2 * Copyright (C) 2010 Citrix Ltd.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
7 * Contributions after 2012-01-13 are licensed under the terms of the
8 * GNU GPL, version 2 or (at your option) any later version.
11 #include "qemu/osdep.h"
14 #include "hw/pci/pci.h"
15 #include "hw/i386/pc.h"
16 #include "hw/i386/apic-msidef.h"
17 #include "hw/xen/xen_common.h"
18 #include "hw/xen/xen_backend.h"
19 #include "qmp-commands.h"
21 #include "sysemu/char.h"
22 #include "qemu/error-report.h"
23 #include "qemu/range.h"
24 #include "sysemu/xen-mapcache.h"
25 #include "trace-root.h"
26 #include "exec/address-spaces.h"
28 #include <xen/hvm/ioreq.h>
29 #include <xen/hvm/params.h>
30 #include <xen/hvm/e820.h>
32 //#define DEBUG_XEN_HVM
35 #define DPRINTF(fmt, ...) \
36 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
38 #define DPRINTF(fmt, ...) \
42 static MemoryRegion ram_memory
, ram_640k
, ram_lo
, ram_hi
;
43 static MemoryRegion
*framebuffer
;
44 static bool xen_in_migration
;
46 /* Compatibility with older version */
48 /* This allows QEMU to build on a system that has Xen 4.5 or earlier
49 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
50 * needs to be included before this block and hw/xen/xen_common.h needs to
51 * be included before xen/hvm/ioreq.h
53 #ifndef IOREQ_TYPE_VMWARE_PORT
54 #define IOREQ_TYPE_VMWARE_PORT 3
62 typedef struct vmware_regs vmware_regs_t
;
64 struct shared_vmport_iopage
{
65 struct vmware_regs vcpu_vmport_regs
[1];
67 typedef struct shared_vmport_iopage shared_vmport_iopage_t
;
70 static inline uint32_t xen_vcpu_eport(shared_iopage_t
*shared_page
, int i
)
72 return shared_page
->vcpu_ioreq
[i
].vp_eport
;
74 static inline ioreq_t
*xen_vcpu_ioreq(shared_iopage_t
*shared_page
, int vcpu
)
76 return &shared_page
->vcpu_ioreq
[vcpu
];
79 #define BUFFER_IO_MAX_DELAY 100
81 typedef struct XenPhysmap
{
87 QLIST_ENTRY(XenPhysmap
) list
;
90 typedef struct XenIOState
{
92 shared_iopage_t
*shared_page
;
93 shared_vmport_iopage_t
*shared_vmport_page
;
94 buffered_iopage_t
*buffered_io_page
;
95 QEMUTimer
*buffered_io_timer
;
96 CPUState
**cpu_by_vcpu_id
;
97 /* the evtchn port for polling the notification, */
98 evtchn_port_t
*ioreq_local_port
;
99 /* evtchn local port for buffered io */
100 evtchn_port_t bufioreq_local_port
;
101 /* the evtchn fd for polling */
102 xenevtchn_handle
*xce_handle
;
103 /* which vcpu we are serving */
106 struct xs_handle
*xenstore
;
107 MemoryListener memory_listener
;
108 MemoryListener io_listener
;
109 DeviceListener device_listener
;
110 QLIST_HEAD(, XenPhysmap
) physmap
;
111 hwaddr free_phys_offset
;
112 const XenPhysmap
*log_for_dirtybit
;
119 /* Xen specific function for piix pci */
121 int xen_pci_slot_get_pirq(PCIDevice
*pci_dev
, int irq_num
)
123 return irq_num
+ ((pci_dev
->devfn
>> 3) << 2);
126 void xen_piix3_set_irq(void *opaque
, int irq_num
, int level
)
128 xen_set_pci_intx_level(xen_domid
, 0, 0, irq_num
>> 2,
132 void xen_piix_pci_write_config_client(uint32_t address
, uint32_t val
, int len
)
136 /* Scan for updates to PCI link routes (0x60-0x63). */
137 for (i
= 0; i
< len
; i
++) {
138 uint8_t v
= (val
>> (8 * i
)) & 0xff;
143 if (((address
+ i
) >= 0x60) && ((address
+ i
) <= 0x63)) {
144 xen_set_pci_link_route(xen_domid
, address
+ i
- 0x60, v
);
149 int xen_is_pirq_msi(uint32_t msi_data
)
151 /* If vector is 0, the msi is remapped into a pirq, passed as
154 return ((msi_data
& MSI_DATA_VECTOR_MASK
) >> MSI_DATA_VECTOR_SHIFT
) == 0;
157 void xen_hvm_inject_msi(uint64_t addr
, uint32_t data
)
159 xen_inject_msi(xen_domid
, addr
, data
);
162 static void xen_suspend_notifier(Notifier
*notifier
, void *data
)
164 xc_set_hvm_param(xen_xc
, xen_domid
, HVM_PARAM_ACPI_S_STATE
, 3);
167 /* Xen Interrupt Controller */
169 static void xen_set_irq(void *opaque
, int irq
, int level
)
171 xen_set_isa_irq_level(xen_domid
, irq
, level
);
174 qemu_irq
*xen_interrupt_controller_init(void)
176 return qemu_allocate_irqs(xen_set_irq
, NULL
, 16);
181 static void xen_ram_init(PCMachineState
*pcms
,
182 ram_addr_t ram_size
, MemoryRegion
**ram_memory_p
)
184 MemoryRegion
*sysmem
= get_system_memory();
185 ram_addr_t block_len
;
186 uint64_t user_lowmem
= object_property_get_int(qdev_get_machine(),
187 PC_MACHINE_MAX_RAM_BELOW_4G
,
190 /* Handle the machine opt max-ram-below-4g. It is basically doing
191 * min(xen limit, user limit).
194 user_lowmem
= HVM_BELOW_4G_RAM_END
; /* default */
196 if (HVM_BELOW_4G_RAM_END
<= user_lowmem
) {
197 user_lowmem
= HVM_BELOW_4G_RAM_END
;
200 if (ram_size
>= user_lowmem
) {
201 pcms
->above_4g_mem_size
= ram_size
- user_lowmem
;
202 pcms
->below_4g_mem_size
= user_lowmem
;
204 pcms
->above_4g_mem_size
= 0;
205 pcms
->below_4g_mem_size
= ram_size
;
207 if (!pcms
->above_4g_mem_size
) {
208 block_len
= ram_size
;
211 * Xen does not allocate the memory continuously, it keeps a
212 * hole of the size computed above or passed in.
214 block_len
= (1ULL << 32) + pcms
->above_4g_mem_size
;
216 memory_region_init_ram(&ram_memory
, NULL
, "xen.ram", block_len
,
218 *ram_memory_p
= &ram_memory
;
219 vmstate_register_ram_global(&ram_memory
);
221 memory_region_init_alias(&ram_640k
, NULL
, "xen.ram.640k",
222 &ram_memory
, 0, 0xa0000);
223 memory_region_add_subregion(sysmem
, 0, &ram_640k
);
224 /* Skip of the VGA IO memory space, it will be registered later by the VGA
227 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
228 * the Options ROM, so it is registered here as RAM.
230 memory_region_init_alias(&ram_lo
, NULL
, "xen.ram.lo",
231 &ram_memory
, 0xc0000,
232 pcms
->below_4g_mem_size
- 0xc0000);
233 memory_region_add_subregion(sysmem
, 0xc0000, &ram_lo
);
234 if (pcms
->above_4g_mem_size
> 0) {
235 memory_region_init_alias(&ram_hi
, NULL
, "xen.ram.hi",
236 &ram_memory
, 0x100000000ULL
,
237 pcms
->above_4g_mem_size
);
238 memory_region_add_subregion(sysmem
, 0x100000000ULL
, &ram_hi
);
242 void xen_ram_alloc(ram_addr_t ram_addr
, ram_addr_t size
, MemoryRegion
*mr
,
245 unsigned long nr_pfn
;
249 if (runstate_check(RUN_STATE_INMIGRATE
)) {
250 /* RAM already populated in Xen */
251 fprintf(stderr
, "%s: do not alloc "RAM_ADDR_FMT
252 " bytes of ram at "RAM_ADDR_FMT
" when runstate is INMIGRATE\n",
253 __func__
, size
, ram_addr
);
257 if (mr
== &ram_memory
) {
261 trace_xen_ram_alloc(ram_addr
, size
);
263 nr_pfn
= size
>> TARGET_PAGE_BITS
;
264 pfn_list
= g_malloc(sizeof (*pfn_list
) * nr_pfn
);
266 for (i
= 0; i
< nr_pfn
; i
++) {
267 pfn_list
[i
] = (ram_addr
>> TARGET_PAGE_BITS
) + i
;
270 if (xc_domain_populate_physmap_exact(xen_xc
, xen_domid
, nr_pfn
, 0, 0, pfn_list
)) {
271 error_setg(errp
, "xen: failed to populate ram at " RAM_ADDR_FMT
,
278 static XenPhysmap
*get_physmapping(XenIOState
*state
,
279 hwaddr start_addr
, ram_addr_t size
)
281 XenPhysmap
*physmap
= NULL
;
283 start_addr
&= TARGET_PAGE_MASK
;
285 QLIST_FOREACH(physmap
, &state
->physmap
, list
) {
286 if (range_covers_byte(physmap
->start_addr
, physmap
->size
, start_addr
)) {
293 static hwaddr
xen_phys_offset_to_gaddr(hwaddr start_addr
,
294 ram_addr_t size
, void *opaque
)
296 hwaddr addr
= start_addr
& TARGET_PAGE_MASK
;
297 XenIOState
*xen_io_state
= opaque
;
298 XenPhysmap
*physmap
= NULL
;
300 QLIST_FOREACH(physmap
, &xen_io_state
->physmap
, list
) {
301 if (range_covers_byte(physmap
->phys_offset
, physmap
->size
, addr
)) {
302 return physmap
->start_addr
;
309 static int xen_add_to_physmap(XenIOState
*state
,
313 hwaddr offset_within_region
)
317 XenPhysmap
*physmap
= NULL
;
318 hwaddr pfn
, start_gpfn
;
319 hwaddr phys_offset
= memory_region_get_ram_addr(mr
);
320 char path
[80], value
[17];
323 if (get_physmapping(state
, start_addr
, size
)) {
330 /* Xen can only handle a single dirty log region for now and we want
331 * the linear framebuffer to be that region.
332 * Avoid tracking any regions that is not videoram and avoid tracking
333 * the legacy vga region. */
334 if (mr
== framebuffer
&& start_addr
> 0xbffff) {
340 DPRINTF("mapping vram to %"HWADDR_PRIx
" - %"HWADDR_PRIx
"\n",
341 start_addr
, start_addr
+ size
);
343 pfn
= phys_offset
>> TARGET_PAGE_BITS
;
344 start_gpfn
= start_addr
>> TARGET_PAGE_BITS
;
345 for (i
= 0; i
< size
>> TARGET_PAGE_BITS
; i
++) {
346 unsigned long idx
= pfn
+ i
;
347 xen_pfn_t gpfn
= start_gpfn
+ i
;
349 rc
= xen_xc_domain_add_to_physmap(xen_xc
, xen_domid
, XENMAPSPACE_gmfn
, idx
, gpfn
);
351 DPRINTF("add_to_physmap MFN %"PRI_xen_pfn
" to PFN %"
352 PRI_xen_pfn
" failed: %d (errno: %d)\n", idx
, gpfn
, rc
, errno
);
357 mr_name
= memory_region_name(mr
);
359 physmap
= g_malloc(sizeof (XenPhysmap
));
361 physmap
->start_addr
= start_addr
;
362 physmap
->size
= size
;
363 physmap
->name
= mr_name
;
364 physmap
->phys_offset
= phys_offset
;
366 QLIST_INSERT_HEAD(&state
->physmap
, physmap
, list
);
368 xc_domain_pin_memory_cacheattr(xen_xc
, xen_domid
,
369 start_addr
>> TARGET_PAGE_BITS
,
370 (start_addr
+ size
- 1) >> TARGET_PAGE_BITS
,
371 XEN_DOMCTL_MEM_CACHEATTR_WB
);
373 snprintf(path
, sizeof(path
),
374 "/local/domain/0/device-model/%d/physmap/%"PRIx64
"/start_addr",
375 xen_domid
, (uint64_t)phys_offset
);
376 snprintf(value
, sizeof(value
), "%"PRIx64
, (uint64_t)start_addr
);
377 if (!xs_write(state
->xenstore
, 0, path
, value
, strlen(value
))) {
380 snprintf(path
, sizeof(path
),
381 "/local/domain/0/device-model/%d/physmap/%"PRIx64
"/size",
382 xen_domid
, (uint64_t)phys_offset
);
383 snprintf(value
, sizeof(value
), "%"PRIx64
, (uint64_t)size
);
384 if (!xs_write(state
->xenstore
, 0, path
, value
, strlen(value
))) {
388 snprintf(path
, sizeof(path
),
389 "/local/domain/0/device-model/%d/physmap/%"PRIx64
"/name",
390 xen_domid
, (uint64_t)phys_offset
);
391 if (!xs_write(state
->xenstore
, 0, path
, mr_name
, strlen(mr_name
))) {
399 static int xen_remove_from_physmap(XenIOState
*state
,
405 XenPhysmap
*physmap
= NULL
;
406 hwaddr phys_offset
= 0;
408 physmap
= get_physmapping(state
, start_addr
, size
);
409 if (physmap
== NULL
) {
413 phys_offset
= physmap
->phys_offset
;
414 size
= physmap
->size
;
416 DPRINTF("unmapping vram to %"HWADDR_PRIx
" - %"HWADDR_PRIx
", at "
417 "%"HWADDR_PRIx
"\n", start_addr
, start_addr
+ size
, phys_offset
);
419 size
>>= TARGET_PAGE_BITS
;
420 start_addr
>>= TARGET_PAGE_BITS
;
421 phys_offset
>>= TARGET_PAGE_BITS
;
422 for (i
= 0; i
< size
; i
++) {
423 xen_pfn_t idx
= start_addr
+ i
;
424 xen_pfn_t gpfn
= phys_offset
+ i
;
426 rc
= xen_xc_domain_add_to_physmap(xen_xc
, xen_domid
, XENMAPSPACE_gmfn
, idx
, gpfn
);
428 fprintf(stderr
, "add_to_physmap MFN %"PRI_xen_pfn
" to PFN %"
429 PRI_xen_pfn
" failed: %d (errno: %d)\n", idx
, gpfn
, rc
, errno
);
434 QLIST_REMOVE(physmap
, list
);
435 if (state
->log_for_dirtybit
== physmap
) {
436 state
->log_for_dirtybit
= NULL
;
443 static void xen_set_memory(struct MemoryListener
*listener
,
444 MemoryRegionSection
*section
,
447 XenIOState
*state
= container_of(listener
, XenIOState
, memory_listener
);
448 hwaddr start_addr
= section
->offset_within_address_space
;
449 ram_addr_t size
= int128_get64(section
->size
);
450 bool log_dirty
= memory_region_is_logging(section
->mr
, DIRTY_MEMORY_VGA
);
451 hvmmem_type_t mem_type
;
453 if (section
->mr
== &ram_memory
) {
457 xen_map_memory_section(xen_domid
, state
->ioservid
,
460 xen_unmap_memory_section(xen_domid
, state
->ioservid
,
465 if (!memory_region_is_ram(section
->mr
)) {
469 if (log_dirty
!= add
) {
473 trace_xen_client_set_memory(start_addr
, size
, log_dirty
);
475 start_addr
&= TARGET_PAGE_MASK
;
476 size
= TARGET_PAGE_ALIGN(size
);
479 if (!memory_region_is_rom(section
->mr
)) {
480 xen_add_to_physmap(state
, start_addr
, size
,
481 section
->mr
, section
->offset_within_region
);
483 mem_type
= HVMMEM_ram_ro
;
484 if (xen_set_mem_type(xen_domid
, mem_type
,
485 start_addr
>> TARGET_PAGE_BITS
,
486 size
>> TARGET_PAGE_BITS
)) {
487 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx
"\n",
492 if (xen_remove_from_physmap(state
, start_addr
, size
) < 0) {
493 DPRINTF("physmapping does not exist at "TARGET_FMT_plx
"\n", start_addr
);
498 static void xen_region_add(MemoryListener
*listener
,
499 MemoryRegionSection
*section
)
501 memory_region_ref(section
->mr
);
502 xen_set_memory(listener
, section
, true);
505 static void xen_region_del(MemoryListener
*listener
,
506 MemoryRegionSection
*section
)
508 xen_set_memory(listener
, section
, false);
509 memory_region_unref(section
->mr
);
512 static void xen_io_add(MemoryListener
*listener
,
513 MemoryRegionSection
*section
)
515 XenIOState
*state
= container_of(listener
, XenIOState
, io_listener
);
516 MemoryRegion
*mr
= section
->mr
;
518 if (mr
->ops
== &unassigned_io_ops
) {
522 memory_region_ref(mr
);
524 xen_map_io_section(xen_domid
, state
->ioservid
, section
);
527 static void xen_io_del(MemoryListener
*listener
,
528 MemoryRegionSection
*section
)
530 XenIOState
*state
= container_of(listener
, XenIOState
, io_listener
);
531 MemoryRegion
*mr
= section
->mr
;
533 if (mr
->ops
== &unassigned_io_ops
) {
537 xen_unmap_io_section(xen_domid
, state
->ioservid
, section
);
539 memory_region_unref(mr
);
542 static void xen_device_realize(DeviceListener
*listener
,
545 XenIOState
*state
= container_of(listener
, XenIOState
, device_listener
);
547 if (object_dynamic_cast(OBJECT(dev
), TYPE_PCI_DEVICE
)) {
548 PCIDevice
*pci_dev
= PCI_DEVICE(dev
);
550 xen_map_pcidev(xen_domid
, state
->ioservid
, pci_dev
);
554 static void xen_device_unrealize(DeviceListener
*listener
,
557 XenIOState
*state
= container_of(listener
, XenIOState
, device_listener
);
559 if (object_dynamic_cast(OBJECT(dev
), TYPE_PCI_DEVICE
)) {
560 PCIDevice
*pci_dev
= PCI_DEVICE(dev
);
562 xen_unmap_pcidev(xen_domid
, state
->ioservid
, pci_dev
);
566 static void xen_sync_dirty_bitmap(XenIOState
*state
,
570 hwaddr npages
= size
>> TARGET_PAGE_BITS
;
571 const int width
= sizeof(unsigned long) * 8;
572 unsigned long bitmap
[DIV_ROUND_UP(npages
, width
)];
574 const XenPhysmap
*physmap
= NULL
;
576 physmap
= get_physmapping(state
, start_addr
, size
);
577 if (physmap
== NULL
) {
582 if (state
->log_for_dirtybit
== NULL
) {
583 state
->log_for_dirtybit
= physmap
;
584 } else if (state
->log_for_dirtybit
!= physmap
) {
585 /* Only one range for dirty bitmap can be tracked. */
589 rc
= xen_track_dirty_vram(xen_domid
, start_addr
>> TARGET_PAGE_BITS
,
593 #define ENODATA ENOENT
595 if (errno
== ENODATA
) {
596 memory_region_set_dirty(framebuffer
, 0, size
);
597 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
598 ", 0x" TARGET_FMT_plx
"): %s\n",
599 start_addr
, start_addr
+ size
, strerror(errno
));
604 for (i
= 0; i
< ARRAY_SIZE(bitmap
); i
++) {
605 unsigned long map
= bitmap
[i
];
609 memory_region_set_dirty(framebuffer
,
610 (i
* width
+ j
) * TARGET_PAGE_SIZE
,
616 static void xen_log_start(MemoryListener
*listener
,
617 MemoryRegionSection
*section
,
620 XenIOState
*state
= container_of(listener
, XenIOState
, memory_listener
);
622 if (new & ~old
& (1 << DIRTY_MEMORY_VGA
)) {
623 xen_sync_dirty_bitmap(state
, section
->offset_within_address_space
,
624 int128_get64(section
->size
));
628 static void xen_log_stop(MemoryListener
*listener
, MemoryRegionSection
*section
,
631 XenIOState
*state
= container_of(listener
, XenIOState
, memory_listener
);
633 if (old
& ~new & (1 << DIRTY_MEMORY_VGA
)) {
634 state
->log_for_dirtybit
= NULL
;
635 /* Disable dirty bit tracking */
636 xen_track_dirty_vram(xen_domid
, 0, 0, NULL
);
640 static void xen_log_sync(MemoryListener
*listener
, MemoryRegionSection
*section
)
642 XenIOState
*state
= container_of(listener
, XenIOState
, memory_listener
);
644 xen_sync_dirty_bitmap(state
, section
->offset_within_address_space
,
645 int128_get64(section
->size
));
648 static void xen_log_global_start(MemoryListener
*listener
)
651 xen_in_migration
= true;
655 static void xen_log_global_stop(MemoryListener
*listener
)
657 xen_in_migration
= false;
660 static MemoryListener xen_memory_listener
= {
661 .region_add
= xen_region_add
,
662 .region_del
= xen_region_del
,
663 .log_start
= xen_log_start
,
664 .log_stop
= xen_log_stop
,
665 .log_sync
= xen_log_sync
,
666 .log_global_start
= xen_log_global_start
,
667 .log_global_stop
= xen_log_global_stop
,
671 static MemoryListener xen_io_listener
= {
672 .region_add
= xen_io_add
,
673 .region_del
= xen_io_del
,
677 static DeviceListener xen_device_listener
= {
678 .realize
= xen_device_realize
,
679 .unrealize
= xen_device_unrealize
,
682 /* get the ioreq packets from share mem */
683 static ioreq_t
*cpu_get_ioreq_from_shared_memory(XenIOState
*state
, int vcpu
)
685 ioreq_t
*req
= xen_vcpu_ioreq(state
->shared_page
, vcpu
);
687 if (req
->state
!= STATE_IOREQ_READY
) {
688 DPRINTF("I/O request not ready: "
689 "%x, ptr: %x, port: %"PRIx64
", "
690 "data: %"PRIx64
", count: %u, size: %u\n",
691 req
->state
, req
->data_is_ptr
, req
->addr
,
692 req
->data
, req
->count
, req
->size
);
696 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
698 req
->state
= STATE_IOREQ_INPROCESS
;
702 /* use poll to get the port notification */
703 /* ioreq_vec--out,the */
704 /* retval--the number of ioreq packet */
705 static ioreq_t
*cpu_get_ioreq(XenIOState
*state
)
710 port
= xenevtchn_pending(state
->xce_handle
);
711 if (port
== state
->bufioreq_local_port
) {
712 timer_mod(state
->buffered_io_timer
,
713 BUFFER_IO_MAX_DELAY
+ qemu_clock_get_ms(QEMU_CLOCK_REALTIME
));
718 for (i
= 0; i
< max_cpus
; i
++) {
719 if (state
->ioreq_local_port
[i
] == port
) {
725 hw_error("Fatal error while trying to get io event!\n");
728 /* unmask the wanted port again */
729 xenevtchn_unmask(state
->xce_handle
, port
);
731 /* get the io packet from shared memory */
732 state
->send_vcpu
= i
;
733 return cpu_get_ioreq_from_shared_memory(state
, i
);
736 /* read error or read nothing */
740 static uint32_t do_inp(uint32_t addr
, unsigned long size
)
744 return cpu_inb(addr
);
746 return cpu_inw(addr
);
748 return cpu_inl(addr
);
750 hw_error("inp: bad size: %04x %lx", addr
, size
);
754 static void do_outp(uint32_t addr
,
755 unsigned long size
, uint32_t val
)
759 return cpu_outb(addr
, val
);
761 return cpu_outw(addr
, val
);
763 return cpu_outl(addr
, val
);
765 hw_error("outp: bad size: %04x %lx", addr
, size
);
770 * Helper functions which read/write an object from/to physical guest
771 * memory, as part of the implementation of an ioreq.
774 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
775 * val, req->size, 0/1)
776 * except without the integer overflow problems.
778 static void rw_phys_req_item(hwaddr addr
,
779 ioreq_t
*req
, uint32_t i
, void *val
, int rw
)
781 /* Do everything unsigned so overflow just results in a truncated result
782 * and accesses to undesired parts of guest memory, which is up
784 hwaddr offset
= (hwaddr
)req
->size
* i
;
790 cpu_physical_memory_rw(addr
, val
, req
->size
, rw
);
793 static inline void read_phys_req_item(hwaddr addr
,
794 ioreq_t
*req
, uint32_t i
, void *val
)
796 rw_phys_req_item(addr
, req
, i
, val
, 0);
798 static inline void write_phys_req_item(hwaddr addr
,
799 ioreq_t
*req
, uint32_t i
, void *val
)
801 rw_phys_req_item(addr
, req
, i
, val
, 1);
805 static void cpu_ioreq_pio(ioreq_t
*req
)
809 trace_cpu_ioreq_pio(req
, req
->dir
, req
->df
, req
->data_is_ptr
, req
->addr
,
810 req
->data
, req
->count
, req
->size
);
812 if (req
->size
> sizeof(uint32_t)) {
813 hw_error("PIO: bad size (%u)", req
->size
);
816 if (req
->dir
== IOREQ_READ
) {
817 if (!req
->data_is_ptr
) {
818 req
->data
= do_inp(req
->addr
, req
->size
);
819 trace_cpu_ioreq_pio_read_reg(req
, req
->data
, req
->addr
,
824 for (i
= 0; i
< req
->count
; i
++) {
825 tmp
= do_inp(req
->addr
, req
->size
);
826 write_phys_req_item(req
->data
, req
, i
, &tmp
);
829 } else if (req
->dir
== IOREQ_WRITE
) {
830 if (!req
->data_is_ptr
) {
831 trace_cpu_ioreq_pio_write_reg(req
, req
->data
, req
->addr
,
833 do_outp(req
->addr
, req
->size
, req
->data
);
835 for (i
= 0; i
< req
->count
; i
++) {
838 read_phys_req_item(req
->data
, req
, i
, &tmp
);
839 do_outp(req
->addr
, req
->size
, tmp
);
845 static void cpu_ioreq_move(ioreq_t
*req
)
849 trace_cpu_ioreq_move(req
, req
->dir
, req
->df
, req
->data_is_ptr
, req
->addr
,
850 req
->data
, req
->count
, req
->size
);
852 if (req
->size
> sizeof(req
->data
)) {
853 hw_error("MMIO: bad size (%u)", req
->size
);
856 if (!req
->data_is_ptr
) {
857 if (req
->dir
== IOREQ_READ
) {
858 for (i
= 0; i
< req
->count
; i
++) {
859 read_phys_req_item(req
->addr
, req
, i
, &req
->data
);
861 } else if (req
->dir
== IOREQ_WRITE
) {
862 for (i
= 0; i
< req
->count
; i
++) {
863 write_phys_req_item(req
->addr
, req
, i
, &req
->data
);
869 if (req
->dir
== IOREQ_READ
) {
870 for (i
= 0; i
< req
->count
; i
++) {
871 read_phys_req_item(req
->addr
, req
, i
, &tmp
);
872 write_phys_req_item(req
->data
, req
, i
, &tmp
);
874 } else if (req
->dir
== IOREQ_WRITE
) {
875 for (i
= 0; i
< req
->count
; i
++) {
876 read_phys_req_item(req
->data
, req
, i
, &tmp
);
877 write_phys_req_item(req
->addr
, req
, i
, &tmp
);
883 static void regs_to_cpu(vmware_regs_t
*vmport_regs
, ioreq_t
*req
)
888 cpu
= X86_CPU(current_cpu
);
890 env
->regs
[R_EAX
] = req
->data
;
891 env
->regs
[R_EBX
] = vmport_regs
->ebx
;
892 env
->regs
[R_ECX
] = vmport_regs
->ecx
;
893 env
->regs
[R_EDX
] = vmport_regs
->edx
;
894 env
->regs
[R_ESI
] = vmport_regs
->esi
;
895 env
->regs
[R_EDI
] = vmport_regs
->edi
;
898 static void regs_from_cpu(vmware_regs_t
*vmport_regs
)
900 X86CPU
*cpu
= X86_CPU(current_cpu
);
901 CPUX86State
*env
= &cpu
->env
;
903 vmport_regs
->ebx
= env
->regs
[R_EBX
];
904 vmport_regs
->ecx
= env
->regs
[R_ECX
];
905 vmport_regs
->edx
= env
->regs
[R_EDX
];
906 vmport_regs
->esi
= env
->regs
[R_ESI
];
907 vmport_regs
->edi
= env
->regs
[R_EDI
];
910 static void handle_vmport_ioreq(XenIOState
*state
, ioreq_t
*req
)
912 vmware_regs_t
*vmport_regs
;
914 assert(state
->shared_vmport_page
);
916 &state
->shared_vmport_page
->vcpu_vmport_regs
[state
->send_vcpu
];
917 QEMU_BUILD_BUG_ON(sizeof(*req
) < sizeof(*vmport_regs
));
919 current_cpu
= state
->cpu_by_vcpu_id
[state
->send_vcpu
];
920 regs_to_cpu(vmport_regs
, req
);
922 regs_from_cpu(vmport_regs
);
926 static void handle_ioreq(XenIOState
*state
, ioreq_t
*req
)
928 trace_handle_ioreq(req
, req
->type
, req
->dir
, req
->df
, req
->data_is_ptr
,
929 req
->addr
, req
->data
, req
->count
, req
->size
);
931 if (!req
->data_is_ptr
&& (req
->dir
== IOREQ_WRITE
) &&
932 (req
->size
< sizeof (target_ulong
))) {
933 req
->data
&= ((target_ulong
) 1 << (8 * req
->size
)) - 1;
936 if (req
->dir
== IOREQ_WRITE
)
937 trace_handle_ioreq_write(req
, req
->type
, req
->df
, req
->data_is_ptr
,
938 req
->addr
, req
->data
, req
->count
, req
->size
);
944 case IOREQ_TYPE_COPY
:
947 case IOREQ_TYPE_VMWARE_PORT
:
948 handle_vmport_ioreq(state
, req
);
950 case IOREQ_TYPE_TIMEOFFSET
:
952 case IOREQ_TYPE_INVALIDATE
:
953 xen_invalidate_map_cache();
955 case IOREQ_TYPE_PCI_CONFIG
: {
956 uint32_t sbdf
= req
->addr
>> 32;
959 /* Fake a write to port 0xCF8 so that
960 * the config space access will target the
961 * correct device model.
964 ((req
->addr
& 0x0f00) << 16) |
965 ((sbdf
& 0xffff) << 8) |
967 do_outp(0xcf8, 4, val
);
969 /* Now issue the config space access via
972 req
->addr
= 0xcfc | (req
->addr
& 0x03);
977 hw_error("Invalid ioreq type 0x%x\n", req
->type
);
979 if (req
->dir
== IOREQ_READ
) {
980 trace_handle_ioreq_read(req
, req
->type
, req
->df
, req
->data_is_ptr
,
981 req
->addr
, req
->data
, req
->count
, req
->size
);
985 static int handle_buffered_iopage(XenIOState
*state
)
987 buffered_iopage_t
*buf_page
= state
->buffered_io_page
;
988 buf_ioreq_t
*buf_req
= NULL
;
996 memset(&req
, 0x00, sizeof(req
));
997 req
.state
= STATE_IOREQ_READY
;
999 req
.dir
= IOREQ_WRITE
;
1002 uint32_t rdptr
= buf_page
->read_pointer
, wrptr
;
1005 wrptr
= buf_page
->write_pointer
;
1007 if (rdptr
!= buf_page
->read_pointer
) {
1010 if (rdptr
== wrptr
) {
1013 buf_req
= &buf_page
->buf_ioreq
[rdptr
% IOREQ_BUFFER_SLOT_NUM
];
1014 req
.size
= 1U << buf_req
->size
;
1015 req
.addr
= buf_req
->addr
;
1016 req
.data
= buf_req
->data
;
1017 req
.type
= buf_req
->type
;
1019 qw
= (req
.size
== 8);
1021 if (rdptr
+ 1 == wrptr
) {
1022 hw_error("Incomplete quad word buffered ioreq");
1024 buf_req
= &buf_page
->buf_ioreq
[(rdptr
+ 1) %
1025 IOREQ_BUFFER_SLOT_NUM
];
1026 req
.data
|= ((uint64_t)buf_req
->data
) << 32;
1030 handle_ioreq(state
, &req
);
1032 /* Only req.data may get updated by handle_ioreq(), albeit even that
1033 * should not happen as such data would never make it to the guest (we
1034 * can only usefully see writes here after all).
1036 assert(req
.state
== STATE_IOREQ_READY
);
1037 assert(req
.count
== 1);
1038 assert(req
.dir
== IOREQ_WRITE
);
1039 assert(!req
.data_is_ptr
);
1041 atomic_add(&buf_page
->read_pointer
, qw
+ 1);
1047 static void handle_buffered_io(void *opaque
)
1049 XenIOState
*state
= opaque
;
1051 if (handle_buffered_iopage(state
)) {
1052 timer_mod(state
->buffered_io_timer
,
1053 BUFFER_IO_MAX_DELAY
+ qemu_clock_get_ms(QEMU_CLOCK_REALTIME
));
1055 timer_del(state
->buffered_io_timer
);
1056 xenevtchn_unmask(state
->xce_handle
, state
->bufioreq_local_port
);
1060 static void cpu_handle_ioreq(void *opaque
)
1062 XenIOState
*state
= opaque
;
1063 ioreq_t
*req
= cpu_get_ioreq(state
);
1065 handle_buffered_iopage(state
);
1067 ioreq_t copy
= *req
;
1070 handle_ioreq(state
, ©
);
1071 req
->data
= copy
.data
;
1073 if (req
->state
!= STATE_IOREQ_INPROCESS
) {
1074 fprintf(stderr
, "Badness in I/O request ... not in service?!: "
1075 "%x, ptr: %x, port: %"PRIx64
", "
1076 "data: %"PRIx64
", count: %u, size: %u, type: %u\n",
1077 req
->state
, req
->data_is_ptr
, req
->addr
,
1078 req
->data
, req
->count
, req
->size
, req
->type
);
1079 destroy_hvm_domain(false);
1083 xen_wmb(); /* Update ioreq contents /then/ update state. */
1086 * We do this before we send the response so that the tools
1087 * have the opportunity to pick up on the reset before the
1088 * guest resumes and does a hlt with interrupts disabled which
1089 * causes Xen to powerdown the domain.
1091 if (runstate_is_running()) {
1092 if (qemu_shutdown_requested_get()) {
1093 destroy_hvm_domain(false);
1095 if (qemu_reset_requested_get()) {
1096 qemu_system_reset(VMRESET_REPORT
);
1097 destroy_hvm_domain(true);
1101 req
->state
= STATE_IORESP_READY
;
1102 xenevtchn_notify(state
->xce_handle
,
1103 state
->ioreq_local_port
[state
->send_vcpu
]);
1107 static void xen_main_loop_prepare(XenIOState
*state
)
1111 if (state
->xce_handle
!= NULL
) {
1112 evtchn_fd
= xenevtchn_fd(state
->xce_handle
);
1115 state
->buffered_io_timer
= timer_new_ms(QEMU_CLOCK_REALTIME
, handle_buffered_io
,
1118 if (evtchn_fd
!= -1) {
1119 CPUState
*cpu_state
;
1121 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__
);
1122 CPU_FOREACH(cpu_state
) {
1123 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
1124 __func__
, cpu_state
->cpu_index
, cpu_state
);
1125 state
->cpu_by_vcpu_id
[cpu_state
->cpu_index
] = cpu_state
;
1127 qemu_set_fd_handler(evtchn_fd
, cpu_handle_ioreq
, NULL
, state
);
1132 static void xen_hvm_change_state_handler(void *opaque
, int running
,
1135 XenIOState
*state
= opaque
;
1138 xen_main_loop_prepare(state
);
1141 xen_set_ioreq_server_state(xen_domid
,
1143 (rstate
== RUN_STATE_RUNNING
));
1146 static void xen_exit_notifier(Notifier
*n
, void *data
)
1148 XenIOState
*state
= container_of(n
, XenIOState
, exit
);
1150 xenevtchn_close(state
->xce_handle
);
1151 xs_daemon_close(state
->xenstore
);
1154 static void xen_read_physmap(XenIOState
*state
)
1156 XenPhysmap
*physmap
= NULL
;
1157 unsigned int len
, num
, i
;
1158 char path
[80], *value
= NULL
;
1159 char **entries
= NULL
;
1161 snprintf(path
, sizeof(path
),
1162 "/local/domain/0/device-model/%d/physmap", xen_domid
);
1163 entries
= xs_directory(state
->xenstore
, 0, path
, &num
);
1164 if (entries
== NULL
)
1167 for (i
= 0; i
< num
; i
++) {
1168 physmap
= g_malloc(sizeof (XenPhysmap
));
1169 physmap
->phys_offset
= strtoull(entries
[i
], NULL
, 16);
1170 snprintf(path
, sizeof(path
),
1171 "/local/domain/0/device-model/%d/physmap/%s/start_addr",
1172 xen_domid
, entries
[i
]);
1173 value
= xs_read(state
->xenstore
, 0, path
, &len
);
1174 if (value
== NULL
) {
1178 physmap
->start_addr
= strtoull(value
, NULL
, 16);
1181 snprintf(path
, sizeof(path
),
1182 "/local/domain/0/device-model/%d/physmap/%s/size",
1183 xen_domid
, entries
[i
]);
1184 value
= xs_read(state
->xenstore
, 0, path
, &len
);
1185 if (value
== NULL
) {
1189 physmap
->size
= strtoull(value
, NULL
, 16);
1192 snprintf(path
, sizeof(path
),
1193 "/local/domain/0/device-model/%d/physmap/%s/name",
1194 xen_domid
, entries
[i
]);
1195 physmap
->name
= xs_read(state
->xenstore
, 0, path
, &len
);
1197 QLIST_INSERT_HEAD(&state
->physmap
, physmap
, list
);
1202 static void xen_wakeup_notifier(Notifier
*notifier
, void *data
)
1204 xc_set_hvm_param(xen_xc
, xen_domid
, HVM_PARAM_ACPI_S_STATE
, 0);
1207 void xen_hvm_init(PCMachineState
*pcms
, MemoryRegion
**ram_memory
)
1210 xen_pfn_t ioreq_pfn
;
1211 xen_pfn_t bufioreq_pfn
;
1212 evtchn_port_t bufioreq_evtchn
;
1215 state
= g_malloc0(sizeof (XenIOState
));
1217 state
->xce_handle
= xenevtchn_open(NULL
, 0);
1218 if (state
->xce_handle
== NULL
) {
1219 perror("xen: event channel open");
1223 state
->xenstore
= xs_daemon_open();
1224 if (state
->xenstore
== NULL
) {
1225 perror("xen: xenstore open");
1229 if (xen_domid_restrict
) {
1230 rc
= xen_restrict(xen_domid
);
1232 error_report("failed to restrict: error %d", errno
);
1237 xen_create_ioreq_server(xen_domid
, &state
->ioservid
);
1239 state
->exit
.notify
= xen_exit_notifier
;
1240 qemu_add_exit_notifier(&state
->exit
);
1242 state
->suspend
.notify
= xen_suspend_notifier
;
1243 qemu_register_suspend_notifier(&state
->suspend
);
1245 state
->wakeup
.notify
= xen_wakeup_notifier
;
1246 qemu_register_wakeup_notifier(&state
->wakeup
);
1248 rc
= xen_get_ioreq_server_info(xen_domid
, state
->ioservid
,
1249 &ioreq_pfn
, &bufioreq_pfn
,
1252 error_report("failed to get ioreq server info: error %d handle=%p",
1257 DPRINTF("shared page at pfn %lx\n", ioreq_pfn
);
1258 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn
);
1259 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn
);
1261 state
->shared_page
= xenforeignmemory_map(xen_fmem
, xen_domid
,
1262 PROT_READ
|PROT_WRITE
,
1263 1, &ioreq_pfn
, NULL
);
1264 if (state
->shared_page
== NULL
) {
1265 error_report("map shared IO page returned error %d handle=%p",
1270 rc
= xen_get_vmport_regs_pfn(xen_xc
, xen_domid
, &ioreq_pfn
);
1272 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn
);
1273 state
->shared_vmport_page
=
1274 xenforeignmemory_map(xen_fmem
, xen_domid
, PROT_READ
|PROT_WRITE
,
1275 1, &ioreq_pfn
, NULL
);
1276 if (state
->shared_vmport_page
== NULL
) {
1277 error_report("map shared vmport IO page returned error %d handle=%p",
1281 } else if (rc
!= -ENOSYS
) {
1282 error_report("get vmport regs pfn returned error %d, rc=%d",
1287 state
->buffered_io_page
= xenforeignmemory_map(xen_fmem
, xen_domid
,
1288 PROT_READ
|PROT_WRITE
,
1289 1, &bufioreq_pfn
, NULL
);
1290 if (state
->buffered_io_page
== NULL
) {
1291 error_report("map buffered IO page returned error %d", errno
);
1295 /* Note: cpus is empty at this point in init */
1296 state
->cpu_by_vcpu_id
= g_malloc0(max_cpus
* sizeof(CPUState
*));
1298 rc
= xen_set_ioreq_server_state(xen_domid
, state
->ioservid
, true);
1300 error_report("failed to enable ioreq server info: error %d handle=%p",
1305 state
->ioreq_local_port
= g_malloc0(max_cpus
* sizeof (evtchn_port_t
));
1307 /* FIXME: how about if we overflow the page here? */
1308 for (i
= 0; i
< max_cpus
; i
++) {
1309 rc
= xenevtchn_bind_interdomain(state
->xce_handle
, xen_domid
,
1310 xen_vcpu_eport(state
->shared_page
, i
));
1312 error_report("shared evtchn %d bind error %d", i
, errno
);
1315 state
->ioreq_local_port
[i
] = rc
;
1318 rc
= xenevtchn_bind_interdomain(state
->xce_handle
, xen_domid
,
1321 error_report("buffered evtchn bind error %d", errno
);
1324 state
->bufioreq_local_port
= rc
;
1326 /* Init RAM management */
1327 xen_map_cache_init(xen_phys_offset_to_gaddr
, state
);
1328 xen_ram_init(pcms
, ram_size
, ram_memory
);
1330 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler
, state
);
1332 state
->memory_listener
= xen_memory_listener
;
1333 QLIST_INIT(&state
->physmap
);
1334 memory_listener_register(&state
->memory_listener
, &address_space_memory
);
1335 state
->log_for_dirtybit
= NULL
;
1337 state
->io_listener
= xen_io_listener
;
1338 memory_listener_register(&state
->io_listener
, &address_space_io
);
1340 state
->device_listener
= xen_device_listener
;
1341 device_listener_register(&state
->device_listener
);
1343 /* Initialize backend core & drivers */
1344 if (xen_be_init() != 0) {
1345 error_report("xen backend core setup failed");
1348 xen_be_register_common();
1349 xen_read_physmap(state
);
1351 /* Disable ACPI build because Xen handles it */
1352 pcms
->acpi_build_enabled
= false;
1357 error_report("xen hardware virtual machine initialisation failed");
1361 void destroy_hvm_domain(bool reboot
)
1363 xc_interface
*xc_handle
;
1366 xc_handle
= xc_interface_open(0, 0, 0);
1367 if (xc_handle
== NULL
) {
1368 fprintf(stderr
, "Cannot acquire xenctrl handle\n");
1370 sts
= xc_domain_shutdown(xc_handle
, xen_domid
,
1371 reboot
? SHUTDOWN_reboot
: SHUTDOWN_poweroff
);
1373 fprintf(stderr
, "xc_domain_shutdown failed to issue %s, "
1374 "sts %d, %s\n", reboot
? "reboot" : "poweroff",
1375 sts
, strerror(errno
));
1377 fprintf(stderr
, "Issued domain %d %s\n", xen_domid
,
1378 reboot
? "reboot" : "poweroff");
1380 xc_interface_close(xc_handle
);
1384 void xen_register_framebuffer(MemoryRegion
*mr
)
1389 void xen_shutdown_fatal_error(const char *fmt
, ...)
1394 vfprintf(stderr
, fmt
, ap
);
1396 fprintf(stderr
, "Will destroy the domain.\n");
1397 /* destroy the domain */
1398 qemu_system_shutdown_request();
1401 void xen_hvm_modified_memory(ram_addr_t start
, ram_addr_t length
)
1403 if (unlikely(xen_in_migration
)) {
1405 ram_addr_t start_pfn
, nb_pages
;
1408 length
= TARGET_PAGE_SIZE
;
1410 start_pfn
= start
>> TARGET_PAGE_BITS
;
1411 nb_pages
= ((start
+ length
+ TARGET_PAGE_SIZE
- 1) >> TARGET_PAGE_BITS
)
1413 rc
= xen_modified_memory(xen_domid
, start_pfn
, nb_pages
);
1416 "%s failed for "RAM_ADDR_FMT
" ("RAM_ADDR_FMT
"): %i, %s\n",
1417 __func__
, start
, nb_pages
, rc
, strerror(-rc
));
1422 void qmp_xen_set_global_dirty_log(bool enable
, Error
**errp
)
1425 memory_global_dirty_log_start();
1427 memory_global_dirty_log_stop();