Merge remote-tracking branch 'remotes/amarkovic/tags/mips-queue-jul-02-2019' into...
[qemu/ar7.git] / hw / ppc / spapr_hcall.c
blob6808d4cda83f26d6fa8c04e803976c43de1f5fbb
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "qemu/module.h"
7 #include "qemu/error-report.h"
8 #include "cpu.h"
9 #include "exec/exec-all.h"
10 #include "helper_regs.h"
11 #include "hw/ppc/spapr.h"
12 #include "hw/ppc/spapr_cpu_core.h"
13 #include "mmu-hash64.h"
14 #include "cpu-models.h"
15 #include "trace.h"
16 #include "kvm_ppc.h"
17 #include "hw/ppc/spapr_ovec.h"
18 #include "mmu-book3s-v3.h"
19 #include "hw/mem/memory-device.h"
21 static bool has_spr(PowerPCCPU *cpu, int spr)
23 /* We can test whether the SPR is defined by checking for a valid name */
24 return cpu->env.spr_cb[spr].name != NULL;
27 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
30 * hash value/pteg group index is normalized by HPT mask
32 if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
33 return false;
35 return true;
38 static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
40 MachineState *machine = MACHINE(spapr);
41 DeviceMemoryState *dms = machine->device_memory;
43 if (addr < machine->ram_size) {
44 return true;
46 if ((addr >= dms->base)
47 && ((addr - dms->base) < memory_region_size(&dms->mr))) {
48 return true;
51 return false;
54 static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr,
55 target_ulong opcode, target_ulong *args)
57 target_ulong flags = args[0];
58 target_ulong ptex = args[1];
59 target_ulong pteh = args[2];
60 target_ulong ptel = args[3];
61 unsigned apshift;
62 target_ulong raddr;
63 target_ulong slot;
64 const ppc_hash_pte64_t *hptes;
66 apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
67 if (!apshift) {
68 /* Bad page size encoding */
69 return H_PARAMETER;
72 raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
74 if (is_ram_address(spapr, raddr)) {
75 /* Regular RAM - should have WIMG=0010 */
76 if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
77 return H_PARAMETER;
79 } else {
80 target_ulong wimg_flags;
81 /* Looks like an IO address */
82 /* FIXME: What WIMG combinations could be sensible for IO?
83 * For now we allow WIMG=010x, but are there others? */
84 /* FIXME: Should we check against registered IO addresses? */
85 wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
87 if (wimg_flags != HPTE64_R_I &&
88 wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
89 return H_PARAMETER;
93 pteh &= ~0x60ULL;
95 if (!valid_ptex(cpu, ptex)) {
96 return H_PARAMETER;
99 slot = ptex & 7ULL;
100 ptex = ptex & ~7ULL;
102 if (likely((flags & H_EXACT) == 0)) {
103 hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
104 for (slot = 0; slot < 8; slot++) {
105 if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
106 break;
109 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
110 if (slot == 8) {
111 return H_PTEG_FULL;
113 } else {
114 hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
115 if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
116 ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
117 return H_PTEG_FULL;
119 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
122 spapr_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
124 args[0] = ptex + slot;
125 return H_SUCCESS;
128 typedef enum {
129 REMOVE_SUCCESS = 0,
130 REMOVE_NOT_FOUND = 1,
131 REMOVE_PARM = 2,
132 REMOVE_HW = 3,
133 } RemoveResult;
135 static RemoveResult remove_hpte(PowerPCCPU *cpu
136 , target_ulong ptex,
137 target_ulong avpn,
138 target_ulong flags,
139 target_ulong *vp, target_ulong *rp)
141 const ppc_hash_pte64_t *hptes;
142 target_ulong v, r;
144 if (!valid_ptex(cpu, ptex)) {
145 return REMOVE_PARM;
148 hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
149 v = ppc_hash64_hpte0(cpu, hptes, 0);
150 r = ppc_hash64_hpte1(cpu, hptes, 0);
151 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
153 if ((v & HPTE64_V_VALID) == 0 ||
154 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
155 ((flags & H_ANDCOND) && (v & avpn) != 0)) {
156 return REMOVE_NOT_FOUND;
158 *vp = v;
159 *rp = r;
160 spapr_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
161 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
162 return REMOVE_SUCCESS;
165 static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
166 target_ulong opcode, target_ulong *args)
168 CPUPPCState *env = &cpu->env;
169 target_ulong flags = args[0];
170 target_ulong ptex = args[1];
171 target_ulong avpn = args[2];
172 RemoveResult ret;
174 ret = remove_hpte(cpu, ptex, avpn, flags,
175 &args[0], &args[1]);
177 switch (ret) {
178 case REMOVE_SUCCESS:
179 check_tlb_flush(env, true);
180 return H_SUCCESS;
182 case REMOVE_NOT_FOUND:
183 return H_NOT_FOUND;
185 case REMOVE_PARM:
186 return H_PARAMETER;
188 case REMOVE_HW:
189 return H_HARDWARE;
192 g_assert_not_reached();
195 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
196 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
197 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
198 #define H_BULK_REMOVE_END 0xc000000000000000ULL
199 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL
200 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
201 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
202 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL
203 #define H_BULK_REMOVE_HW 0x3000000000000000ULL
204 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL
205 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
206 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
207 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
208 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
209 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
211 #define H_BULK_REMOVE_MAX_BATCH 4
213 static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
214 target_ulong opcode, target_ulong *args)
216 CPUPPCState *env = &cpu->env;
217 int i;
218 target_ulong rc = H_SUCCESS;
220 for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
221 target_ulong *tsh = &args[i*2];
222 target_ulong tsl = args[i*2 + 1];
223 target_ulong v, r, ret;
225 if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
226 break;
227 } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
228 return H_PARAMETER;
231 *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
232 *tsh |= H_BULK_REMOVE_RESPONSE;
234 if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
235 *tsh |= H_BULK_REMOVE_PARM;
236 return H_PARAMETER;
239 ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
240 (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
241 &v, &r);
243 *tsh |= ret << 60;
245 switch (ret) {
246 case REMOVE_SUCCESS:
247 *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
248 break;
250 case REMOVE_PARM:
251 rc = H_PARAMETER;
252 goto exit;
254 case REMOVE_HW:
255 rc = H_HARDWARE;
256 goto exit;
259 exit:
260 check_tlb_flush(env, true);
262 return rc;
265 static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr,
266 target_ulong opcode, target_ulong *args)
268 CPUPPCState *env = &cpu->env;
269 target_ulong flags = args[0];
270 target_ulong ptex = args[1];
271 target_ulong avpn = args[2];
272 const ppc_hash_pte64_t *hptes;
273 target_ulong v, r;
275 if (!valid_ptex(cpu, ptex)) {
276 return H_PARAMETER;
279 hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
280 v = ppc_hash64_hpte0(cpu, hptes, 0);
281 r = ppc_hash64_hpte1(cpu, hptes, 0);
282 ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
284 if ((v & HPTE64_V_VALID) == 0 ||
285 ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
286 return H_NOT_FOUND;
289 r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
290 HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
291 r |= (flags << 55) & HPTE64_R_PP0;
292 r |= (flags << 48) & HPTE64_R_KEY_HI;
293 r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
294 spapr_store_hpte(cpu, ptex,
295 (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
296 ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
297 /* Flush the tlb */
298 check_tlb_flush(env, true);
299 /* Don't need a memory barrier, due to qemu's global lock */
300 spapr_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
301 return H_SUCCESS;
304 static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr,
305 target_ulong opcode, target_ulong *args)
307 target_ulong flags = args[0];
308 target_ulong ptex = args[1];
309 int i, ridx, n_entries = 1;
310 const ppc_hash_pte64_t *hptes;
312 if (!valid_ptex(cpu, ptex)) {
313 return H_PARAMETER;
316 if (flags & H_READ_4) {
317 /* Clear the two low order bits */
318 ptex &= ~(3ULL);
319 n_entries = 4;
322 hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries);
323 for (i = 0, ridx = 0; i < n_entries; i++) {
324 args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i);
325 args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i);
327 ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries);
329 return H_SUCCESS;
332 struct SpaprPendingHpt {
333 /* These fields are read-only after initialization */
334 int shift;
335 QemuThread thread;
337 /* These fields are protected by the BQL */
338 bool complete;
340 /* These fields are private to the preparation thread if
341 * !complete, otherwise protected by the BQL */
342 int ret;
343 void *hpt;
346 static void free_pending_hpt(SpaprPendingHpt *pending)
348 if (pending->hpt) {
349 qemu_vfree(pending->hpt);
352 g_free(pending);
355 static void *hpt_prepare_thread(void *opaque)
357 SpaprPendingHpt *pending = opaque;
358 size_t size = 1ULL << pending->shift;
360 pending->hpt = qemu_memalign(size, size);
361 if (pending->hpt) {
362 memset(pending->hpt, 0, size);
363 pending->ret = H_SUCCESS;
364 } else {
365 pending->ret = H_NO_MEM;
368 qemu_mutex_lock_iothread();
370 if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
371 /* Ready to go */
372 pending->complete = true;
373 } else {
374 /* We've been cancelled, clean ourselves up */
375 free_pending_hpt(pending);
378 qemu_mutex_unlock_iothread();
379 return NULL;
382 /* Must be called with BQL held */
383 static void cancel_hpt_prepare(SpaprMachineState *spapr)
385 SpaprPendingHpt *pending = spapr->pending_hpt;
387 /* Let the thread know it's cancelled */
388 spapr->pending_hpt = NULL;
390 if (!pending) {
391 /* Nothing to do */
392 return;
395 if (!pending->complete) {
396 /* thread will clean itself up */
397 return;
400 free_pending_hpt(pending);
403 /* Convert a return code from the KVM ioctl()s implementing resize HPT
404 * into a PAPR hypercall return code */
405 static target_ulong resize_hpt_convert_rc(int ret)
407 if (ret >= 100000) {
408 return H_LONG_BUSY_ORDER_100_SEC;
409 } else if (ret >= 10000) {
410 return H_LONG_BUSY_ORDER_10_SEC;
411 } else if (ret >= 1000) {
412 return H_LONG_BUSY_ORDER_1_SEC;
413 } else if (ret >= 100) {
414 return H_LONG_BUSY_ORDER_100_MSEC;
415 } else if (ret >= 10) {
416 return H_LONG_BUSY_ORDER_10_MSEC;
417 } else if (ret > 0) {
418 return H_LONG_BUSY_ORDER_1_MSEC;
421 switch (ret) {
422 case 0:
423 return H_SUCCESS;
424 case -EPERM:
425 return H_AUTHORITY;
426 case -EINVAL:
427 return H_PARAMETER;
428 case -ENXIO:
429 return H_CLOSED;
430 case -ENOSPC:
431 return H_PTEG_FULL;
432 case -EBUSY:
433 return H_BUSY;
434 case -ENOMEM:
435 return H_NO_MEM;
436 default:
437 return H_HARDWARE;
441 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
442 SpaprMachineState *spapr,
443 target_ulong opcode,
444 target_ulong *args)
446 target_ulong flags = args[0];
447 int shift = args[1];
448 SpaprPendingHpt *pending = spapr->pending_hpt;
449 uint64_t current_ram_size;
450 int rc;
452 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
453 return H_AUTHORITY;
456 if (!spapr->htab_shift) {
457 /* Radix guest, no HPT */
458 return H_NOT_AVAILABLE;
461 trace_spapr_h_resize_hpt_prepare(flags, shift);
463 if (flags != 0) {
464 return H_PARAMETER;
467 if (shift && ((shift < 18) || (shift > 46))) {
468 return H_PARAMETER;
471 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
473 /* We only allow the guest to allocate an HPT one order above what
474 * we'd normally give them (to stop a small guest claiming a huge
475 * chunk of resources in the HPT */
476 if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
477 return H_RESOURCE;
480 rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
481 if (rc != -ENOSYS) {
482 return resize_hpt_convert_rc(rc);
485 if (pending) {
486 /* something already in progress */
487 if (pending->shift == shift) {
488 /* and it's suitable */
489 if (pending->complete) {
490 return pending->ret;
491 } else {
492 return H_LONG_BUSY_ORDER_100_MSEC;
496 /* not suitable, cancel and replace */
497 cancel_hpt_prepare(spapr);
500 if (!shift) {
501 /* nothing to do */
502 return H_SUCCESS;
505 /* start new prepare */
507 pending = g_new0(SpaprPendingHpt, 1);
508 pending->shift = shift;
509 pending->ret = H_HARDWARE;
511 qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
512 hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
514 spapr->pending_hpt = pending;
516 /* In theory we could estimate the time more accurately based on
517 * the new size, but there's not much point */
518 return H_LONG_BUSY_ORDER_100_MSEC;
521 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
523 uint8_t *addr = htab;
525 addr += pteg * HASH_PTEG_SIZE_64;
526 addr += slot * HASH_PTE_SIZE_64;
527 return ldq_p(addr);
530 static void new_hpte_store(void *htab, uint64_t pteg, int slot,
531 uint64_t pte0, uint64_t pte1)
533 uint8_t *addr = htab;
535 addr += pteg * HASH_PTEG_SIZE_64;
536 addr += slot * HASH_PTE_SIZE_64;
538 stq_p(addr, pte0);
539 stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
542 static int rehash_hpte(PowerPCCPU *cpu,
543 const ppc_hash_pte64_t *hptes,
544 void *old_hpt, uint64_t oldsize,
545 void *new_hpt, uint64_t newsize,
546 uint64_t pteg, int slot)
548 uint64_t old_hash_mask = (oldsize >> 7) - 1;
549 uint64_t new_hash_mask = (newsize >> 7) - 1;
550 target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
551 target_ulong pte1;
552 uint64_t avpn;
553 unsigned base_pg_shift;
554 uint64_t hash, new_pteg, replace_pte0;
556 if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
557 return H_SUCCESS;
560 pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
562 base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
563 assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
564 avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
566 if (pte0 & HPTE64_V_SECONDARY) {
567 pteg = ~pteg;
570 if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
571 uint64_t offset, vsid;
573 /* We only have 28 - 23 bits of offset in avpn */
574 offset = (avpn & 0x1f) << 23;
575 vsid = avpn >> 5;
576 /* We can find more bits from the pteg value */
577 if (base_pg_shift < 23) {
578 offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
581 hash = vsid ^ (offset >> base_pg_shift);
582 } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
583 uint64_t offset, vsid;
585 /* We only have 40 - 23 bits of seg_off in avpn */
586 offset = (avpn & 0x1ffff) << 23;
587 vsid = avpn >> 17;
588 if (base_pg_shift < 23) {
589 offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
590 << base_pg_shift;
593 hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
594 } else {
595 error_report("rehash_pte: Bad segment size in HPTE");
596 return H_HARDWARE;
599 new_pteg = hash & new_hash_mask;
600 if (pte0 & HPTE64_V_SECONDARY) {
601 assert(~pteg == (hash & old_hash_mask));
602 new_pteg = ~new_pteg;
603 } else {
604 assert(pteg == (hash & old_hash_mask));
606 assert((oldsize != newsize) || (pteg == new_pteg));
607 replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
609 * Strictly speaking, we don't need all these tests, since we only
610 * ever rehash bolted HPTEs. We might in future handle non-bolted
611 * HPTEs, though so make the logic correct for those cases as
612 * well.
614 if (replace_pte0 & HPTE64_V_VALID) {
615 assert(newsize < oldsize);
616 if (replace_pte0 & HPTE64_V_BOLTED) {
617 if (pte0 & HPTE64_V_BOLTED) {
618 /* Bolted collision, nothing we can do */
619 return H_PTEG_FULL;
620 } else {
621 /* Discard this hpte */
622 return H_SUCCESS;
627 new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
628 return H_SUCCESS;
631 static int rehash_hpt(PowerPCCPU *cpu,
632 void *old_hpt, uint64_t oldsize,
633 void *new_hpt, uint64_t newsize)
635 uint64_t n_ptegs = oldsize >> 7;
636 uint64_t pteg;
637 int slot;
638 int rc;
640 for (pteg = 0; pteg < n_ptegs; pteg++) {
641 hwaddr ptex = pteg * HPTES_PER_GROUP;
642 const ppc_hash_pte64_t *hptes
643 = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
645 if (!hptes) {
646 return H_HARDWARE;
649 for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
650 rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
651 pteg, slot);
652 if (rc != H_SUCCESS) {
653 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
654 return rc;
657 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
660 return H_SUCCESS;
663 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
665 int ret;
667 cpu_synchronize_state(cs);
669 ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
670 if (ret < 0) {
671 error_report("failed to push sregs to KVM: %s", strerror(-ret));
672 exit(1);
676 static void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
678 CPUState *cs;
681 * This is a hack for the benefit of KVM PR - it abuses the SDR1
682 * slot in kvm_sregs to communicate the userspace address of the
683 * HPT
685 if (!kvm_enabled() || !spapr->htab) {
686 return;
689 CPU_FOREACH(cs) {
690 run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
694 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
695 SpaprMachineState *spapr,
696 target_ulong opcode,
697 target_ulong *args)
699 target_ulong flags = args[0];
700 target_ulong shift = args[1];
701 SpaprPendingHpt *pending = spapr->pending_hpt;
702 int rc;
703 size_t newsize;
705 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
706 return H_AUTHORITY;
709 if (!spapr->htab_shift) {
710 /* Radix guest, no HPT */
711 return H_NOT_AVAILABLE;
714 trace_spapr_h_resize_hpt_commit(flags, shift);
716 rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
717 if (rc != -ENOSYS) {
718 rc = resize_hpt_convert_rc(rc);
719 if (rc == H_SUCCESS) {
720 /* Need to set the new htab_shift in the machine state */
721 spapr->htab_shift = shift;
723 return rc;
726 if (flags != 0) {
727 return H_PARAMETER;
730 if (!pending || (pending->shift != shift)) {
731 /* no matching prepare */
732 return H_CLOSED;
735 if (!pending->complete) {
736 /* prepare has not completed */
737 return H_BUSY;
740 /* Shouldn't have got past PREPARE without an HPT */
741 g_assert(spapr->htab_shift);
743 newsize = 1ULL << pending->shift;
744 rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
745 pending->hpt, newsize);
746 if (rc == H_SUCCESS) {
747 qemu_vfree(spapr->htab);
748 spapr->htab = pending->hpt;
749 spapr->htab_shift = pending->shift;
751 push_sregs_to_kvm_pr(spapr);
753 pending->hpt = NULL; /* so it's not free()d */
756 /* Clean up */
757 spapr->pending_hpt = NULL;
758 free_pending_hpt(pending);
760 return rc;
763 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
764 target_ulong opcode, target_ulong *args)
766 cpu_synchronize_state(CPU(cpu));
767 cpu->env.spr[SPR_SPRG0] = args[0];
769 return H_SUCCESS;
772 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
773 target_ulong opcode, target_ulong *args)
775 if (!has_spr(cpu, SPR_DABR)) {
776 return H_HARDWARE; /* DABR register not available */
778 cpu_synchronize_state(CPU(cpu));
780 if (has_spr(cpu, SPR_DABRX)) {
781 cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
782 } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
783 return H_RESERVED_DABR;
786 cpu->env.spr[SPR_DABR] = args[0];
787 return H_SUCCESS;
790 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
791 target_ulong opcode, target_ulong *args)
793 target_ulong dabrx = args[1];
795 if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
796 return H_HARDWARE;
799 if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
800 || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
801 return H_PARAMETER;
804 cpu_synchronize_state(CPU(cpu));
805 cpu->env.spr[SPR_DABRX] = dabrx;
806 cpu->env.spr[SPR_DABR] = args[0];
808 return H_SUCCESS;
811 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
812 target_ulong opcode, target_ulong *args)
814 target_ulong flags = args[0];
815 hwaddr dst = args[1];
816 hwaddr src = args[2];
817 hwaddr len = TARGET_PAGE_SIZE;
818 uint8_t *pdst, *psrc;
819 target_long ret = H_SUCCESS;
821 if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
822 | H_COPY_PAGE | H_ZERO_PAGE)) {
823 qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
824 flags);
825 return H_PARAMETER;
828 /* Map-in destination */
829 if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
830 return H_PARAMETER;
832 pdst = cpu_physical_memory_map(dst, &len, 1);
833 if (!pdst || len != TARGET_PAGE_SIZE) {
834 return H_PARAMETER;
837 if (flags & H_COPY_PAGE) {
838 /* Map-in source, copy to destination, and unmap source again */
839 if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
840 ret = H_PARAMETER;
841 goto unmap_out;
843 psrc = cpu_physical_memory_map(src, &len, 0);
844 if (!psrc || len != TARGET_PAGE_SIZE) {
845 ret = H_PARAMETER;
846 goto unmap_out;
848 memcpy(pdst, psrc, len);
849 cpu_physical_memory_unmap(psrc, len, 0, len);
850 } else if (flags & H_ZERO_PAGE) {
851 memset(pdst, 0, len); /* Just clear the destination page */
854 if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
855 kvmppc_dcbst_range(cpu, pdst, len);
857 if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
858 if (kvm_enabled()) {
859 kvmppc_icbi_range(cpu, pdst, len);
860 } else {
861 tb_flush(CPU(cpu));
865 unmap_out:
866 cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
867 return ret;
870 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
871 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
872 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
873 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
874 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
875 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
877 #define VPA_MIN_SIZE 640
878 #define VPA_SIZE_OFFSET 0x4
879 #define VPA_SHARED_PROC_OFFSET 0x9
880 #define VPA_SHARED_PROC_VAL 0x2
882 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
884 CPUState *cs = CPU(cpu);
885 CPUPPCState *env = &cpu->env;
886 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
887 uint16_t size;
888 uint8_t tmp;
890 if (vpa == 0) {
891 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
892 return H_HARDWARE;
895 if (vpa % env->dcache_line_size) {
896 return H_PARAMETER;
898 /* FIXME: bounds check the address */
900 size = lduw_be_phys(cs->as, vpa + 0x4);
902 if (size < VPA_MIN_SIZE) {
903 return H_PARAMETER;
906 /* VPA is not allowed to cross a page boundary */
907 if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
908 return H_PARAMETER;
911 spapr_cpu->vpa_addr = vpa;
913 tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
914 tmp |= VPA_SHARED_PROC_VAL;
915 stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
917 return H_SUCCESS;
920 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
922 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
924 if (spapr_cpu->slb_shadow_addr) {
925 return H_RESOURCE;
928 if (spapr_cpu->dtl_addr) {
929 return H_RESOURCE;
932 spapr_cpu->vpa_addr = 0;
933 return H_SUCCESS;
936 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
938 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
939 uint32_t size;
941 if (addr == 0) {
942 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
943 return H_HARDWARE;
946 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
947 if (size < 0x8) {
948 return H_PARAMETER;
951 if ((addr / 4096) != ((addr + size - 1) / 4096)) {
952 return H_PARAMETER;
955 if (!spapr_cpu->vpa_addr) {
956 return H_RESOURCE;
959 spapr_cpu->slb_shadow_addr = addr;
960 spapr_cpu->slb_shadow_size = size;
962 return H_SUCCESS;
965 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
967 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
969 spapr_cpu->slb_shadow_addr = 0;
970 spapr_cpu->slb_shadow_size = 0;
971 return H_SUCCESS;
974 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
976 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
977 uint32_t size;
979 if (addr == 0) {
980 hcall_dprintf("Can't cope with DTL at logical 0\n");
981 return H_HARDWARE;
984 size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
986 if (size < 48) {
987 return H_PARAMETER;
990 if (!spapr_cpu->vpa_addr) {
991 return H_RESOURCE;
994 spapr_cpu->dtl_addr = addr;
995 spapr_cpu->dtl_size = size;
997 return H_SUCCESS;
1000 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
1002 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1004 spapr_cpu->dtl_addr = 0;
1005 spapr_cpu->dtl_size = 0;
1007 return H_SUCCESS;
1010 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
1011 target_ulong opcode, target_ulong *args)
1013 target_ulong flags = args[0];
1014 target_ulong procno = args[1];
1015 target_ulong vpa = args[2];
1016 target_ulong ret = H_PARAMETER;
1017 PowerPCCPU *tcpu;
1019 tcpu = spapr_find_cpu(procno);
1020 if (!tcpu) {
1021 return H_PARAMETER;
1024 switch (flags) {
1025 case FLAGS_REGISTER_VPA:
1026 ret = register_vpa(tcpu, vpa);
1027 break;
1029 case FLAGS_DEREGISTER_VPA:
1030 ret = deregister_vpa(tcpu, vpa);
1031 break;
1033 case FLAGS_REGISTER_SLBSHADOW:
1034 ret = register_slb_shadow(tcpu, vpa);
1035 break;
1037 case FLAGS_DEREGISTER_SLBSHADOW:
1038 ret = deregister_slb_shadow(tcpu, vpa);
1039 break;
1041 case FLAGS_REGISTER_DTL:
1042 ret = register_dtl(tcpu, vpa);
1043 break;
1045 case FLAGS_DEREGISTER_DTL:
1046 ret = deregister_dtl(tcpu, vpa);
1047 break;
1050 return ret;
1053 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
1054 target_ulong opcode, target_ulong *args)
1056 CPUPPCState *env = &cpu->env;
1057 CPUState *cs = CPU(cpu);
1059 env->msr |= (1ULL << MSR_EE);
1060 hreg_compute_hflags(env);
1061 if (!cpu_has_work(cs)) {
1062 cs->halted = 1;
1063 cs->exception_index = EXCP_HLT;
1064 cs->exit_request = 1;
1066 return H_SUCCESS;
1069 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
1070 target_ulong opcode, target_ulong *args)
1072 target_ulong rtas_r3 = args[0];
1073 uint32_t token = rtas_ld(rtas_r3, 0);
1074 uint32_t nargs = rtas_ld(rtas_r3, 1);
1075 uint32_t nret = rtas_ld(rtas_r3, 2);
1077 return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1078 nret, rtas_r3 + 12 + 4*nargs);
1081 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
1082 target_ulong opcode, target_ulong *args)
1084 CPUState *cs = CPU(cpu);
1085 target_ulong size = args[0];
1086 target_ulong addr = args[1];
1088 switch (size) {
1089 case 1:
1090 args[0] = ldub_phys(cs->as, addr);
1091 return H_SUCCESS;
1092 case 2:
1093 args[0] = lduw_phys(cs->as, addr);
1094 return H_SUCCESS;
1095 case 4:
1096 args[0] = ldl_phys(cs->as, addr);
1097 return H_SUCCESS;
1098 case 8:
1099 args[0] = ldq_phys(cs->as, addr);
1100 return H_SUCCESS;
1102 return H_PARAMETER;
1105 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
1106 target_ulong opcode, target_ulong *args)
1108 CPUState *cs = CPU(cpu);
1110 target_ulong size = args[0];
1111 target_ulong addr = args[1];
1112 target_ulong val = args[2];
1114 switch (size) {
1115 case 1:
1116 stb_phys(cs->as, addr, val);
1117 return H_SUCCESS;
1118 case 2:
1119 stw_phys(cs->as, addr, val);
1120 return H_SUCCESS;
1121 case 4:
1122 stl_phys(cs->as, addr, val);
1123 return H_SUCCESS;
1124 case 8:
1125 stq_phys(cs->as, addr, val);
1126 return H_SUCCESS;
1128 return H_PARAMETER;
1131 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
1132 target_ulong opcode, target_ulong *args)
1134 CPUState *cs = CPU(cpu);
1136 target_ulong dst = args[0]; /* Destination address */
1137 target_ulong src = args[1]; /* Source address */
1138 target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1139 target_ulong count = args[3]; /* Element count */
1140 target_ulong op = args[4]; /* 0 = copy, 1 = invert */
1141 uint64_t tmp;
1142 unsigned int mask = (1 << esize) - 1;
1143 int step = 1 << esize;
1145 if (count > 0x80000000) {
1146 return H_PARAMETER;
1149 if ((dst & mask) || (src & mask) || (op > 1)) {
1150 return H_PARAMETER;
1153 if (dst >= src && dst < (src + (count << esize))) {
1154 dst = dst + ((count - 1) << esize);
1155 src = src + ((count - 1) << esize);
1156 step = -step;
1159 while (count--) {
1160 switch (esize) {
1161 case 0:
1162 tmp = ldub_phys(cs->as, src);
1163 break;
1164 case 1:
1165 tmp = lduw_phys(cs->as, src);
1166 break;
1167 case 2:
1168 tmp = ldl_phys(cs->as, src);
1169 break;
1170 case 3:
1171 tmp = ldq_phys(cs->as, src);
1172 break;
1173 default:
1174 return H_PARAMETER;
1176 if (op == 1) {
1177 tmp = ~tmp;
1179 switch (esize) {
1180 case 0:
1181 stb_phys(cs->as, dst, tmp);
1182 break;
1183 case 1:
1184 stw_phys(cs->as, dst, tmp);
1185 break;
1186 case 2:
1187 stl_phys(cs->as, dst, tmp);
1188 break;
1189 case 3:
1190 stq_phys(cs->as, dst, tmp);
1191 break;
1193 dst = dst + step;
1194 src = src + step;
1197 return H_SUCCESS;
1200 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
1201 target_ulong opcode, target_ulong *args)
1203 /* Nothing to do on emulation, KVM will trap this in the kernel */
1204 return H_SUCCESS;
1207 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
1208 target_ulong opcode, target_ulong *args)
1210 /* Nothing to do on emulation, KVM will trap this in the kernel */
1211 return H_SUCCESS;
1214 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1215 target_ulong mflags,
1216 target_ulong value1,
1217 target_ulong value2)
1219 if (value1) {
1220 return H_P3;
1222 if (value2) {
1223 return H_P4;
1226 switch (mflags) {
1227 case H_SET_MODE_ENDIAN_BIG:
1228 spapr_set_all_lpcrs(0, LPCR_ILE);
1229 spapr_pci_switch_vga(true);
1230 return H_SUCCESS;
1232 case H_SET_MODE_ENDIAN_LITTLE:
1233 spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
1234 spapr_pci_switch_vga(false);
1235 return H_SUCCESS;
1238 return H_UNSUPPORTED_FLAG;
1241 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1242 target_ulong mflags,
1243 target_ulong value1,
1244 target_ulong value2)
1246 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1248 if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1249 return H_P2;
1251 if (value1) {
1252 return H_P3;
1254 if (value2) {
1255 return H_P4;
1258 if (mflags == AIL_RESERVED) {
1259 return H_UNSUPPORTED_FLAG;
1262 spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1264 return H_SUCCESS;
1267 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
1268 target_ulong opcode, target_ulong *args)
1270 target_ulong resource = args[1];
1271 target_ulong ret = H_P2;
1273 switch (resource) {
1274 case H_SET_MODE_RESOURCE_LE:
1275 ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1276 break;
1277 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1278 ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1279 args[2], args[3]);
1280 break;
1283 return ret;
1286 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
1287 target_ulong opcode, target_ulong *args)
1289 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1290 opcode, " (H_CLEAN_SLB)");
1291 return H_FUNCTION;
1294 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
1295 target_ulong opcode, target_ulong *args)
1297 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1298 opcode, " (H_INVALIDATE_PID)");
1299 return H_FUNCTION;
1302 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
1303 uint64_t patbe_old, uint64_t patbe_new)
1306 * We have 4 Options:
1307 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1308 * HASH->RADIX : Free HPT
1309 * RADIX->HASH : Allocate HPT
1310 * NOTHING->HASH : Allocate HPT
1311 * Note: NOTHING implies the case where we said the guest could choose
1312 * later and so assumed radix and now it's called H_REG_PROC_TBL
1315 if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
1316 /* We assume RADIX, so this catches all the "Do Nothing" cases */
1317 } else if (!(patbe_old & PATE1_GR)) {
1318 /* HASH->RADIX : Free HPT */
1319 spapr_free_hpt(spapr);
1320 } else if (!(patbe_new & PATE1_GR)) {
1321 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1322 spapr_setup_hpt_and_vrma(spapr);
1324 return;
1327 #define FLAGS_MASK 0x01FULL
1328 #define FLAG_MODIFY 0x10
1329 #define FLAG_REGISTER 0x08
1330 #define FLAG_RADIX 0x04
1331 #define FLAG_HASH_PROC_TBL 0x02
1332 #define FLAG_GTSE 0x01
1334 static target_ulong h_register_process_table(PowerPCCPU *cpu,
1335 SpaprMachineState *spapr,
1336 target_ulong opcode,
1337 target_ulong *args)
1339 target_ulong flags = args[0];
1340 target_ulong proc_tbl = args[1];
1341 target_ulong page_size = args[2];
1342 target_ulong table_size = args[3];
1343 target_ulong update_lpcr = 0;
1344 uint64_t cproc;
1346 if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1347 return H_PARAMETER;
1349 if (flags & FLAG_MODIFY) {
1350 if (flags & FLAG_REGISTER) {
1351 if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1352 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1353 return H_P2;
1354 } else if (page_size) {
1355 return H_P3;
1356 } else if (table_size > 24) {
1357 return H_P4;
1359 cproc = PATE1_GR | proc_tbl | table_size;
1360 } else { /* Register new HPT process table */
1361 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1362 /* TODO - Not Supported */
1363 /* Technically caused by flag bits => H_PARAMETER */
1364 return H_PARAMETER;
1365 } else { /* Hash with SLB */
1366 if (proc_tbl >> 38) {
1367 return H_P2;
1368 } else if (page_size & ~0x7) {
1369 return H_P3;
1370 } else if (table_size > 24) {
1371 return H_P4;
1374 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1377 } else { /* Deregister current process table */
1379 * Set to benign value: (current GR) | 0. This allows
1380 * deregistration in KVM to succeed even if the radix bit
1381 * in flags doesn't match the radix bit in the old PATE.
1383 cproc = spapr->patb_entry & PATE1_GR;
1385 } else { /* Maintain current registration */
1386 if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
1387 /* Technically caused by flag bits => H_PARAMETER */
1388 return H_PARAMETER; /* Existing Process Table Mismatch */
1390 cproc = spapr->patb_entry;
1393 /* Check if we need to setup OR free the hpt */
1394 spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1396 spapr->patb_entry = cproc; /* Save new process table */
1398 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1399 if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */
1400 update_lpcr |= (LPCR_UPRT | LPCR_HR);
1401 else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
1402 update_lpcr |= LPCR_UPRT;
1403 if (flags & FLAG_GTSE) /* Guest translation shootdown enable */
1404 update_lpcr |= LPCR_GTSE;
1406 spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1408 if (kvm_enabled()) {
1409 return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1410 flags & FLAG_GTSE, cproc);
1412 return H_SUCCESS;
1415 #define H_SIGNAL_SYS_RESET_ALL -1
1416 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1418 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1419 SpaprMachineState *spapr,
1420 target_ulong opcode, target_ulong *args)
1422 target_long target = args[0];
1423 CPUState *cs;
1425 if (target < 0) {
1426 /* Broadcast */
1427 if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1428 return H_PARAMETER;
1431 CPU_FOREACH(cs) {
1432 PowerPCCPU *c = POWERPC_CPU(cs);
1434 if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1435 if (c == cpu) {
1436 continue;
1439 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1441 return H_SUCCESS;
1443 } else {
1444 /* Unicast */
1445 cs = CPU(spapr_find_cpu(target));
1446 if (cs) {
1447 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1448 return H_SUCCESS;
1450 return H_PARAMETER;
1454 static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu,
1455 target_ulong *addr, bool *raw_mode_supported,
1456 Error **errp)
1458 bool explicit_match = false; /* Matched the CPU's real PVR */
1459 uint32_t max_compat = spapr->max_compat_pvr;
1460 uint32_t best_compat = 0;
1461 int i;
1464 * We scan the supplied table of PVRs looking for two things
1465 * 1. Is our real CPU PVR in the list?
1466 * 2. What's the "best" listed logical PVR
1468 for (i = 0; i < 512; ++i) {
1469 uint32_t pvr, pvr_mask;
1471 pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1472 pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1473 *addr += 8;
1475 if (~pvr_mask & pvr) {
1476 break; /* Terminator record */
1479 if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1480 explicit_match = true;
1481 } else {
1482 if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1483 best_compat = pvr;
1488 if ((best_compat == 0) && (!explicit_match || max_compat)) {
1489 /* We couldn't find a suitable compatibility mode, and either
1490 * the guest doesn't support "raw" mode for this CPU, or raw
1491 * mode is disabled because a maximum compat mode is set */
1492 error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1493 return 0;
1496 *raw_mode_supported = explicit_match;
1498 /* Parsing finished */
1499 trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1501 return best_compat;
1504 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1505 SpaprMachineState *spapr,
1506 target_ulong opcode,
1507 target_ulong *args)
1509 /* Working address in data buffer */
1510 target_ulong addr = ppc64_phys_to_real(args[0]);
1511 target_ulong ov_table;
1512 uint32_t cas_pvr;
1513 SpaprOptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1514 bool guest_radix;
1515 Error *local_err = NULL;
1516 bool raw_mode_supported = false;
1517 bool guest_xive;
1519 cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
1520 if (local_err) {
1521 error_report_err(local_err);
1522 return H_HARDWARE;
1525 /* Update CPUs */
1526 if (cpu->compat_pvr != cas_pvr) {
1527 ppc_set_compat_all(cas_pvr, &local_err);
1528 if (local_err) {
1529 /* We fail to set compat mode (likely because running with KVM PR),
1530 * but maybe we can fallback to raw mode if the guest supports it.
1532 if (!raw_mode_supported) {
1533 error_report_err(local_err);
1534 return H_HARDWARE;
1536 error_free(local_err);
1537 local_err = NULL;
1541 /* For the future use: here @ov_table points to the first option vector */
1542 ov_table = addr;
1544 ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1545 ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1546 if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1547 error_report("guest requested hash and radix MMU, which is invalid.");
1548 exit(EXIT_FAILURE);
1550 if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1551 error_report("guest requested an invalid interrupt mode");
1552 exit(EXIT_FAILURE);
1555 /* The radix/hash bit in byte 24 requires special handling: */
1556 guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1557 spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1559 guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1562 * HPT resizing is a bit of a special case, because when enabled
1563 * we assume an HPT guest will support it until it says it
1564 * doesn't, instead of assuming it won't support it until it says
1565 * it does. Strictly speaking that approach could break for
1566 * guests which don't make a CAS call, but those are so old we
1567 * don't care about them. Without that assumption we'd have to
1568 * make at least a temporary allocation of an HPT sized for max
1569 * memory, which could be impossibly difficult under KVM HV if
1570 * maxram is large.
1572 if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1573 int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1575 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1576 error_report(
1577 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1578 exit(1);
1581 if (spapr->htab_shift < maxshift) {
1582 /* Guest doesn't know about HPT resizing, so we
1583 * pre-emptively resize for the maximum permitted RAM. At
1584 * the point this is called, nothing should have been
1585 * entered into the existing HPT */
1586 spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1587 push_sregs_to_kvm_pr(spapr);
1591 /* NOTE: there are actually a number of ov5 bits where input from the
1592 * guest is always zero, and the platform/QEMU enables them independently
1593 * of guest input. To model these properly we'd want some sort of mask,
1594 * but since they only currently apply to memory migration as defined
1595 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1596 * to worry about this for now.
1598 ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1600 /* also clear the radix/hash bit from the current ov5_cas bits to
1601 * be in sync with the newly ov5 bits. Else the radix bit will be
1602 * seen as being removed and this will generate a reset loop
1604 spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300);
1606 /* full range of negotiated ov5 capabilities */
1607 spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1608 spapr_ovec_cleanup(ov5_guest);
1609 /* capabilities that have been added since CAS-generated guest reset.
1610 * if capabilities have since been removed, generate another reset
1612 ov5_updates = spapr_ovec_new();
1613 spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1614 ov5_cas_old, spapr->ov5_cas);
1615 /* Now that processing is finished, set the radix/hash bit for the
1616 * guest if it requested a valid mode; otherwise terminate the boot. */
1617 if (guest_radix) {
1618 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1619 error_report("Guest requested unavailable MMU mode (radix).");
1620 exit(EXIT_FAILURE);
1622 spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1623 } else {
1624 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1625 && !kvmppc_has_cap_mmu_hash_v3()) {
1626 error_report("Guest requested unavailable MMU mode (hash).");
1627 exit(EXIT_FAILURE);
1630 spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1631 OV1_PPC_3_00);
1632 if (!spapr->cas_reboot) {
1633 /* If spapr_machine_reset() did not set up a HPT but one is necessary
1634 * (because the guest isn't going to use radix) then set it up here. */
1635 if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1636 /* legacy hash or new hash: */
1637 spapr_setup_hpt_and_vrma(spapr);
1639 spapr->cas_reboot =
1640 (spapr_h_cas_compose_response(spapr, args[1], args[2],
1641 ov5_updates) != 0);
1645 * Ensure the guest asks for an interrupt mode we support; otherwise
1646 * terminate the boot.
1648 if (guest_xive) {
1649 if (spapr->irq->ov5 == SPAPR_OV5_XIVE_LEGACY) {
1650 error_report(
1651 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1652 exit(EXIT_FAILURE);
1654 } else {
1655 if (spapr->irq->ov5 == SPAPR_OV5_XIVE_EXPLOIT) {
1656 error_report(
1657 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1658 exit(EXIT_FAILURE);
1663 * Generate a machine reset when we have an update of the
1664 * interrupt mode. Only required when the machine supports both
1665 * modes.
1667 if (!spapr->cas_reboot) {
1668 spapr->cas_reboot = spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)
1669 && spapr->irq->ov5 & SPAPR_OV5_XIVE_BOTH;
1672 spapr_ovec_cleanup(ov5_updates);
1674 if (spapr->cas_reboot) {
1675 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1678 return H_SUCCESS;
1681 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
1682 SpaprMachineState *spapr,
1683 target_ulong opcode,
1684 target_ulong *args)
1686 target_ulong flags = args[0];
1687 target_ulong procno = args[1];
1688 PowerPCCPU *tcpu;
1689 int idx;
1691 /* only support procno from H_REGISTER_VPA */
1692 if (flags != 0x1) {
1693 return H_FUNCTION;
1696 tcpu = spapr_find_cpu(procno);
1697 if (tcpu == NULL) {
1698 return H_P2;
1701 /* sequence is the same as in the "ibm,associativity" property */
1703 idx = 0;
1704 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
1705 ((uint64_t)(b) & 0xffffffff))
1706 args[idx++] = ASSOCIATIVITY(0, 0);
1707 args[idx++] = ASSOCIATIVITY(0, tcpu->node_id);
1708 args[idx++] = ASSOCIATIVITY(procno, -1);
1709 for ( ; idx < 6; idx++) {
1710 args[idx] = -1;
1712 #undef ASSOCIATIVITY
1714 return H_SUCCESS;
1717 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1718 SpaprMachineState *spapr,
1719 target_ulong opcode,
1720 target_ulong *args)
1722 uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1723 ~H_CPU_CHAR_THR_RECONF_TRIG;
1724 uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1725 uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1726 uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1727 uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1728 uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1729 SPAPR_CAP_CCF_ASSIST);
1731 switch (safe_cache) {
1732 case SPAPR_CAP_WORKAROUND:
1733 characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1734 characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1735 characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1736 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1737 break;
1738 case SPAPR_CAP_FIXED:
1739 break;
1740 default: /* broken */
1741 assert(safe_cache == SPAPR_CAP_BROKEN);
1742 behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1743 break;
1746 switch (safe_bounds_check) {
1747 case SPAPR_CAP_WORKAROUND:
1748 characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1749 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1750 break;
1751 case SPAPR_CAP_FIXED:
1752 break;
1753 default: /* broken */
1754 assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1755 behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1756 break;
1759 switch (safe_indirect_branch) {
1760 case SPAPR_CAP_FIXED_NA:
1761 break;
1762 case SPAPR_CAP_FIXED_CCD:
1763 characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1764 break;
1765 case SPAPR_CAP_FIXED_IBS:
1766 characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1767 break;
1768 case SPAPR_CAP_WORKAROUND:
1769 behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1770 if (count_cache_flush_assist) {
1771 characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1773 break;
1774 default: /* broken */
1775 assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1776 break;
1779 args[0] = characteristics;
1780 args[1] = behaviour;
1781 return H_SUCCESS;
1784 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1785 target_ulong opcode, target_ulong *args)
1787 target_ulong dt = ppc64_phys_to_real(args[0]);
1788 struct fdt_header hdr = { 0 };
1789 unsigned cb;
1790 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1791 void *fdt;
1793 cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1794 cb = fdt32_to_cpu(hdr.totalsize);
1796 if (!smc->update_dt_enabled) {
1797 return H_SUCCESS;
1800 /* Check that the fdt did not grow out of proportion */
1801 if (cb > spapr->fdt_initial_size * 2) {
1802 trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1803 fdt32_to_cpu(hdr.magic));
1804 return H_PARAMETER;
1807 fdt = g_malloc0(cb);
1808 cpu_physical_memory_read(dt, fdt, cb);
1810 /* Check the fdt consistency */
1811 if (fdt_check_full(fdt, cb)) {
1812 trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1813 fdt32_to_cpu(hdr.magic));
1814 return H_PARAMETER;
1817 g_free(spapr->fdt_blob);
1818 spapr->fdt_size = cb;
1819 spapr->fdt_blob = fdt;
1820 trace_spapr_update_dt(cb);
1822 return H_SUCCESS;
1825 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1826 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1828 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1830 spapr_hcall_fn *slot;
1832 if (opcode <= MAX_HCALL_OPCODE) {
1833 assert((opcode & 0x3) == 0);
1835 slot = &papr_hypercall_table[opcode / 4];
1836 } else {
1837 assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1839 slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1842 assert(!(*slot));
1843 *slot = fn;
1846 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1847 target_ulong *args)
1849 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1851 if ((opcode <= MAX_HCALL_OPCODE)
1852 && ((opcode & 0x3) == 0)) {
1853 spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1855 if (fn) {
1856 return fn(cpu, spapr, opcode, args);
1858 } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1859 (opcode <= KVMPPC_HCALL_MAX)) {
1860 spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1862 if (fn) {
1863 return fn(cpu, spapr, opcode, args);
1867 qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1868 opcode);
1869 return H_FUNCTION;
1872 static void hypercall_register_types(void)
1874 /* hcall-pft */
1875 spapr_register_hypercall(H_ENTER, h_enter);
1876 spapr_register_hypercall(H_REMOVE, h_remove);
1877 spapr_register_hypercall(H_PROTECT, h_protect);
1878 spapr_register_hypercall(H_READ, h_read);
1880 /* hcall-bulk */
1881 spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1883 /* hcall-hpt-resize */
1884 spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1885 spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1887 /* hcall-splpar */
1888 spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1889 spapr_register_hypercall(H_CEDE, h_cede);
1890 spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1892 /* processor register resource access h-calls */
1893 spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1894 spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1895 spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1896 spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1897 spapr_register_hypercall(H_SET_MODE, h_set_mode);
1899 /* In Memory Table MMU h-calls */
1900 spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1901 spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1902 spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1904 /* hcall-get-cpu-characteristics */
1905 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1906 h_get_cpu_characteristics);
1908 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1909 * here between the "CI" and the "CACHE" variants, they will use whatever
1910 * mapping attributes qemu is using. When using KVM, the kernel will
1911 * enforce the attributes more strongly
1913 spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1914 spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1915 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1916 spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1917 spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1918 spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1919 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1921 /* qemu/KVM-PPC specific hcalls */
1922 spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1924 /* ibm,client-architecture-support support */
1925 spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1927 spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1929 /* Virtual Processor Home Node */
1930 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
1931 h_home_node_associativity);
1934 type_init(hypercall_register_types)