Merge remote-tracking branch 'remotes/kraxel/tags/pull-vnc-20151116-1' into staging
[qemu/ar7.git] / linux-user / qemu.h
blobbd90cc37999ed52fbbccac9d0892ee075e521e38
1 #ifndef QEMU_H
2 #define QEMU_H
4 #include <signal.h>
5 #include <string.h>
7 #include "cpu.h"
8 #include "exec/cpu_ldst.h"
10 #undef DEBUG_REMAP
11 #ifdef DEBUG_REMAP
12 #include <stdlib.h>
13 #endif /* DEBUG_REMAP */
15 #include "exec/user/abitypes.h"
17 #include "exec/user/thunk.h"
18 #include "syscall_defs.h"
19 #include "syscall.h"
20 #include "exec/gdbstub.h"
21 #include "qemu/queue.h"
23 #define THREAD __thread
25 /* This struct is used to hold certain information about the image.
26 * Basically, it replicates in user space what would be certain
27 * task_struct fields in the kernel
29 struct image_info {
30 abi_ulong load_bias;
31 abi_ulong load_addr;
32 abi_ulong start_code;
33 abi_ulong end_code;
34 abi_ulong start_data;
35 abi_ulong end_data;
36 abi_ulong start_brk;
37 abi_ulong brk;
38 abi_ulong start_mmap;
39 abi_ulong start_stack;
40 abi_ulong stack_limit;
41 abi_ulong entry;
42 abi_ulong code_offset;
43 abi_ulong data_offset;
44 abi_ulong saved_auxv;
45 abi_ulong auxv_len;
46 abi_ulong arg_start;
47 abi_ulong arg_end;
48 uint32_t elf_flags;
49 int personality;
50 #ifdef CONFIG_USE_FDPIC
51 abi_ulong loadmap_addr;
52 uint16_t nsegs;
53 void *loadsegs;
54 abi_ulong pt_dynamic_addr;
55 struct image_info *other_info;
56 #endif
59 #ifdef TARGET_I386
60 /* Information about the current linux thread */
61 struct vm86_saved_state {
62 uint32_t eax; /* return code */
63 uint32_t ebx;
64 uint32_t ecx;
65 uint32_t edx;
66 uint32_t esi;
67 uint32_t edi;
68 uint32_t ebp;
69 uint32_t esp;
70 uint32_t eflags;
71 uint32_t eip;
72 uint16_t cs, ss, ds, es, fs, gs;
74 #endif
76 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
77 /* FPU emulator */
78 #include "nwfpe/fpa11.h"
79 #endif
81 #define MAX_SIGQUEUE_SIZE 1024
83 struct sigqueue {
84 struct sigqueue *next;
85 target_siginfo_t info;
88 struct emulated_sigtable {
89 int pending; /* true if signal is pending */
90 struct sigqueue *first;
91 struct sigqueue info; /* in order to always have memory for the
92 first signal, we put it here */
95 /* NOTE: we force a big alignment so that the stack stored after is
96 aligned too */
97 typedef struct TaskState {
98 pid_t ts_tid; /* tid (or pid) of this task */
99 #ifdef TARGET_ARM
100 # ifdef TARGET_ABI32
101 /* FPA state */
102 FPA11 fpa;
103 # endif
104 int swi_errno;
105 #endif
106 #ifdef TARGET_UNICORE32
107 int swi_errno;
108 #endif
109 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
110 abi_ulong target_v86;
111 struct vm86_saved_state vm86_saved_regs;
112 struct target_vm86plus_struct vm86plus;
113 uint32_t v86flags;
114 uint32_t v86mask;
115 #endif
116 abi_ulong child_tidptr;
117 #ifdef TARGET_M68K
118 int sim_syscalls;
119 abi_ulong tp_value;
120 #endif
121 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
122 /* Extra fields for semihosted binaries. */
123 uint32_t heap_base;
124 uint32_t heap_limit;
125 #endif
126 uint32_t stack_base;
127 int used; /* non zero if used */
128 bool sigsegv_blocked; /* SIGSEGV blocked by guest */
129 struct image_info *info;
130 struct linux_binprm *bprm;
132 struct emulated_sigtable sigtab[TARGET_NSIG];
133 struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
134 struct sigqueue *first_free; /* first free siginfo queue entry */
135 int signal_pending; /* non zero if a signal may be pending */
136 } __attribute__((aligned(16))) TaskState;
138 extern char *exec_path;
139 void init_task_state(TaskState *ts);
140 void task_settid(TaskState *);
141 void stop_all_tasks(void);
142 extern const char *qemu_uname_release;
143 extern unsigned long mmap_min_addr;
145 /* ??? See if we can avoid exposing so much of the loader internals. */
147 /* Read a good amount of data initially, to hopefully get all the
148 program headers loaded. */
149 #define BPRM_BUF_SIZE 1024
152 * This structure is used to hold the arguments that are
153 * used when loading binaries.
155 struct linux_binprm {
156 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
157 abi_ulong p;
158 int fd;
159 int e_uid, e_gid;
160 int argc, envc;
161 char **argv;
162 char **envp;
163 char * filename; /* Name of binary */
164 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
167 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
168 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
169 abi_ulong stringp, int push_ptr);
170 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
171 struct target_pt_regs * regs, struct image_info *infop,
172 struct linux_binprm *);
174 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
175 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
177 abi_long memcpy_to_target(abi_ulong dest, const void *src,
178 unsigned long len);
179 void target_set_brk(abi_ulong new_brk);
180 abi_long do_brk(abi_ulong new_brk);
181 void syscall_init(void);
182 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
183 abi_long arg2, abi_long arg3, abi_long arg4,
184 abi_long arg5, abi_long arg6, abi_long arg7,
185 abi_long arg8);
186 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
187 extern THREAD CPUState *thread_cpu;
188 void cpu_loop(CPUArchState *env);
189 char *target_strerror(int err);
190 int get_osversion(void);
191 void init_qemu_uname_release(void);
192 void fork_start(void);
193 void fork_end(int child);
195 /* Creates the initial guest address space in the host memory space using
196 * the given host start address hint and size. The guest_start parameter
197 * specifies the start address of the guest space. guest_base will be the
198 * difference between the host start address computed by this function and
199 * guest_start. If fixed is specified, then the mapped address space must
200 * start at host_start. The real start address of the mapped memory space is
201 * returned or -1 if there was an error.
203 unsigned long init_guest_space(unsigned long host_start,
204 unsigned long host_size,
205 unsigned long guest_start,
206 bool fixed);
208 #include "qemu/log.h"
210 /* syscall.c */
211 int host_to_target_waitstatus(int status);
213 /* strace.c */
214 void print_syscall(int num,
215 abi_long arg1, abi_long arg2, abi_long arg3,
216 abi_long arg4, abi_long arg5, abi_long arg6);
217 void print_syscall_ret(int num, abi_long arg1);
218 extern int do_strace;
220 /* signal.c */
221 void process_pending_signals(CPUArchState *cpu_env);
222 void signal_init(void);
223 int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
224 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
225 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
226 int target_to_host_signal(int sig);
227 int host_to_target_signal(int sig);
228 long do_sigreturn(CPUArchState *env);
229 long do_rt_sigreturn(CPUArchState *env);
230 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
231 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
233 #ifdef TARGET_I386
234 /* vm86.c */
235 void save_v86_state(CPUX86State *env);
236 void handle_vm86_trap(CPUX86State *env, int trapno);
237 void handle_vm86_fault(CPUX86State *env);
238 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
239 #elif defined(TARGET_SPARC64)
240 void sparc64_set_context(CPUSPARCState *env);
241 void sparc64_get_context(CPUSPARCState *env);
242 #endif
244 /* mmap.c */
245 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
246 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
247 int flags, int fd, abi_ulong offset);
248 int target_munmap(abi_ulong start, abi_ulong len);
249 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
250 abi_ulong new_size, unsigned long flags,
251 abi_ulong new_addr);
252 int target_msync(abi_ulong start, abi_ulong len, int flags);
253 extern unsigned long last_brk;
254 extern abi_ulong mmap_next_start;
255 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
256 void cpu_list_lock(void);
257 void cpu_list_unlock(void);
258 void mmap_fork_start(void);
259 void mmap_fork_end(int child);
261 /* main.c */
262 extern unsigned long guest_stack_size;
264 /* user access */
266 #define VERIFY_READ 0
267 #define VERIFY_WRITE 1 /* implies read access */
269 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
271 return page_check_range((target_ulong)addr, size,
272 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
275 /* NOTE __get_user and __put_user use host pointers and don't check access.
276 These are usually used to access struct data members once the struct has
277 been locked - usually with lock_user_struct. */
279 /* Tricky points:
280 - Use __builtin_choose_expr to avoid type promotion from ?:,
281 - Invalid sizes result in a compile time error stemming from
282 the fact that abort has no parameters.
283 - It's easier to use the endian-specific unaligned load/store
284 functions than host-endian unaligned load/store plus tswapN. */
286 #define __put_user_e(x, hptr, e) \
287 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
288 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
289 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
290 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
291 ((hptr), (x)), (void)0)
293 #define __get_user_e(x, hptr, e) \
294 ((x) = (typeof(*hptr))( \
295 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
296 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
297 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
298 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
299 (hptr)), (void)0)
301 #ifdef TARGET_WORDS_BIGENDIAN
302 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
303 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
304 #else
305 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
306 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
307 #endif
309 /* put_user()/get_user() take a guest address and check access */
310 /* These are usually used to access an atomic data type, such as an int,
311 * that has been passed by address. These internally perform locking
312 * and unlocking on the data type.
314 #define put_user(x, gaddr, target_type) \
315 ({ \
316 abi_ulong __gaddr = (gaddr); \
317 target_type *__hptr; \
318 abi_long __ret = 0; \
319 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
320 __put_user((x), __hptr); \
321 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
322 } else \
323 __ret = -TARGET_EFAULT; \
324 __ret; \
327 #define get_user(x, gaddr, target_type) \
328 ({ \
329 abi_ulong __gaddr = (gaddr); \
330 target_type *__hptr; \
331 abi_long __ret = 0; \
332 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
333 __get_user((x), __hptr); \
334 unlock_user(__hptr, __gaddr, 0); \
335 } else { \
336 /* avoid warning */ \
337 (x) = 0; \
338 __ret = -TARGET_EFAULT; \
340 __ret; \
343 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
344 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
345 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
346 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
347 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
348 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
349 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
350 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
351 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
352 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
354 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
355 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
356 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
357 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
358 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
359 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
360 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
361 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
362 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
363 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
365 /* copy_from_user() and copy_to_user() are usually used to copy data
366 * buffers between the target and host. These internally perform
367 * locking/unlocking of the memory.
369 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
370 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
372 /* Functions for accessing guest memory. The tget and tput functions
373 read/write single values, byteswapping as necessary. The lock_user function
374 gets a pointer to a contiguous area of guest memory, but does not perform
375 any byteswapping. lock_user may return either a pointer to the guest
376 memory, or a temporary buffer. */
378 /* Lock an area of guest memory into the host. If copy is true then the
379 host area will have the same contents as the guest. */
380 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
382 if (!access_ok(type, guest_addr, len))
383 return NULL;
384 #ifdef DEBUG_REMAP
386 void *addr;
387 addr = malloc(len);
388 if (copy)
389 memcpy(addr, g2h(guest_addr), len);
390 else
391 memset(addr, 0, len);
392 return addr;
394 #else
395 return g2h(guest_addr);
396 #endif
399 /* Unlock an area of guest memory. The first LEN bytes must be
400 flushed back to guest memory. host_ptr = NULL is explicitly
401 allowed and does nothing. */
402 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
403 long len)
406 #ifdef DEBUG_REMAP
407 if (!host_ptr)
408 return;
409 if (host_ptr == g2h(guest_addr))
410 return;
411 if (len > 0)
412 memcpy(g2h(guest_addr), host_ptr, len);
413 free(host_ptr);
414 #endif
417 /* Return the length of a string in target memory or -TARGET_EFAULT if
418 access error. */
419 abi_long target_strlen(abi_ulong gaddr);
421 /* Like lock_user but for null terminated strings. */
422 static inline void *lock_user_string(abi_ulong guest_addr)
424 abi_long len;
425 len = target_strlen(guest_addr);
426 if (len < 0)
427 return NULL;
428 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
431 /* Helper macros for locking/unlocking a target struct. */
432 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
433 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
434 #define unlock_user_struct(host_ptr, guest_addr, copy) \
435 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
437 #include <pthread.h>
439 /* Include target-specific struct and function definitions;
440 * they may need access to the target-independent structures
441 * above, so include them last.
443 #include "target_cpu.h"
444 #include "target_signal.h"
445 #include "target_structs.h"
447 #endif /* QEMU_H */