2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/timer.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/mc146818rtc.h"
28 #include "qapi/visitor.h"
35 //#define DEBUG_COALESCED
38 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
40 # define CMOS_DPRINTF(format, ...) do { } while (0)
43 #ifdef DEBUG_COALESCED
44 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
46 # define DPRINTF_C(format, ...) do { } while (0)
49 #define NSEC_PER_SEC 1000000000LL
50 #define SEC_PER_MIN 60
51 #define MIN_PER_HOUR 60
52 #define SEC_PER_HOUR 3600
53 #define HOUR_PER_DAY 24
54 #define SEC_PER_DAY 86400
56 #define RTC_REINJECT_ON_ACK_COUNT 20
57 #define RTC_CLOCK_RATE 32768
58 #define UIP_HOLD_LENGTH (8 * NSEC_PER_SEC / 32768)
60 typedef struct RTCState
{
63 uint8_t cmos_data
[128];
73 QEMUTimer
*periodic_timer
;
74 int64_t next_periodic_time
;
75 /* update-ended timer */
76 QEMUTimer
*update_timer
;
77 uint64_t next_alarm_time
;
78 uint16_t irq_reinject_on_ack_count
;
79 uint32_t irq_coalesced
;
81 QEMUTimer
*coalesced_timer
;
82 Notifier clock_reset_notifier
;
83 LostTickPolicy lost_tick_policy
;
84 Notifier suspend_notifier
;
87 static void rtc_set_time(RTCState
*s
);
88 static void rtc_update_time(RTCState
*s
);
89 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
);
90 static inline int rtc_from_bcd(RTCState
*s
, int a
);
91 static uint64_t get_next_alarm(RTCState
*s
);
93 static inline bool rtc_running(RTCState
*s
)
95 return (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
96 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20);
99 static uint64_t get_guest_rtc_ns(RTCState
*s
)
102 uint64_t guest_clock
= qemu_get_clock_ns(rtc_clock
);
104 guest_rtc
= s
->base_rtc
* NSEC_PER_SEC
105 + guest_clock
- s
->last_update
+ s
->offset
;
110 static void rtc_coalesced_timer_update(RTCState
*s
)
112 if (s
->irq_coalesced
== 0) {
113 qemu_del_timer(s
->coalesced_timer
);
115 /* divide each RTC interval to 2 - 8 smaller intervals */
116 int c
= MIN(s
->irq_coalesced
, 7) + 1;
117 int64_t next_clock
= qemu_get_clock_ns(rtc_clock
) +
118 muldiv64(s
->period
/ c
, get_ticks_per_sec(), RTC_CLOCK_RATE
);
119 qemu_mod_timer(s
->coalesced_timer
, next_clock
);
123 static void rtc_coalesced_timer(void *opaque
)
125 RTCState
*s
= opaque
;
127 if (s
->irq_coalesced
!= 0) {
128 apic_reset_irq_delivered();
129 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
130 DPRINTF_C("cmos: injecting from timer\n");
131 qemu_irq_raise(s
->irq
);
132 if (apic_get_irq_delivered()) {
134 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
139 rtc_coalesced_timer_update(s
);
143 /* handle periodic timer */
144 static void periodic_timer_update(RTCState
*s
, int64_t current_time
)
146 int period_code
, period
;
147 int64_t cur_clock
, next_irq_clock
;
149 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
151 && ((s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)
152 || ((s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) && s
->sqw_irq
))) {
153 if (period_code
<= 2)
155 /* period in 32 Khz cycles */
156 period
= 1 << (period_code
- 1);
158 if (period
!= s
->period
) {
159 s
->irq_coalesced
= (s
->irq_coalesced
* s
->period
) / period
;
160 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s
->irq_coalesced
);
164 /* compute 32 khz clock */
165 cur_clock
= muldiv64(current_time
, RTC_CLOCK_RATE
, get_ticks_per_sec());
166 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
167 s
->next_periodic_time
=
168 muldiv64(next_irq_clock
, get_ticks_per_sec(), RTC_CLOCK_RATE
) + 1;
169 qemu_mod_timer(s
->periodic_timer
, s
->next_periodic_time
);
172 s
->irq_coalesced
= 0;
174 qemu_del_timer(s
->periodic_timer
);
178 static void rtc_periodic_timer(void *opaque
)
180 RTCState
*s
= opaque
;
182 periodic_timer_update(s
, s
->next_periodic_time
);
183 s
->cmos_data
[RTC_REG_C
] |= REG_C_PF
;
184 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
185 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
187 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
188 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
189 s
->irq_reinject_on_ack_count
= 0;
190 apic_reset_irq_delivered();
191 qemu_irq_raise(s
->irq
);
192 if (!apic_get_irq_delivered()) {
194 rtc_coalesced_timer_update(s
);
195 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
200 qemu_irq_raise(s
->irq
);
202 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) {
203 /* Not square wave at all but we don't want 2048Hz interrupts!
204 Must be seen as a pulse. */
205 qemu_irq_raise(s
->sqw_irq
);
209 /* handle update-ended timer */
210 static void check_update_timer(RTCState
*s
)
212 uint64_t next_update_time
;
216 /* From the data sheet: "Holding the dividers in reset prevents
217 * interrupts from operating, while setting the SET bit allows"
218 * them to occur. However, it will prevent an alarm interrupt
219 * from occurring, because the time of day is not updated.
221 if ((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) {
222 qemu_del_timer(s
->update_timer
);
225 if ((s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) &&
226 (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
227 qemu_del_timer(s
->update_timer
);
230 if ((s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) &&
231 (s
->cmos_data
[RTC_REG_C
] & REG_C_AF
)) {
232 qemu_del_timer(s
->update_timer
);
236 guest_nsec
= get_guest_rtc_ns(s
) % NSEC_PER_SEC
;
237 /* if UF is clear, reprogram to next second */
238 next_update_time
= qemu_get_clock_ns(rtc_clock
)
239 + NSEC_PER_SEC
- guest_nsec
;
241 /* Compute time of next alarm. One second is already accounted
242 * for in next_update_time.
244 next_alarm_sec
= get_next_alarm(s
);
245 s
->next_alarm_time
= next_update_time
+ (next_alarm_sec
- 1) * NSEC_PER_SEC
;
247 if (s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) {
248 /* UF is set, but AF is clear. Program the timer to target
250 next_update_time
= s
->next_alarm_time
;
252 if (next_update_time
!= qemu_timer_expire_time_ns(s
->update_timer
)) {
253 qemu_mod_timer(s
->update_timer
, next_update_time
);
257 static inline uint8_t convert_hour(RTCState
*s
, uint8_t hour
)
259 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
261 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
268 static uint64_t get_next_alarm(RTCState
*s
)
270 int32_t alarm_sec
, alarm_min
, alarm_hour
, cur_hour
, cur_min
, cur_sec
;
271 int32_t hour
, min
, sec
;
275 alarm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]);
276 alarm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]);
277 alarm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]);
278 alarm_hour
= alarm_hour
== -1 ? -1 : convert_hour(s
, alarm_hour
);
280 cur_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
281 cur_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
282 cur_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
]);
283 cur_hour
= convert_hour(s
, cur_hour
);
285 if (alarm_hour
== -1) {
286 alarm_hour
= cur_hour
;
287 if (alarm_min
== -1) {
289 if (alarm_sec
== -1) {
290 alarm_sec
= cur_sec
+ 1;
291 } else if (cur_sec
> alarm_sec
) {
294 } else if (cur_min
== alarm_min
) {
295 if (alarm_sec
== -1) {
296 alarm_sec
= cur_sec
+ 1;
298 if (cur_sec
> alarm_sec
) {
302 if (alarm_sec
== SEC_PER_MIN
) {
303 /* wrap to next hour, minutes is not in don't care mode */
307 } else if (cur_min
> alarm_min
) {
310 } else if (cur_hour
== alarm_hour
) {
311 if (alarm_min
== -1) {
313 if (alarm_sec
== -1) {
314 alarm_sec
= cur_sec
+ 1;
315 } else if (cur_sec
> alarm_sec
) {
319 if (alarm_sec
== SEC_PER_MIN
) {
323 /* wrap to next day, hour is not in don't care mode */
324 alarm_min
%= MIN_PER_HOUR
;
325 } else if (cur_min
== alarm_min
) {
326 if (alarm_sec
== -1) {
327 alarm_sec
= cur_sec
+ 1;
329 /* wrap to next day, hours+minutes not in don't care mode */
330 alarm_sec
%= SEC_PER_MIN
;
334 /* values that are still don't care fire at the next min/sec */
335 if (alarm_min
== -1) {
338 if (alarm_sec
== -1) {
342 /* keep values in range */
343 if (alarm_sec
== SEC_PER_MIN
) {
347 if (alarm_min
== MIN_PER_HOUR
) {
351 alarm_hour
%= HOUR_PER_DAY
;
353 hour
= alarm_hour
- cur_hour
;
354 min
= hour
* MIN_PER_HOUR
+ alarm_min
- cur_min
;
355 sec
= min
* SEC_PER_MIN
+ alarm_sec
- cur_sec
;
356 return sec
<= 0 ? sec
+ SEC_PER_DAY
: sec
;
359 static void rtc_update_timer(void *opaque
)
361 RTCState
*s
= opaque
;
362 int32_t irqs
= REG_C_UF
;
365 assert((s
->cmos_data
[RTC_REG_A
] & 0x60) != 0x60);
367 /* UIP might have been latched, update time and clear it. */
369 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
371 if (qemu_get_clock_ns(rtc_clock
) >= s
->next_alarm_time
) {
373 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
374 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC
);
378 new_irqs
= irqs
& ~s
->cmos_data
[RTC_REG_C
];
379 s
->cmos_data
[RTC_REG_C
] |= irqs
;
380 if ((new_irqs
& s
->cmos_data
[RTC_REG_B
]) != 0) {
381 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
382 qemu_irq_raise(s
->irq
);
384 check_update_timer(s
);
387 static void cmos_ioport_write(void *opaque
, hwaddr addr
,
388 uint64_t data
, unsigned size
)
390 RTCState
*s
= opaque
;
392 if ((addr
& 1) == 0) {
393 s
->cmos_index
= data
& 0x7f;
395 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
396 s
->cmos_index
, data
);
397 switch(s
->cmos_index
) {
398 case RTC_SECONDS_ALARM
:
399 case RTC_MINUTES_ALARM
:
400 case RTC_HOURS_ALARM
:
401 s
->cmos_data
[s
->cmos_index
] = data
;
402 check_update_timer(s
);
404 case RTC_IBM_PS2_CENTURY_BYTE
:
405 s
->cmos_index
= RTC_CENTURY
;
411 case RTC_DAY_OF_WEEK
:
412 case RTC_DAY_OF_MONTH
:
415 s
->cmos_data
[s
->cmos_index
] = data
;
416 /* if in set mode, do not update the time */
417 if (rtc_running(s
)) {
419 check_update_timer(s
);
423 if ((data
& 0x60) == 0x60) {
424 if (rtc_running(s
)) {
427 /* What happens to UIP when divider reset is enabled is
428 * unclear from the datasheet. Shouldn't matter much
431 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
432 } else if (((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) &&
433 (data
& 0x70) <= 0x20) {
434 /* when the divider reset is removed, the first update cycle
435 * begins one-half second later*/
436 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
437 s
->offset
= 500000000;
440 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
442 /* UIP bit is read only */
443 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
444 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
445 periodic_timer_update(s
, qemu_get_clock_ns(rtc_clock
));
446 check_update_timer(s
);
449 if (data
& REG_B_SET
) {
450 /* update cmos to when the rtc was stopping */
451 if (rtc_running(s
)) {
454 /* set mode: reset UIP mode */
455 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
458 /* if disabling set mode, update the time */
459 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
460 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20) {
461 s
->offset
= get_guest_rtc_ns(s
) % NSEC_PER_SEC
;
465 /* if an interrupt flag is already set when the interrupt
466 * becomes enabled, raise an interrupt immediately. */
467 if (data
& s
->cmos_data
[RTC_REG_C
] & REG_C_MASK
) {
468 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
469 qemu_irq_raise(s
->irq
);
471 s
->cmos_data
[RTC_REG_C
] &= ~REG_C_IRQF
;
472 qemu_irq_lower(s
->irq
);
474 s
->cmos_data
[RTC_REG_B
] = data
;
475 periodic_timer_update(s
, qemu_get_clock_ns(rtc_clock
));
476 check_update_timer(s
);
480 /* cannot write to them */
483 s
->cmos_data
[s
->cmos_index
] = data
;
489 static inline int rtc_to_bcd(RTCState
*s
, int a
)
491 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
494 return ((a
/ 10) << 4) | (a
% 10);
498 static inline int rtc_from_bcd(RTCState
*s
, int a
)
500 if ((a
& 0xc0) == 0xc0) {
503 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
506 return ((a
>> 4) * 10) + (a
& 0x0f);
510 static void rtc_get_time(RTCState
*s
, struct tm
*tm
)
512 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
513 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
514 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
515 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
517 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
521 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
522 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
523 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
525 rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
+
526 rtc_from_bcd(s
, s
->cmos_data
[RTC_CENTURY
]) * 100 - 1900;
529 static void rtc_set_time(RTCState
*s
)
533 rtc_get_time(s
, &tm
);
534 s
->base_rtc
= mktimegm(&tm
);
535 s
->last_update
= qemu_get_clock_ns(rtc_clock
);
537 rtc_change_mon_event(&tm
);
540 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
)
544 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
545 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
546 if (s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) {
548 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
551 int h
= (tm
->tm_hour
% 12) ? tm
->tm_hour
% 12 : 12;
552 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, h
);
553 if (tm
->tm_hour
>= 12)
554 s
->cmos_data
[RTC_HOURS
] |= 0x80;
556 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
557 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
558 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
559 year
= tm
->tm_year
+ 1900 - s
->base_year
;
560 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
% 100);
561 s
->cmos_data
[RTC_CENTURY
] = rtc_to_bcd(s
, year
/ 100);
564 static void rtc_update_time(RTCState
*s
)
570 guest_nsec
= get_guest_rtc_ns(s
);
571 guest_sec
= guest_nsec
/ NSEC_PER_SEC
;
572 gmtime_r(&guest_sec
, &ret
);
574 /* Is SET flag of Register B disabled? */
575 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) == 0) {
576 rtc_set_cmos(s
, &ret
);
580 static int update_in_progress(RTCState
*s
)
584 if (!rtc_running(s
)) {
587 if (qemu_timer_pending(s
->update_timer
)) {
588 int64_t next_update_time
= qemu_timer_expire_time_ns(s
->update_timer
);
589 /* Latch UIP until the timer expires. */
590 if (qemu_get_clock_ns(rtc_clock
) >= (next_update_time
- UIP_HOLD_LENGTH
)) {
591 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
596 guest_nsec
= get_guest_rtc_ns(s
);
597 /* UIP bit will be set at last 244us of every second. */
598 if ((guest_nsec
% NSEC_PER_SEC
) >= (NSEC_PER_SEC
- UIP_HOLD_LENGTH
)) {
604 static uint64_t cmos_ioport_read(void *opaque
, hwaddr addr
,
607 RTCState
*s
= opaque
;
609 if ((addr
& 1) == 0) {
612 switch(s
->cmos_index
) {
613 case RTC_IBM_PS2_CENTURY_BYTE
:
614 s
->cmos_index
= RTC_CENTURY
;
620 case RTC_DAY_OF_WEEK
:
621 case RTC_DAY_OF_MONTH
:
624 /* if not in set mode, calibrate cmos before
626 if (rtc_running(s
)) {
629 ret
= s
->cmos_data
[s
->cmos_index
];
632 if (update_in_progress(s
)) {
633 s
->cmos_data
[s
->cmos_index
] |= REG_A_UIP
;
635 s
->cmos_data
[s
->cmos_index
] &= ~REG_A_UIP
;
637 ret
= s
->cmos_data
[s
->cmos_index
];
640 ret
= s
->cmos_data
[s
->cmos_index
];
641 qemu_irq_lower(s
->irq
);
642 s
->cmos_data
[RTC_REG_C
] = 0x00;
643 if (ret
& (REG_C_UF
| REG_C_AF
)) {
644 check_update_timer(s
);
647 if(s
->irq_coalesced
&&
648 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) &&
649 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
650 s
->irq_reinject_on_ack_count
++;
651 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
| REG_C_PF
;
652 apic_reset_irq_delivered();
653 DPRINTF_C("cmos: injecting on ack\n");
654 qemu_irq_raise(s
->irq
);
655 if (apic_get_irq_delivered()) {
657 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
664 ret
= s
->cmos_data
[s
->cmos_index
];
667 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
673 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
675 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
676 if (addr
>= 0 && addr
<= 127)
677 s
->cmos_data
[addr
] = val
;
680 static void rtc_set_date_from_host(ISADevice
*dev
)
682 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
685 qemu_get_timedate(&tm
, 0);
687 s
->base_rtc
= mktimegm(&tm
);
688 s
->last_update
= qemu_get_clock_ns(rtc_clock
);
691 /* set the CMOS date */
692 rtc_set_cmos(s
, &tm
);
695 static int rtc_post_load(void *opaque
, int version_id
)
697 RTCState
*s
= opaque
;
699 if (version_id
<= 2) {
702 check_update_timer(s
);
706 if (version_id
>= 2) {
707 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
708 rtc_coalesced_timer_update(s
);
715 static const VMStateDescription vmstate_rtc
= {
716 .name
= "mc146818rtc",
718 .minimum_version_id
= 1,
719 .minimum_version_id_old
= 1,
720 .post_load
= rtc_post_load
,
721 .fields
= (VMStateField
[]) {
722 VMSTATE_BUFFER(cmos_data
, RTCState
),
723 VMSTATE_UINT8(cmos_index
, RTCState
),
725 VMSTATE_TIMER(periodic_timer
, RTCState
),
726 VMSTATE_INT64(next_periodic_time
, RTCState
),
728 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
729 VMSTATE_UINT32_V(period
, RTCState
, 2),
730 VMSTATE_UINT64_V(base_rtc
, RTCState
, 3),
731 VMSTATE_UINT64_V(last_update
, RTCState
, 3),
732 VMSTATE_INT64_V(offset
, RTCState
, 3),
733 VMSTATE_TIMER_V(update_timer
, RTCState
, 3),
734 VMSTATE_UINT64_V(next_alarm_time
, RTCState
, 3),
735 VMSTATE_END_OF_LIST()
739 static void rtc_notify_clock_reset(Notifier
*notifier
, void *data
)
741 RTCState
*s
= container_of(notifier
, RTCState
, clock_reset_notifier
);
742 int64_t now
= *(int64_t *)data
;
744 rtc_set_date_from_host(&s
->dev
);
745 periodic_timer_update(s
, now
);
746 check_update_timer(s
);
748 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
749 rtc_coalesced_timer_update(s
);
754 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
755 BIOS will read it and start S3 resume at POST Entry */
756 static void rtc_notify_suspend(Notifier
*notifier
, void *data
)
758 RTCState
*s
= container_of(notifier
, RTCState
, suspend_notifier
);
759 rtc_set_memory(&s
->dev
, 0xF, 0xFE);
762 static void rtc_reset(void *opaque
)
764 RTCState
*s
= opaque
;
766 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
767 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
768 check_update_timer(s
);
770 qemu_irq_lower(s
->irq
);
773 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
774 s
->irq_coalesced
= 0;
779 static const MemoryRegionOps cmos_ops
= {
780 .read
= cmos_ioport_read
,
781 .write
= cmos_ioport_write
,
783 .min_access_size
= 1,
784 .max_access_size
= 1,
786 .endianness
= DEVICE_LITTLE_ENDIAN
,
789 static void rtc_get_date(Object
*obj
, Visitor
*v
, void *opaque
,
790 const char *name
, Error
**errp
)
792 ISADevice
*isa
= ISA_DEVICE(obj
);
793 RTCState
*s
= DO_UPCAST(RTCState
, dev
, isa
);
794 struct tm current_tm
;
797 rtc_get_time(s
, ¤t_tm
);
798 visit_start_struct(v
, NULL
, "struct tm", name
, 0, errp
);
799 visit_type_int32(v
, ¤t_tm
.tm_year
, "tm_year", errp
);
800 visit_type_int32(v
, ¤t_tm
.tm_mon
, "tm_mon", errp
);
801 visit_type_int32(v
, ¤t_tm
.tm_mday
, "tm_mday", errp
);
802 visit_type_int32(v
, ¤t_tm
.tm_hour
, "tm_hour", errp
);
803 visit_type_int32(v
, ¤t_tm
.tm_min
, "tm_min", errp
);
804 visit_type_int32(v
, ¤t_tm
.tm_sec
, "tm_sec", errp
);
805 visit_end_struct(v
, errp
);
808 static int rtc_initfn(ISADevice
*dev
)
810 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
813 s
->cmos_data
[RTC_REG_A
] = 0x26;
814 s
->cmos_data
[RTC_REG_B
] = 0x02;
815 s
->cmos_data
[RTC_REG_C
] = 0x00;
816 s
->cmos_data
[RTC_REG_D
] = 0x80;
818 /* This is for historical reasons. The default base year qdev property
819 * was set to 2000 for most machine types before the century byte was
822 * This if statement means that the century byte will be always 0
823 * (at least until 2079...) for base_year = 1980, but will be set
824 * correctly for base_year = 2000.
826 if (s
->base_year
== 2000) {
830 rtc_set_date_from_host(dev
);
833 switch (s
->lost_tick_policy
) {
836 qemu_new_timer_ns(rtc_clock
, rtc_coalesced_timer
, s
);
838 case LOST_TICK_DISCARD
:
845 s
->periodic_timer
= qemu_new_timer_ns(rtc_clock
, rtc_periodic_timer
, s
);
846 s
->update_timer
= qemu_new_timer_ns(rtc_clock
, rtc_update_timer
, s
);
847 check_update_timer(s
);
849 s
->clock_reset_notifier
.notify
= rtc_notify_clock_reset
;
850 qemu_register_clock_reset_notifier(rtc_clock
, &s
->clock_reset_notifier
);
852 s
->suspend_notifier
.notify
= rtc_notify_suspend
;
853 qemu_register_suspend_notifier(&s
->suspend_notifier
);
855 memory_region_init_io(&s
->io
, &cmos_ops
, s
, "rtc", 2);
856 isa_register_ioport(dev
, &s
->io
, base
);
858 qdev_set_legacy_instance_id(&dev
->qdev
, base
, 3);
859 qemu_register_reset(rtc_reset
, s
);
861 object_property_add(OBJECT(s
), "date", "struct tm",
862 rtc_get_date
, NULL
, NULL
, s
, NULL
);
867 ISADevice
*rtc_init(ISABus
*bus
, int base_year
, qemu_irq intercept_irq
)
872 dev
= isa_create(bus
, "mc146818rtc");
873 s
= DO_UPCAST(RTCState
, dev
, dev
);
874 qdev_prop_set_int32(&dev
->qdev
, "base_year", base_year
);
875 qdev_init_nofail(&dev
->qdev
);
877 s
->irq
= intercept_irq
;
879 isa_init_irq(dev
, &s
->irq
, RTC_ISA_IRQ
);
884 static Property mc146818rtc_properties
[] = {
885 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
886 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState
,
887 lost_tick_policy
, LOST_TICK_DISCARD
),
888 DEFINE_PROP_END_OF_LIST(),
891 static void rtc_class_initfn(ObjectClass
*klass
, void *data
)
893 DeviceClass
*dc
= DEVICE_CLASS(klass
);
894 ISADeviceClass
*ic
= ISA_DEVICE_CLASS(klass
);
895 ic
->init
= rtc_initfn
;
897 dc
->vmsd
= &vmstate_rtc
;
898 dc
->props
= mc146818rtc_properties
;
901 static const TypeInfo mc146818rtc_info
= {
902 .name
= "mc146818rtc",
903 .parent
= TYPE_ISA_DEVICE
,
904 .instance_size
= sizeof(RTCState
),
905 .class_init
= rtc_class_initfn
,
908 static void mc146818rtc_register_types(void)
910 type_register_static(&mc146818rtc_info
);
913 type_init(mc146818rtc_register_types
)