing the correct behaviour for all cores.
1537 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1538 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1539 .access = PL1_RW,
1540 .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1541 .resetvalue = 0 },
1542 REGINFO_SENTINEL
1545 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1546 /* Cache status: RAZ because we have no cache so it's always clean */
1547 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1548 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1549 .resetvalue = 0 },
1550 REGINFO_SENTINEL
1553 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1554 /* We never have a a block transfer operation in progress */
1555 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1556 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1557 .resetvalue = 0 },
1558 /* The cache ops themselves: these all NOP for QEMU */
1559 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1560 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1561 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1562 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1563 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1564 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1565 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1566 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1567 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1568 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1569 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1570 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1571 REGINFO_SENTINEL
1574 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1575 /* The cache test-and-clean instructions always return (1 << 30)
1576 * to indicate that there are no dirty cache lines.
1578 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1579 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1580 .resetvalue = (1 << 30) },
1581 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1582 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1583 .resetvalue = (1 << 30) },
1584 REGINFO_SENTINEL
1587 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1588 /* Ignore ReadBuffer accesses */
1589 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1590 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1591 .access = PL1_RW, .resetvalue = 0,
1592 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1593 REGINFO_SENTINEL
1596 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1598 CPUState *cs = CPU(arm_env_get_cpu(env));
1599 uint32_t mpidr = cs->cpu_index;
1600 /* We don't support setting cluster ID ([8..11]) (known as Aff1
1601 * in later ARM ARM versions), or any of the higher affinity level fields,
1602 * so these bits always RAZ.
1604 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1605 mpidr |= (1U << 31);
1606 /* Cores which are uniprocessor (non-coherent)
1607 * but still implement the MP extensions set
1608 * bit 30. (For instance, A9UP.) However we do
1609 * not currently model any of those cores.
1612 return mpidr;
1615 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1616 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
1617 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1618 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1619 REGINFO_SENTINEL
1622 static uint64_t par64_read(CPUARMState *env, const ARMCPRegInfo *ri)
1624 return ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1627 static void par64_write(CPUARMState *env, const ARMCPRegInfo *ri,
1628 uint64_t value)
1630 env->cp15.c7_par_hi = value >> 32;
1631 env->cp15.c7_par = value;
1634 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1636 env->cp15.c7_par_hi = 0;
1637 env->cp15.c7_par = 0;
1640 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1641 /* NOP AMAIR0/1: the override is because these clash with the rather
1642 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1644 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
1645 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1646 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1647 .resetvalue = 0 },
1648 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1649 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1650 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1651 .resetvalue = 0 },
1652 /* 64 bit access versions of the (dummy) debug registers */
1653 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1654 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1655 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1656 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1657 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1658 .access = PL1_RW, .type = ARM_CP_64BIT,
1659 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1660 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1661 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1662 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1663 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1664 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1665 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1666 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1667 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1668 REGINFO_SENTINEL
1671 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1673 return vfp_get_fpcr(env);
1676 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1677 uint64_t value)
1679 vfp_set_fpcr(env, value);
1682 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1684 return vfp_get_fpsr(env);
1687 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1688 uint64_t value)
1690 vfp_set_fpsr(env, value);
1693 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
1694 const ARMCPRegInfo *ri)
1696 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
1697 * SCTLR_EL1.UCI is set.
1699 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
1700 return CP_ACCESS_TRAP;
1702 return CP_ACCESS_OK;
1705 static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706 uint64_t value)
1708 /* Invalidate by VA (AArch64 version) */
1709 ARMCPU *cpu = arm_env_get_cpu(env);
1710 uint64_t pageaddr = value << 12;
1711 tlb_flush_page(CPU(cpu), pageaddr);
1714 static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
1715 uint64_t value)
1717 /* Invalidate by VA, all ASIDs (AArch64 version) */
1718 ARMCPU *cpu = arm_env_get_cpu(env);
1719 uint64_t pageaddr = value << 12;
1720 tlb_flush_page(CPU(cpu), pageaddr);
1723 static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1724 uint64_t value)
1726 /* Invalidate by ASID (AArch64 version) */
1727 ARMCPU *cpu = arm_env_get_cpu(env);
1728 int asid = extract64(value, 48, 16);
1729 tlb_flush(CPU(cpu), asid == 0);
1732 static const ARMCPRegInfo v8_cp_reginfo[] = {
1733 /* Minimal set of EL0-visible registers. This will need to be expanded
1734 * significantly for system emulation of AArch64 CPUs.
1736 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
1737 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
1738 .access = PL0_RW, .type = ARM_CP_NZCV },
1739 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
1740 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
1741 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
1742 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
1743 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
1744 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
1745 /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use.
1746 * For system mode the DZP bit here will need to be computed, not constant.
1748 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
1749 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
1750 .access = PL0_R, .type = ARM_CP_CONST,
1751 .resetvalue = 0x10 },
1752 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
1753 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
1754 .access = PL1_R, .type = ARM_CP_CURRENTEL },
1755 /* Cache ops: all NOPs since we don't emulate caches */
1756 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
1757 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
1758 .access = PL1_W, .type = ARM_CP_NOP },
1759 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
1760 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
1761 .access = PL1_W, .type = ARM_CP_NOP },
1762 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
1763 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
1764 .access = PL0_W, .type = ARM_CP_NOP,
1765 .accessfn = aa64_cacheop_access },
1766 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
1767 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
1768 .access = PL1_W, .type = ARM_CP_NOP },
1769 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
1770 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
1771 .access = PL1_W, .type = ARM_CP_NOP },
1772 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
1773 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
1774 .access = PL0_W, .type = ARM_CP_NOP,
1775 .accessfn = aa64_cacheop_access },
1776 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
1777 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
1778 .access = PL1_W, .type = ARM_CP_NOP },
1779 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
1780 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
1781 .access = PL0_W, .type = ARM_CP_NOP,
1782 .accessfn = aa64_cacheop_access },
1783 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
1784 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
1785 .access = PL0_W, .type = ARM_CP_NOP,
1786 .accessfn = aa64_cacheop_access },
1787 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
1788 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
1789 .access = PL1_W, .type = ARM_CP_NOP },
1790 /* TLBI operations */
1791 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
1792 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1793 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1794 .writefn = tlbiall_write },
1795 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
1796 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1797 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1798 .writefn = tlbi_aa64_va_write },
1799 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
1800 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1801 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1802 .writefn = tlbi_aa64_asid_write },
1803 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
1804 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1805 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1806 .writefn = tlbi_aa64_vaa_write },
1807 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
1808 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 5,
1809 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1810 .writefn = tlbi_aa64_va_write },
1811 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
1812 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 7,
1813 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1814 .writefn = tlbi_aa64_vaa_write },
1815 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
1816 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1817 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1818 .writefn = tlbiall_write },
1819 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
1820 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1821 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1822 .writefn = tlbi_aa64_va_write },
1823 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
1824 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1825 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1826 .writefn = tlbi_aa64_asid_write },
1827 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
1828 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1829 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1830 .writefn = tlbi_aa64_vaa_write },
1831 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
1832 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 5,
1833 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1834 .writefn = tlbi_aa64_va_write },
1835 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
1836 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 7,
1837 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1838 .writefn = tlbi_aa64_vaa_write },
1839 /* Dummy implementation of monitor debug system control register:
1840 * we don't support debug.
1842 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64,
1843 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
1844 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1845 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
1846 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64,
1847 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1848 .access = PL1_W, .type = ARM_CP_NOP },
1849 REGINFO_SENTINEL
1852 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1853 uint64_t value)
1855 ARMCPU *cpu = arm_env_get_cpu(env);
1857 env->cp15.c1_sys = value;
1858 /* ??? Lots of these bits are not implemented. */
1859 /* This may enable/disable the MMU, so do a TLB flush. */
1860 tlb_flush(CPU(cpu), 1);
1863 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
1865 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
1866 * but the AArch32 CTR has its own reginfo struct)
1868 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
1869 return CP_ACCESS_TRAP;
1871 return CP_ACCESS_OK;
1874 static void define_aarch64_debug_regs(ARMCPU *cpu)
1876 /* Define breakpoint and watchpoint registers. These do nothing
1877 * but read as written, for now.
1879 int i;
1881 for (i = 0; i < 16; i++) {
1882 ARMCPRegInfo dbgregs[] = {
1883 { .name = "DBGBVR", .state = ARM_CP_STATE_AA64,
1884 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1885 .access = PL1_RW,
1886 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) },
1887 { .name = "DBGBCR", .state = ARM_CP_STATE_AA64,
1888 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1889 .access = PL1_RW,
1890 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) },
1891 { .name = "DBGWVR", .state = ARM_CP_STATE_AA64,
1892 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1893 .access = PL1_RW,
1894 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) },
1895 { .name = "DBGWCR", .state = ARM_CP_STATE_AA64,
1896 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1897 .access = PL1_RW,
1898 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) },
1899 REGINFO_SENTINEL
1901 define_arm_cp_regs(cpu, dbgregs);
1905 void register_cp_regs_for_features(ARMCPU *cpu)
1907 /* Register all the coprocessor registers based on feature bits */
1908 CPUARMState *env = &cpu->env;
1909 if (arm_feature(env, ARM_FEATURE_M)) {
1910 /* M profile has no coprocessor registers */
1911 return;
1914 define_arm_cp_regs(cpu, cp_reginfo);
1915 if (arm_feature(env, ARM_FEATURE_V6)) {
1916 /* The ID registers all have impdef reset values */
1917 ARMCPRegInfo v6_idregs[] = {
1918 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1919 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1920 .resetvalue = cpu->id_pfr0 },
1921 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1922 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1923 .resetvalue = cpu->id_pfr1 },
1924 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1925 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1926 .resetvalue = cpu->id_dfr0 },
1927 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1928 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1929 .resetvalue = cpu->id_afr0 },
1930 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1931 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1932 .resetvalue = cpu->id_mmfr0 },
1933 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1934 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1935 .resetvalue = cpu->id_mmfr1 },
1936 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1937 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1938 .resetvalue = cpu->id_mmfr2 },
1939 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1940 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1941 .resetvalue = cpu->id_mmfr3 },
1942 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1943 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1944 .resetvalue = cpu->id_isar0 },
1945 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1946 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1947 .resetvalue = cpu->id_isar1 },
1948 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1949 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1950 .resetvalue = cpu->id_isar2 },
1951 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1952 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1953 .resetvalue = cpu->id_isar3 },
1954 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1955 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1956 .resetvalue = cpu->id_isar4 },
1957 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1958 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1959 .resetvalue = cpu->id_isar5 },
1960 /* 6..7 are as yet unallocated and must RAZ */
1961 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1962 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1963 .resetvalue = 0 },
1964 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1965 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1966 .resetvalue = 0 },
1967 REGINFO_SENTINEL
1969 define_arm_cp_regs(cpu, v6_idregs);
1970 define_arm_cp_regs(cpu, v6_cp_reginfo);
1971 } else {
1972 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1974 if (arm_feature(env, ARM_FEATURE_V6K)) {
1975 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1977 if (arm_feature(env, ARM_FEATURE_V7)) {
1978 /* v7 performance monitor control register: same implementor
1979 * field as main ID register, and we implement only the cycle
1980 * count register.
1982 #ifndef CONFIG_USER_ONLY
1983 ARMCPRegInfo pmcr = {
1984 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1985 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1986 .type = ARM_CP_IO,
1987 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1988 .accessfn = pmreg_access, .writefn = pmcr_write,
1989 .raw_writefn = raw_write,
1991 define_one_arm_cp_reg(cpu, &pmcr);
1992 #endif
1993 ARMCPRegInfo clidr = {
1994 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
1995 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1996 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1998 define_one_arm_cp_reg(cpu, &clidr);
1999 define_arm_cp_regs(cpu, v7_cp_reginfo);
2000 } else {
2001 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
2003 if (arm_feature(env, ARM_FEATURE_V8)) {
2004 /* AArch64 ID registers, which all have impdef reset values */
2005 ARMCPRegInfo v8_idregs[] = {
2006 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
2007 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
2008 .access = PL1_R, .type = ARM_CP_CONST,
2009 .resetvalue = cpu->id_aa64pfr0 },
2010 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
2011 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
2012 .access = PL1_R, .type = ARM_CP_CONST,
2013 .resetvalue = cpu->id_aa64pfr1},
2014 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
2015 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
2016 .access = PL1_R, .type = ARM_CP_CONST,
2017 .resetvalue = cpu->id_aa64dfr0 },
2018 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
2019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
2020 .access = PL1_R, .type = ARM_CP_CONST,
2021 .resetvalue = cpu->id_aa64dfr1 },
2022 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
2023 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
2024 .access = PL1_R, .type = ARM_CP_CONST,
2025 .resetvalue = cpu->id_aa64afr0 },
2026 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
2027 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
2028 .access = PL1_R, .type = ARM_CP_CONST,
2029 .resetvalue = cpu->id_aa64afr1 },
2030 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
2031 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
2032 .access = PL1_R, .type = ARM_CP_CONST,
2033 .resetvalue = cpu->id_aa64isar0 },
2034 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
2035 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
2036 .access = PL1_R, .type = ARM_CP_CONST,
2037 .resetvalue = cpu->id_aa64isar1 },
2038 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
2039 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
2040 .access = PL1_R, .type = ARM_CP_CONST,
2041 .resetvalue = cpu->id_aa64mmfr0 },
2042 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
2043 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
2044 .access = PL1_R, .type = ARM_CP_CONST,
2045 .resetvalue = cpu->id_aa64mmfr1 },
2046 REGINFO_SENTINEL
2048 define_arm_cp_regs(cpu, v8_idregs);
2049 define_arm_cp_regs(cpu, v8_cp_reginfo);
2050 define_aarch64_debug_regs(cpu);
2052 if (arm_feature(env, ARM_FEATURE_MPU)) {
2053 /* These are the MPU registers prior to PMSAv6. Any new
2054 * PMSA core later than the ARM946 will require that we
2055 * implement the PMSAv6 or PMSAv7 registers, which are
2056 * completely different.
2058 assert(!arm_feature(env, ARM_FEATURE_V6));
2059 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
2060 } else {
2061 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
2063 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
2064 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
2066 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
2067 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
2069 if (arm_feature(env, ARM_FEATURE_VAPA)) {
2070 define_arm_cp_regs(cpu, vapa_cp_reginfo);
2072 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
2073 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
2075 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
2076 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
2078 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
2079 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
2081 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2082 define_arm_cp_regs(cpu, omap_cp_reginfo);
2084 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
2085 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
2087 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2088 define_arm_cp_regs(cpu, xscale_cp_reginfo);
2090 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
2091 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
2093 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2094 define_arm_cp_regs(cpu, lpae_cp_reginfo);
2096 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
2097 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
2098 * be read-only (ie write causes UNDEF exception).
2101 ARMCPRegInfo id_cp_reginfo[] = {
2102 /* Note that the MIDR isn't a simple constant register because
2103 * of the TI925 behaviour where writes to another register can
2104 * cause the MIDR value to change.
2106 * Unimplemented registers in the c15 0 0 0 space default to
2107 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
2108 * and friends override accordingly.
2110 { .name = "MIDR",
2111 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
2112 .access = PL1_R, .resetvalue = cpu->midr,
2113 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
2114 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
2115 .type = ARM_CP_OVERRIDE },
2116 { .name = "MIDR_EL1", .state = ARM_CP_STATE_AA64,
2117 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 0, .crm = 0,
2118 .access = PL1_R, .resetvalue = cpu->midr, .type = ARM_CP_CONST },
2119 { .name = "CTR",
2120 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
2121 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2122 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
2123 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
2124 .access = PL0_R, .accessfn = ctr_el0_access,
2125 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2126 { .name = "TCMTR",
2127 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
2128 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2129 { .name = "TLBTR",
2130 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
2131 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2132 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
2133 { .name = "DUMMY",
2134 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
2135 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2136 { .name = "DUMMY",
2137 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
2138 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2139 { .name = "DUMMY",
2140 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
2141 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2142 { .name = "DUMMY",
2143 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
2144 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2145 { .name = "DUMMY",
2146 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
2147 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2148 REGINFO_SENTINEL
2150 ARMCPRegInfo crn0_wi_reginfo = {
2151 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
2152 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
2153 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
2155 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
2156 arm_feature(env, ARM_FEATURE_STRONGARM)) {
2157 ARMCPRegInfo *r;
2158 /* Register the blanket "writes ignored" value first to cover the
2159 * whole space. Then update the specific ID registers to allow write
2160 * access, so that they ignore writes rather than causing them to
2161 * UNDEF.
2163 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
2164 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
2165 r->access = PL1_RW;
2168 define_arm_cp_regs(cpu, id_cp_reginfo);
2171 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
2172 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
2175 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
2176 ARMCPRegInfo auxcr = {
2177 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
2178 .access = PL1_RW, .type = ARM_CP_CONST,
2179 .resetvalue = cpu->reset_auxcr
2181 define_one_arm_cp_reg(cpu, &auxcr);
2184 if (arm_feature(env, ARM_FEATURE_CBAR)) {
2185 ARMCPRegInfo cbar = {
2186 .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
2187 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
2188 .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)
2190 define_one_arm_cp_reg(cpu, &cbar);
2193 /* Generic registers whose values depend on the implementation */
2195 ARMCPRegInfo sctlr = {
2196 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
2197 .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2198 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
2199 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
2200 .raw_writefn = raw_write,
2202 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2203 /* Normally we would always end the TB on an SCTLR write, but Linux
2204 * arch/arm/mach-pxa/sleep.S expects two instructions following
2205 * an MMU enable to execute from cache. Imitate this behaviour.
2207 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
2209 define_one_arm_cp_reg(cpu, &sctlr);
2213 ARMCPU *cpu_arm_init(const char *cpu_model)
2215 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
2218 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
2220 CPUState *cs = CPU(cpu);
2221 CPUARMState *env = &cpu->env;
2223 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2224 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
2225 aarch64_fpu_gdb_set_reg,
2226 34, "aarch64-fpu.xml", 0);
2227 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
2228 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2229 51, "arm-neon.xml", 0);
2230 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
2231 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2232 35, "arm-vfp3.xml", 0);
2233 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
2234 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2235 19, "arm-vfp.xml", 0);
2239 /* Sort alphabetically by type name, except for "any". */
2240 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
2242 ObjectClass *class_a = (ObjectClass *)a;
2243 ObjectClass *class_b = (ObjectClass *)b;
2244 const char *name_a, *name_b;
2246 name_a = object_class_get_name(class_a);
2247 name_b = object_class_get_name(class_b);
2248 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
2249 return 1;
2250 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
2251 return -1;
2252 } else {
2253 return strcmp(name_a, name_b);
2257 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
2259 ObjectClass *oc = data;
2260 CPUListState *s = user_data;
2261 const char *typename;
2262 char *name;
2264 typename = object_class_get_name(oc);
2265 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
2266 (*s->cpu_fprintf)(s->file, " %s\n",
2267 name);
2268 g_free(name);
2271 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
2273 CPUListState s = {
2274 .file = f,
2275 .cpu_fprintf = cpu_fprintf,
2277 GSList *list;
2279 list = object_class_get_list(TYPE_ARM_CPU, false);
2280 list = g_slist_sort(list, arm_cpu_list_compare);
2281 (*cpu_fprintf)(f, "Available CPUs:\n");
2282 g_slist_foreach(list, arm_cpu_list_entry, &s);
2283 g_slist_free(list);
2284 #ifdef CONFIG_KVM
2285 /* The 'host' CPU type is dynamically registered only if KVM is
2286 * enabled, so we have to special-case it here:
2288 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
2289 #endif
2292 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
2294 ObjectClass *oc = data;
2295 CpuDefinitionInfoList **cpu_list = user_data;
2296 CpuDefinitionInfoList *entry;
2297 CpuDefinitionInfo *info;
2298 const char *typename;
2300 typename = object_class_get_name(oc);
2301 info = g_malloc0(sizeof(*info));
2302 info->name = g_strndup(typename,
2303 strlen(typename) - strlen("-" TYPE_ARM_CPU));
2305 entry = g_malloc0(sizeof(*entry));
2306 entry->value = info;
2307 entry->next = *cpu_list;
2308 *cpu_list = entry;
2311 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
2313 CpuDefinitionInfoList *cpu_list = NULL;
2314 GSList *list;
2316 list = object_class_get_list(TYPE_ARM_CPU, false);
2317 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
2318 g_slist_free(list);
2320 return cpu_list;
2323 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
2324 void *opaque, int state,
2325 int crm, int opc1, int opc2)
2327 /* Private utility function for define_one_arm_cp_reg_with_opaque():
2328 * add a single reginfo struct to the hash table.
2330 uint32_t *key = g_new(uint32_t, 1);
2331 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
2332 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
2333 if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
2334 /* The AArch32 view of a shared register sees the lower 32 bits
2335 * of a 64 bit backing field. It is not migratable as the AArch64
2336 * view handles that. AArch64 also handles reset.
2337 * We assume it is a cp15 register.
2339 r2->cp = 15;
2340 r2->type |= ARM_CP_NO_MIGRATE;
2341 r2->resetfn = arm_cp_reset_ignore;
2342 #ifdef HOST_WORDS_BIGENDIAN
2343 if (r2->fieldoffset) {
2344 r2->fieldoffset += sizeof(uint32_t);
2346 #endif
2348 if (state == ARM_CP_STATE_AA64) {
2349 /* To allow abbreviation of ARMCPRegInfo
2350 * definitions, we treat cp == 0 as equivalent to
2351 * the value for "standard guest-visible sysreg".
2353 if (r->cp == 0) {
2354 r2->cp = CP_REG_ARM64_SYSREG_CP;
2356 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
2357 r2->opc0, opc1, opc2);
2358 } else {
2359 *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
2361 if (opaque) {
2362 r2->opaque = opaque;
2364 /* reginfo passed to helpers is correct for the actual access,
2365 * and is never ARM_CP_STATE_BOTH:
2367 r2->state = state;
2368 /* Make sure reginfo passed to helpers for wildcarded regs
2369 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
2371 r2->crm = crm;
2372 r2->opc1 = opc1;
2373 r2->opc2 = opc2;
2374 /* By convention, for wildcarded registers only the first
2375 * entry is used for migration; the others are marked as
2376 * NO_MIGRATE so we don't try to transfer the register
2377 * multiple times. Special registers (ie NOP/WFI) are
2378 * never migratable.
2380 if ((r->type & ARM_CP_SPECIAL) ||
2381 ((r->crm == CP_ANY) && crm != 0) ||
2382 ((r->opc1 == CP_ANY) && opc1 != 0) ||
2383 ((r->opc2 == CP_ANY) && opc2 != 0)) {
2384 r2->type |= ARM_CP_NO_MIGRATE;
2387 /* Overriding of an existing definition must be explicitly
2388 * requested.
2390 if (!(r->type & ARM_CP_OVERRIDE)) {
2391 ARMCPRegInfo *oldreg;
2392 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
2393 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
2394 fprintf(stderr, "Register redefined: cp=%d %d bit "
2395 "crn=%d crm=%d opc1=%d opc2=%d, "
2396 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
2397 r2->crn, r2->crm, r2->opc1, r2->opc2,
2398 oldreg->name, r2->name);
2399 g_assert_not_reached();
2402 g_hash_table_insert(cpu->cp_regs, key, r2);
2406 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2407 const ARMCPRegInfo *r, void *opaque)
2409 /* Define implementations of coprocessor registers.
2410 * We store these in a hashtable because typically
2411 * there are less than 150 registers in a space which
2412 * is 16*16*16*8*8 = 262144 in size.
2413 * Wildcarding is supported for the crm, opc1 and opc2 fields.
2414 * If a register is defined twice then the second definition is
2415 * used, so this can be used to define some generic registers and
2416 * then override them with implementation specific variations.
2417 * At least one of the original and the second definition should
2418 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
2419 * against accidental use.
2421 * The state field defines whether the register is to be
2422 * visible in the AArch32 or AArch64 execution state. If the
2423 * state is set to ARM_CP_STATE_BOTH then we synthesise a
2424 * reginfo structure for the AArch32 view, which sees the lower
2425 * 32 bits of the 64 bit register.
2427 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
2428 * be wildcarded. AArch64 registers are always considered to be 64
2429 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
2430 * the register, if any.
2432 int crm, opc1, opc2, state;
2433 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
2434 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
2435 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
2436 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
2437 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
2438 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
2439 /* 64 bit registers have only CRm and Opc1 fields */
2440 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
2441 /* op0 only exists in the AArch64 encodings */
2442 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
2443 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
2444 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
2445 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
2446 * encodes a minimum access level for the register. We roll this
2447 * runtime check into our general permission check code, so check
2448 * here that the reginfo's specified permissions are strict enough
2449 * to encompass the generic architectural permission check.
2451 if (r->state != ARM_CP_STATE_AA32) {
2452 int mask = 0;
2453 switch (r->opc1) {
2454 case 0: case 1: case 2:
2455 /* min_EL EL1 */
2456 mask = PL1_RW;
2457 break;
2458 case 3:
2459 /* min_EL EL0 */
2460 mask = PL0_RW;
2461 break;
2462 case 4:
2463 /* min_EL EL2 */
2464 mask = PL2_RW;
2465 break;
2466 case 5:
2467 /* unallocated encoding, so not possible */
2468 assert(false);
2469 break;
2470 case 6:
2471 /* min_EL EL3 */
2472 mask = PL3_RW;
2473 break;
2474 case 7:
2475 /* min_EL EL1, secure mode only (we don't check the latter) */
2476 mask = PL1_RW;
2477 break;
2478 default:
2479 /* broken reginfo with out-of-range opc1 */
2480 assert(false);
2481 break;
2483 /* assert our permissions are not too lax (stricter is fine) */
2484 assert((r->access & ~mask) == 0);
2487 /* Check that the register definition has enough info to handle
2488 * reads and writes if they are permitted.
2490 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
2491 if (r->access & PL3_R) {
2492 assert(r->fieldoffset || r->readfn);
2494 if (r->access & PL3_W) {
2495 assert(r->fieldoffset || r->writefn);
2498 /* Bad type field probably means missing sentinel at end of reg list */
2499 assert(cptype_valid(r->type));
2500 for (crm = crmmin; crm <= crmmax; crm++) {
2501 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
2502 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
2503 for (state = ARM_CP_STATE_AA32;
2504 state <= ARM_CP_STATE_AA64; state++) {
2505 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
2506 continue;
2508 add_cpreg_to_hashtable(cpu, r, opaque, state,
2509 crm, opc1, opc2);
2516 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2517 const ARMCPRegInfo *regs, void *opaque)
2519 /* Define a whole list of registers */
2520 const ARMCPRegInfo *r;
2521 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
2522 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
2526 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
2528 return g_hash_table_lookup(cpregs, &encoded_cp);
2531 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2532 uint64_t value)
2534 /* Helper coprocessor write function for write-ignore registers */
2537 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
2539 /* Helper coprocessor write function for read-as-zero registers */
2540 return 0;
2543 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
2545 /* Helper coprocessor reset function for do-nothing-on-reset registers */
2548 static int bad_mode_switch(CPUARMState *env, int mode)
2550 /* Return true if it is not valid for us to switch to
2551 * this CPU mode (ie all the UNPREDICTABLE cases in
2552 * the ARM ARM CPSRWriteByInstr pseudocode).
2554 switch (mode) {
2555 case ARM_CPU_MODE_USR:
2556 case ARM_CPU_MODE_SYS:
2557 case ARM_CPU_MODE_SVC:
2558 case ARM_CPU_MODE_ABT:
2559 case ARM_CPU_MODE_UND:
2560 case ARM_CPU_MODE_IRQ:
2561 case ARM_CPU_MODE_FIQ:
2562 return 0;
2563 default:
2564 return 1;
2568 uint32_t cpsr_read(CPUARMState *env)
2570 int ZF;
2571 ZF = (env->ZF == 0);
2572 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2573 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
2574 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
2575 | ((env->condexec_bits & 0xfc) << 8)
2576 | (env->GE << 16) | (env->daif & CPSR_AIF);
2579 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
2581 if (mask & CPSR_NZCV) {
2582 env->ZF = (~val) & CPSR_Z;
2583 env->NF = val;
2584 env->CF = (val >> 29) & 1;
2585 env->VF = (val << 3) & 0x80000000;
2587 if (mask & CPSR_Q)
2588 env->QF = ((val & CPSR_Q) != 0);
2589 if (mask & CPSR_T)
2590 env->thumb = ((val & CPSR_T) != 0);
2591 if (mask & CPSR_IT_0_1) {
2592 env->condexec_bits &= ~3;
2593 env->condexec_bits |= (val >> 25) & 3;
2595 if (mask & CPSR_IT_2_7) {
2596 env->condexec_bits &= 3;
2597 env->condexec_bits |= (val >> 8) & 0xfc;
2599 if (mask & CPSR_GE) {
2600 env->GE = (val >> 16) & 0xf;
2603 env->daif &= ~(CPSR_AIF & mask);
2604 env->daif |= val & CPSR_AIF & mask;
2606 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2607 if (bad_mode_switch(env, val & CPSR_M)) {
2608 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2609 * We choose to ignore the attempt and leave the CPSR M field
2610 * untouched.
2612 mask &= ~CPSR_M;
2613 } else {
2614 switch_mode(env, val & CPSR_M);
2617 mask &= ~CACHED_CPSR_BITS;
2618 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
2621 /* Sign/zero extend */
2622 uint32_t HELPER(sxtb16)(uint32_t x)
2624 uint32_t res;
2625 res = (uint16_t)(int8_t)x;
2626 res |= (uint32_t)(int8_t)(x >> 16) << 16;
2627 return res;
2630 uint32_t HELPER(uxtb16)(uint32_t x)
2632 uint32_t res;
2633 res = (uint16_t)(uint8_t)x;
2634 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
2635 return res;
2638 uint32_t HELPER(clz)(uint32_t x)
2640 return clz32(x);
2643 int32_t HELPER(sdiv)(int32_t num, int32_t den)
2645 if (den == 0)
2646 return 0;
2647 if (num == INT_MIN && den == -1)
2648 return INT_MIN;
2649 return num / den;
2652 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
2654 if (den == 0)
2655 return 0;
2656 return num / den;
2659 uint32_t HELPER(rbit)(uint32_t x)
2661 x = ((x & 0xff000000) >> 24)
2662 | ((x & 0x00ff0000) >> 8)
2663 | ((x & 0x0000ff00) << 8)
2664 | ((x & 0x000000ff) << 24);
2665 x = ((x & 0xf0f0f0f0) >> 4)
2666 | ((x & 0x0f0f0f0f) << 4);
2667 x = ((x & 0x88888888) >> 3)
2668 | ((x & 0x44444444) >> 1)
2669 | ((x & 0x22222222) << 1)
2670 | ((x & 0x11111111) << 3);
2671 return x;
2674 #if defined(CONFIG_USER_ONLY)
2676 void arm_cpu_do_interrupt(CPUState *cs)
2678 cs->exception_index = -1;
2681 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
2682 int mmu_idx)
2684 ARMCPU *cpu = ARM_CPU(cs);
2685 CPUARMState *env = &cpu->env;
2687 if (rw == 2) {
2688 cs->exception_index = EXCP_PREFETCH_ABORT;
2689 env->cp15.c6_insn = address;
2690 } else {
2691 cs->exception_index = EXCP_DATA_ABORT;
2692 env->cp15.c6_data = address;
2694 return 1;
2697 /* These should probably raise undefined insn exceptions. */
2698 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2700 ARMCPU *cpu = arm_env_get_cpu(env);
2702 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
2705 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2707 ARMCPU *cpu = arm_env_get_cpu(env);
2709 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
2710 return 0;
2713 void switch_mode(CPUARMState *env, int mode)
2715 ARMCPU *cpu = arm_env_get_cpu(env);
2717 if (mode != ARM_CPU_MODE_USR) {
2718 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
2722 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2724 ARMCPU *cpu = arm_env_get_cpu(env);
2726 cpu_abort(CPU(cpu), "banked r13 write\n");
2729 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2731 ARMCPU *cpu = arm_env_get_cpu(env);
2733 cpu_abort(CPU(cpu), "banked r13 read\n");
2734 return 0;
2737 #else
2739 /* Map CPU modes onto saved register banks. */
2740 int bank_number(int mode)
2742 switch (mode) {
2743 case ARM_CPU_MODE_USR:
2744 case ARM_CPU_MODE_SYS:
2745 return 0;
2746 case ARM_CPU_MODE_SVC:
2747 return 1;
2748 case ARM_CPU_MODE_ABT:
2749 return 2;
2750 case ARM_CPU_MODE_UND:
2751 return 3;
2752 case ARM_CPU_MODE_IRQ:
2753 return 4;
2754 case ARM_CPU_MODE_FIQ:
2755 return 5;
2757 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
2760 void switch_mode(CPUARMState *env, int mode)
2762 int old_mode;
2763 int i;
2765 old_mode = env->uncached_cpsr & CPSR_M;
2766 if (mode == old_mode)
2767 return;
2769 if (old_mode == ARM_CPU_MODE_FIQ) {
2770 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
2771 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
2772 } else if (mode == ARM_CPU_MODE_FIQ) {
2773 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
2774 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
2777 i = bank_number(old_mode);
2778 env->banked_r13[i] = env->regs[13];
2779 env->banked_r14[i] = env->regs[14];
2780 env->banked_spsr[i] = env->spsr;
2782 i = bank_number(mode);
2783 env->regs[13] = env->banked_r13[i];
2784 env->regs[14] = env->banked_r14[i];
2785 env->spsr = env->banked_spsr[i];
2788 static void v7m_push(CPUARMState *env, uint32_t val)
2790 CPUState *cs = CPU(arm_env_get_cpu(env));
2792 env->regs[13] -= 4;
2793 stl_phys(cs->as, env->regs[13], val);
2796 static uint32_t v7m_pop(CPUARMState *env)
2798 CPUState *cs = CPU(arm_env_get_cpu(env));
2799 uint32_t val;
2801 val = ldl_phys(cs->as, env->regs[13]);
2802 env->regs[13] += 4;
2803 return val;
2806 /* Switch to V7M main or process stack pointer. */
2807 static void switch_v7m_sp(CPUARMState *env, int process)
2809 uint32_t tmp;
2810 if (env->v7m.current_sp != process) {
2811 tmp = env->v7m.other_sp;
2812 env->v7m.other_sp = env->regs[13];
2813 env->regs[13] = tmp;
2814 env->v7m.current_sp = process;
2818 static void do_v7m_exception_exit(CPUARMState *env)
2820 uint32_t type;
2821 uint32_t xpsr;
2823 type = env->regs[15];
2824 if (env->v7m.exception != 0)
2825 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
2827 /* Switch to the target stack. */
2828 switch_v7m_sp(env, (type & 4) != 0);
2829 /* Pop registers. */
2830 env->regs[0] = v7m_pop(env);
2831 env->regs[1] = v7m_pop(env);
2832 env->regs[2] = v7m_pop(env);
2833 env->regs[3] = v7m_pop(env);
2834 env->regs[12] = v7m_pop(env);
2835 env->regs[14] = v7m_pop(env);
2836 env->regs[15] = v7m_pop(env);
2837 xpsr = v7m_pop(env);
2838 xpsr_write(env, xpsr, 0xfffffdff);
2839 /* Undo stack alignment. */
2840 if (xpsr & 0x200)
2841 env->regs[13] |= 4;
2842 /* ??? The exception return type specifies Thread/Handler mode. However
2843 this is also implied by the xPSR value. Not sure what to do
2844 if there is a mismatch. */
2845 /* ??? Likewise for mismatches between the CONTROL register and the stack
2846 pointer. */
2849 /* Exception names for debug logging; note that not all of these
2850 * precisely correspond to architectural exceptions.
2852 static const char * const excnames[] = {
2853 [EXCP_UDEF] = "Undefined Instruction",
2854 [EXCP_SWI] = "SVC",
2855 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
2856 [EXCP_DATA_ABORT] = "Data Abort",
2857 [EXCP_IRQ] = "IRQ",
2858 [EXCP_FIQ] = "FIQ",
2859 [EXCP_BKPT] = "Breakpoint",
2860 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
2861 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
2862 [EXCP_STREX] = "QEMU intercept of STREX",
2865 static inline void arm_log_exception(int idx)
2867 if (qemu_loglevel_mask(CPU_LOG_INT)) {
2868 const char *exc = NULL;
2870 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
2871 exc = excnames[idx];
2873 if (!exc) {
2874 exc = "unknown";
2876 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
2880 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2882 ARMCPU *cpu = ARM_CPU(cs);
2883 CPUARMState *env = &cpu->env;
2884 uint32_t xpsr = xpsr_read(env);
2885 uint32_t lr;
2886 uint32_t addr;
2888 arm_log_exception(cs->exception_index);
2890 lr = 0xfffffff1;
2891 if (env->v7m.current_sp)
2892 lr |= 4;
2893 if (env->v7m.exception == 0)
2894 lr |= 8;
2896 /* For exceptions we just mark as pending on the NVIC, and let that
2897 handle it. */
2898 /* TODO: Need to escalate if the current priority is higher than the
2899 one we're raising. */
2900 switch (cs->exception_index) {
2901 case EXCP_UDEF:
2902 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
2903 return;
2904 case EXCP_SWI:
2905 /* The PC already points to the next instruction. */
2906 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
2907 return;
2908 case EXCP_PREFETCH_ABORT:
2909 case EXCP_DATA_ABORT:
2910 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
2911 return;
2912 case EXCP_BKPT:
2913 if (semihosting_enabled) {
2914 int nr;
2915 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2916 if (nr == 0xab) {
2917 env->regs[15] += 2;
2918 env->regs[0] = do_arm_semihosting(env);
2919 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2920 return;
2923 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2924 return;
2925 case EXCP_IRQ:
2926 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2927 break;
2928 case EXCP_EXCEPTION_EXIT:
2929 do_v7m_exception_exit(env);
2930 return;
2931 default:
2932 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
2933 return; /* Never happens. Keep compiler happy. */
2936 /* Align stack pointer. */
2937 /* ??? Should only do this if Configuration Control Register
2938 STACKALIGN bit is set. */
2939 if (env->regs[13] & 4) {
2940 env->regs[13] -= 4;
2941 xpsr |= 0x200;
2943 /* Switch to the handler mode. */
2944 v7m_push(env, xpsr);
2945 v7m_push(env, env->regs[15]);
2946 v7m_push(env, env->regs[14]);
2947 v7m_push(env, env->regs[12]);
2948 v7m_push(env, env->regs[3]);
2949 v7m_push(env, env->regs[2]);
2950 v7m_push(env, env->regs[1]);
2951 v7m_push(env, env->regs[0]);
2952 switch_v7m_sp(env, 0);
2953 /* Clear IT bits */
2954 env->condexec_bits = 0;
2955 env->regs[14] = lr;
2956 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
2957 env->regs[15] = addr & 0xfffffffe;
2958 env->thumb = addr & 1;
2961 /* Handle a CPU exception. */
2962 void arm_cpu_do_interrupt(CPUState *cs)
2964 ARMCPU *cpu = ARM_CPU(cs);
2965 CPUARMState *env = &cpu->env;
2966 uint32_t addr;
2967 uint32_t mask;
2968 int new_mode;
2969 uint32_t offset;
2971 assert(!IS_M(env));
2973 arm_log_exception(cs->exception_index);
2975 /* TODO: Vectored interrupt controller. */
2976 switch (cs->exception_index) {
2977 case EXCP_UDEF:
2978 new_mode = ARM_CPU_MODE_UND;
2979 addr = 0x04;
2980 mask = CPSR_I;
2981 if (env->thumb)
2982 offset = 2;
2983 else
2984 offset = 4;
2985 break;
2986 case EXCP_SWI:
2987 if (semihosting_enabled) {
2988 /* Check for semihosting interrupt. */
2989 if (env->thumb) {
2990 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2991 & 0xff;
2992 } else {
2993 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2994 & 0xffffff;
2996 /* Only intercept calls from privileged modes, to provide some
2997 semblance of security. */
2998 if (((mask == 0x123456 && !env->thumb)
2999 || (mask == 0xab && env->thumb))
3000 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
3001 env->regs[0] = do_arm_semihosting(env);
3002 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3003 return;
3006 new_mode = ARM_CPU_MODE_SVC;
3007 addr = 0x08;
3008 mask = CPSR_I;
3009 /* The PC already points to the next instruction. */
3010 offset = 0;
3011 break;
3012 case EXCP_BKPT:
3013 /* See if this is a semihosting syscall. */
3014 if (env->thumb && semihosting_enabled) {
3015 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
3016 if (mask == 0xab
3017 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
3018 env->regs[15] += 2;
3019 env->regs[0] = do_arm_semihosting(env);
3020 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3021 return;
3024 env->cp15.c5_insn = 2;
3025 /* Fall through to prefetch abort. */
3026 case EXCP_PREFETCH_ABORT:
3027 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
3028 env->cp15.c5_insn, env->cp15.c6_insn);
3029 new_mode = ARM_CPU_MODE_ABT;
3030 addr = 0x0c;
3031 mask = CPSR_A | CPSR_I;
3032 offset = 4;
3033 break;
3034 case EXCP_DATA_ABORT:
3035 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
3036 env->cp15.c5_data, env->cp15.c6_data);
3037 new_mode = ARM_CPU_MODE_ABT;
3038 addr = 0x10;
3039 mask = CPSR_A | CPSR_I;
3040 offset = 8;
3041 break;
3042 case EXCP_IRQ:
3043 new_mode = ARM_CPU_MODE_IRQ;
3044 addr = 0x18;
3045 /* Disable IRQ and imprecise data aborts. */
3046 mask = CPSR_A | CPSR_I;
3047 offset = 4;
3048 break;
3049 case EXCP_FIQ:
3050 new_mode = ARM_CPU_MODE_FIQ;
3051 addr = 0x1c;
3052 /* Disable FIQ, IRQ and imprecise data aborts. */
3053 mask = CPSR_A | CPSR_I | CPSR_F;
3054 offset = 4;
3055 break;
3056 default:
3057 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
3058 return; /* Never happens. Keep compiler happy. */
3060 /* High vectors. */
3061 if (env->cp15.c1_sys & SCTLR_V) {
3062 /* when enabled, base address cannot be remapped. */
3063 addr += 0xffff0000;
3064 } else {
3065 /* ARM v7 architectures provide a vector base address register to remap
3066 * the interrupt vector table.
3067 * This register is only followed in non-monitor mode, and has a secure
3068 * and un-secure copy. Since the cpu is always in a un-secure operation
3069 * and is never in monitor mode this feature is always active.
3070 * Note: only bits 31:5 are valid.
3072 addr += env->cp15.c12_vbar;
3074 switch_mode (env, new_mode);
3075 env->spsr = cpsr_read(env);
3076 /* Clear IT bits. */
3077 env->condexec_bits = 0;
3078 /* Switch to the new mode, and to the correct instruction set. */
3079 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
3080 env->daif |= mask;
3081 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
3082 * and we should just guard the thumb mode on V4 */
3083 if (arm_feature(env, ARM_FEATURE_V4T)) {
3084 env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
3086 env->regs[14] = env->regs[15] + offset;
3087 env->regs[15] = addr;
3088 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
3091 /* Check section/page access permissions.
3092 Returns the page protection flags, or zero if the access is not
3093 permitted. */
3094 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
3095 int access_type, int is_user)
3097 int prot_ro;
3099 if (domain_prot == 3) {
3100 return PAGE_READ | PAGE_WRITE;
3103 if (access_type == 1)
3104 prot_ro = 0;
3105 else
3106 prot_ro = PAGE_READ;
3108 switch (ap) {
3109 case 0:
3110 if (arm_feature(env, ARM_FEATURE_V7)) {
3111 return 0;
3113 if (access_type == 1)
3114 return 0;
3115 switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
3116 case SCTLR_S:
3117 return is_user ? 0 : PAGE_READ;
3118 case SCTLR_R:
3119 return PAGE_READ;
3120 default:
3121 return 0;
3123 case 1:
3124 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
3125 case 2:
3126 if (is_user)
3127 return prot_ro;
3128 else
3129 return PAGE_READ | PAGE_WRITE;
3130 case 3:
3131 return PAGE_READ | PAGE_WRITE;
3132 case 4: /* Reserved. */
3133 return 0;
3134 case 5:
3135 return is_user ? 0 : prot_ro;
3136 case 6:
3137 return prot_ro;
3138 case 7:
3139 if (!arm_feature (env, ARM_FEATURE_V6K))
3140 return 0;
3141 return prot_ro;
3142 default:
3143 abort();
3147 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
3149 uint32_t table;
3151 if (address & env->cp15.c2_mask)
3152 table = env->cp15.ttbr1_el1 & 0xffffc000;
3153 else
3154 table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask;
3156 table |= (address >> 18) & 0x3ffc;
3157 return table;
3160 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
3161 int is_user, hwaddr *phys_ptr,
3162 int *prot, target_ulong *page_size)
3164 CPUState *cs = CPU(arm_env_get_cpu(env));
3165 int code;
3166 uint32_t table;
3167 uint32_t desc;
3168 int type;
3169 int ap;
3170 int domain;
3171 int domain_prot;
3172 hwaddr phys_addr;
3174 /* Pagetable walk. */
3175 /* Lookup l1 descriptor. */
3176 table = get_level1_table_address(env, address);
3177 desc = ldl_phys(cs->as, table);
3178 type = (desc & 3);
3179 domain = (desc >> 5) & 0x0f;
3180 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
3181 if (type == 0) {
3182 /* Section translation fault. */
3183 code = 5;
3184 goto do_fault;
3186 if (domain_prot == 0 || domain_prot == 2) {
3187 if (type == 2)
3188 code = 9; /* Section domain fault. */
3189 else
3190 code = 11; /* Page domain fault. */
3191 goto do_fault;
3193 if (type == 2) {
3194 /* 1Mb section. */
3195 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
3196 ap = (desc >> 10) & 3;
3197 code = 13;
3198 *page_size = 1024 * 1024;
3199 } else {
3200 /* Lookup l2 entry. */
3201 if (type == 1) {
3202 /* Coarse pagetable. */
3203 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3204 } else {
3205 /* Fine pagetable. */
3206 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
3208 desc = ldl_phys(cs->as, table);
3209 switch (desc & 3) {
3210 case 0: /* Page translation fault. */
3211 code = 7;
3212 goto do_fault;
3213 case 1: /* 64k page. */
3214 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3215 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
3216 *page_size = 0x10000;
3217 break;
3218 case 2: /* 4k page. */
3219 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3220 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
3221 *page_size = 0x1000;
3222 break;
3223 case 3: /* 1k page. */
3224 if (type == 1) {
3225 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3226 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3227 } else {
3228 /* Page translation fault. */
3229 code = 7;
3230 goto do_fault;
3232 } else {
3233 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
3235 ap = (desc >> 4) & 3;
3236 *page_size = 0x400;
3237 break;
3238 default:
3239 /* Never happens, but compiler isn't smart enough to tell. */
3240 abort();
3242 code = 15;
3244 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3245 if (!*prot) {
3246 /* Access permission fault. */
3247 goto do_fault;
3249 *prot |= PAGE_EXEC;
3250 *phys_ptr = phys_addr;
3251 return 0;
3252 do_fault:
3253 return code | (domain << 4);
3256 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
3257 int is_user, hwaddr *phys_ptr,
3258 int *prot, target_ulong *page_size)
3260 CPUState *cs = CPU(arm_env_get_cpu(env));
3261 int code;
3262 uint32_t table;
3263 uint32_t desc;
3264 uint32_t xn;
3265 uint32_t pxn = 0;
3266 int type;
3267 int ap;
3268 int domain = 0;
3269 int domain_prot;
3270 hwaddr phys_addr;
3272 /* Pagetable walk. */
3273 /* Lookup l1 descriptor. */
3274 table = get_level1_table_address(env, address);
3275 desc = ldl_phys(cs->as, table);
3276 type = (desc & 3);
3277 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
3278 /* Section translation fault, or attempt to use the encoding
3279 * which is Reserved on implementations without PXN.
3281 code = 5;
3282 goto do_fault;
3284 if ((type == 1) || !(desc & (1 << 18))) {
3285 /* Page or Section. */
3286 domain = (desc >> 5) & 0x0f;
3288 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
3289 if (domain_prot == 0 || domain_prot == 2) {
3290 if (type != 1) {
3291 code = 9; /* Section domain fault. */
3292 } else {
3293 code = 11; /* Page domain fault. */
3295 goto do_fault;
3297 if (type != 1) {
3298 if (desc & (1 << 18)) {
3299 /* Supersection. */
3300 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
3301 *page_size = 0x1000000;
3302 } else {
3303 /* Section. */
3304 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
3305 *page_size = 0x100000;
3307 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
3308 xn = desc & (1 << 4);
3309 pxn = desc & 1;
3310 code = 13;
3311 } else {
3312 if (arm_feature(env, ARM_FEATURE_PXN)) {
3313 pxn = (desc >> 2) & 1;
3315 /* Lookup l2 entry. */
3316 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3317 desc = ldl_phys(cs->as, table);
3318 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
3319 switch (desc & 3) {
3320 case 0: /* Page translation fault. */
3321 code = 7;
3322 goto do_fault;
3323 case 1: /* 64k page. */
3324 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3325 xn = desc & (1 << 15);
3326 *page_size = 0x10000;
3327 break;
3328 case 2: case 3: /* 4k page. */
3329 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3330 xn = desc & 1;
3331 *page_size = 0x1000;
3332 break;
3333 default:
3334 /* Never happens, but compiler isn't smart enough to tell. */
3335 abort();
3337 code = 15;
3339 if (domain_prot == 3) {
3340 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3341 } else {
3342 if (pxn && !is_user) {
3343 xn = 1;
3345 if (xn && access_type == 2)
3346 goto do_fault;
3348 /* The simplified model uses AP[0] as an access control bit. */
3349 if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
3350 /* Access flag fault. */
3351 code = (code == 15) ? 6 : 3;
3352 goto do_fault;
3354 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3355 if (!*prot) {
3356 /* Access permission fault. */
3357 goto do_fault;
3359 if (!xn) {
3360 *prot |= PAGE_EXEC;
3363 *phys_ptr = phys_addr;
3364 return 0;
3365 do_fault:
3366 return code | (domain << 4);
3369 /* Fault type for long-descriptor MMU fault reporting; this corresponds
3370 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
3372 typedef enum {
3373 translation_fault = 1,
3374 access_fault = 2,
3375 permission_fault = 3,
3376 } MMUFaultType;
3378 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
3379 int access_type, int is_user,
3380 hwaddr *phys_ptr, int *prot,
3381 target_ulong *page_size_ptr)
3383 CPUState *cs = CPU(arm_env_get_cpu(env));
3384 /* Read an LPAE long-descriptor translation table. */
3385 MMUFaultType fault_type = translation_fault;
3386 uint32_t level = 1;
3387 uint32_t epd;
3388 uint32_t tsz;
3389 uint64_t ttbr;
3390 int ttbr_select;
3391 int n;
3392 hwaddr descaddr;
3393 uint32_t tableattrs;
3394 target_ulong page_size;
3395 uint32_t attrs;
3397 /* Determine whether this address is in the region controlled by
3398 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
3399 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
3400 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
3402 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
3403 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
3404 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
3405 /* there is a ttbr0 region and we are in it (high bits all zero) */
3406 ttbr_select = 0;
3407 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
3408 /* there is a ttbr1 region and we are in it (high bits all one) */
3409 ttbr_select = 1;
3410 } else if (!t0sz) {
3411 /* ttbr0 region is "everything not in the ttbr1 region" */
3412 ttbr_select = 0;
3413 } else if (!t1sz) {
3414 /* ttbr1 region is "everything not in the ttbr0 region" */
3415 ttbr_select = 1;
3416 } else {
3417 /* in the gap between the two regions, this is a Translation fault */
3418 fault_type = translation_fault;
3419 goto do_fault;
3422 /* Note that QEMU ignores shareability and cacheability attributes,
3423 * so we don't need to do anything with the SH, ORGN, IRGN fields
3424 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
3425 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
3426 * implement any ASID-like capability so we can ignore it (instead
3427 * we will always flush the TLB any time the ASID is changed).
3429 if (ttbr_select == 0) {
3430 ttbr = env->cp15.ttbr0_el1;
3431 epd = extract32(env->cp15.c2_control, 7, 1);
3432 tsz = t0sz;
3433 } else {
3434 ttbr = env->cp15.ttbr1_el1;
3435 epd = extract32(env->cp15.c2_control, 23, 1);
3436 tsz = t1sz;
3439 if (epd) {
3440 /* Translation table walk disabled => Translation fault on TLB miss */
3441 goto do_fault;
3444 /* If the region is small enough we will skip straight to a 2nd level
3445 * lookup. This affects the number of bits of the address used in
3446 * combination with the TTBR to find the first descriptor. ('n' here
3447 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
3448 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
3450 if (tsz > 1) {
3451 level = 2;
3452 n = 14 - tsz;
3453 } else {
3454 n = 5 - tsz;
3457 /* Clear the vaddr bits which aren't part of the within-region address,
3458 * so that we don't have to special case things when calculating the
3459 * first descriptor address.
3461 address &= (0xffffffffU >> tsz);
3463 /* Now we can extract the actual base address from the TTBR */
3464 descaddr = extract64(ttbr, 0, 40);
3465 descaddr &= ~((1ULL << n) - 1);
3467 tableattrs = 0;
3468 for (;;) {
3469 uint64_t descriptor;
3471 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
3472 descriptor = ldq_phys(cs->as, descaddr);
3473 if (!(descriptor & 1) ||
3474 (!(descriptor & 2) && (level == 3))) {
3475 /* Invalid, or the Reserved level 3 encoding */
3476 goto do_fault;
3478 descaddr = descriptor & 0xfffffff000ULL;
3480 if ((descriptor & 2) && (level < 3)) {
3481 /* Table entry. The top five bits are attributes which may
3482 * propagate down through lower levels of the table (and
3483 * which are all arranged so that 0 means "no effect", so
3484 * we can gather them up by ORing in the bits at each level).
3486 tableattrs |= extract64(descriptor, 59, 5);
3487 level++;
3488 continue;
3490 /* Block entry at level 1 or 2, or page entry at level 3.
3491 * These are basically the same thing, although the number
3492 * of bits we pull in from the vaddr varies.
3494 page_size = (1 << (39 - (9 * level)));
3495 descaddr |= (address & (page_size - 1));
3496 /* Extract attributes from the descriptor and merge with table attrs */
3497 attrs = extract64(descriptor, 2, 10)
3498 | (extract64(descriptor, 52, 12) << 10);
3499 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
3500 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
3501 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
3502 * means "force PL1 access only", which means forcing AP[1] to 0.
3504 if (extract32(tableattrs, 2, 1)) {
3505 attrs &= ~(1 << 4);
3507 /* Since we're always in the Non-secure state, NSTable is ignored. */
3508 break;
3510 /* Here descaddr is the final physical address, and attributes
3511 * are all in attrs.
3513 fault_type = access_fault;
3514 if ((attrs & (1 << 8)) == 0) {
3515 /* Access flag */
3516 goto do_fault;
3518 fault_type = permission_fault;
3519 if (is_user && !(attrs & (1 << 4))) {
3520 /* Unprivileged access not enabled */
3521 goto do_fault;
3523 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3524 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
3525 /* XN or PXN */
3526 if (access_type == 2) {
3527 goto do_fault;
3529 *prot &= ~PAGE_EXEC;
3531 if (attrs & (1 << 5)) {
3532 /* Write access forbidden */
3533 if (access_type == 1) {
3534 goto do_fault;
3536 *prot &= ~PAGE_WRITE;
3539 *phys_ptr = descaddr;
3540 *page_size_ptr = page_size;
3541 return 0;
3543 do_fault:
3544 /* Long-descriptor format IFSR/DFSR value */
3545 return (1 << 9) | (fault_type << 2) | level;
3548 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
3549 int access_type, int is_user,
3550 hwaddr *phys_ptr, int *prot)
3552 int n;
3553 uint32_t mask;
3554 uint32_t base;
3556 *phys_ptr = address;
3557 for (n = 7; n >= 0; n--) {
3558 base = env->cp15.c6_region[n];
3559 if ((base & 1) == 0)
3560 continue;
3561 mask = 1 << ((base >> 1) & 0x1f);
3562 /* Keep this shift separate from the above to avoid an
3563 (undefined) << 32. */
3564 mask = (mask << 1) - 1;
3565 if (((base ^ address) & ~mask) == 0)
3566 break;
3568 if (n < 0)
3569 return 2;
3571 if (access_type == 2) {
3572 mask = env->cp15.c5_insn;
3573 } else {
3574 mask = env->cp15.c5_data;
3576 mask = (mask >> (n * 4)) & 0xf;
3577 switch (mask) {
3578 case 0:
3579 return 1;
3580 case 1:
3581 if (is_user)
3582 return 1;
3583 *prot = PAGE_READ | PAGE_WRITE;
3584 break;
3585 case 2:
3586 *prot = PAGE_READ;
3587 if (!is_user)
3588 *prot |= PAGE_WRITE;
3589 break;
3590 case 3:
3591 *prot = PAGE_READ | PAGE_WRITE;
3592 break;
3593 case 5:
3594 if (is_user)
3595 return 1;
3596 *prot = PAGE_READ;
3597 break;
3598 case 6:
3599 *prot = PAGE_READ;
3600 break;
3601 default:
3602 /* Bad permission. */
3603 return 1;
3605 *prot |= PAGE_EXEC;
3606 return 0;
3609 /* get_phys_addr - get the physical address for this virtual address
3611 * Find the physical address corresponding to the given virtual address,
3612 * by doing a translation table walk on MMU based systems or using the
3613 * MPU state on MPU based systems.
3615 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3616 * prot and page_size are not filled in, and the return value provides
3617 * information on why the translation aborted, in the format of a
3618 * DFSR/IFSR fault register, with the following caveats:
3619 * * we honour the short vs long DFSR format differences.
3620 * * the WnR bit is never set (the caller must do this).
3621 * * for MPU based systems we don't bother to return a full FSR format
3622 * value.
3624 * @env: CPUARMState
3625 * @address: virtual address to get physical address for
3626 * @access_type: 0 for read, 1 for write, 2 for execute
3627 * @is_user: 0 for privileged access, 1 for user
3628 * @phys_ptr: set to the physical address corresponding to the virtual address
3629 * @prot: set to the permissions for the page containing phys_ptr
3630 * @page_size: set to the size of the page containing phys_ptr
3632 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
3633 int access_type, int is_user,
3634 hwaddr *phys_ptr, int *prot,
3635 target_ulong *page_size)
3637 /* Fast Context Switch Extension. */
3638 if (address < 0x02000000)
3639 address += env->cp15.c13_fcse;
3641 if ((env->cp15.c1_sys & SCTLR_M) == 0) {
3642 /* MMU/MPU disabled. */
3643 *phys_ptr = address;
3644 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3645 *page_size = TARGET_PAGE_SIZE;
3646 return 0;
3647 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
3648 *page_size = TARGET_PAGE_SIZE;
3649 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
3650 prot);
3651 } else if (extended_addresses_enabled(env)) {
3652 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
3653 prot, page_size);
3654 } else if (env->cp15.c1_sys & SCTLR_XP) {
3655 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
3656 prot, page_size);
3657 } else {
3658 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
3659 prot, page_size);
3663 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
3664 int access_type, int mmu_idx)
3666 ARMCPU *cpu = ARM_CPU(cs);
3667 CPUARMState *env = &cpu->env;
3668 hwaddr phys_addr;
3669 target_ulong page_size;
3670 int prot;
3671 int ret, is_user;
3673 is_user = mmu_idx == MMU_USER_IDX;
3674 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
3675 &page_size);
3676 if (ret == 0) {
3677 /* Map a single [sub]page. */
3678 phys_addr &= ~(hwaddr)0x3ff;
3679 address &= ~(uint32_t)0x3ff;
3680 tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size);
3681 return 0;
3684 if (access_type == 2) {
3685 env->cp15.c5_insn = ret;
3686 env->cp15.c6_insn = address;
3687 cs->exception_index = EXCP_PREFETCH_ABORT;
3688 } else {
3689 env->cp15.c5_data = ret;
3690 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
3691 env->cp15.c5_data |= (1 << 11);
3692 env->cp15.c6_data = address;
3693 cs->exception_index = EXCP_DATA_ABORT;
3695 return 1;
3698 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
3700 ARMCPU *cpu = ARM_CPU(cs);
3701 hwaddr phys_addr;
3702 target_ulong page_size;
3703 int prot;
3704 int ret;
3706 ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
3708 if (ret != 0) {
3709 return -1;
3712 return phys_addr;
3715 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
3717 if ((env->uncached_cpsr & CPSR_M) == mode) {
3718 env->regs[13] = val;
3719 } else {
3720 env->banked_r13[bank_number(mode)] = val;
3724 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
3726 if ((env->uncached_cpsr & CPSR_M) == mode) {
3727 return env->regs[13];
3728 } else {
3729 return env->banked_r13[bank_number(mode)];
3733 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
3735 ARMCPU *cpu = arm_env_get_cpu(env);
3737 switch (reg) {
3738 case 0: /* APSR */
3739 return xpsr_read(env) & 0xf8000000;
3740 case 1: /* IAPSR */
3741 return xpsr_read(env) & 0xf80001ff;
3742 case 2: /* EAPSR */
3743 return xpsr_read(env) & 0xff00fc00;
3744 case 3: /* xPSR */
3745 return xpsr_read(env) & 0xff00fdff;
3746 case 5: /* IPSR */
3747 return xpsr_read(env) & 0x000001ff;
3748 case 6: /* EPSR */
3749 return xpsr_read(env) & 0x0700fc00;
3750 case 7: /* IEPSR */
3751 return xpsr_read(env) & 0x0700edff;
3752 case 8: /* MSP */
3753 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
3754 case 9: /* PSP */
3755 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
3756 case 16: /* PRIMASK */
3757 return (env->daif & PSTATE_I) != 0;
3758 case 17: /* BASEPRI */
3759 case 18: /* BASEPRI_MAX */
3760 return env->v7m.basepri;
3761 case 19: /* FAULTMASK */
3762 return (env->daif & PSTATE_F) != 0;
3763 case 20: /* CONTROL */
3764 return env->v7m.control;
3765 default:
3766 /* ??? For debugging only. */
3767 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
3768 return 0;
3772 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
3774 ARMCPU *cpu = arm_env_get_cpu(env);
3776 switch (reg) {
3777 case 0: /* APSR */
3778 xpsr_write(env, val, 0xf8000000);
3779 break;
3780 case 1: /* IAPSR */
3781 xpsr_write(env, val, 0xf8000000);
3782 break;
3783 case 2: /* EAPSR */
3784 xpsr_write(env, val, 0xfe00fc00);
3785 break;
3786 case 3: /* xPSR */
3787 xpsr_write(env, val, 0xfe00fc00);
3788 break;
3789 case 5: /* IPSR */
3790 /* IPSR bits are readonly. */
3791 break;
3792 case 6: /* EPSR */
3793 xpsr_write(env, val, 0x0600fc00);
3794 break;
3795 case 7: /* IEPSR */
3796 xpsr_write(env, val, 0x0600fc00);
3797 break;
3798 case 8: /* MSP */
3799 if (env->v7m.current_sp)
3800 env->v7m.other_sp = val;
3801 else
3802 env->regs[13] = val;
3803 break;
3804 case 9: /* PSP */
3805 if (env->v7m.current_sp)
3806 env->regs[13] = val;
3807 else
3808 env->v7m.other_sp = val;
3809 break;
3810 case 16: /* PRIMASK */
3811 if (val & 1) {
3812 env->daif |= PSTATE_I;
3813 } else {
3814 env->daif &= ~PSTATE_I;
3816 break;
3817 case 17: /* BASEPRI */
3818 env->v7m.basepri = val & 0xff;
3819 break;
3820 case 18: /* BASEPRI_MAX */
3821 val &= 0xff;
3822 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
3823 env->v7m.basepri = val;
3824 break;
3825 case 19: /* FAULTMASK */
3826 if (val & 1) {
3827 env->daif |= PSTATE_F;
3828 } else {
3829 env->daif &= ~PSTATE_F;
3831 break;
3832 case 20: /* CONTROL */
3833 env->v7m.control = val & 3;
3834 switch_v7m_sp(env, (val & 2) != 0);
3835 break;
3836 default:
3837 /* ??? For debugging only. */
3838 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
3839 return;
3843 #endif
3845 /* Note that signed overflow is undefined in C. The following routines are
3846 careful to use unsigned types where modulo arithmetic is required.
3847 Failure to do so _will_ break on newer gcc. */
3849 /* Signed saturating arithmetic. */
3851 /* Perform 16-bit signed saturating addition. */
3852 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
3854 uint16_t res;
3856 res = a + b;
3857 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
3858 if (a & 0x8000)
3859 res = 0x8000;
3860 else
3861 res = 0x7fff;
3863 return res;
3866 /* Perform 8-bit signed saturating addition. */
3867 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
3869 uint8_t res;
3871 res = a + b;
3872 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
3873 if (a & 0x80)
3874 res = 0x80;
3875 else
3876 res = 0x7f;
3878 return res;
3881 /* Perform 16-bit signed saturating subtraction. */
3882 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
3884 uint16_t res;
3886 res = a - b;
3887 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
3888 if (a & 0x8000)
3889 res = 0x8000;
3890 else
3891 res = 0x7fff;
3893 return res;
3896 /* Perform 8-bit signed saturating subtraction. */
3897 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
3899 uint8_t res;
3901 res = a - b;
3902 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
3903 if (a & 0x80)
3904 res = 0x80;
3905 else
3906 res = 0x7f;
3908 return res;
3911 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
3912 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
3913 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
3914 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
3915 #define PFX q
3917 #include "op_addsub.h"
3919 /* Unsigned saturating arithmetic. */
3920 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
3922 uint16_t res;
3923 res = a + b;
3924 if (res < a)
3925 res = 0xffff;
3926 return res;
3929 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
3931 if (a > b)
3932 return a - b;
3933 else
3934 return 0;
3937 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
3939 uint8_t res;
3940 res = a + b;
3941 if (res < a)
3942 res = 0xff;
3943 return res;
3946 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
3948 if (a > b)
3949 return a - b;
3950 else
3951 return 0;
3954 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3955 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3956 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3957 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3958 #define PFX uq
3960 #include "op_addsub.h"
3962 /* Signed modulo arithmetic. */
3963 #define SARITH16(a, b, n, op) do { \
3964 int32_t sum; \
3965 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3966 RESULT(sum, n, 16); \
3967 if (sum >= 0) \
3968 ge |= 3 << (n * 2); \
3969 } while(0)
3971 #define SARITH8(a, b, n, op) do { \
3972 int32_t sum; \
3973 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3974 RESULT(sum, n, 8); \
3975 if (sum >= 0) \
3976 ge |= 1 << n; \
3977 } while(0)
3980 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3981 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3982 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3983 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3984 #define PFX s
3985 #define ARITH_GE
3987 #include "op_addsub.h"
3989 /* Unsigned modulo arithmetic. */
3990 #define ADD16(a, b, n) do { \
3991 uint32_t sum; \
3992 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3993 RESULT(sum, n, 16); \
3994 if ((sum >> 16) == 1) \
3995 ge |= 3 << (n * 2); \
3996 } while(0)
3998 #define ADD8(a, b, n) do { \
3999 uint32_t sum; \
4000 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
4001 RESULT(sum, n, 8); \
4002 if ((sum >> 8) == 1) \
4003 ge |= 1 << n; \
4004 } while(0)
4006 #define SUB16(a, b, n) do { \
4007 uint32_t sum; \
4008 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
4009 RESULT(sum, n, 16); \
4010 if ((sum >> 16) == 0) \
4011 ge |= 3 << (n * 2); \
4012 } while(0)
4014 #define SUB8(a, b, n) do { \
4015 uint32_t sum; \
4016 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
4017 RESULT(sum, n, 8); \
4018 if ((sum >> 8) == 0) \
4019 ge |= 1 << n; \
4020 } while(0)
4022 #define PFX u
4023 #define ARITH_GE
4025 #include "op_addsub.h"
4027 /* Halved signed arithmetic. */
4028 #define ADD16(a, b, n) \
4029 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
4030 #define SUB16(a, b, n) \
4031 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
4032 #define ADD8(a, b, n) \
4033 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
4034 #define SUB8(a, b, n) \
4035 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
4036 #define PFX sh
4038 #include "op_addsub.h"
4040 /* Halved unsigned arithmetic. */
4041 #define ADD16(a, b, n) \
4042 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4043 #define SUB16(a, b, n) \
4044 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4045 #define ADD8(a, b, n) \
4046 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4047 #define SUB8(a, b, n) \
4048 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4049 #define PFX uh
4051 #include "op_addsub.h"
4053 static inline uint8_t do_usad(uint8_t a, uint8_t b)
4055 if (a > b)
4056 return a - b;
4057 else
4058 return b - a;
4061 /* Unsigned sum of absolute byte differences. */
4062 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
4064 uint32_t sum;
4065 sum = do_usad(a, b);
4066 sum += do_usad(a >> 8, b >> 8);
4067 sum += do_usad(a >> 16, b >>16);
4068 sum += do_usad(a >> 24, b >> 24);
4069 return sum;
4072 /* For ARMv6 SEL instruction. */
4073 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
4075 uint32_t mask;
4077 mask = 0;
4078 if (flags & 1)
4079 mask |= 0xff;
4080 if (flags & 2)
4081 mask |= 0xff00;
4082 if (flags & 4)
4083 mask |= 0xff0000;
4084 if (flags & 8)
4085 mask |= 0xff000000;
4086 return (a & mask) | (b & ~mask);
4089 /* VFP support. We follow the convention used for VFP instructions:
4090 Single precision routines have a "s" suffix, double precision a
4091 "d" suffix. */
4093 /* Convert host exception flags to vfp form. */
4094 static inline int vfp_exceptbits_from_host(int host_bits)
4096 int target_bits = 0;
4098 if (host_bits & float_flag_invalid)
4099 target_bits |= 1;
4100 if (host_bits & float_flag_divbyzero)
4101 target_bits |= 2;
4102 if (host_bits & float_flag_overflow)
4103 target_bits |= 4;
4104 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4105 target_bits |= 8;
4106 if (host_bits & float_flag_inexact)
4107 target_bits |= 0x10;
4108 if (host_bits & float_flag_input_denormal)
4109 target_bits |= 0x80;
4110 return target_bits;
4113 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4115 int i;
4116 uint32_t fpscr;
4118 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
4119 | (env->vfp.vec_len << 16)
4120 | (env->vfp.vec_stride << 20);
4121 i = get_float_exception_flags(&env->vfp.fp_status);
4122 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4123 fpscr |= vfp_exceptbits_from_host(i);
4124 return fpscr;
4127 uint32_t vfp_get_fpscr(CPUARMState *env)
4129 return HELPER(vfp_get_fpscr)(env);
4132 /* Convert vfp exception flags to target form. */
4133 static inline int vfp_exceptbits_to_host(int target_bits)
4135 int host_bits = 0;
4137 if (target_bits & 1)
4138 host_bits |= float_flag_invalid;
4139 if (target_bits & 2)
4140 host_bits |= float_flag_divbyzero;
4141 if (target_bits & 4)
4142 host_bits |= float_flag_overflow;
4143 if (target_bits & 8)
4144 host_bits |= float_flag_underflow;
4145 if (target_bits & 0x10)
4146 host_bits |= float_flag_inexact;
4147 if (target_bits & 0x80)
4148 host_bits |= float_flag_input_denormal;
4149 return host_bits;
4152 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4154 int i;
4155 uint32_t changed;
4157 changed = env->vfp.xregs[ARM_VFP_FPSCR];
4158 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
4159 env->vfp.vec_len = (val >> 16) & 7;
4160 env->vfp.vec_stride = (val >> 20) & 3;
4162 changed ^= val;
4163 if (changed & (3 << 22)) {
4164 i = (val >> 22) & 3;
4165 switch (i) {
4166 case FPROUNDING_TIEEVEN:
4167 i = float_round_nearest_even;
4168 break;
4169 case FPROUNDING_POSINF:
4170 i = float_round_up;
4171 break;
4172 case FPROUNDING_NEGINF:
4173 i = float_round_down;
4174 break;
4175 case FPROUNDING_ZERO:
4176 i = float_round_to_zero;
4177 break;
4179 set_float_rounding_mode(i, &env->vfp.fp_status);
4181 if (changed & (1 << 24)) {
4182 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4183 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4185 if (changed & (1 << 25))
4186 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4188 i = vfp_exceptbits_to_host(val);
4189 set_float_exception_flags(i, &env->vfp.fp_status);
4190 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4193 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
4195 HELPER(vfp_set_fpscr)(env, val);
4198 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
4200 #define VFP_BINOP(name) \
4201 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4203 float_status *fpst = fpstp; \
4204 return float32_ ## name(a, b, fpst); \
4206 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4208 float_status *fpst = fpstp; \
4209 return float64_ ## name(a, b, fpst); \
4211 VFP_BINOP(add)
4212 VFP_BINOP(sub)
4213 VFP_BINOP(mul)
4214 VFP_BINOP(div)
4215 VFP_BINOP(min)
4216 VFP_BINOP(max)
4217 VFP_BINOP(minnum)
4218 VFP_BINOP(maxnum)
4219 #undef VFP_BINOP
4221 float32 VFP_HELPER(neg, s)(float32 a)
4223 return float32_chs(a);
4226 float64 VFP_HELPER(neg, d)(float64 a)
4228 return float64_chs(a);
4231 float32 VFP_HELPER(abs, s)(float32 a)
4233 return float32_abs(a);
4236 float64 VFP_HELPER(abs, d)(float64 a)
4238 return float64_abs(a);
4241 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4243 return float32_sqrt(a, &env->vfp.fp_status);
4246 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4248 return float64_sqrt(a, &env->vfp.fp_status);
4251 /* XXX: check quiet/signaling case */
4252 #define DO_VFP_cmp(p, type) \
4253 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4255 uint32_t flags; \
4256 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
4257 case 0: flags = 0x6; break; \
4258 case -1: flags = 0x8; break; \
4259 case 1: flags = 0x2; break; \
4260 default: case 2: flags = 0x3; break; \
4262 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4263 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4265 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4267 uint32_t flags; \
4268 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
4269 case 0: flags = 0x6; break; \
4270 case -1: flags = 0x8; break; \
4271 case 1: flags = 0x2; break; \
4272 default: case 2: flags = 0x3; break; \
4274 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4275 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4277 DO_VFP_cmp(s, float32)
4278 DO_VFP_cmp(d, float64)
4279 #undef DO_VFP_cmp
4281 /* Integer to float and float to integer conversions */
4283 #define CONV_ITOF(name, fsz, sign) \
4284 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
4286 float_status *fpst = fpstp; \
4287 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4290 #define CONV_FTOI(name, fsz, sign, round) \
4291 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
4293 float_status *fpst = fpstp; \
4294 if (float##fsz##_is_any_nan(x)) { \
4295 float_raise(float_flag_invalid, fpst); \
4296 return 0; \
4298 return float##fsz##_to_##sign##int32##round(x, fpst); \
4301 #define FLOAT_CONVS(name, p, fsz, sign) \
4302 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
4303 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
4304 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4306 FLOAT_CONVS(si, s, 32, )
4307 FLOAT_CONVS(si, d, 64, )
4308 FLOAT_CONVS(ui, s, 32, u)
4309 FLOAT_CONVS(ui, d, 64, u)
4311 #undef CONV_ITOF
4312 #undef CONV_FTOI
4313 #undef FLOAT_CONVS
4315 /* floating point conversion */
4316 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4318 float64 r = float32_to_float64(x, &env->vfp.fp_status);
4319 /* ARM requires that S<->D conversion of any kind of NaN generates
4320 * a quiet NaN by forcing the most significant frac bit to 1.
4322 return float64_maybe_silence_nan(r);
4325 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4327 float32 r = float64_to_float32(x, &env->vfp.fp_status);
4328 /* ARM requires that S<->D conversion of any kind of NaN generates
4329 * a quiet NaN by forcing the most significant frac bit to 1.
4331 return float32_maybe_silence_nan(r);
4334 /* VFP3 fixed point conversion. */
4335 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4336 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
4337 void *fpstp) \
4339 float_status *fpst = fpstp; \
4340 float##fsz tmp; \
4341 tmp = itype##_to_##float##fsz(x, fpst); \
4342 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4345 /* Notice that we want only input-denormal exception flags from the
4346 * scalbn operation: the other possible flags (overflow+inexact if
4347 * we overflow to infinity, output-denormal) aren't correct for the
4348 * complete scale-and-convert operation.
4350 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
4351 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
4352 uint32_t shift, \
4353 void *fpstp) \
4355 float_status *fpst = fpstp; \
4356 int old_exc_flags = get_float_exception_flags(fpst); \
4357 float##fsz tmp; \
4358 if (float##fsz##_is_any_nan(x)) { \
4359 float_raise(float_flag_invalid, fpst); \
4360 return 0; \
4362 tmp = float##fsz##_scalbn(x, shift, fpst); \
4363 old_exc_flags |= get_float_exception_flags(fpst) \
4364 & float_flag_input_denormal; \
4365 set_float_exception_flags(old_exc_flags, fpst); \
4366 return float##fsz##_to_##itype##round(tmp, fpst); \
4369 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
4370 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4371 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
4372 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4374 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
4375 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4376 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4378 VFP_CONV_FIX(sh, d, 64, 64, int16)
4379 VFP_CONV_FIX(sl, d, 64, 64, int32)
4380 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
4381 VFP_CONV_FIX(uh, d, 64, 64, uint16)
4382 VFP_CONV_FIX(ul, d, 64, 64, uint32)
4383 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
4384 VFP_CONV_FIX(sh, s, 32, 32, int16)
4385 VFP_CONV_FIX(sl, s, 32, 32, int32)
4386 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
4387 VFP_CONV_FIX(uh, s, 32, 32, uint16)
4388 VFP_CONV_FIX(ul, s, 32, 32, uint32)
4389 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4390 #undef VFP_CONV_FIX
4391 #undef VFP_CONV_FIX_FLOAT
4392 #undef VFP_CONV_FLOAT_FIX_ROUND
4394 /* Set the current fp rounding mode and return the old one.
4395 * The argument is a softfloat float_round_ value.
4397 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
4399 float_status *fp_status = &env->vfp.fp_status;
4401 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4402 set_float_rounding_mode(rmode, fp_status);
4404 return prev_rmode;
4407 /* Set the current fp rounding mode in the standard fp status and return
4408 * the old one. This is for NEON instructions that need to change the
4409 * rounding mode but wish to use the standard FPSCR values for everything
4410 * else. Always set the rounding mode back to the correct value after
4411 * modifying it.
4412 * The argument is a softfloat float_round_ value.
4414 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
4416 float_status *fp_status = &env->vfp.standard_fp_status;
4418 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4419 set_float_rounding_mode(rmode, fp_status);
4421 return prev_rmode;
4424 /* Half precision conversions. */
4425 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
4427 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4428 float32 r = float16_to_float32(make_float16(a), ieee, s);
4429 if (ieee) {
4430 return float32_maybe_silence_nan(r);
4432 return r;
4435 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
4437 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4438 float16 r = float32_to_float16(a, ieee, s);
4439 if (ieee) {
4440 r = float16_maybe_silence_nan(r);
4442 return float16_val(r);
4445 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4447 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
4450 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4452 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
4455 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4457 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
4460 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4462 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
4465 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
4467 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4468 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
4469 if (ieee) {
4470 return float64_maybe_silence_nan(r);
4472 return r;
4475 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
4477 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4478 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
4479 if (ieee) {
4480 r = float16_maybe_silence_nan(r);
4482 return float16_val(r);
4485 #define float32_two make_float32(0x40000000)
4486 #define float32_three make_float32(0x40400000)
4487 #define float32_one_point_five make_float32(0x3fc00000)
4489 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4491 float_status *s = &env->vfp.standard_fp_status;
4492 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
4493 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4494 if (!(float32_is_zero(a) || float32_is_zero(b))) {
4495 float_raise(float_flag_input_denormal, s);
4497 return float32_two;
4499 return float32_sub(float32_two, float32_mul(a, b, s), s);
4502 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4504 float_status *s = &env->vfp.standard_fp_status;
4505 float32 product;
4506 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
4507 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4508 if (!(float32_is_zero(a) || float32_is_zero(b))) {
4509 float_raise(float_flag_input_denormal, s);
4511 return float32_one_point_five;
4513 product = float32_mul(a, b, s);
4514 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4517 /* NEON helpers. */
4519 /* Constants 256 and 512 are used in some helpers; we avoid relying on
4520 * int->float conversions at run-time. */
4521 #define float64_256 make_float64(0x4070000000000000LL)
4522 #define float64_512 make_float64(0x4080000000000000LL)
4523 #define float32_maxnorm make_float32(0x7f7fffff)
4524 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
4526 /* Reciprocal functions
4528 * The algorithm that must be used to calculate the estimate
4529 * is specified by the ARM ARM, see FPRecipEstimate()
4532 static float64 recip_estimate(float64 a, float_status *real_fp_status)
4534 /* These calculations mustn't set any fp exception flags,
4535 * so we use a local copy of the fp_status.
4537 float_status dummy_status = *real_fp_status;
4538 float_status *s = &dummy_status;
4539 /* q = (int)(a * 512.0) */
4540 float64 q = float64_mul(float64_512, a, s);
4541 int64_t q_int = float64_to_int64_round_to_zero(q, s);
4543 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
4544 q = int64_to_float64(q_int, s);
4545 q = float64_add(q, float64_half, s);
4546 q = float64_div(q, float64_512, s);
4547 q = float64_div(float64_one, q, s);
4549 /* s = (int)(256.0 * r + 0.5) */
4550 q = float64_mul(q, float64_256, s);
4551 q = float64_add(q, float64_half, s);
4552 q_int = float64_to_int64_round_to_zero(q, s);
4554 /* return (double)s / 256.0 */
4555 return float64_div(int64_to_float64(q_int, s), float64_256, s);
4558 /* Common wrapper to call recip_estimate */
4559 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
4561 uint64_t val64 = float64_val(num);
4562 uint64_t frac = extract64(val64, 0, 52);
4563 int64_t exp = extract64(val64, 52, 11);
4564 uint64_t sbit;
4565 float64 scaled, estimate;
4567 /* Generate the scaled number for the estimate function */
4568 if (exp == 0) {
4569 if (extract64(frac, 51, 1) == 0) {
4570 exp = -1;
4571 frac = extract64(frac, 0, 50) << 2;
4572 } else {
4573 frac = extract64(frac, 0, 51) << 1;
4577 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
4578 scaled = make_float64((0x3feULL << 52)
4579 | extract64(frac, 44, 8) << 44);
4581 estimate = recip_estimate(scaled, fpst);
4583 /* Build new result */
4584 val64 = float64_val(estimate);
4585 sbit = 0x8000000000000000ULL & val64;
4586 exp = off - exp;
4587 frac = extract64(val64, 0, 52);
4589 if (exp == 0) {
4590 frac = 1ULL << 51 | extract64(frac, 1, 51);
4591 } else if (exp == -1) {
4592 frac = 1ULL << 50 | extract64(frac, 2, 50);
4593 exp = 0;
4596 return make_float64(sbit | (exp << 52) | frac);
4599 static bool round_to_inf(float_status *fpst, bool sign_bit)
4601 switch (fpst->float_rounding_mode) {
4602 case float_round_nearest_even: /* Round to Nearest */
4603 return true;
4604 case float_round_up: /* Round to +Inf */
4605 return !sign_bit;
4606 case float_round_down: /* Round to -Inf */
4607 return sign_bit;
4608 case float_round_to_zero: /* Round to Zero */
4609 return false;
4612 g_assert_not_reached();
4615 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
4617 float_status *fpst = fpstp;
4618 float32 f32 = float32_squash_input_denormal(input, fpst);
4619 uint32_t f32_val = float32_val(f32);
4620 uint32_t f32_sbit = 0x80000000ULL & f32_val;
4621 int32_t f32_exp = extract32(f32_val, 23, 8);
4622 uint32_t f32_frac = extract32(f32_val, 0, 23);
4623 float64 f64, r64;
4624 uint64_t r64_val;
4625 int64_t r64_exp;
4626 uint64_t r64_frac;
4628 if (float32_is_any_nan(f32)) {
4629 float32 nan = f32;
4630 if (float32_is_signaling_nan(f32)) {
4631 float_raise(float_flag_invalid, fpst);
4632 nan = float32_maybe_silence_nan(f32);
4634 if (fpst->default_nan_mode) {
4635 nan = float32_default_nan;
4637 return nan;
4638 } else if (float32_is_infinity(f32)) {
4639 return float32_set_sign(float32_zero, float32_is_neg(f32));
4640 } else if (float32_is_zero(f32)) {
4641 float_raise(float_flag_divbyzero, fpst);
4642 return float32_set_sign(float32_infinity, float32_is_neg(f32));
4643 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
4644 /* Abs(value) < 2.0^-128 */
4645 float_raise(float_flag_overflow | float_flag_inexact, fpst);
4646 if (round_to_inf(fpst, f32_sbit)) {
4647 return float32_set_sign(float32_infinity, float32_is_neg(f32));
4648 } else {
4649 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
4651 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
4652 float_raise(float_flag_underflow, fpst);
4653 return float32_set_sign(float32_zero, float32_is_neg(f32));
4657 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
4658 r64 = call_recip_estimate(f64, 253, fpst);
4659 r64_val = float64_val(r64);
4660 r64_exp = extract64(r64_val, 52, 11);
4661 r64_frac = extract64(r64_val, 0, 52);
4663 /* result = sign : result_exp<7:0> : fraction<51:29>; */
4664 return make_float32(f32_sbit |
4665 (r64_exp & 0xff) << 23 |
4666 extract64(r64_frac, 29, 24));
4669 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
4671 float_status *fpst = fpstp;
4672 float64 f64 = float64_squash_input_denormal(input, fpst);
4673 uint64_t f64_val = float64_val(f64);
4674 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
4675 int64_t f64_exp = extract64(f64_val, 52, 11);
4676 float64 r64;
4677 uint64_t r64_val;
4678 int64_t r64_exp;
4679 uint64_t r64_frac;
4681 /* Deal with any special cases */
4682 if (float64_is_any_nan(f64)) {
4683 float64 nan = f64;
4684 if (float64_is_signaling_nan(f64)) {
4685 float_raise(float_flag_invalid, fpst);
4686 nan = float64_maybe_silence_nan(f64);
4688 if (fpst->default_nan_mode) {
4689 nan = float64_default_nan;
4691 return nan;
4692 } else if (float64_is_infinity(f64)) {
4693 return float64_set_sign(float64_zero, float64_is_neg(f64));
4694 } else if (float64_is_zero(f64)) {
4695 float_raise(float_flag_divbyzero, fpst);
4696 return float64_set_sign(float64_infinity, float64_is_neg(f64));
4697 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
4698 /* Abs(value) < 2.0^-1024 */
4699 float_raise(float_flag_overflow | float_flag_inexact, fpst);
4700 if (round_to_inf(fpst, f64_sbit)) {
4701 return float64_set_sign(float64_infinity, float64_is_neg(f64));
4702 } else {
4703 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
4705 } else if (f64_exp >= 1023 && fpst->flush_to_zero) {
4706 float_raise(float_flag_underflow, fpst);
4707 return float64_set_sign(float64_zero, float64_is_neg(f64));
4710 r64 = call_recip_estimate(f64, 2045, fpst);
4711 r64_val = float64_val(r64);
4712 r64_exp = extract64(r64_val, 52, 11);
4713 r64_frac = extract64(r64_val, 0, 52);
4715 /* result = sign : result_exp<10:0> : fraction<51:0> */
4716 return make_float64(f64_sbit |
4717 ((r64_exp & 0x7ff) << 52) |
4718 r64_frac);
4721 /* The algorithm that must be used to calculate the estimate
4722 * is specified by the ARM ARM.
4724 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
4726 /* These calculations mustn't set any fp exception flags,
4727 * so we use a local copy of the fp_status.
4729 float_status dummy_status = *real_fp_status;
4730 float_status *s = &dummy_status;
4731 float64 q;
4732 int64_t q_int;
4734 if (float64_lt(a, float64_half, s)) {
4735 /* range 0.25 <= a < 0.5 */
4737 /* a in units of 1/512 rounded down */
4738 /* q0 = (int)(a * 512.0); */
4739 q = float64_mul(float64_512, a, s);
4740 q_int = float64_to_int64_round_to_zero(q, s);
4742 /* reciprocal root r */
4743 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
4744 q = int64_to_float64(q_int, s);
4745 q = float64_add(q, float64_half, s);
4746 q = float64_div(q, float64_512, s);
4747 q = float64_sqrt(q, s);
4748 q = float64_div(float64_one, q, s);
4749 } else {
4750 /* range 0.5 <= a < 1.0 */
4752 /* a in units of 1/256 rounded down */
4753 /* q1 = (int)(a * 256.0); */
4754 q = float64_mul(float64_256, a, s);
4755 int64_t q_int = float64_to_int64_round_to_zero(q, s);
4757 /* reciprocal root r */
4758 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
4759 q = int64_to_float64(q_int, s);
4760 q = float64_add(q, float64_half, s);
4761 q = float64_div(q, float64_256, s);
4762 q = float64_sqrt(q, s);
4763 q = float64_div(float64_one, q, s);
4765 /* r in units of 1/256 rounded to nearest */
4766 /* s = (int)(256.0 * r + 0.5); */
4768 q = float64_mul(q, float64_256,s );
4769 q = float64_add(q, float64_half, s);
4770 q_int = float64_to_int64_round_to_zero(q, s);
4772 /* return (double)s / 256.0;*/
4773 return float64_div(int64_to_float64(q_int, s), float64_256, s);
4776 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
4778 float_status *s = fpstp;
4779 float32 f32 = float32_squash_input_denormal(input, s);
4780 uint32_t val = float32_val(f32);
4781 uint32_t f32_sbit = 0x80000000 & val;
4782 int32_t f32_exp = extract32(val, 23, 8);
4783 uint32_t f32_frac = extract32(val, 0, 23);
4784 uint64_t f64_frac;
4785 uint64_t val64;
4786 int result_exp;
4787 float64 f64;
4789 if (float32_is_any_nan(f32)) {
4790 float32 nan = f32;
4791 if (float32_is_signaling_nan(f32)) {
4792 float_raise(float_flag_invalid, s);
4793 nan = float32_maybe_silence_nan(f32);
4795 if (s->default_nan_mode) {
4796 nan = float32_default_nan;
4798 return nan;
4799 } else if (float32_is_zero(f32)) {
4800 float_raise(float_flag_divbyzero, s);
4801 return float32_set_sign(float32_infinity, float32_is_neg(f32));
4802 } else if (float32_is_neg(f32)) {
4803 float_raise(float_flag_invalid, s);
4804 return float32_default_nan;
4805 } else if (float32_is_infinity(f32)) {
4806 return float32_zero;
4809 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
4810 * preserving the parity of the exponent. */
4812 f64_frac = ((uint64_t) f32_frac) << 29;
4813 if (f32_exp == 0) {
4814 while (extract64(f64_frac, 51, 1) == 0) {
4815 f64_frac = f64_frac << 1;
4816 f32_exp = f32_exp-1;
4818 f64_frac = extract64(f64_frac, 0, 51) << 1;
4821 if (extract64(f32_exp, 0, 1) == 0) {
4822 f64 = make_float64(((uint64_t) f32_sbit) << 32
4823 | (0x3feULL << 52)
4824 | f64_frac);
4825 } else {
4826 f64 = make_float64(((uint64_t) f32_sbit) << 32
4827 | (0x3fdULL << 52)
4828 | f64_frac);
4831 result_exp = (380 - f32_exp) / 2;
4833 f64 = recip_sqrt_estimate(f64, s);
4835 val64 = float64_val(f64);
4837 val = ((result_exp & 0xff) << 23)
4838 | ((val64 >> 29) & 0x7fffff);
4839 return make_float32(val);
4842 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
4844 float_status *s = fpstp;
4845 float64 f64 = float64_squash_input_denormal(input, s);
4846 uint64_t val = float64_val(f64);
4847 uint64_t f64_sbit = 0x8000000000000000ULL & val;
4848 int64_t f64_exp = extract64(val, 52, 11);
4849 uint64_t f64_frac = extract64(val, 0, 52);
4850 int64_t result_exp;
4851 uint64_t result_frac;
4853 if (float64_is_any_nan(f64)) {
4854 float64 nan = f64;
4855 if (float64_is_signaling_nan(f64)) {
4856 float_raise(float_flag_invalid, s);
4857 nan = float64_maybe_silence_nan(f64);
4859 if (s->default_nan_mode) {
4860 nan = float64_default_nan;
4862 return nan;
4863 } else if (float64_is_zero(f64)) {
4864 float_raise(float_flag_divbyzero, s);
4865 return float64_set_sign(float64_infinity, float64_is_neg(f64));
4866 } else if (float64_is_neg(f64)) {
4867 float_raise(float_flag_invalid, s);
4868 return float64_default_nan;
4869 } else if (float64_is_infinity(f64)) {
4870 return float64_zero;
4873 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
4874 * preserving the parity of the exponent. */
4876 if (f64_exp == 0) {
4877 while (extract64(f64_frac, 51, 1) == 0) {
4878 f64_frac = f64_frac << 1;
4879 f64_exp = f64_exp - 1;
4881 f64_frac = extract64(f64_frac, 0, 51) << 1;
4884 if (extract64(f64_exp, 0, 1) == 0) {
4885 f64 = make_float64(f64_sbit
4886 | (0x3feULL << 52)
4887 | f64_frac);
4888 } else {
4889 f64 = make_float64(f64_sbit
4890 | (0x3fdULL << 52)
4891 | f64_frac);
4894 result_exp = (3068 - f64_exp) / 2;
4896 f64 = recip_sqrt_estimate(f64, s);
4898 result_frac = extract64(float64_val(f64), 0, 52);
4900 return make_float64(f64_sbit |
4901 ((result_exp & 0x7ff) << 52) |
4902 result_frac);
4905 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
4907 float_status *s = fpstp;
4908 float64 f64;
4910 if ((a & 0x80000000) == 0) {
4911 return 0xffffffff;
4914 f64 = make_float64((0x3feULL << 52)
4915 | ((int64_t)(a & 0x7fffffff) << 21));
4917 f64 = recip_estimate(f64, s);
4919 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4922 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
4924 float_status *fpst = fpstp;
4925 float64 f64;
4927 if ((a & 0xc0000000) == 0) {
4928 return 0xffffffff;
4931 if (a & 0x80000000) {
4932 f64 = make_float64((0x3feULL << 52)
4933 | ((uint64_t)(a & 0x7fffffff) << 21));
4934 } else { /* bits 31-30 == '01' */
4935 f64 = make_float64((0x3fdULL << 52)
4936 | ((uint64_t)(a & 0x3fffffff) << 22));
4939 f64 = recip_sqrt_estimate(f64, fpst);
4941 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4944 /* VFPv4 fused multiply-accumulate */
4945 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
4947 float_status *fpst = fpstp;
4948 return float32_muladd(a, b, c, 0, fpst);
4951 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
4953 float_status *fpst = fpstp;
4954 return float64_muladd(a, b, c, 0, fpst);
4957 /* ARMv8 round to integral */
4958 float32 HELPER(rints_exact)(float32 x, void *fp_status)
4960 return float32_round_to_int(x, fp_status);
4963 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
4965 return float64_round_to_int(x, fp_status);
4968 float32 HELPER(rints)(float32 x, void *fp_status)
4970 int old_flags = get_float_exception_flags(fp_status), new_flags;
4971 float32 ret;
4973 ret = float32_round_to_int(x, fp_status);
4975 /* Suppress any inexact exceptions the conversion produced */
4976 if (!(old_flags & float_flag_inexact)) {
4977 new_flags = get_float_exception_flags(fp_status);
4978 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
4981 return ret;
4984 float64 HELPER(rintd)(float64 x, void *fp_status)
4986 int old_flags = get_float_exception_flags(fp_status), new_flags;
4987 float64 ret;
4989 ret = float64_round_to_int(x, fp_status);
4991 new_flags = get_float_exception_flags(fp_status);
4993 /* Suppress any inexact exceptions the conversion produced */
4994 if (!(old_flags & float_flag_inexact)) {
4995 new_flags = get_float_exception_flags(fp_status);
4996 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
4999 return ret;
5002 /* Convert ARM rounding mode to softfloat */
5003 int arm_rmode_to_sf(int rmode)
5005 switch (rmode) {
5006 case FPROUNDING_TIEAWAY:
5007 rmode = float_round_ties_away;
5008 break;
5009 case FPROUNDING_ODD:
5010 /* FIXME: add support for TIEAWAY and ODD */
5011 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
5012 rmode);
5013 case FPROUNDING_TIEEVEN:
5014 default:
5015 rmode = float_round_nearest_even;
5016 break;
5017 case FPROUNDING_POSINF:
5018 rmode = float_round_up;
5019 break;
5020 case FPROUNDING_NEGINF:
5021 rmode = float_round_down;
5022 break;
5023 case FPROUNDING_ZERO:
5024 rmode = float_round_to_zero;
5025 break;
5027 return rmode;
5030 static void crc_init_buffer(uint8_t *buf, uint32_t val, uint32_t bytes)
5032 memset(buf, 0, 4);
5034 if (bytes == 1) {
5035 buf[0] = val & 0xff;
5036 } else if (bytes == 2) {
5037 buf[0] = val & 0xff;
5038 buf[1] = (val >> 8) & 0xff;
5039 } else {
5040 buf[0] = val & 0xff;
5041 buf[1] = (val >> 8) & 0xff;
5042 buf[2] = (val >> 16) & 0xff;
5043 buf[3] = (val >> 24) & 0xff;
5047 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
5049 uint8_t buf[4];
5051 crc_init_buffer(buf, val, bytes);
5053 /* zlib crc32 converts the accumulator and output to one's complement. */
5054 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
5057 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
5059 uint8_t buf[4];
5061 crc_init_buffer(buf, val, bytes);
5063 /* Linux crc32c converts the output to one's complement. */
5064 return crc32c(acc, buf, bytes) ^ 0xffffffff;