1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
6 #include "qemu/module.h"
7 #include "qemu/error-report.h"
9 #include "exec/exec-all.h"
10 #include "helper_regs.h"
11 #include "hw/ppc/spapr.h"
12 #include "hw/ppc/spapr_cpu_core.h"
13 #include "mmu-hash64.h"
14 #include "cpu-models.h"
17 #include "hw/ppc/spapr_ovec.h"
18 #include "mmu-book3s-v3.h"
19 #include "hw/mem/memory-device.h"
21 static bool has_spr(PowerPCCPU
*cpu
, int spr
)
23 /* We can test whether the SPR is defined by checking for a valid name */
24 return cpu
->env
.spr_cb
[spr
].name
!= NULL
;
27 static inline bool valid_ptex(PowerPCCPU
*cpu
, target_ulong ptex
)
30 * hash value/pteg group index is normalized by HPT mask
32 if (((ptex
& ~7ULL) / HPTES_PER_GROUP
) & ~ppc_hash64_hpt_mask(cpu
)) {
38 static bool is_ram_address(SpaprMachineState
*spapr
, hwaddr addr
)
40 MachineState
*machine
= MACHINE(spapr
);
41 DeviceMemoryState
*dms
= machine
->device_memory
;
43 if (addr
< machine
->ram_size
) {
46 if ((addr
>= dms
->base
)
47 && ((addr
- dms
->base
) < memory_region_size(&dms
->mr
))) {
54 static target_ulong
h_enter(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
55 target_ulong opcode
, target_ulong
*args
)
57 target_ulong flags
= args
[0];
58 target_ulong ptex
= args
[1];
59 target_ulong pteh
= args
[2];
60 target_ulong ptel
= args
[3];
64 const ppc_hash_pte64_t
*hptes
;
66 apshift
= ppc_hash64_hpte_page_shift_noslb(cpu
, pteh
, ptel
);
68 /* Bad page size encoding */
72 raddr
= (ptel
& HPTE64_R_RPN
) & ~((1ULL << apshift
) - 1);
74 if (is_ram_address(spapr
, raddr
)) {
75 /* Regular RAM - should have WIMG=0010 */
76 if ((ptel
& HPTE64_R_WIMG
) != HPTE64_R_M
) {
80 target_ulong wimg_flags
;
81 /* Looks like an IO address */
82 /* FIXME: What WIMG combinations could be sensible for IO?
83 * For now we allow WIMG=010x, but are there others? */
84 /* FIXME: Should we check against registered IO addresses? */
85 wimg_flags
= (ptel
& (HPTE64_R_W
| HPTE64_R_I
| HPTE64_R_M
));
87 if (wimg_flags
!= HPTE64_R_I
&&
88 wimg_flags
!= (HPTE64_R_I
| HPTE64_R_M
)) {
95 if (!valid_ptex(cpu
, ptex
)) {
102 if (likely((flags
& H_EXACT
) == 0)) {
103 hptes
= ppc_hash64_map_hptes(cpu
, ptex
, HPTES_PER_GROUP
);
104 for (slot
= 0; slot
< 8; slot
++) {
105 if (!(ppc_hash64_hpte0(cpu
, hptes
, slot
) & HPTE64_V_VALID
)) {
109 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, HPTES_PER_GROUP
);
114 hptes
= ppc_hash64_map_hptes(cpu
, ptex
+ slot
, 1);
115 if (ppc_hash64_hpte0(cpu
, hptes
, 0) & HPTE64_V_VALID
) {
116 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
+ slot
, 1);
119 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, 1);
122 spapr_store_hpte(cpu
, ptex
+ slot
, pteh
| HPTE64_V_HPTE_DIRTY
, ptel
);
124 args
[0] = ptex
+ slot
;
130 REMOVE_NOT_FOUND
= 1,
135 static RemoveResult
remove_hpte(PowerPCCPU
*cpu
139 target_ulong
*vp
, target_ulong
*rp
)
141 const ppc_hash_pte64_t
*hptes
;
144 if (!valid_ptex(cpu
, ptex
)) {
148 hptes
= ppc_hash64_map_hptes(cpu
, ptex
, 1);
149 v
= ppc_hash64_hpte0(cpu
, hptes
, 0);
150 r
= ppc_hash64_hpte1(cpu
, hptes
, 0);
151 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, 1);
153 if ((v
& HPTE64_V_VALID
) == 0 ||
154 ((flags
& H_AVPN
) && (v
& ~0x7fULL
) != avpn
) ||
155 ((flags
& H_ANDCOND
) && (v
& avpn
) != 0)) {
156 return REMOVE_NOT_FOUND
;
160 spapr_store_hpte(cpu
, ptex
, HPTE64_V_HPTE_DIRTY
, 0);
161 ppc_hash64_tlb_flush_hpte(cpu
, ptex
, v
, r
);
162 return REMOVE_SUCCESS
;
165 static target_ulong
h_remove(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
166 target_ulong opcode
, target_ulong
*args
)
168 CPUPPCState
*env
= &cpu
->env
;
169 target_ulong flags
= args
[0];
170 target_ulong ptex
= args
[1];
171 target_ulong avpn
= args
[2];
174 ret
= remove_hpte(cpu
, ptex
, avpn
, flags
,
179 check_tlb_flush(env
, true);
182 case REMOVE_NOT_FOUND
:
192 g_assert_not_reached();
195 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
196 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
197 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
198 #define H_BULK_REMOVE_END 0xc000000000000000ULL
199 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL
200 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
201 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
202 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL
203 #define H_BULK_REMOVE_HW 0x3000000000000000ULL
204 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL
205 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
206 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
207 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
208 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
209 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
211 #define H_BULK_REMOVE_MAX_BATCH 4
213 static target_ulong
h_bulk_remove(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
214 target_ulong opcode
, target_ulong
*args
)
216 CPUPPCState
*env
= &cpu
->env
;
218 target_ulong rc
= H_SUCCESS
;
220 for (i
= 0; i
< H_BULK_REMOVE_MAX_BATCH
; i
++) {
221 target_ulong
*tsh
= &args
[i
*2];
222 target_ulong tsl
= args
[i
*2 + 1];
223 target_ulong v
, r
, ret
;
225 if ((*tsh
& H_BULK_REMOVE_TYPE
) == H_BULK_REMOVE_END
) {
227 } else if ((*tsh
& H_BULK_REMOVE_TYPE
) != H_BULK_REMOVE_REQUEST
) {
231 *tsh
&= H_BULK_REMOVE_PTEX
| H_BULK_REMOVE_FLAGS
;
232 *tsh
|= H_BULK_REMOVE_RESPONSE
;
234 if ((*tsh
& H_BULK_REMOVE_ANDCOND
) && (*tsh
& H_BULK_REMOVE_AVPN
)) {
235 *tsh
|= H_BULK_REMOVE_PARM
;
239 ret
= remove_hpte(cpu
, *tsh
& H_BULK_REMOVE_PTEX
, tsl
,
240 (*tsh
& H_BULK_REMOVE_FLAGS
) >> 26,
247 *tsh
|= (r
& (HPTE64_R_C
| HPTE64_R_R
)) << 43;
260 check_tlb_flush(env
, true);
265 static target_ulong
h_protect(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
266 target_ulong opcode
, target_ulong
*args
)
268 CPUPPCState
*env
= &cpu
->env
;
269 target_ulong flags
= args
[0];
270 target_ulong ptex
= args
[1];
271 target_ulong avpn
= args
[2];
272 const ppc_hash_pte64_t
*hptes
;
275 if (!valid_ptex(cpu
, ptex
)) {
279 hptes
= ppc_hash64_map_hptes(cpu
, ptex
, 1);
280 v
= ppc_hash64_hpte0(cpu
, hptes
, 0);
281 r
= ppc_hash64_hpte1(cpu
, hptes
, 0);
282 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, 1);
284 if ((v
& HPTE64_V_VALID
) == 0 ||
285 ((flags
& H_AVPN
) && (v
& ~0x7fULL
) != avpn
)) {
289 r
&= ~(HPTE64_R_PP0
| HPTE64_R_PP
| HPTE64_R_N
|
290 HPTE64_R_KEY_HI
| HPTE64_R_KEY_LO
);
291 r
|= (flags
<< 55) & HPTE64_R_PP0
;
292 r
|= (flags
<< 48) & HPTE64_R_KEY_HI
;
293 r
|= flags
& (HPTE64_R_PP
| HPTE64_R_N
| HPTE64_R_KEY_LO
);
294 spapr_store_hpte(cpu
, ptex
,
295 (v
& ~HPTE64_V_VALID
) | HPTE64_V_HPTE_DIRTY
, 0);
296 ppc_hash64_tlb_flush_hpte(cpu
, ptex
, v
, r
);
298 check_tlb_flush(env
, true);
299 /* Don't need a memory barrier, due to qemu's global lock */
300 spapr_store_hpte(cpu
, ptex
, v
| HPTE64_V_HPTE_DIRTY
, r
);
304 static target_ulong
h_read(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
305 target_ulong opcode
, target_ulong
*args
)
307 target_ulong flags
= args
[0];
308 target_ulong ptex
= args
[1];
309 int i
, ridx
, n_entries
= 1;
310 const ppc_hash_pte64_t
*hptes
;
312 if (!valid_ptex(cpu
, ptex
)) {
316 if (flags
& H_READ_4
) {
317 /* Clear the two low order bits */
322 hptes
= ppc_hash64_map_hptes(cpu
, ptex
, n_entries
);
323 for (i
= 0, ridx
= 0; i
< n_entries
; i
++) {
324 args
[ridx
++] = ppc_hash64_hpte0(cpu
, hptes
, i
);
325 args
[ridx
++] = ppc_hash64_hpte1(cpu
, hptes
, i
);
327 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, n_entries
);
332 struct SpaprPendingHpt
{
333 /* These fields are read-only after initialization */
337 /* These fields are protected by the BQL */
340 /* These fields are private to the preparation thread if
341 * !complete, otherwise protected by the BQL */
346 static void free_pending_hpt(SpaprPendingHpt
*pending
)
349 qemu_vfree(pending
->hpt
);
355 static void *hpt_prepare_thread(void *opaque
)
357 SpaprPendingHpt
*pending
= opaque
;
358 size_t size
= 1ULL << pending
->shift
;
360 pending
->hpt
= qemu_memalign(size
, size
);
362 memset(pending
->hpt
, 0, size
);
363 pending
->ret
= H_SUCCESS
;
365 pending
->ret
= H_NO_MEM
;
368 qemu_mutex_lock_iothread();
370 if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt
== pending
) {
372 pending
->complete
= true;
374 /* We've been cancelled, clean ourselves up */
375 free_pending_hpt(pending
);
378 qemu_mutex_unlock_iothread();
382 /* Must be called with BQL held */
383 static void cancel_hpt_prepare(SpaprMachineState
*spapr
)
385 SpaprPendingHpt
*pending
= spapr
->pending_hpt
;
387 /* Let the thread know it's cancelled */
388 spapr
->pending_hpt
= NULL
;
395 if (!pending
->complete
) {
396 /* thread will clean itself up */
400 free_pending_hpt(pending
);
403 /* Convert a return code from the KVM ioctl()s implementing resize HPT
404 * into a PAPR hypercall return code */
405 static target_ulong
resize_hpt_convert_rc(int ret
)
408 return H_LONG_BUSY_ORDER_100_SEC
;
409 } else if (ret
>= 10000) {
410 return H_LONG_BUSY_ORDER_10_SEC
;
411 } else if (ret
>= 1000) {
412 return H_LONG_BUSY_ORDER_1_SEC
;
413 } else if (ret
>= 100) {
414 return H_LONG_BUSY_ORDER_100_MSEC
;
415 } else if (ret
>= 10) {
416 return H_LONG_BUSY_ORDER_10_MSEC
;
417 } else if (ret
> 0) {
418 return H_LONG_BUSY_ORDER_1_MSEC
;
441 static target_ulong
h_resize_hpt_prepare(PowerPCCPU
*cpu
,
442 SpaprMachineState
*spapr
,
446 target_ulong flags
= args
[0];
448 SpaprPendingHpt
*pending
= spapr
->pending_hpt
;
449 uint64_t current_ram_size
;
452 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
456 if (!spapr
->htab_shift
) {
457 /* Radix guest, no HPT */
458 return H_NOT_AVAILABLE
;
461 trace_spapr_h_resize_hpt_prepare(flags
, shift
);
467 if (shift
&& ((shift
< 18) || (shift
> 46))) {
471 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
473 /* We only allow the guest to allocate an HPT one order above what
474 * we'd normally give them (to stop a small guest claiming a huge
475 * chunk of resources in the HPT */
476 if (shift
> (spapr_hpt_shift_for_ramsize(current_ram_size
) + 1)) {
480 rc
= kvmppc_resize_hpt_prepare(cpu
, flags
, shift
);
482 return resize_hpt_convert_rc(rc
);
486 /* something already in progress */
487 if (pending
->shift
== shift
) {
488 /* and it's suitable */
489 if (pending
->complete
) {
492 return H_LONG_BUSY_ORDER_100_MSEC
;
496 /* not suitable, cancel and replace */
497 cancel_hpt_prepare(spapr
);
505 /* start new prepare */
507 pending
= g_new0(SpaprPendingHpt
, 1);
508 pending
->shift
= shift
;
509 pending
->ret
= H_HARDWARE
;
511 qemu_thread_create(&pending
->thread
, "sPAPR HPT prepare",
512 hpt_prepare_thread
, pending
, QEMU_THREAD_DETACHED
);
514 spapr
->pending_hpt
= pending
;
516 /* In theory we could estimate the time more accurately based on
517 * the new size, but there's not much point */
518 return H_LONG_BUSY_ORDER_100_MSEC
;
521 static uint64_t new_hpte_load0(void *htab
, uint64_t pteg
, int slot
)
523 uint8_t *addr
= htab
;
525 addr
+= pteg
* HASH_PTEG_SIZE_64
;
526 addr
+= slot
* HASH_PTE_SIZE_64
;
530 static void new_hpte_store(void *htab
, uint64_t pteg
, int slot
,
531 uint64_t pte0
, uint64_t pte1
)
533 uint8_t *addr
= htab
;
535 addr
+= pteg
* HASH_PTEG_SIZE_64
;
536 addr
+= slot
* HASH_PTE_SIZE_64
;
539 stq_p(addr
+ HASH_PTE_SIZE_64
/ 2, pte1
);
542 static int rehash_hpte(PowerPCCPU
*cpu
,
543 const ppc_hash_pte64_t
*hptes
,
544 void *old_hpt
, uint64_t oldsize
,
545 void *new_hpt
, uint64_t newsize
,
546 uint64_t pteg
, int slot
)
548 uint64_t old_hash_mask
= (oldsize
>> 7) - 1;
549 uint64_t new_hash_mask
= (newsize
>> 7) - 1;
550 target_ulong pte0
= ppc_hash64_hpte0(cpu
, hptes
, slot
);
553 unsigned base_pg_shift
;
554 uint64_t hash
, new_pteg
, replace_pte0
;
556 if (!(pte0
& HPTE64_V_VALID
) || !(pte0
& HPTE64_V_BOLTED
)) {
560 pte1
= ppc_hash64_hpte1(cpu
, hptes
, slot
);
562 base_pg_shift
= ppc_hash64_hpte_page_shift_noslb(cpu
, pte0
, pte1
);
563 assert(base_pg_shift
); /* H_ENTER shouldn't allow a bad encoding */
564 avpn
= HPTE64_V_AVPN_VAL(pte0
) & ~(((1ULL << base_pg_shift
) - 1) >> 23);
566 if (pte0
& HPTE64_V_SECONDARY
) {
570 if ((pte0
& HPTE64_V_SSIZE
) == HPTE64_V_SSIZE_256M
) {
571 uint64_t offset
, vsid
;
573 /* We only have 28 - 23 bits of offset in avpn */
574 offset
= (avpn
& 0x1f) << 23;
576 /* We can find more bits from the pteg value */
577 if (base_pg_shift
< 23) {
578 offset
|= ((vsid
^ pteg
) & old_hash_mask
) << base_pg_shift
;
581 hash
= vsid
^ (offset
>> base_pg_shift
);
582 } else if ((pte0
& HPTE64_V_SSIZE
) == HPTE64_V_SSIZE_1T
) {
583 uint64_t offset
, vsid
;
585 /* We only have 40 - 23 bits of seg_off in avpn */
586 offset
= (avpn
& 0x1ffff) << 23;
588 if (base_pg_shift
< 23) {
589 offset
|= ((vsid
^ (vsid
<< 25) ^ pteg
) & old_hash_mask
)
593 hash
= vsid
^ (vsid
<< 25) ^ (offset
>> base_pg_shift
);
595 error_report("rehash_pte: Bad segment size in HPTE");
599 new_pteg
= hash
& new_hash_mask
;
600 if (pte0
& HPTE64_V_SECONDARY
) {
601 assert(~pteg
== (hash
& old_hash_mask
));
602 new_pteg
= ~new_pteg
;
604 assert(pteg
== (hash
& old_hash_mask
));
606 assert((oldsize
!= newsize
) || (pteg
== new_pteg
));
607 replace_pte0
= new_hpte_load0(new_hpt
, new_pteg
, slot
);
609 * Strictly speaking, we don't need all these tests, since we only
610 * ever rehash bolted HPTEs. We might in future handle non-bolted
611 * HPTEs, though so make the logic correct for those cases as
614 if (replace_pte0
& HPTE64_V_VALID
) {
615 assert(newsize
< oldsize
);
616 if (replace_pte0
& HPTE64_V_BOLTED
) {
617 if (pte0
& HPTE64_V_BOLTED
) {
618 /* Bolted collision, nothing we can do */
621 /* Discard this hpte */
627 new_hpte_store(new_hpt
, new_pteg
, slot
, pte0
, pte1
);
631 static int rehash_hpt(PowerPCCPU
*cpu
,
632 void *old_hpt
, uint64_t oldsize
,
633 void *new_hpt
, uint64_t newsize
)
635 uint64_t n_ptegs
= oldsize
>> 7;
640 for (pteg
= 0; pteg
< n_ptegs
; pteg
++) {
641 hwaddr ptex
= pteg
* HPTES_PER_GROUP
;
642 const ppc_hash_pte64_t
*hptes
643 = ppc_hash64_map_hptes(cpu
, ptex
, HPTES_PER_GROUP
);
649 for (slot
= 0; slot
< HPTES_PER_GROUP
; slot
++) {
650 rc
= rehash_hpte(cpu
, hptes
, old_hpt
, oldsize
, new_hpt
, newsize
,
652 if (rc
!= H_SUCCESS
) {
653 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, HPTES_PER_GROUP
);
657 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, HPTES_PER_GROUP
);
663 static void do_push_sregs_to_kvm_pr(CPUState
*cs
, run_on_cpu_data data
)
667 cpu_synchronize_state(cs
);
669 ret
= kvmppc_put_books_sregs(POWERPC_CPU(cs
));
671 error_report("failed to push sregs to KVM: %s", strerror(-ret
));
676 static void push_sregs_to_kvm_pr(SpaprMachineState
*spapr
)
681 * This is a hack for the benefit of KVM PR - it abuses the SDR1
682 * slot in kvm_sregs to communicate the userspace address of the
685 if (!kvm_enabled() || !spapr
->htab
) {
690 run_on_cpu(cs
, do_push_sregs_to_kvm_pr
, RUN_ON_CPU_NULL
);
694 static target_ulong
h_resize_hpt_commit(PowerPCCPU
*cpu
,
695 SpaprMachineState
*spapr
,
699 target_ulong flags
= args
[0];
700 target_ulong shift
= args
[1];
701 SpaprPendingHpt
*pending
= spapr
->pending_hpt
;
705 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
709 if (!spapr
->htab_shift
) {
710 /* Radix guest, no HPT */
711 return H_NOT_AVAILABLE
;
714 trace_spapr_h_resize_hpt_commit(flags
, shift
);
716 rc
= kvmppc_resize_hpt_commit(cpu
, flags
, shift
);
718 rc
= resize_hpt_convert_rc(rc
);
719 if (rc
== H_SUCCESS
) {
720 /* Need to set the new htab_shift in the machine state */
721 spapr
->htab_shift
= shift
;
730 if (!pending
|| (pending
->shift
!= shift
)) {
731 /* no matching prepare */
735 if (!pending
->complete
) {
736 /* prepare has not completed */
740 /* Shouldn't have got past PREPARE without an HPT */
741 g_assert(spapr
->htab_shift
);
743 newsize
= 1ULL << pending
->shift
;
744 rc
= rehash_hpt(cpu
, spapr
->htab
, HTAB_SIZE(spapr
),
745 pending
->hpt
, newsize
);
746 if (rc
== H_SUCCESS
) {
747 qemu_vfree(spapr
->htab
);
748 spapr
->htab
= pending
->hpt
;
749 spapr
->htab_shift
= pending
->shift
;
751 push_sregs_to_kvm_pr(spapr
);
753 pending
->hpt
= NULL
; /* so it's not free()d */
757 spapr
->pending_hpt
= NULL
;
758 free_pending_hpt(pending
);
763 static target_ulong
h_set_sprg0(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
764 target_ulong opcode
, target_ulong
*args
)
766 cpu_synchronize_state(CPU(cpu
));
767 cpu
->env
.spr
[SPR_SPRG0
] = args
[0];
772 static target_ulong
h_set_dabr(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
773 target_ulong opcode
, target_ulong
*args
)
775 if (!has_spr(cpu
, SPR_DABR
)) {
776 return H_HARDWARE
; /* DABR register not available */
778 cpu_synchronize_state(CPU(cpu
));
780 if (has_spr(cpu
, SPR_DABRX
)) {
781 cpu
->env
.spr
[SPR_DABRX
] = 0x3; /* Use Problem and Privileged state */
782 } else if (!(args
[0] & 0x4)) { /* Breakpoint Translation set? */
783 return H_RESERVED_DABR
;
786 cpu
->env
.spr
[SPR_DABR
] = args
[0];
790 static target_ulong
h_set_xdabr(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
791 target_ulong opcode
, target_ulong
*args
)
793 target_ulong dabrx
= args
[1];
795 if (!has_spr(cpu
, SPR_DABR
) || !has_spr(cpu
, SPR_DABRX
)) {
799 if ((dabrx
& ~0xfULL
) != 0 || (dabrx
& H_DABRX_HYPERVISOR
) != 0
800 || (dabrx
& (H_DABRX_KERNEL
| H_DABRX_USER
)) == 0) {
804 cpu_synchronize_state(CPU(cpu
));
805 cpu
->env
.spr
[SPR_DABRX
] = dabrx
;
806 cpu
->env
.spr
[SPR_DABR
] = args
[0];
811 static target_ulong
h_page_init(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
812 target_ulong opcode
, target_ulong
*args
)
814 target_ulong flags
= args
[0];
815 hwaddr dst
= args
[1];
816 hwaddr src
= args
[2];
817 hwaddr len
= TARGET_PAGE_SIZE
;
818 uint8_t *pdst
, *psrc
;
819 target_long ret
= H_SUCCESS
;
821 if (flags
& ~(H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
822 | H_COPY_PAGE
| H_ZERO_PAGE
)) {
823 qemu_log_mask(LOG_UNIMP
, "h_page_init: Bad flags (" TARGET_FMT_lx
"\n",
828 /* Map-in destination */
829 if (!is_ram_address(spapr
, dst
) || (dst
& ~TARGET_PAGE_MASK
) != 0) {
832 pdst
= cpu_physical_memory_map(dst
, &len
, 1);
833 if (!pdst
|| len
!= TARGET_PAGE_SIZE
) {
837 if (flags
& H_COPY_PAGE
) {
838 /* Map-in source, copy to destination, and unmap source again */
839 if (!is_ram_address(spapr
, src
) || (src
& ~TARGET_PAGE_MASK
) != 0) {
843 psrc
= cpu_physical_memory_map(src
, &len
, 0);
844 if (!psrc
|| len
!= TARGET_PAGE_SIZE
) {
848 memcpy(pdst
, psrc
, len
);
849 cpu_physical_memory_unmap(psrc
, len
, 0, len
);
850 } else if (flags
& H_ZERO_PAGE
) {
851 memset(pdst
, 0, len
); /* Just clear the destination page */
854 if (kvm_enabled() && (flags
& H_ICACHE_SYNCHRONIZE
) != 0) {
855 kvmppc_dcbst_range(cpu
, pdst
, len
);
857 if (flags
& (H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
)) {
859 kvmppc_icbi_range(cpu
, pdst
, len
);
866 cpu_physical_memory_unmap(pdst
, TARGET_PAGE_SIZE
, 1, len
);
870 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
871 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
872 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
873 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
874 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
875 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
877 #define VPA_MIN_SIZE 640
878 #define VPA_SIZE_OFFSET 0x4
879 #define VPA_SHARED_PROC_OFFSET 0x9
880 #define VPA_SHARED_PROC_VAL 0x2
882 static target_ulong
register_vpa(PowerPCCPU
*cpu
, target_ulong vpa
)
884 CPUState
*cs
= CPU(cpu
);
885 CPUPPCState
*env
= &cpu
->env
;
886 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
891 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
895 if (vpa
% env
->dcache_line_size
) {
898 /* FIXME: bounds check the address */
900 size
= lduw_be_phys(cs
->as
, vpa
+ 0x4);
902 if (size
< VPA_MIN_SIZE
) {
906 /* VPA is not allowed to cross a page boundary */
907 if ((vpa
/ 4096) != ((vpa
+ size
- 1) / 4096)) {
911 spapr_cpu
->vpa_addr
= vpa
;
913 tmp
= ldub_phys(cs
->as
, spapr_cpu
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
);
914 tmp
|= VPA_SHARED_PROC_VAL
;
915 stb_phys(cs
->as
, spapr_cpu
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
, tmp
);
920 static target_ulong
deregister_vpa(PowerPCCPU
*cpu
, target_ulong vpa
)
922 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
924 if (spapr_cpu
->slb_shadow_addr
) {
928 if (spapr_cpu
->dtl_addr
) {
932 spapr_cpu
->vpa_addr
= 0;
936 static target_ulong
register_slb_shadow(PowerPCCPU
*cpu
, target_ulong addr
)
938 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
942 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
946 size
= ldl_be_phys(CPU(cpu
)->as
, addr
+ 0x4);
951 if ((addr
/ 4096) != ((addr
+ size
- 1) / 4096)) {
955 if (!spapr_cpu
->vpa_addr
) {
959 spapr_cpu
->slb_shadow_addr
= addr
;
960 spapr_cpu
->slb_shadow_size
= size
;
965 static target_ulong
deregister_slb_shadow(PowerPCCPU
*cpu
, target_ulong addr
)
967 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
969 spapr_cpu
->slb_shadow_addr
= 0;
970 spapr_cpu
->slb_shadow_size
= 0;
974 static target_ulong
register_dtl(PowerPCCPU
*cpu
, target_ulong addr
)
976 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
980 hcall_dprintf("Can't cope with DTL at logical 0\n");
984 size
= ldl_be_phys(CPU(cpu
)->as
, addr
+ 0x4);
990 if (!spapr_cpu
->vpa_addr
) {
994 spapr_cpu
->dtl_addr
= addr
;
995 spapr_cpu
->dtl_size
= size
;
1000 static target_ulong
deregister_dtl(PowerPCCPU
*cpu
, target_ulong addr
)
1002 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
1004 spapr_cpu
->dtl_addr
= 0;
1005 spapr_cpu
->dtl_size
= 0;
1010 static target_ulong
h_register_vpa(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1011 target_ulong opcode
, target_ulong
*args
)
1013 target_ulong flags
= args
[0];
1014 target_ulong procno
= args
[1];
1015 target_ulong vpa
= args
[2];
1016 target_ulong ret
= H_PARAMETER
;
1019 tcpu
= spapr_find_cpu(procno
);
1025 case FLAGS_REGISTER_VPA
:
1026 ret
= register_vpa(tcpu
, vpa
);
1029 case FLAGS_DEREGISTER_VPA
:
1030 ret
= deregister_vpa(tcpu
, vpa
);
1033 case FLAGS_REGISTER_SLBSHADOW
:
1034 ret
= register_slb_shadow(tcpu
, vpa
);
1037 case FLAGS_DEREGISTER_SLBSHADOW
:
1038 ret
= deregister_slb_shadow(tcpu
, vpa
);
1041 case FLAGS_REGISTER_DTL
:
1042 ret
= register_dtl(tcpu
, vpa
);
1045 case FLAGS_DEREGISTER_DTL
:
1046 ret
= deregister_dtl(tcpu
, vpa
);
1053 static target_ulong
h_cede(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1054 target_ulong opcode
, target_ulong
*args
)
1056 CPUPPCState
*env
= &cpu
->env
;
1057 CPUState
*cs
= CPU(cpu
);
1059 env
->msr
|= (1ULL << MSR_EE
);
1060 hreg_compute_hflags(env
);
1061 if (!cpu_has_work(cs
)) {
1063 cs
->exception_index
= EXCP_HLT
;
1064 cs
->exit_request
= 1;
1069 static target_ulong
h_rtas(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1070 target_ulong opcode
, target_ulong
*args
)
1072 target_ulong rtas_r3
= args
[0];
1073 uint32_t token
= rtas_ld(rtas_r3
, 0);
1074 uint32_t nargs
= rtas_ld(rtas_r3
, 1);
1075 uint32_t nret
= rtas_ld(rtas_r3
, 2);
1077 return spapr_rtas_call(cpu
, spapr
, token
, nargs
, rtas_r3
+ 12,
1078 nret
, rtas_r3
+ 12 + 4*nargs
);
1081 static target_ulong
h_logical_load(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1082 target_ulong opcode
, target_ulong
*args
)
1084 CPUState
*cs
= CPU(cpu
);
1085 target_ulong size
= args
[0];
1086 target_ulong addr
= args
[1];
1090 args
[0] = ldub_phys(cs
->as
, addr
);
1093 args
[0] = lduw_phys(cs
->as
, addr
);
1096 args
[0] = ldl_phys(cs
->as
, addr
);
1099 args
[0] = ldq_phys(cs
->as
, addr
);
1105 static target_ulong
h_logical_store(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1106 target_ulong opcode
, target_ulong
*args
)
1108 CPUState
*cs
= CPU(cpu
);
1110 target_ulong size
= args
[0];
1111 target_ulong addr
= args
[1];
1112 target_ulong val
= args
[2];
1116 stb_phys(cs
->as
, addr
, val
);
1119 stw_phys(cs
->as
, addr
, val
);
1122 stl_phys(cs
->as
, addr
, val
);
1125 stq_phys(cs
->as
, addr
, val
);
1131 static target_ulong
h_logical_memop(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1132 target_ulong opcode
, target_ulong
*args
)
1134 CPUState
*cs
= CPU(cpu
);
1136 target_ulong dst
= args
[0]; /* Destination address */
1137 target_ulong src
= args
[1]; /* Source address */
1138 target_ulong esize
= args
[2]; /* Element size (0=1,1=2,2=4,3=8) */
1139 target_ulong count
= args
[3]; /* Element count */
1140 target_ulong op
= args
[4]; /* 0 = copy, 1 = invert */
1142 unsigned int mask
= (1 << esize
) - 1;
1143 int step
= 1 << esize
;
1145 if (count
> 0x80000000) {
1149 if ((dst
& mask
) || (src
& mask
) || (op
> 1)) {
1153 if (dst
>= src
&& dst
< (src
+ (count
<< esize
))) {
1154 dst
= dst
+ ((count
- 1) << esize
);
1155 src
= src
+ ((count
- 1) << esize
);
1162 tmp
= ldub_phys(cs
->as
, src
);
1165 tmp
= lduw_phys(cs
->as
, src
);
1168 tmp
= ldl_phys(cs
->as
, src
);
1171 tmp
= ldq_phys(cs
->as
, src
);
1181 stb_phys(cs
->as
, dst
, tmp
);
1184 stw_phys(cs
->as
, dst
, tmp
);
1187 stl_phys(cs
->as
, dst
, tmp
);
1190 stq_phys(cs
->as
, dst
, tmp
);
1200 static target_ulong
h_logical_icbi(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1201 target_ulong opcode
, target_ulong
*args
)
1203 /* Nothing to do on emulation, KVM will trap this in the kernel */
1207 static target_ulong
h_logical_dcbf(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1208 target_ulong opcode
, target_ulong
*args
)
1210 /* Nothing to do on emulation, KVM will trap this in the kernel */
1214 static target_ulong
h_set_mode_resource_le(PowerPCCPU
*cpu
,
1215 target_ulong mflags
,
1216 target_ulong value1
,
1217 target_ulong value2
)
1227 case H_SET_MODE_ENDIAN_BIG
:
1228 spapr_set_all_lpcrs(0, LPCR_ILE
);
1229 spapr_pci_switch_vga(true);
1232 case H_SET_MODE_ENDIAN_LITTLE
:
1233 spapr_set_all_lpcrs(LPCR_ILE
, LPCR_ILE
);
1234 spapr_pci_switch_vga(false);
1238 return H_UNSUPPORTED_FLAG
;
1241 static target_ulong
h_set_mode_resource_addr_trans_mode(PowerPCCPU
*cpu
,
1242 target_ulong mflags
,
1243 target_ulong value1
,
1244 target_ulong value2
)
1246 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
1248 if (!(pcc
->insns_flags2
& PPC2_ISA207S
)) {
1258 if (mflags
== AIL_RESERVED
) {
1259 return H_UNSUPPORTED_FLAG
;
1262 spapr_set_all_lpcrs(mflags
<< LPCR_AIL_SHIFT
, LPCR_AIL
);
1267 static target_ulong
h_set_mode(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1268 target_ulong opcode
, target_ulong
*args
)
1270 target_ulong resource
= args
[1];
1271 target_ulong ret
= H_P2
;
1274 case H_SET_MODE_RESOURCE_LE
:
1275 ret
= h_set_mode_resource_le(cpu
, args
[0], args
[2], args
[3]);
1277 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE
:
1278 ret
= h_set_mode_resource_addr_trans_mode(cpu
, args
[0],
1286 static target_ulong
h_clean_slb(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1287 target_ulong opcode
, target_ulong
*args
)
1289 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
1290 opcode
, " (H_CLEAN_SLB)");
1294 static target_ulong
h_invalidate_pid(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1295 target_ulong opcode
, target_ulong
*args
)
1297 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
1298 opcode
, " (H_INVALIDATE_PID)");
1302 static void spapr_check_setup_free_hpt(SpaprMachineState
*spapr
,
1303 uint64_t patbe_old
, uint64_t patbe_new
)
1306 * We have 4 Options:
1307 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1308 * HASH->RADIX : Free HPT
1309 * RADIX->HASH : Allocate HPT
1310 * NOTHING->HASH : Allocate HPT
1311 * Note: NOTHING implies the case where we said the guest could choose
1312 * later and so assumed radix and now it's called H_REG_PROC_TBL
1315 if ((patbe_old
& PATE1_GR
) == (patbe_new
& PATE1_GR
)) {
1316 /* We assume RADIX, so this catches all the "Do Nothing" cases */
1317 } else if (!(patbe_old
& PATE1_GR
)) {
1318 /* HASH->RADIX : Free HPT */
1319 spapr_free_hpt(spapr
);
1320 } else if (!(patbe_new
& PATE1_GR
)) {
1321 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1322 spapr_setup_hpt_and_vrma(spapr
);
1327 #define FLAGS_MASK 0x01FULL
1328 #define FLAG_MODIFY 0x10
1329 #define FLAG_REGISTER 0x08
1330 #define FLAG_RADIX 0x04
1331 #define FLAG_HASH_PROC_TBL 0x02
1332 #define FLAG_GTSE 0x01
1334 static target_ulong
h_register_process_table(PowerPCCPU
*cpu
,
1335 SpaprMachineState
*spapr
,
1336 target_ulong opcode
,
1339 target_ulong flags
= args
[0];
1340 target_ulong proc_tbl
= args
[1];
1341 target_ulong page_size
= args
[2];
1342 target_ulong table_size
= args
[3];
1343 target_ulong update_lpcr
= 0;
1346 if (flags
& ~FLAGS_MASK
) { /* Check no reserved bits are set */
1349 if (flags
& FLAG_MODIFY
) {
1350 if (flags
& FLAG_REGISTER
) {
1351 if (flags
& FLAG_RADIX
) { /* Register new RADIX process table */
1352 if (proc_tbl
& 0xfff || proc_tbl
>> 60) {
1354 } else if (page_size
) {
1356 } else if (table_size
> 24) {
1359 cproc
= PATE1_GR
| proc_tbl
| table_size
;
1360 } else { /* Register new HPT process table */
1361 if (flags
& FLAG_HASH_PROC_TBL
) { /* Hash with Segment Tables */
1362 /* TODO - Not Supported */
1363 /* Technically caused by flag bits => H_PARAMETER */
1365 } else { /* Hash with SLB */
1366 if (proc_tbl
>> 38) {
1368 } else if (page_size
& ~0x7) {
1370 } else if (table_size
> 24) {
1374 cproc
= (proc_tbl
<< 25) | page_size
<< 5 | table_size
;
1377 } else { /* Deregister current process table */
1379 * Set to benign value: (current GR) | 0. This allows
1380 * deregistration in KVM to succeed even if the radix bit
1381 * in flags doesn't match the radix bit in the old PATE.
1383 cproc
= spapr
->patb_entry
& PATE1_GR
;
1385 } else { /* Maintain current registration */
1386 if (!(flags
& FLAG_RADIX
) != !(spapr
->patb_entry
& PATE1_GR
)) {
1387 /* Technically caused by flag bits => H_PARAMETER */
1388 return H_PARAMETER
; /* Existing Process Table Mismatch */
1390 cproc
= spapr
->patb_entry
;
1393 /* Check if we need to setup OR free the hpt */
1394 spapr_check_setup_free_hpt(spapr
, spapr
->patb_entry
, cproc
);
1396 spapr
->patb_entry
= cproc
; /* Save new process table */
1398 /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1399 if (flags
& FLAG_RADIX
) /* Radix must use process tables, also set HR */
1400 update_lpcr
|= (LPCR_UPRT
| LPCR_HR
);
1401 else if (flags
& FLAG_HASH_PROC_TBL
) /* Hash with process tables */
1402 update_lpcr
|= LPCR_UPRT
;
1403 if (flags
& FLAG_GTSE
) /* Guest translation shootdown enable */
1404 update_lpcr
|= LPCR_GTSE
;
1406 spapr_set_all_lpcrs(update_lpcr
, LPCR_UPRT
| LPCR_HR
| LPCR_GTSE
);
1408 if (kvm_enabled()) {
1409 return kvmppc_configure_v3_mmu(cpu
, flags
& FLAG_RADIX
,
1410 flags
& FLAG_GTSE
, cproc
);
1415 #define H_SIGNAL_SYS_RESET_ALL -1
1416 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1418 static target_ulong
h_signal_sys_reset(PowerPCCPU
*cpu
,
1419 SpaprMachineState
*spapr
,
1420 target_ulong opcode
, target_ulong
*args
)
1422 target_long target
= args
[0];
1427 if (target
< H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1432 PowerPCCPU
*c
= POWERPC_CPU(cs
);
1434 if (target
== H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1439 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1445 cs
= CPU(spapr_find_cpu(target
));
1447 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1454 static uint32_t cas_check_pvr(SpaprMachineState
*spapr
, PowerPCCPU
*cpu
,
1455 target_ulong
*addr
, bool *raw_mode_supported
,
1458 bool explicit_match
= false; /* Matched the CPU's real PVR */
1459 uint32_t max_compat
= spapr
->max_compat_pvr
;
1460 uint32_t best_compat
= 0;
1464 * We scan the supplied table of PVRs looking for two things
1465 * 1. Is our real CPU PVR in the list?
1466 * 2. What's the "best" listed logical PVR
1468 for (i
= 0; i
< 512; ++i
) {
1469 uint32_t pvr
, pvr_mask
;
1471 pvr_mask
= ldl_be_phys(&address_space_memory
, *addr
);
1472 pvr
= ldl_be_phys(&address_space_memory
, *addr
+ 4);
1475 if (~pvr_mask
& pvr
) {
1476 break; /* Terminator record */
1479 if ((cpu
->env
.spr
[SPR_PVR
] & pvr_mask
) == (pvr
& pvr_mask
)) {
1480 explicit_match
= true;
1482 if (ppc_check_compat(cpu
, pvr
, best_compat
, max_compat
)) {
1488 if ((best_compat
== 0) && (!explicit_match
|| max_compat
)) {
1489 /* We couldn't find a suitable compatibility mode, and either
1490 * the guest doesn't support "raw" mode for this CPU, or raw
1491 * mode is disabled because a maximum compat mode is set */
1492 error_setg(errp
, "Couldn't negotiate a suitable PVR during CAS");
1496 *raw_mode_supported
= explicit_match
;
1498 /* Parsing finished */
1499 trace_spapr_cas_pvr(cpu
->compat_pvr
, explicit_match
, best_compat
);
1504 static target_ulong
h_client_architecture_support(PowerPCCPU
*cpu
,
1505 SpaprMachineState
*spapr
,
1506 target_ulong opcode
,
1509 /* Working address in data buffer */
1510 target_ulong addr
= ppc64_phys_to_real(args
[0]);
1511 target_ulong ov_table
;
1513 SpaprOptionVector
*ov1_guest
, *ov5_guest
, *ov5_cas_old
, *ov5_updates
;
1515 Error
*local_err
= NULL
;
1516 bool raw_mode_supported
= false;
1519 cas_pvr
= cas_check_pvr(spapr
, cpu
, &addr
, &raw_mode_supported
, &local_err
);
1521 error_report_err(local_err
);
1526 if (cpu
->compat_pvr
!= cas_pvr
) {
1527 ppc_set_compat_all(cas_pvr
, &local_err
);
1529 /* We fail to set compat mode (likely because running with KVM PR),
1530 * but maybe we can fallback to raw mode if the guest supports it.
1532 if (!raw_mode_supported
) {
1533 error_report_err(local_err
);
1536 error_free(local_err
);
1541 /* For the future use: here @ov_table points to the first option vector */
1544 ov1_guest
= spapr_ovec_parse_vector(ov_table
, 1);
1545 ov5_guest
= spapr_ovec_parse_vector(ov_table
, 5);
1546 if (spapr_ovec_test(ov5_guest
, OV5_MMU_BOTH
)) {
1547 error_report("guest requested hash and radix MMU, which is invalid.");
1550 if (spapr_ovec_test(ov5_guest
, OV5_XIVE_BOTH
)) {
1551 error_report("guest requested an invalid interrupt mode");
1555 /* The radix/hash bit in byte 24 requires special handling: */
1556 guest_radix
= spapr_ovec_test(ov5_guest
, OV5_MMU_RADIX_300
);
1557 spapr_ovec_clear(ov5_guest
, OV5_MMU_RADIX_300
);
1559 guest_xive
= spapr_ovec_test(ov5_guest
, OV5_XIVE_EXPLOIT
);
1562 * HPT resizing is a bit of a special case, because when enabled
1563 * we assume an HPT guest will support it until it says it
1564 * doesn't, instead of assuming it won't support it until it says
1565 * it does. Strictly speaking that approach could break for
1566 * guests which don't make a CAS call, but those are so old we
1567 * don't care about them. Without that assumption we'd have to
1568 * make at least a temporary allocation of an HPT sized for max
1569 * memory, which could be impossibly difficult under KVM HV if
1572 if (!guest_radix
&& !spapr_ovec_test(ov5_guest
, OV5_HPT_RESIZE
)) {
1573 int maxshift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1575 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_REQUIRED
) {
1577 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1581 if (spapr
->htab_shift
< maxshift
) {
1582 /* Guest doesn't know about HPT resizing, so we
1583 * pre-emptively resize for the maximum permitted RAM. At
1584 * the point this is called, nothing should have been
1585 * entered into the existing HPT */
1586 spapr_reallocate_hpt(spapr
, maxshift
, &error_fatal
);
1587 push_sregs_to_kvm_pr(spapr
);
1591 /* NOTE: there are actually a number of ov5 bits where input from the
1592 * guest is always zero, and the platform/QEMU enables them independently
1593 * of guest input. To model these properly we'd want some sort of mask,
1594 * but since they only currently apply to memory migration as defined
1595 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1596 * to worry about this for now.
1598 ov5_cas_old
= spapr_ovec_clone(spapr
->ov5_cas
);
1600 /* also clear the radix/hash bit from the current ov5_cas bits to
1601 * be in sync with the newly ov5 bits. Else the radix bit will be
1602 * seen as being removed and this will generate a reset loop
1604 spapr_ovec_clear(ov5_cas_old
, OV5_MMU_RADIX_300
);
1606 /* full range of negotiated ov5 capabilities */
1607 spapr_ovec_intersect(spapr
->ov5_cas
, spapr
->ov5
, ov5_guest
);
1608 spapr_ovec_cleanup(ov5_guest
);
1609 /* capabilities that have been added since CAS-generated guest reset.
1610 * if capabilities have since been removed, generate another reset
1612 ov5_updates
= spapr_ovec_new();
1613 spapr
->cas_reboot
= spapr_ovec_diff(ov5_updates
,
1614 ov5_cas_old
, spapr
->ov5_cas
);
1615 /* Now that processing is finished, set the radix/hash bit for the
1616 * guest if it requested a valid mode; otherwise terminate the boot. */
1618 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1619 error_report("Guest requested unavailable MMU mode (radix).");
1622 spapr_ovec_set(spapr
->ov5_cas
, OV5_MMU_RADIX_300
);
1624 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1625 && !kvmppc_has_cap_mmu_hash_v3()) {
1626 error_report("Guest requested unavailable MMU mode (hash).");
1630 spapr
->cas_legacy_guest_workaround
= !spapr_ovec_test(ov1_guest
,
1632 if (!spapr
->cas_reboot
) {
1633 /* If spapr_machine_reset() did not set up a HPT but one is necessary
1634 * (because the guest isn't going to use radix) then set it up here. */
1635 if ((spapr
->patb_entry
& PATE1_GR
) && !guest_radix
) {
1636 /* legacy hash or new hash: */
1637 spapr_setup_hpt_and_vrma(spapr
);
1640 (spapr_h_cas_compose_response(spapr
, args
[1], args
[2],
1645 * Ensure the guest asks for an interrupt mode we support; otherwise
1646 * terminate the boot.
1649 if (spapr
->irq
->ov5
== SPAPR_OV5_XIVE_LEGACY
) {
1651 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1655 if (spapr
->irq
->ov5
== SPAPR_OV5_XIVE_EXPLOIT
) {
1657 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1663 * Generate a machine reset when we have an update of the
1664 * interrupt mode. Only required when the machine supports both
1667 if (!spapr
->cas_reboot
) {
1668 spapr
->cas_reboot
= spapr_ovec_test(ov5_updates
, OV5_XIVE_EXPLOIT
)
1669 && spapr
->irq
->ov5
& SPAPR_OV5_XIVE_BOTH
;
1672 spapr_ovec_cleanup(ov5_updates
);
1674 if (spapr
->cas_reboot
) {
1675 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
1681 static target_ulong
h_home_node_associativity(PowerPCCPU
*cpu
,
1682 SpaprMachineState
*spapr
,
1683 target_ulong opcode
,
1686 target_ulong flags
= args
[0];
1687 target_ulong procno
= args
[1];
1691 /* only support procno from H_REGISTER_VPA */
1696 tcpu
= spapr_find_cpu(procno
);
1701 /* sequence is the same as in the "ibm,associativity" property */
1704 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
1705 ((uint64_t)(b) & 0xffffffff))
1706 args
[idx
++] = ASSOCIATIVITY(0, 0);
1707 args
[idx
++] = ASSOCIATIVITY(0, tcpu
->node_id
);
1708 args
[idx
++] = ASSOCIATIVITY(procno
, -1);
1709 for ( ; idx
< 6; idx
++) {
1712 #undef ASSOCIATIVITY
1717 static target_ulong
h_get_cpu_characteristics(PowerPCCPU
*cpu
,
1718 SpaprMachineState
*spapr
,
1719 target_ulong opcode
,
1722 uint64_t characteristics
= H_CPU_CHAR_HON_BRANCH_HINTS
&
1723 ~H_CPU_CHAR_THR_RECONF_TRIG
;
1724 uint64_t behaviour
= H_CPU_BEHAV_FAVOUR_SECURITY
;
1725 uint8_t safe_cache
= spapr_get_cap(spapr
, SPAPR_CAP_CFPC
);
1726 uint8_t safe_bounds_check
= spapr_get_cap(spapr
, SPAPR_CAP_SBBC
);
1727 uint8_t safe_indirect_branch
= spapr_get_cap(spapr
, SPAPR_CAP_IBS
);
1728 uint8_t count_cache_flush_assist
= spapr_get_cap(spapr
,
1729 SPAPR_CAP_CCF_ASSIST
);
1731 switch (safe_cache
) {
1732 case SPAPR_CAP_WORKAROUND
:
1733 characteristics
|= H_CPU_CHAR_L1D_FLUSH_ORI30
;
1734 characteristics
|= H_CPU_CHAR_L1D_FLUSH_TRIG2
;
1735 characteristics
|= H_CPU_CHAR_L1D_THREAD_PRIV
;
1736 behaviour
|= H_CPU_BEHAV_L1D_FLUSH_PR
;
1738 case SPAPR_CAP_FIXED
:
1740 default: /* broken */
1741 assert(safe_cache
== SPAPR_CAP_BROKEN
);
1742 behaviour
|= H_CPU_BEHAV_L1D_FLUSH_PR
;
1746 switch (safe_bounds_check
) {
1747 case SPAPR_CAP_WORKAROUND
:
1748 characteristics
|= H_CPU_CHAR_SPEC_BAR_ORI31
;
1749 behaviour
|= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
;
1751 case SPAPR_CAP_FIXED
:
1753 default: /* broken */
1754 assert(safe_bounds_check
== SPAPR_CAP_BROKEN
);
1755 behaviour
|= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR
;
1759 switch (safe_indirect_branch
) {
1760 case SPAPR_CAP_FIXED_NA
:
1762 case SPAPR_CAP_FIXED_CCD
:
1763 characteristics
|= H_CPU_CHAR_CACHE_COUNT_DIS
;
1765 case SPAPR_CAP_FIXED_IBS
:
1766 characteristics
|= H_CPU_CHAR_BCCTRL_SERIALISED
;
1768 case SPAPR_CAP_WORKAROUND
:
1769 behaviour
|= H_CPU_BEHAV_FLUSH_COUNT_CACHE
;
1770 if (count_cache_flush_assist
) {
1771 characteristics
|= H_CPU_CHAR_BCCTR_FLUSH_ASSIST
;
1774 default: /* broken */
1775 assert(safe_indirect_branch
== SPAPR_CAP_BROKEN
);
1779 args
[0] = characteristics
;
1780 args
[1] = behaviour
;
1784 static target_ulong
h_update_dt(PowerPCCPU
*cpu
, SpaprMachineState
*spapr
,
1785 target_ulong opcode
, target_ulong
*args
)
1787 target_ulong dt
= ppc64_phys_to_real(args
[0]);
1788 struct fdt_header hdr
= { 0 };
1790 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
1793 cpu_physical_memory_read(dt
, &hdr
, sizeof(hdr
));
1794 cb
= fdt32_to_cpu(hdr
.totalsize
);
1796 if (!smc
->update_dt_enabled
) {
1800 /* Check that the fdt did not grow out of proportion */
1801 if (cb
> spapr
->fdt_initial_size
* 2) {
1802 trace_spapr_update_dt_failed_size(spapr
->fdt_initial_size
, cb
,
1803 fdt32_to_cpu(hdr
.magic
));
1807 fdt
= g_malloc0(cb
);
1808 cpu_physical_memory_read(dt
, fdt
, cb
);
1810 /* Check the fdt consistency */
1811 if (fdt_check_full(fdt
, cb
)) {
1812 trace_spapr_update_dt_failed_check(spapr
->fdt_initial_size
, cb
,
1813 fdt32_to_cpu(hdr
.magic
));
1817 g_free(spapr
->fdt_blob
);
1818 spapr
->fdt_size
= cb
;
1819 spapr
->fdt_blob
= fdt
;
1820 trace_spapr_update_dt(cb
);
1825 static spapr_hcall_fn papr_hypercall_table
[(MAX_HCALL_OPCODE
/ 4) + 1];
1826 static spapr_hcall_fn kvmppc_hypercall_table
[KVMPPC_HCALL_MAX
- KVMPPC_HCALL_BASE
+ 1];
1828 void spapr_register_hypercall(target_ulong opcode
, spapr_hcall_fn fn
)
1830 spapr_hcall_fn
*slot
;
1832 if (opcode
<= MAX_HCALL_OPCODE
) {
1833 assert((opcode
& 0x3) == 0);
1835 slot
= &papr_hypercall_table
[opcode
/ 4];
1837 assert((opcode
>= KVMPPC_HCALL_BASE
) && (opcode
<= KVMPPC_HCALL_MAX
));
1839 slot
= &kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1846 target_ulong
spapr_hypercall(PowerPCCPU
*cpu
, target_ulong opcode
,
1849 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1851 if ((opcode
<= MAX_HCALL_OPCODE
)
1852 && ((opcode
& 0x3) == 0)) {
1853 spapr_hcall_fn fn
= papr_hypercall_table
[opcode
/ 4];
1856 return fn(cpu
, spapr
, opcode
, args
);
1858 } else if ((opcode
>= KVMPPC_HCALL_BASE
) &&
1859 (opcode
<= KVMPPC_HCALL_MAX
)) {
1860 spapr_hcall_fn fn
= kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1863 return fn(cpu
, spapr
, opcode
, args
);
1867 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx
"\n",
1872 static void hypercall_register_types(void)
1875 spapr_register_hypercall(H_ENTER
, h_enter
);
1876 spapr_register_hypercall(H_REMOVE
, h_remove
);
1877 spapr_register_hypercall(H_PROTECT
, h_protect
);
1878 spapr_register_hypercall(H_READ
, h_read
);
1881 spapr_register_hypercall(H_BULK_REMOVE
, h_bulk_remove
);
1883 /* hcall-hpt-resize */
1884 spapr_register_hypercall(H_RESIZE_HPT_PREPARE
, h_resize_hpt_prepare
);
1885 spapr_register_hypercall(H_RESIZE_HPT_COMMIT
, h_resize_hpt_commit
);
1888 spapr_register_hypercall(H_REGISTER_VPA
, h_register_vpa
);
1889 spapr_register_hypercall(H_CEDE
, h_cede
);
1890 spapr_register_hypercall(H_SIGNAL_SYS_RESET
, h_signal_sys_reset
);
1892 /* processor register resource access h-calls */
1893 spapr_register_hypercall(H_SET_SPRG0
, h_set_sprg0
);
1894 spapr_register_hypercall(H_SET_DABR
, h_set_dabr
);
1895 spapr_register_hypercall(H_SET_XDABR
, h_set_xdabr
);
1896 spapr_register_hypercall(H_PAGE_INIT
, h_page_init
);
1897 spapr_register_hypercall(H_SET_MODE
, h_set_mode
);
1899 /* In Memory Table MMU h-calls */
1900 spapr_register_hypercall(H_CLEAN_SLB
, h_clean_slb
);
1901 spapr_register_hypercall(H_INVALIDATE_PID
, h_invalidate_pid
);
1902 spapr_register_hypercall(H_REGISTER_PROC_TBL
, h_register_process_table
);
1904 /* hcall-get-cpu-characteristics */
1905 spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS
,
1906 h_get_cpu_characteristics
);
1908 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1909 * here between the "CI" and the "CACHE" variants, they will use whatever
1910 * mapping attributes qemu is using. When using KVM, the kernel will
1911 * enforce the attributes more strongly
1913 spapr_register_hypercall(H_LOGICAL_CI_LOAD
, h_logical_load
);
1914 spapr_register_hypercall(H_LOGICAL_CI_STORE
, h_logical_store
);
1915 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD
, h_logical_load
);
1916 spapr_register_hypercall(H_LOGICAL_CACHE_STORE
, h_logical_store
);
1917 spapr_register_hypercall(H_LOGICAL_ICBI
, h_logical_icbi
);
1918 spapr_register_hypercall(H_LOGICAL_DCBF
, h_logical_dcbf
);
1919 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP
, h_logical_memop
);
1921 /* qemu/KVM-PPC specific hcalls */
1922 spapr_register_hypercall(KVMPPC_H_RTAS
, h_rtas
);
1924 /* ibm,client-architecture-support support */
1925 spapr_register_hypercall(KVMPPC_H_CAS
, h_client_architecture_support
);
1927 spapr_register_hypercall(KVMPPC_H_UPDATE_DT
, h_update_dt
);
1929 /* Virtual Processor Home Node */
1930 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY
,
1931 h_home_node_associativity
);
1934 type_init(hypercall_register_types
)