2 * IMX6UL Clock Control Module
4 * Copyright (c) 2018 Jean-Christophe Dubois <jcd@tribudubois.net>
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 * To get the timer frequencies right, we need to emulate at least part of
13 #include "qemu/osdep.h"
14 #include "hw/registerfields.h"
15 #include "hw/misc/imx6ul_ccm.h"
17 #include "qemu/module.h"
21 static const char *imx6ul_ccm_reg_name(uint32_t reg
)
23 static char unknown
[20];
89 sprintf(unknown
, "%d ?", reg
);
94 static const char *imx6ul_analog_reg_name(uint32_t reg
)
96 static char unknown
[20];
99 case CCM_ANALOG_PLL_ARM
:
101 case CCM_ANALOG_PLL_ARM_SET
:
102 return "PLL_ARM_SET";
103 case CCM_ANALOG_PLL_ARM_CLR
:
104 return "PLL_ARM_CLR";
105 case CCM_ANALOG_PLL_ARM_TOG
:
106 return "PLL_ARM_TOG";
107 case CCM_ANALOG_PLL_USB1
:
109 case CCM_ANALOG_PLL_USB1_SET
:
110 return "PLL_USB1_SET";
111 case CCM_ANALOG_PLL_USB1_CLR
:
112 return "PLL_USB1_CLR";
113 case CCM_ANALOG_PLL_USB1_TOG
:
114 return "PLL_USB1_TOG";
115 case CCM_ANALOG_PLL_USB2
:
117 case CCM_ANALOG_PLL_USB2_SET
:
118 return "PLL_USB2_SET";
119 case CCM_ANALOG_PLL_USB2_CLR
:
120 return "PLL_USB2_CLR";
121 case CCM_ANALOG_PLL_USB2_TOG
:
122 return "PLL_USB2_TOG";
123 case CCM_ANALOG_PLL_SYS
:
125 case CCM_ANALOG_PLL_SYS_SET
:
126 return "PLL_SYS_SET";
127 case CCM_ANALOG_PLL_SYS_CLR
:
128 return "PLL_SYS_CLR";
129 case CCM_ANALOG_PLL_SYS_TOG
:
130 return "PLL_SYS_TOG";
131 case CCM_ANALOG_PLL_SYS_SS
:
133 case CCM_ANALOG_PLL_SYS_NUM
:
134 return "PLL_SYS_NUM";
135 case CCM_ANALOG_PLL_SYS_DENOM
:
136 return "PLL_SYS_DENOM";
137 case CCM_ANALOG_PLL_AUDIO
:
139 case CCM_ANALOG_PLL_AUDIO_SET
:
140 return "PLL_AUDIO_SET";
141 case CCM_ANALOG_PLL_AUDIO_CLR
:
142 return "PLL_AUDIO_CLR";
143 case CCM_ANALOG_PLL_AUDIO_TOG
:
144 return "PLL_AUDIO_TOG";
145 case CCM_ANALOG_PLL_AUDIO_NUM
:
146 return "PLL_AUDIO_NUM";
147 case CCM_ANALOG_PLL_AUDIO_DENOM
:
148 return "PLL_AUDIO_DENOM";
149 case CCM_ANALOG_PLL_VIDEO
:
151 case CCM_ANALOG_PLL_VIDEO_SET
:
152 return "PLL_VIDEO_SET";
153 case CCM_ANALOG_PLL_VIDEO_CLR
:
154 return "PLL_VIDEO_CLR";
155 case CCM_ANALOG_PLL_VIDEO_TOG
:
156 return "PLL_VIDEO_TOG";
157 case CCM_ANALOG_PLL_VIDEO_NUM
:
158 return "PLL_VIDEO_NUM";
159 case CCM_ANALOG_PLL_VIDEO_DENOM
:
160 return "PLL_VIDEO_DENOM";
161 case CCM_ANALOG_PLL_ENET
:
163 case CCM_ANALOG_PLL_ENET_SET
:
164 return "PLL_ENET_SET";
165 case CCM_ANALOG_PLL_ENET_CLR
:
166 return "PLL_ENET_CLR";
167 case CCM_ANALOG_PLL_ENET_TOG
:
168 return "PLL_ENET_TOG";
169 case CCM_ANALOG_PFD_480
:
171 case CCM_ANALOG_PFD_480_SET
:
172 return "PFD_480_SET";
173 case CCM_ANALOG_PFD_480_CLR
:
174 return "PFD_480_CLR";
175 case CCM_ANALOG_PFD_480_TOG
:
176 return "PFD_480_TOG";
177 case CCM_ANALOG_PFD_528
:
179 case CCM_ANALOG_PFD_528_SET
:
180 return "PFD_528_SET";
181 case CCM_ANALOG_PFD_528_CLR
:
182 return "PFD_528_CLR";
183 case CCM_ANALOG_PFD_528_TOG
:
184 return "PFD_528_TOG";
185 case CCM_ANALOG_MISC0
:
187 case CCM_ANALOG_MISC0_SET
:
189 case CCM_ANALOG_MISC0_CLR
:
191 case CCM_ANALOG_MISC0_TOG
:
193 case CCM_ANALOG_MISC2
:
195 case CCM_ANALOG_MISC2_SET
:
197 case CCM_ANALOG_MISC2_CLR
:
199 case CCM_ANALOG_MISC2_TOG
:
202 return "PMU_REG_1P1";
204 return "PMU_REG_3P0";
206 return "PMU_REG_2P5";
208 return "PMU_REG_CORE";
212 return "PMU_MISC1_SET";
214 return "PMU_MISC1_CLR";
216 return "PMU_MISC1_TOG";
217 case USB_ANALOG_DIGPROG
:
218 return "USB_ANALOG_DIGPROG";
220 sprintf(unknown
, "%d ?", reg
);
225 #define CKIH_FREQ 24000000 /* 24MHz crystal input */
227 static const VMStateDescription vmstate_imx6ul_ccm
= {
228 .name
= TYPE_IMX6UL_CCM
,
230 .minimum_version_id
= 1,
231 .fields
= (VMStateField
[]) {
232 VMSTATE_UINT32_ARRAY(ccm
, IMX6ULCCMState
, CCM_MAX
),
233 VMSTATE_UINT32_ARRAY(analog
, IMX6ULCCMState
, CCM_ANALOG_MAX
),
234 VMSTATE_END_OF_LIST()
238 static uint64_t imx6ul_analog_get_osc_clk(IMX6ULCCMState
*dev
)
240 uint64_t freq
= CKIH_FREQ
;
242 trace_ccm_freq((uint32_t)freq
);
247 static uint64_t imx6ul_analog_get_pll2_clk(IMX6ULCCMState
*dev
)
249 uint64_t freq
= imx6ul_analog_get_osc_clk(dev
);
251 if (FIELD_EX32(dev
->analog
[CCM_ANALOG_PLL_SYS
],
252 ANALOG_PLL_SYS
, DIV_SELECT
)) {
258 trace_ccm_freq((uint32_t)freq
);
263 static uint64_t imx6ul_analog_get_pll3_clk(IMX6ULCCMState
*dev
)
265 uint64_t freq
= imx6ul_analog_get_osc_clk(dev
) * 20;
267 trace_ccm_freq((uint32_t)freq
);
272 static uint64_t imx6ul_analog_get_pll2_pfd0_clk(IMX6ULCCMState
*dev
)
276 freq
= imx6ul_analog_get_pll2_clk(dev
) * 18
277 / FIELD_EX32(dev
->analog
[CCM_ANALOG_PFD_528
],
278 ANALOG_PFD_528
, PFD0_FRAC
);
280 trace_ccm_freq((uint32_t)freq
);
285 static uint64_t imx6ul_analog_get_pll2_pfd2_clk(IMX6ULCCMState
*dev
)
289 freq
= imx6ul_analog_get_pll2_clk(dev
) * 18
290 / FIELD_EX32(dev
->analog
[CCM_ANALOG_PFD_528
],
291 ANALOG_PFD_528
, PFD2_FRAC
);
293 trace_ccm_freq((uint32_t)freq
);
298 static uint64_t imx6ul_analog_pll2_bypass_clk(IMX6ULCCMState
*dev
)
302 trace_ccm_freq((uint32_t)freq
);
307 static uint64_t imx6ul_ccm_get_periph_clk2_sel_clk(IMX6ULCCMState
*dev
)
311 switch (FIELD_EX32(dev
->ccm
[CCM_CBCMR
], CBCMR
, PERIPH_CLK2_SEL
)) {
313 freq
= imx6ul_analog_get_pll3_clk(dev
);
316 freq
= imx6ul_analog_get_osc_clk(dev
);
319 freq
= imx6ul_analog_pll2_bypass_clk(dev
);
322 /* We should never get there as 3 is a reserved value */
323 qemu_log_mask(LOG_GUEST_ERROR
,
324 "[%s]%s: unsupported PERIPH_CLK2_SEL value 3\n",
325 TYPE_IMX6UL_CCM
, __func__
);
326 /* freq is set to 0 as we don't know what it should be */
329 g_assert_not_reached();
332 trace_ccm_freq((uint32_t)freq
);
337 static uint64_t imx6ul_ccm_get_periph_clk_sel_clk(IMX6ULCCMState
*dev
)
341 switch (FIELD_EX32(dev
->ccm
[CCM_CBCMR
], CBCMR
, PRE_PERIPH_CLK_SEL
)) {
343 freq
= imx6ul_analog_get_pll2_clk(dev
);
346 freq
= imx6ul_analog_get_pll2_pfd2_clk(dev
);
349 freq
= imx6ul_analog_get_pll2_pfd0_clk(dev
);
352 freq
= imx6ul_analog_get_pll2_pfd2_clk(dev
) / 2;
355 g_assert_not_reached();
358 trace_ccm_freq((uint32_t)freq
);
363 static uint64_t imx6ul_ccm_get_periph_clk2_clk(IMX6ULCCMState
*dev
)
367 freq
= imx6ul_ccm_get_periph_clk2_sel_clk(dev
)
368 / (1 + FIELD_EX32(dev
->ccm
[CCM_CBCDR
], CBCDR
, PERIPH_CLK2_PODF
));
370 trace_ccm_freq((uint32_t)freq
);
375 static uint64_t imx6ul_ccm_get_periph_sel_clk(IMX6ULCCMState
*dev
)
379 switch (FIELD_EX32(dev
->ccm
[CCM_CBCDR
], CBCDR
, PERIPH_CLK_SEL
)) {
381 freq
= imx6ul_ccm_get_periph_clk_sel_clk(dev
);
384 freq
= imx6ul_ccm_get_periph_clk2_clk(dev
);
387 g_assert_not_reached();
390 trace_ccm_freq((uint32_t)freq
);
395 static uint64_t imx6ul_ccm_get_ahb_clk(IMX6ULCCMState
*dev
)
399 freq
= imx6ul_ccm_get_periph_sel_clk(dev
)
400 / (1 + FIELD_EX32(dev
->ccm
[CCM_CBCDR
], CBCDR
, AHB_PODF
));
402 trace_ccm_freq((uint32_t)freq
);
407 static uint64_t imx6ul_ccm_get_ipg_clk(IMX6ULCCMState
*dev
)
411 freq
= imx6ul_ccm_get_ahb_clk(dev
)
412 / (1 + FIELD_EX32(dev
->ccm
[CCM_CBCDR
], CBCDR
, IPG_PODF
));
414 trace_ccm_freq((uint32_t)freq
);
419 static uint64_t imx6ul_ccm_get_per_sel_clk(IMX6ULCCMState
*dev
)
423 switch (FIELD_EX32(dev
->ccm
[CCM_CSCMR1
], CSCMR1
, PERCLK_CLK_SEL
)) {
425 freq
= imx6ul_ccm_get_ipg_clk(dev
);
428 freq
= imx6ul_analog_get_osc_clk(dev
);
431 g_assert_not_reached();
434 trace_ccm_freq((uint32_t)freq
);
439 static uint64_t imx6ul_ccm_get_per_clk(IMX6ULCCMState
*dev
)
443 freq
= imx6ul_ccm_get_per_sel_clk(dev
)
444 / (1 + FIELD_EX32(dev
->ccm
[CCM_CSCMR1
], CSCMR1
, PERCLK_PODF
));
446 trace_ccm_freq((uint32_t)freq
);
451 static uint32_t imx6ul_ccm_get_clock_frequency(IMXCCMState
*dev
, IMXClk clock
)
454 IMX6ULCCMState
*s
= IMX6UL_CCM(dev
);
460 freq
= imx6ul_ccm_get_ipg_clk(s
);
463 freq
= imx6ul_ccm_get_per_clk(s
);
472 freq
= CKIH_FREQ
/ 8;
475 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: unsupported clock %d\n",
476 TYPE_IMX6UL_CCM
, __func__
, clock
);
480 trace_ccm_clock_freq(clock
, freq
);
485 static void imx6ul_ccm_reset(DeviceState
*dev
)
487 IMX6ULCCMState
*s
= IMX6UL_CCM(dev
);
491 s
->ccm
[CCM_CCR
] = 0x0401167F;
492 s
->ccm
[CCM_CCDR
] = 0x00000000;
493 s
->ccm
[CCM_CSR
] = 0x00000010;
494 s
->ccm
[CCM_CCSR
] = 0x00000100;
495 s
->ccm
[CCM_CACRR
] = 0x00000000;
496 s
->ccm
[CCM_CBCDR
] = 0x00018D00;
497 s
->ccm
[CCM_CBCMR
] = 0x24860324;
498 s
->ccm
[CCM_CSCMR1
] = 0x04900080;
499 s
->ccm
[CCM_CSCMR2
] = 0x03192F06;
500 s
->ccm
[CCM_CSCDR1
] = 0x00490B00;
501 s
->ccm
[CCM_CS1CDR
] = 0x0EC102C1;
502 s
->ccm
[CCM_CS2CDR
] = 0x000336C1;
503 s
->ccm
[CCM_CDCDR
] = 0x33F71F92;
504 s
->ccm
[CCM_CHSCCDR
] = 0x000248A4;
505 s
->ccm
[CCM_CSCDR2
] = 0x00029B48;
506 s
->ccm
[CCM_CSCDR3
] = 0x00014841;
507 s
->ccm
[CCM_CDHIPR
] = 0x00000000;
508 s
->ccm
[CCM_CTOR
] = 0x00000000;
509 s
->ccm
[CCM_CLPCR
] = 0x00000079;
510 s
->ccm
[CCM_CISR
] = 0x00000000;
511 s
->ccm
[CCM_CIMR
] = 0xFFFFFFFF;
512 s
->ccm
[CCM_CCOSR
] = 0x000A0001;
513 s
->ccm
[CCM_CGPR
] = 0x0000FE62;
514 s
->ccm
[CCM_CCGR0
] = 0xFFFFFFFF;
515 s
->ccm
[CCM_CCGR1
] = 0xFFFFFFFF;
516 s
->ccm
[CCM_CCGR2
] = 0xFC3FFFFF;
517 s
->ccm
[CCM_CCGR3
] = 0xFFFFFFFF;
518 s
->ccm
[CCM_CCGR4
] = 0xFFFFFFFF;
519 s
->ccm
[CCM_CCGR5
] = 0xFFFFFFFF;
520 s
->ccm
[CCM_CCGR6
] = 0xFFFFFFFF;
521 s
->ccm
[CCM_CMEOR
] = 0xFFFFFFFF;
523 s
->analog
[CCM_ANALOG_PLL_ARM
] = 0x00013063;
524 s
->analog
[CCM_ANALOG_PLL_USB1
] = 0x00012000;
525 s
->analog
[CCM_ANALOG_PLL_USB2
] = 0x00012000;
526 s
->analog
[CCM_ANALOG_PLL_SYS
] = 0x00013001;
527 s
->analog
[CCM_ANALOG_PLL_SYS_SS
] = 0x00000000;
528 s
->analog
[CCM_ANALOG_PLL_SYS_NUM
] = 0x00000000;
529 s
->analog
[CCM_ANALOG_PLL_SYS_DENOM
] = 0x00000012;
530 s
->analog
[CCM_ANALOG_PLL_AUDIO
] = 0x00011006;
531 s
->analog
[CCM_ANALOG_PLL_AUDIO_NUM
] = 0x05F5E100;
532 s
->analog
[CCM_ANALOG_PLL_AUDIO_DENOM
] = 0x2964619C;
533 s
->analog
[CCM_ANALOG_PLL_VIDEO
] = 0x0001100C;
534 s
->analog
[CCM_ANALOG_PLL_VIDEO_NUM
] = 0x05F5E100;
535 s
->analog
[CCM_ANALOG_PLL_VIDEO_DENOM
] = 0x10A24447;
536 s
->analog
[CCM_ANALOG_PLL_ENET
] = 0x00011001;
537 s
->analog
[CCM_ANALOG_PFD_480
] = 0x1311100C;
538 s
->analog
[CCM_ANALOG_PFD_528
] = 0x1018101B;
540 s
->analog
[PMU_REG_1P1
] = 0x00001073;
541 s
->analog
[PMU_REG_3P0
] = 0x00000F74;
542 s
->analog
[PMU_REG_2P5
] = 0x00001073;
543 s
->analog
[PMU_REG_CORE
] = 0x00482012;
544 s
->analog
[PMU_MISC0
] = 0x04000000;
545 s
->analog
[PMU_MISC1
] = 0x00000000;
546 s
->analog
[PMU_MISC2
] = 0x00272727;
547 s
->analog
[PMU_LOWPWR_CTRL
] = 0x00004009;
549 s
->analog
[USB_ANALOG_USB1_VBUS_DETECT
] = 0x01000004;
550 s
->analog
[USB_ANALOG_USB1_CHRG_DETECT
] = 0x00000000;
551 s
->analog
[USB_ANALOG_USB1_VBUS_DETECT_STAT
] = 0x00000000;
552 s
->analog
[USB_ANALOG_USB1_CHRG_DETECT_STAT
] = 0x00000000;
553 s
->analog
[USB_ANALOG_USB1_MISC
] = 0x00000002;
554 s
->analog
[USB_ANALOG_USB2_VBUS_DETECT
] = 0x01000004;
555 s
->analog
[USB_ANALOG_USB2_CHRG_DETECT
] = 0x00000000;
556 s
->analog
[USB_ANALOG_USB2_MISC
] = 0x00000002;
557 s
->analog
[USB_ANALOG_DIGPROG
] = 0x00640000;
559 /* all PLLs need to be locked */
560 s
->analog
[CCM_ANALOG_PLL_ARM
] |= CCM_ANALOG_PLL_LOCK
;
561 s
->analog
[CCM_ANALOG_PLL_USB1
] |= CCM_ANALOG_PLL_LOCK
;
562 s
->analog
[CCM_ANALOG_PLL_USB2
] |= CCM_ANALOG_PLL_LOCK
;
563 s
->analog
[CCM_ANALOG_PLL_SYS
] |= CCM_ANALOG_PLL_LOCK
;
564 s
->analog
[CCM_ANALOG_PLL_AUDIO
] |= CCM_ANALOG_PLL_LOCK
;
565 s
->analog
[CCM_ANALOG_PLL_VIDEO
] |= CCM_ANALOG_PLL_LOCK
;
566 s
->analog
[CCM_ANALOG_PLL_ENET
] |= CCM_ANALOG_PLL_LOCK
;
568 s
->analog
[TEMPMON_TEMPSENSE0
] = 0x00000001;
569 s
->analog
[TEMPMON_TEMPSENSE1
] = 0x00000001;
570 s
->analog
[TEMPMON_TEMPSENSE2
] = 0x00000000;
573 static uint64_t imx6ul_ccm_read(void *opaque
, hwaddr offset
, unsigned size
)
576 uint32_t index
= offset
>> 2;
577 IMX6ULCCMState
*s
= (IMX6ULCCMState
*)opaque
;
579 assert(index
< CCM_MAX
);
581 value
= s
->ccm
[index
];
583 trace_ccm_read_reg(imx6ul_ccm_reg_name(index
), (uint32_t)value
);
585 return (uint64_t)value
;
588 static void imx6ul_ccm_write(void *opaque
, hwaddr offset
, uint64_t value
,
591 uint32_t index
= offset
>> 2;
592 IMX6ULCCMState
*s
= (IMX6ULCCMState
*)opaque
;
594 assert(index
< CCM_MAX
);
596 trace_ccm_write_reg(imx6ul_ccm_reg_name(index
), (uint32_t)value
);
599 * We will do a better implementation later. In particular some bits
600 * cannot be written to.
602 s
->ccm
[index
] = (uint32_t)value
;
605 static uint64_t imx6ul_analog_read(void *opaque
, hwaddr offset
, unsigned size
)
608 uint32_t index
= offset
>> 2;
609 IMX6ULCCMState
*s
= (IMX6ULCCMState
*)opaque
;
611 assert(index
< CCM_ANALOG_MAX
);
614 case CCM_ANALOG_PLL_ARM_SET
:
615 case CCM_ANALOG_PLL_USB1_SET
:
616 case CCM_ANALOG_PLL_USB2_SET
:
617 case CCM_ANALOG_PLL_SYS_SET
:
618 case CCM_ANALOG_PLL_AUDIO_SET
:
619 case CCM_ANALOG_PLL_VIDEO_SET
:
620 case CCM_ANALOG_PLL_ENET_SET
:
621 case CCM_ANALOG_PFD_480_SET
:
622 case CCM_ANALOG_PFD_528_SET
:
623 case CCM_ANALOG_MISC0_SET
:
625 case CCM_ANALOG_MISC2_SET
:
626 case USB_ANALOG_USB1_VBUS_DETECT_SET
:
627 case USB_ANALOG_USB1_CHRG_DETECT_SET
:
628 case USB_ANALOG_USB1_MISC_SET
:
629 case USB_ANALOG_USB2_VBUS_DETECT_SET
:
630 case USB_ANALOG_USB2_CHRG_DETECT_SET
:
631 case USB_ANALOG_USB2_MISC_SET
:
632 case TEMPMON_TEMPSENSE0_SET
:
633 case TEMPMON_TEMPSENSE1_SET
:
634 case TEMPMON_TEMPSENSE2_SET
:
636 * All REG_NAME_SET register access are in fact targeting
637 * the REG_NAME register.
639 value
= s
->analog
[index
- 1];
641 case CCM_ANALOG_PLL_ARM_CLR
:
642 case CCM_ANALOG_PLL_USB1_CLR
:
643 case CCM_ANALOG_PLL_USB2_CLR
:
644 case CCM_ANALOG_PLL_SYS_CLR
:
645 case CCM_ANALOG_PLL_AUDIO_CLR
:
646 case CCM_ANALOG_PLL_VIDEO_CLR
:
647 case CCM_ANALOG_PLL_ENET_CLR
:
648 case CCM_ANALOG_PFD_480_CLR
:
649 case CCM_ANALOG_PFD_528_CLR
:
650 case CCM_ANALOG_MISC0_CLR
:
652 case CCM_ANALOG_MISC2_CLR
:
653 case USB_ANALOG_USB1_VBUS_DETECT_CLR
:
654 case USB_ANALOG_USB1_CHRG_DETECT_CLR
:
655 case USB_ANALOG_USB1_MISC_CLR
:
656 case USB_ANALOG_USB2_VBUS_DETECT_CLR
:
657 case USB_ANALOG_USB2_CHRG_DETECT_CLR
:
658 case USB_ANALOG_USB2_MISC_CLR
:
659 case TEMPMON_TEMPSENSE0_CLR
:
660 case TEMPMON_TEMPSENSE1_CLR
:
661 case TEMPMON_TEMPSENSE2_CLR
:
663 * All REG_NAME_CLR register access are in fact targeting
664 * the REG_NAME register.
666 value
= s
->analog
[index
- 2];
668 case CCM_ANALOG_PLL_ARM_TOG
:
669 case CCM_ANALOG_PLL_USB1_TOG
:
670 case CCM_ANALOG_PLL_USB2_TOG
:
671 case CCM_ANALOG_PLL_SYS_TOG
:
672 case CCM_ANALOG_PLL_AUDIO_TOG
:
673 case CCM_ANALOG_PLL_VIDEO_TOG
:
674 case CCM_ANALOG_PLL_ENET_TOG
:
675 case CCM_ANALOG_PFD_480_TOG
:
676 case CCM_ANALOG_PFD_528_TOG
:
677 case CCM_ANALOG_MISC0_TOG
:
679 case CCM_ANALOG_MISC2_TOG
:
680 case USB_ANALOG_USB1_VBUS_DETECT_TOG
:
681 case USB_ANALOG_USB1_CHRG_DETECT_TOG
:
682 case USB_ANALOG_USB1_MISC_TOG
:
683 case USB_ANALOG_USB2_VBUS_DETECT_TOG
:
684 case USB_ANALOG_USB2_CHRG_DETECT_TOG
:
685 case USB_ANALOG_USB2_MISC_TOG
:
686 case TEMPMON_TEMPSENSE0_TOG
:
687 case TEMPMON_TEMPSENSE1_TOG
:
688 case TEMPMON_TEMPSENSE2_TOG
:
690 * All REG_NAME_TOG register access are in fact targeting
691 * the REG_NAME register.
693 value
= s
->analog
[index
- 3];
696 value
= s
->analog
[index
];
700 trace_ccm_read_reg(imx6ul_analog_reg_name(index
), (uint32_t)value
);
702 return (uint64_t)value
;
705 static void imx6ul_analog_write(void *opaque
, hwaddr offset
, uint64_t value
,
708 uint32_t index
= offset
>> 2;
709 IMX6ULCCMState
*s
= (IMX6ULCCMState
*)opaque
;
711 assert(index
< CCM_ANALOG_MAX
);
713 trace_ccm_write_reg(imx6ul_analog_reg_name(index
), (uint32_t)value
);
716 case CCM_ANALOG_PLL_ARM_SET
:
717 case CCM_ANALOG_PLL_USB1_SET
:
718 case CCM_ANALOG_PLL_USB2_SET
:
719 case CCM_ANALOG_PLL_SYS_SET
:
720 case CCM_ANALOG_PLL_AUDIO_SET
:
721 case CCM_ANALOG_PLL_VIDEO_SET
:
722 case CCM_ANALOG_PLL_ENET_SET
:
723 case CCM_ANALOG_PFD_480_SET
:
724 case CCM_ANALOG_PFD_528_SET
:
725 case CCM_ANALOG_MISC0_SET
:
727 case CCM_ANALOG_MISC2_SET
:
728 case USB_ANALOG_USB1_VBUS_DETECT_SET
:
729 case USB_ANALOG_USB1_CHRG_DETECT_SET
:
730 case USB_ANALOG_USB1_MISC_SET
:
731 case USB_ANALOG_USB2_VBUS_DETECT_SET
:
732 case USB_ANALOG_USB2_CHRG_DETECT_SET
:
733 case USB_ANALOG_USB2_MISC_SET
:
735 * All REG_NAME_SET register access are in fact targeting
736 * the REG_NAME register. So we change the value of the
737 * REG_NAME register, setting bits passed in the value.
739 s
->analog
[index
- 1] |= value
;
741 case CCM_ANALOG_PLL_ARM_CLR
:
742 case CCM_ANALOG_PLL_USB1_CLR
:
743 case CCM_ANALOG_PLL_USB2_CLR
:
744 case CCM_ANALOG_PLL_SYS_CLR
:
745 case CCM_ANALOG_PLL_AUDIO_CLR
:
746 case CCM_ANALOG_PLL_VIDEO_CLR
:
747 case CCM_ANALOG_PLL_ENET_CLR
:
748 case CCM_ANALOG_PFD_480_CLR
:
749 case CCM_ANALOG_PFD_528_CLR
:
750 case CCM_ANALOG_MISC0_CLR
:
752 case CCM_ANALOG_MISC2_CLR
:
753 case USB_ANALOG_USB1_VBUS_DETECT_CLR
:
754 case USB_ANALOG_USB1_CHRG_DETECT_CLR
:
755 case USB_ANALOG_USB1_MISC_CLR
:
756 case USB_ANALOG_USB2_VBUS_DETECT_CLR
:
757 case USB_ANALOG_USB2_CHRG_DETECT_CLR
:
758 case USB_ANALOG_USB2_MISC_CLR
:
760 * All REG_NAME_CLR register access are in fact targeting
761 * the REG_NAME register. So we change the value of the
762 * REG_NAME register, unsetting bits passed in the value.
764 s
->analog
[index
- 2] &= ~value
;
766 case CCM_ANALOG_PLL_ARM_TOG
:
767 case CCM_ANALOG_PLL_USB1_TOG
:
768 case CCM_ANALOG_PLL_USB2_TOG
:
769 case CCM_ANALOG_PLL_SYS_TOG
:
770 case CCM_ANALOG_PLL_AUDIO_TOG
:
771 case CCM_ANALOG_PLL_VIDEO_TOG
:
772 case CCM_ANALOG_PLL_ENET_TOG
:
773 case CCM_ANALOG_PFD_480_TOG
:
774 case CCM_ANALOG_PFD_528_TOG
:
775 case CCM_ANALOG_MISC0_TOG
:
777 case CCM_ANALOG_MISC2_TOG
:
778 case USB_ANALOG_USB1_VBUS_DETECT_TOG
:
779 case USB_ANALOG_USB1_CHRG_DETECT_TOG
:
780 case USB_ANALOG_USB1_MISC_TOG
:
781 case USB_ANALOG_USB2_VBUS_DETECT_TOG
:
782 case USB_ANALOG_USB2_CHRG_DETECT_TOG
:
783 case USB_ANALOG_USB2_MISC_TOG
:
785 * All REG_NAME_TOG register access are in fact targeting
786 * the REG_NAME register. So we change the value of the
787 * REG_NAME register, toggling bits passed in the value.
789 s
->analog
[index
- 3] ^= value
;
793 * We will do a better implementation later. In particular some bits
794 * cannot be written to.
796 s
->analog
[index
] = value
;
801 static const struct MemoryRegionOps imx6ul_ccm_ops
= {
802 .read
= imx6ul_ccm_read
,
803 .write
= imx6ul_ccm_write
,
804 .endianness
= DEVICE_NATIVE_ENDIAN
,
807 * Our device would not work correctly if the guest was doing
808 * unaligned access. This might not be a limitation on the real
809 * device but in practice there is no reason for a guest to access
810 * this device unaligned.
812 .min_access_size
= 4,
813 .max_access_size
= 4,
818 static const struct MemoryRegionOps imx6ul_analog_ops
= {
819 .read
= imx6ul_analog_read
,
820 .write
= imx6ul_analog_write
,
821 .endianness
= DEVICE_NATIVE_ENDIAN
,
824 * Our device would not work correctly if the guest was doing
825 * unaligned access. This might not be a limitation on the real
826 * device but in practice there is no reason for a guest to access
827 * this device unaligned.
829 .min_access_size
= 4,
830 .max_access_size
= 4,
835 static void imx6ul_ccm_init(Object
*obj
)
837 DeviceState
*dev
= DEVICE(obj
);
838 SysBusDevice
*sd
= SYS_BUS_DEVICE(obj
);
839 IMX6ULCCMState
*s
= IMX6UL_CCM(obj
);
841 /* initialize a container for the all memory range */
842 memory_region_init(&s
->container
, OBJECT(dev
), TYPE_IMX6UL_CCM
, 0x8000);
844 /* We initialize an IO memory region for the CCM part */
845 memory_region_init_io(&s
->ioccm
, OBJECT(dev
), &imx6ul_ccm_ops
, s
,
846 TYPE_IMX6UL_CCM
".ccm", CCM_MAX
* sizeof(uint32_t));
848 /* Add the CCM as a subregion at offset 0 */
849 memory_region_add_subregion(&s
->container
, 0, &s
->ioccm
);
851 /* We initialize an IO memory region for the ANALOG part */
852 memory_region_init_io(&s
->ioanalog
, OBJECT(dev
), &imx6ul_analog_ops
, s
,
853 TYPE_IMX6UL_CCM
".analog",
854 CCM_ANALOG_MAX
* sizeof(uint32_t));
856 /* Add the ANALOG as a subregion at offset 0x4000 */
857 memory_region_add_subregion(&s
->container
, 0x4000, &s
->ioanalog
);
859 sysbus_init_mmio(sd
, &s
->container
);
862 static void imx6ul_ccm_class_init(ObjectClass
*klass
, void *data
)
864 DeviceClass
*dc
= DEVICE_CLASS(klass
);
865 IMXCCMClass
*ccm
= IMX_CCM_CLASS(klass
);
867 dc
->reset
= imx6ul_ccm_reset
;
868 dc
->vmsd
= &vmstate_imx6ul_ccm
;
869 dc
->desc
= "i.MX6UL Clock Control Module";
871 ccm
->get_clock_frequency
= imx6ul_ccm_get_clock_frequency
;
874 static const TypeInfo imx6ul_ccm_info
= {
875 .name
= TYPE_IMX6UL_CCM
,
876 .parent
= TYPE_IMX_CCM
,
877 .instance_size
= sizeof(IMX6ULCCMState
),
878 .instance_init
= imx6ul_ccm_init
,
879 .class_init
= imx6ul_ccm_class_init
,
882 static void imx6ul_ccm_register_types(void)
884 type_register_static(&imx6ul_ccm_info
);
887 type_init(imx6ul_ccm_register_types
)