net: etraxfs_eth: convert SysBus init method to a realize method
[qemu/ar7.git] / scripts / dump-guest-memory.py
blob5a857cebcf64c9e2abcdaedb40e7ace092f22a25
1 """
2 This python script adds a new gdb command, "dump-guest-memory". It
3 should be loaded with "source dump-guest-memory.py" at the (gdb)
4 prompt.
6 Copyright (C) 2013, Red Hat, Inc.
8 Authors:
9 Laszlo Ersek <lersek@redhat.com>
10 Janosch Frank <frankja@linux.vnet.ibm.com>
12 This work is licensed under the terms of the GNU GPL, version 2 or later. See
13 the COPYING file in the top-level directory.
14 """
15 from __future__ import print_function
17 import ctypes
18 import struct
20 try:
21 UINTPTR_T = gdb.lookup_type("uintptr_t")
22 except Exception as inst:
23 raise gdb.GdbError("Symbols must be loaded prior to sourcing dump-guest-memory.\n"
24 "Symbols may be loaded by 'attach'ing a QEMU process id or by "
25 "'load'ing a QEMU binary.")
27 TARGET_PAGE_SIZE = 0x1000
28 TARGET_PAGE_MASK = 0xFFFFFFFFFFFFF000
30 # Special value for e_phnum. This indicates that the real number of
31 # program headers is too large to fit into e_phnum. Instead the real
32 # value is in the field sh_info of section 0.
33 PN_XNUM = 0xFFFF
35 EV_CURRENT = 1
37 ELFCLASS32 = 1
38 ELFCLASS64 = 2
40 ELFDATA2LSB = 1
41 ELFDATA2MSB = 2
43 ET_CORE = 4
45 PT_LOAD = 1
46 PT_NOTE = 4
48 EM_386 = 3
49 EM_PPC = 20
50 EM_PPC64 = 21
51 EM_S390 = 22
52 EM_AARCH = 183
53 EM_X86_64 = 62
55 VMCOREINFO_FORMAT_ELF = 1
57 def le16_to_cpu(val):
58 return struct.unpack("<H", struct.pack("=H", val))[0]
60 def le32_to_cpu(val):
61 return struct.unpack("<I", struct.pack("=I", val))[0]
63 def le64_to_cpu(val):
64 return struct.unpack("<Q", struct.pack("=Q", val))[0]
66 class ELF(object):
67 """Representation of a ELF file."""
69 def __init__(self, arch):
70 self.ehdr = None
71 self.notes = []
72 self.segments = []
73 self.notes_size = 0
74 self.endianness = None
75 self.elfclass = ELFCLASS64
77 if arch == 'aarch64-le':
78 self.endianness = ELFDATA2LSB
79 self.elfclass = ELFCLASS64
80 self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
81 self.ehdr.e_machine = EM_AARCH
83 elif arch == 'aarch64-be':
84 self.endianness = ELFDATA2MSB
85 self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
86 self.ehdr.e_machine = EM_AARCH
88 elif arch == 'X86_64':
89 self.endianness = ELFDATA2LSB
90 self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
91 self.ehdr.e_machine = EM_X86_64
93 elif arch == '386':
94 self.endianness = ELFDATA2LSB
95 self.elfclass = ELFCLASS32
96 self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
97 self.ehdr.e_machine = EM_386
99 elif arch == 's390':
100 self.endianness = ELFDATA2MSB
101 self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
102 self.ehdr.e_machine = EM_S390
104 elif arch == 'ppc64-le':
105 self.endianness = ELFDATA2LSB
106 self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
107 self.ehdr.e_machine = EM_PPC64
109 elif arch == 'ppc64-be':
110 self.endianness = ELFDATA2MSB
111 self.ehdr = get_arch_ehdr(self.endianness, self.elfclass)
112 self.ehdr.e_machine = EM_PPC64
114 else:
115 raise gdb.GdbError("No valid arch type specified.\n"
116 "Currently supported types:\n"
117 "aarch64-be, aarch64-le, X86_64, 386, s390, "
118 "ppc64-be, ppc64-le")
120 self.add_segment(PT_NOTE, 0, 0)
122 def add_note(self, n_name, n_desc, n_type):
123 """Adds a note to the ELF."""
125 note = get_arch_note(self.endianness, len(n_name), len(n_desc))
126 note.n_namesz = len(n_name) + 1
127 note.n_descsz = len(n_desc)
128 note.n_name = n_name.encode()
129 note.n_type = n_type
131 # Desc needs to be 4 byte aligned (although the 64bit spec
132 # specifies 8 byte). When defining n_desc as uint32 it will be
133 # automatically aligned but we need the memmove to copy the
134 # string into it.
135 ctypes.memmove(note.n_desc, n_desc.encode(), len(n_desc))
137 self.notes.append(note)
138 self.segments[0].p_filesz += ctypes.sizeof(note)
139 self.segments[0].p_memsz += ctypes.sizeof(note)
142 def add_vmcoreinfo_note(self, vmcoreinfo):
143 """Adds a vmcoreinfo note to the ELF dump."""
144 # compute the header size, and copy that many bytes from the note
145 header = get_arch_note(self.endianness, 0, 0)
146 ctypes.memmove(ctypes.pointer(header),
147 vmcoreinfo, ctypes.sizeof(header))
148 if header.n_descsz > 1 << 20:
149 print('warning: invalid vmcoreinfo size')
150 return
151 # now get the full note
152 note = get_arch_note(self.endianness,
153 header.n_namesz - 1, header.n_descsz)
154 ctypes.memmove(ctypes.pointer(note), vmcoreinfo, ctypes.sizeof(note))
156 self.notes.append(note)
157 self.segments[0].p_filesz += ctypes.sizeof(note)
158 self.segments[0].p_memsz += ctypes.sizeof(note)
160 def add_segment(self, p_type, p_paddr, p_size):
161 """Adds a segment to the elf."""
163 phdr = get_arch_phdr(self.endianness, self.elfclass)
164 phdr.p_type = p_type
165 phdr.p_paddr = p_paddr
166 phdr.p_filesz = p_size
167 phdr.p_memsz = p_size
168 self.segments.append(phdr)
169 self.ehdr.e_phnum += 1
171 def to_file(self, elf_file):
172 """Writes all ELF structures to the the passed file.
174 Structure:
175 Ehdr
176 Segment 0:PT_NOTE
177 Segment 1:PT_LOAD
178 Segment N:PT_LOAD
179 Note 0..N
180 Dump contents
182 elf_file.write(self.ehdr)
183 off = ctypes.sizeof(self.ehdr) + \
184 len(self.segments) * ctypes.sizeof(self.segments[0])
186 for phdr in self.segments:
187 phdr.p_offset = off
188 elf_file.write(phdr)
189 off += phdr.p_filesz
191 for note in self.notes:
192 elf_file.write(note)
195 def get_arch_note(endianness, len_name, len_desc):
196 """Returns a Note class with the specified endianness."""
198 if endianness == ELFDATA2LSB:
199 superclass = ctypes.LittleEndianStructure
200 else:
201 superclass = ctypes.BigEndianStructure
203 len_name = len_name + 1
205 class Note(superclass):
206 """Represents an ELF note, includes the content."""
208 _fields_ = [("n_namesz", ctypes.c_uint32),
209 ("n_descsz", ctypes.c_uint32),
210 ("n_type", ctypes.c_uint32),
211 ("n_name", ctypes.c_char * len_name),
212 ("n_desc", ctypes.c_uint32 * ((len_desc + 3) // 4))]
213 return Note()
216 class Ident(ctypes.Structure):
217 """Represents the ELF ident array in the ehdr structure."""
219 _fields_ = [('ei_mag0', ctypes.c_ubyte),
220 ('ei_mag1', ctypes.c_ubyte),
221 ('ei_mag2', ctypes.c_ubyte),
222 ('ei_mag3', ctypes.c_ubyte),
223 ('ei_class', ctypes.c_ubyte),
224 ('ei_data', ctypes.c_ubyte),
225 ('ei_version', ctypes.c_ubyte),
226 ('ei_osabi', ctypes.c_ubyte),
227 ('ei_abiversion', ctypes.c_ubyte),
228 ('ei_pad', ctypes.c_ubyte * 7)]
230 def __init__(self, endianness, elfclass):
231 self.ei_mag0 = 0x7F
232 self.ei_mag1 = ord('E')
233 self.ei_mag2 = ord('L')
234 self.ei_mag3 = ord('F')
235 self.ei_class = elfclass
236 self.ei_data = endianness
237 self.ei_version = EV_CURRENT
240 def get_arch_ehdr(endianness, elfclass):
241 """Returns a EHDR64 class with the specified endianness."""
243 if endianness == ELFDATA2LSB:
244 superclass = ctypes.LittleEndianStructure
245 else:
246 superclass = ctypes.BigEndianStructure
248 class EHDR64(superclass):
249 """Represents the 64 bit ELF header struct."""
251 _fields_ = [('e_ident', Ident),
252 ('e_type', ctypes.c_uint16),
253 ('e_machine', ctypes.c_uint16),
254 ('e_version', ctypes.c_uint32),
255 ('e_entry', ctypes.c_uint64),
256 ('e_phoff', ctypes.c_uint64),
257 ('e_shoff', ctypes.c_uint64),
258 ('e_flags', ctypes.c_uint32),
259 ('e_ehsize', ctypes.c_uint16),
260 ('e_phentsize', ctypes.c_uint16),
261 ('e_phnum', ctypes.c_uint16),
262 ('e_shentsize', ctypes.c_uint16),
263 ('e_shnum', ctypes.c_uint16),
264 ('e_shstrndx', ctypes.c_uint16)]
266 def __init__(self):
267 super(superclass, self).__init__()
268 self.e_ident = Ident(endianness, elfclass)
269 self.e_type = ET_CORE
270 self.e_version = EV_CURRENT
271 self.e_ehsize = ctypes.sizeof(self)
272 self.e_phoff = ctypes.sizeof(self)
273 self.e_phentsize = ctypes.sizeof(get_arch_phdr(endianness, elfclass))
274 self.e_phnum = 0
277 class EHDR32(superclass):
278 """Represents the 32 bit ELF header struct."""
280 _fields_ = [('e_ident', Ident),
281 ('e_type', ctypes.c_uint16),
282 ('e_machine', ctypes.c_uint16),
283 ('e_version', ctypes.c_uint32),
284 ('e_entry', ctypes.c_uint32),
285 ('e_phoff', ctypes.c_uint32),
286 ('e_shoff', ctypes.c_uint32),
287 ('e_flags', ctypes.c_uint32),
288 ('e_ehsize', ctypes.c_uint16),
289 ('e_phentsize', ctypes.c_uint16),
290 ('e_phnum', ctypes.c_uint16),
291 ('e_shentsize', ctypes.c_uint16),
292 ('e_shnum', ctypes.c_uint16),
293 ('e_shstrndx', ctypes.c_uint16)]
295 def __init__(self):
296 super(superclass, self).__init__()
297 self.e_ident = Ident(endianness, elfclass)
298 self.e_type = ET_CORE
299 self.e_version = EV_CURRENT
300 self.e_ehsize = ctypes.sizeof(self)
301 self.e_phoff = ctypes.sizeof(self)
302 self.e_phentsize = ctypes.sizeof(get_arch_phdr(endianness, elfclass))
303 self.e_phnum = 0
305 # End get_arch_ehdr
306 if elfclass == ELFCLASS64:
307 return EHDR64()
308 else:
309 return EHDR32()
312 def get_arch_phdr(endianness, elfclass):
313 """Returns a 32 or 64 bit PHDR class with the specified endianness."""
315 if endianness == ELFDATA2LSB:
316 superclass = ctypes.LittleEndianStructure
317 else:
318 superclass = ctypes.BigEndianStructure
320 class PHDR64(superclass):
321 """Represents the 64 bit ELF program header struct."""
323 _fields_ = [('p_type', ctypes.c_uint32),
324 ('p_flags', ctypes.c_uint32),
325 ('p_offset', ctypes.c_uint64),
326 ('p_vaddr', ctypes.c_uint64),
327 ('p_paddr', ctypes.c_uint64),
328 ('p_filesz', ctypes.c_uint64),
329 ('p_memsz', ctypes.c_uint64),
330 ('p_align', ctypes.c_uint64)]
332 class PHDR32(superclass):
333 """Represents the 32 bit ELF program header struct."""
335 _fields_ = [('p_type', ctypes.c_uint32),
336 ('p_offset', ctypes.c_uint32),
337 ('p_vaddr', ctypes.c_uint32),
338 ('p_paddr', ctypes.c_uint32),
339 ('p_filesz', ctypes.c_uint32),
340 ('p_memsz', ctypes.c_uint32),
341 ('p_flags', ctypes.c_uint32),
342 ('p_align', ctypes.c_uint32)]
344 # End get_arch_phdr
345 if elfclass == ELFCLASS64:
346 return PHDR64()
347 else:
348 return PHDR32()
351 def int128_get64(val):
352 """Returns low 64bit part of Int128 struct."""
354 try:
355 assert val["hi"] == 0
356 return val["lo"]
357 except gdb.error:
358 u64t = gdb.lookup_type('uint64_t').array(2)
359 u64 = val.cast(u64t)
360 if sys.byteorder == 'little':
361 assert u64[1] == 0
362 return u64[0]
363 else:
364 assert u64[0] == 0
365 return u64[1]
368 def qlist_foreach(head, field_str):
369 """Generator for qlists."""
371 var_p = head["lh_first"]
372 while var_p != 0:
373 var = var_p.dereference()
374 var_p = var[field_str]["le_next"]
375 yield var
378 def qemu_map_ram_ptr(block, offset):
379 """Returns qemu vaddr for given guest physical address."""
381 return block["host"] + offset
384 def memory_region_get_ram_ptr(memory_region):
385 if memory_region["alias"] != 0:
386 return (memory_region_get_ram_ptr(memory_region["alias"].dereference())
387 + memory_region["alias_offset"])
389 return qemu_map_ram_ptr(memory_region["ram_block"], 0)
392 def get_guest_phys_blocks():
393 """Returns a list of ram blocks.
395 Each block entry contains:
396 'target_start': guest block phys start address
397 'target_end': guest block phys end address
398 'host_addr': qemu vaddr of the block's start
401 guest_phys_blocks = []
403 print("guest RAM blocks:")
404 print("target_start target_end host_addr message "
405 "count")
406 print("---------------- ---------------- ---------------- ------- "
407 "-----")
409 current_map_p = gdb.parse_and_eval("address_space_memory.current_map")
410 current_map = current_map_p.dereference()
412 # Conversion to int is needed for python 3
413 # compatibility. Otherwise range doesn't cast the value itself and
414 # breaks.
415 for cur in range(int(current_map["nr"])):
416 flat_range = (current_map["ranges"] + cur).dereference()
417 memory_region = flat_range["mr"].dereference()
419 # we only care about RAM
420 if not memory_region["ram"]:
421 continue
423 section_size = int128_get64(flat_range["addr"]["size"])
424 target_start = int128_get64(flat_range["addr"]["start"])
425 target_end = target_start + section_size
426 host_addr = (memory_region_get_ram_ptr(memory_region)
427 + flat_range["offset_in_region"])
428 predecessor = None
430 # find continuity in guest physical address space
431 if len(guest_phys_blocks) > 0:
432 predecessor = guest_phys_blocks[-1]
433 predecessor_size = (predecessor["target_end"] -
434 predecessor["target_start"])
436 # the memory API guarantees monotonically increasing
437 # traversal
438 assert predecessor["target_end"] <= target_start
440 # we want continuity in both guest-physical and
441 # host-virtual memory
442 if (predecessor["target_end"] < target_start or
443 predecessor["host_addr"] + predecessor_size != host_addr):
444 predecessor = None
446 if predecessor is None:
447 # isolated mapping, add it to the list
448 guest_phys_blocks.append({"target_start": target_start,
449 "target_end": target_end,
450 "host_addr": host_addr})
451 message = "added"
452 else:
453 # expand predecessor until @target_end; predecessor's
454 # start doesn't change
455 predecessor["target_end"] = target_end
456 message = "joined"
458 print("%016x %016x %016x %-7s %5u" %
459 (target_start, target_end, host_addr.cast(UINTPTR_T),
460 message, len(guest_phys_blocks)))
462 return guest_phys_blocks
465 # The leading docstring doesn't have idiomatic Python formatting. It is
466 # printed by gdb's "help" command (the first line is printed in the
467 # "help data" summary), and it should match how other help texts look in
468 # gdb.
469 class DumpGuestMemory(gdb.Command):
470 """Extract guest vmcore from qemu process coredump.
472 The two required arguments are FILE and ARCH:
473 FILE identifies the target file to write the guest vmcore to.
474 ARCH specifies the architecture for which the core will be generated.
476 This GDB command reimplements the dump-guest-memory QMP command in
477 python, using the representation of guest memory as captured in the qemu
478 coredump. The qemu process that has been dumped must have had the
479 command line option "-machine dump-guest-core=on" which is the default.
481 For simplicity, the "paging", "begin" and "end" parameters of the QMP
482 command are not supported -- no attempt is made to get the guest's
483 internal paging structures (ie. paging=false is hard-wired), and guest
484 memory is always fully dumped.
486 Currently aarch64-be, aarch64-le, X86_64, 386, s390, ppc64-be,
487 ppc64-le guests are supported.
489 The CORE/NT_PRSTATUS and QEMU notes (that is, the VCPUs' statuses) are
490 not written to the vmcore. Preparing these would require context that is
491 only present in the KVM host kernel module when the guest is alive. A
492 fake ELF note is written instead, only to keep the ELF parser of "crash"
493 happy.
495 Dependent on how busted the qemu process was at the time of the
496 coredump, this command might produce unpredictable results. If qemu
497 deliberately called abort(), or it was dumped in response to a signal at
498 a halfway fortunate point, then its coredump should be in reasonable
499 shape and this command should mostly work."""
501 def __init__(self):
502 super(DumpGuestMemory, self).__init__("dump-guest-memory",
503 gdb.COMMAND_DATA,
504 gdb.COMPLETE_FILENAME)
505 self.elf = None
506 self.guest_phys_blocks = None
508 def dump_init(self, vmcore):
509 """Prepares and writes ELF structures to core file."""
511 # Needed to make crash happy, data for more useful notes is
512 # not available in a qemu core.
513 self.elf.add_note("NONE", "EMPTY", 0)
515 # We should never reach PN_XNUM for paging=false dumps,
516 # there's just a handful of discontiguous ranges after
517 # merging.
518 # The constant is needed to account for the PT_NOTE segment.
519 phdr_num = len(self.guest_phys_blocks) + 1
520 assert phdr_num < PN_XNUM
522 for block in self.guest_phys_blocks:
523 block_size = block["target_end"] - block["target_start"]
524 self.elf.add_segment(PT_LOAD, block["target_start"], block_size)
526 self.elf.to_file(vmcore)
528 def dump_iterate(self, vmcore):
529 """Writes guest core to file."""
531 qemu_core = gdb.inferiors()[0]
532 for block in self.guest_phys_blocks:
533 cur = block["host_addr"]
534 left = block["target_end"] - block["target_start"]
535 print("dumping range at %016x for length %016x" %
536 (cur.cast(UINTPTR_T), left))
538 while left > 0:
539 chunk_size = min(TARGET_PAGE_SIZE, left)
540 chunk = qemu_core.read_memory(cur, chunk_size)
541 vmcore.write(chunk)
542 cur += chunk_size
543 left -= chunk_size
545 def phys_memory_read(self, addr, size):
546 qemu_core = gdb.inferiors()[0]
547 for block in self.guest_phys_blocks:
548 if block["target_start"] <= addr \
549 and addr + size <= block["target_end"]:
550 haddr = block["host_addr"] + (addr - block["target_start"])
551 return qemu_core.read_memory(haddr, size)
552 return None
554 def add_vmcoreinfo(self):
555 if gdb.lookup_symbol("vmcoreinfo_realize")[0] is None:
556 return
557 vmci = 'vmcoreinfo_realize::vmcoreinfo_state'
558 if not gdb.parse_and_eval("%s" % vmci) \
559 or not gdb.parse_and_eval("(%s)->has_vmcoreinfo" % vmci):
560 return
562 fmt = gdb.parse_and_eval("(%s)->vmcoreinfo.guest_format" % vmci)
563 addr = gdb.parse_and_eval("(%s)->vmcoreinfo.paddr" % vmci)
564 size = gdb.parse_and_eval("(%s)->vmcoreinfo.size" % vmci)
566 fmt = le16_to_cpu(fmt)
567 addr = le64_to_cpu(addr)
568 size = le32_to_cpu(size)
570 if fmt != VMCOREINFO_FORMAT_ELF:
571 return
573 vmcoreinfo = self.phys_memory_read(addr, size)
574 if vmcoreinfo:
575 self.elf.add_vmcoreinfo_note(bytes(vmcoreinfo))
577 def invoke(self, args, from_tty):
578 """Handles command invocation from gdb."""
580 # Unwittingly pressing the Enter key after the command should
581 # not dump the same multi-gig coredump to the same file.
582 self.dont_repeat()
584 argv = gdb.string_to_argv(args)
585 if len(argv) != 2:
586 raise gdb.GdbError("usage: dump-guest-memory FILE ARCH")
588 self.elf = ELF(argv[1])
589 self.guest_phys_blocks = get_guest_phys_blocks()
590 self.add_vmcoreinfo()
592 with open(argv[0], "wb") as vmcore:
593 self.dump_init(vmcore)
594 self.dump_iterate(vmcore)
596 DumpGuestMemory()