Xen PV backend: Disable use of O_DIRECT by default as it results in crashes.
[qemu/ar7.git] / hw / mc146818rtc.c
bloba2119ad2f1b2a2ecd03a27b8a0feb1c9dfe42e5d
1 /*
2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw/hw.h"
25 #include "qemu/timer.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/mc146818rtc.h"
28 #include "qapi/visitor.h"
30 #ifdef TARGET_I386
31 #include "hw/apic.h"
32 #endif
34 //#define DEBUG_CMOS
35 //#define DEBUG_COALESCED
37 #ifdef DEBUG_CMOS
38 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
39 #else
40 # define CMOS_DPRINTF(format, ...) do { } while (0)
41 #endif
43 #ifdef DEBUG_COALESCED
44 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
45 #else
46 # define DPRINTF_C(format, ...) do { } while (0)
47 #endif
49 #define NSEC_PER_SEC 1000000000LL
50 #define SEC_PER_MIN 60
51 #define MIN_PER_HOUR 60
52 #define SEC_PER_HOUR 3600
53 #define HOUR_PER_DAY 24
54 #define SEC_PER_DAY 86400
56 #define RTC_REINJECT_ON_ACK_COUNT 20
57 #define RTC_CLOCK_RATE 32768
58 #define UIP_HOLD_LENGTH (8 * NSEC_PER_SEC / 32768)
60 typedef struct RTCState {
61 ISADevice dev;
62 MemoryRegion io;
63 uint8_t cmos_data[128];
64 uint8_t cmos_index;
65 int32_t base_year;
66 uint64_t base_rtc;
67 uint64_t last_update;
68 int64_t offset;
69 qemu_irq irq;
70 qemu_irq sqw_irq;
71 int it_shift;
72 /* periodic timer */
73 QEMUTimer *periodic_timer;
74 int64_t next_periodic_time;
75 /* update-ended timer */
76 QEMUTimer *update_timer;
77 uint64_t next_alarm_time;
78 uint16_t irq_reinject_on_ack_count;
79 uint32_t irq_coalesced;
80 uint32_t period;
81 QEMUTimer *coalesced_timer;
82 Notifier clock_reset_notifier;
83 LostTickPolicy lost_tick_policy;
84 Notifier suspend_notifier;
85 } RTCState;
87 static void rtc_set_time(RTCState *s);
88 static void rtc_update_time(RTCState *s);
89 static void rtc_set_cmos(RTCState *s, const struct tm *tm);
90 static inline int rtc_from_bcd(RTCState *s, int a);
91 static uint64_t get_next_alarm(RTCState *s);
93 static inline bool rtc_running(RTCState *s)
95 return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
96 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
99 static uint64_t get_guest_rtc_ns(RTCState *s)
101 uint64_t guest_rtc;
102 uint64_t guest_clock = qemu_get_clock_ns(rtc_clock);
104 guest_rtc = s->base_rtc * NSEC_PER_SEC
105 + guest_clock - s->last_update + s->offset;
106 return guest_rtc;
109 #ifdef TARGET_I386
110 static void rtc_coalesced_timer_update(RTCState *s)
112 if (s->irq_coalesced == 0) {
113 qemu_del_timer(s->coalesced_timer);
114 } else {
115 /* divide each RTC interval to 2 - 8 smaller intervals */
116 int c = MIN(s->irq_coalesced, 7) + 1;
117 int64_t next_clock = qemu_get_clock_ns(rtc_clock) +
118 muldiv64(s->period / c, get_ticks_per_sec(), RTC_CLOCK_RATE);
119 qemu_mod_timer(s->coalesced_timer, next_clock);
123 static void rtc_coalesced_timer(void *opaque)
125 RTCState *s = opaque;
127 if (s->irq_coalesced != 0) {
128 apic_reset_irq_delivered();
129 s->cmos_data[RTC_REG_C] |= 0xc0;
130 DPRINTF_C("cmos: injecting from timer\n");
131 qemu_irq_raise(s->irq);
132 if (apic_get_irq_delivered()) {
133 s->irq_coalesced--;
134 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
135 s->irq_coalesced);
139 rtc_coalesced_timer_update(s);
141 #endif
143 /* handle periodic timer */
144 static void periodic_timer_update(RTCState *s, int64_t current_time)
146 int period_code, period;
147 int64_t cur_clock, next_irq_clock;
149 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
150 if (period_code != 0
151 && ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
152 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
153 if (period_code <= 2)
154 period_code += 7;
155 /* period in 32 Khz cycles */
156 period = 1 << (period_code - 1);
157 #ifdef TARGET_I386
158 if (period != s->period) {
159 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
160 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
162 s->period = period;
163 #endif
164 /* compute 32 khz clock */
165 cur_clock = muldiv64(current_time, RTC_CLOCK_RATE, get_ticks_per_sec());
166 next_irq_clock = (cur_clock & ~(period - 1)) + period;
167 s->next_periodic_time =
168 muldiv64(next_irq_clock, get_ticks_per_sec(), RTC_CLOCK_RATE) + 1;
169 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
170 } else {
171 #ifdef TARGET_I386
172 s->irq_coalesced = 0;
173 #endif
174 qemu_del_timer(s->periodic_timer);
178 static void rtc_periodic_timer(void *opaque)
180 RTCState *s = opaque;
182 periodic_timer_update(s, s->next_periodic_time);
183 s->cmos_data[RTC_REG_C] |= REG_C_PF;
184 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
185 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
186 #ifdef TARGET_I386
187 if (s->lost_tick_policy == LOST_TICK_SLEW) {
188 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
189 s->irq_reinject_on_ack_count = 0;
190 apic_reset_irq_delivered();
191 qemu_irq_raise(s->irq);
192 if (!apic_get_irq_delivered()) {
193 s->irq_coalesced++;
194 rtc_coalesced_timer_update(s);
195 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
196 s->irq_coalesced);
198 } else
199 #endif
200 qemu_irq_raise(s->irq);
202 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
203 /* Not square wave at all but we don't want 2048Hz interrupts!
204 Must be seen as a pulse. */
205 qemu_irq_raise(s->sqw_irq);
209 /* handle update-ended timer */
210 static void check_update_timer(RTCState *s)
212 uint64_t next_update_time;
213 uint64_t guest_nsec;
214 int next_alarm_sec;
216 /* From the data sheet: "Holding the dividers in reset prevents
217 * interrupts from operating, while setting the SET bit allows"
218 * them to occur. However, it will prevent an alarm interrupt
219 * from occurring, because the time of day is not updated.
221 if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
222 qemu_del_timer(s->update_timer);
223 return;
225 if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
226 (s->cmos_data[RTC_REG_B] & REG_B_SET)) {
227 qemu_del_timer(s->update_timer);
228 return;
230 if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
231 (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
232 qemu_del_timer(s->update_timer);
233 return;
236 guest_nsec = get_guest_rtc_ns(s) % NSEC_PER_SEC;
237 /* if UF is clear, reprogram to next second */
238 next_update_time = qemu_get_clock_ns(rtc_clock)
239 + NSEC_PER_SEC - guest_nsec;
241 /* Compute time of next alarm. One second is already accounted
242 * for in next_update_time.
244 next_alarm_sec = get_next_alarm(s);
245 s->next_alarm_time = next_update_time + (next_alarm_sec - 1) * NSEC_PER_SEC;
247 if (s->cmos_data[RTC_REG_C] & REG_C_UF) {
248 /* UF is set, but AF is clear. Program the timer to target
249 * the alarm time. */
250 next_update_time = s->next_alarm_time;
252 if (next_update_time != qemu_timer_expire_time_ns(s->update_timer)) {
253 qemu_mod_timer(s->update_timer, next_update_time);
257 static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
259 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
260 hour %= 12;
261 if (s->cmos_data[RTC_HOURS] & 0x80) {
262 hour += 12;
265 return hour;
268 static uint64_t get_next_alarm(RTCState *s)
270 int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
271 int32_t hour, min, sec;
273 rtc_update_time(s);
275 alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
276 alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
277 alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
278 alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
280 cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
281 cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
282 cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
283 cur_hour = convert_hour(s, cur_hour);
285 if (alarm_hour == -1) {
286 alarm_hour = cur_hour;
287 if (alarm_min == -1) {
288 alarm_min = cur_min;
289 if (alarm_sec == -1) {
290 alarm_sec = cur_sec + 1;
291 } else if (cur_sec > alarm_sec) {
292 alarm_min++;
294 } else if (cur_min == alarm_min) {
295 if (alarm_sec == -1) {
296 alarm_sec = cur_sec + 1;
297 } else {
298 if (cur_sec > alarm_sec) {
299 alarm_hour++;
302 if (alarm_sec == SEC_PER_MIN) {
303 /* wrap to next hour, minutes is not in don't care mode */
304 alarm_sec = 0;
305 alarm_hour++;
307 } else if (cur_min > alarm_min) {
308 alarm_hour++;
310 } else if (cur_hour == alarm_hour) {
311 if (alarm_min == -1) {
312 alarm_min = cur_min;
313 if (alarm_sec == -1) {
314 alarm_sec = cur_sec + 1;
315 } else if (cur_sec > alarm_sec) {
316 alarm_min++;
319 if (alarm_sec == SEC_PER_MIN) {
320 alarm_sec = 0;
321 alarm_min++;
323 /* wrap to next day, hour is not in don't care mode */
324 alarm_min %= MIN_PER_HOUR;
325 } else if (cur_min == alarm_min) {
326 if (alarm_sec == -1) {
327 alarm_sec = cur_sec + 1;
329 /* wrap to next day, hours+minutes not in don't care mode */
330 alarm_sec %= SEC_PER_MIN;
334 /* values that are still don't care fire at the next min/sec */
335 if (alarm_min == -1) {
336 alarm_min = 0;
338 if (alarm_sec == -1) {
339 alarm_sec = 0;
342 /* keep values in range */
343 if (alarm_sec == SEC_PER_MIN) {
344 alarm_sec = 0;
345 alarm_min++;
347 if (alarm_min == MIN_PER_HOUR) {
348 alarm_min = 0;
349 alarm_hour++;
351 alarm_hour %= HOUR_PER_DAY;
353 hour = alarm_hour - cur_hour;
354 min = hour * MIN_PER_HOUR + alarm_min - cur_min;
355 sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
356 return sec <= 0 ? sec + SEC_PER_DAY : sec;
359 static void rtc_update_timer(void *opaque)
361 RTCState *s = opaque;
362 int32_t irqs = REG_C_UF;
363 int32_t new_irqs;
365 assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
367 /* UIP might have been latched, update time and clear it. */
368 rtc_update_time(s);
369 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
371 if (qemu_get_clock_ns(rtc_clock) >= s->next_alarm_time) {
372 irqs |= REG_C_AF;
373 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
374 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
378 new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
379 s->cmos_data[RTC_REG_C] |= irqs;
380 if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
381 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
382 qemu_irq_raise(s->irq);
384 check_update_timer(s);
387 static void cmos_ioport_write(void *opaque, hwaddr addr,
388 uint64_t data, unsigned size)
390 RTCState *s = opaque;
392 if ((addr & 1) == 0) {
393 s->cmos_index = data & 0x7f;
394 } else {
395 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
396 s->cmos_index, data);
397 switch(s->cmos_index) {
398 case RTC_SECONDS_ALARM:
399 case RTC_MINUTES_ALARM:
400 case RTC_HOURS_ALARM:
401 s->cmos_data[s->cmos_index] = data;
402 check_update_timer(s);
403 break;
404 case RTC_IBM_PS2_CENTURY_BYTE:
405 s->cmos_index = RTC_CENTURY;
406 /* fall through */
407 case RTC_CENTURY:
408 case RTC_SECONDS:
409 case RTC_MINUTES:
410 case RTC_HOURS:
411 case RTC_DAY_OF_WEEK:
412 case RTC_DAY_OF_MONTH:
413 case RTC_MONTH:
414 case RTC_YEAR:
415 s->cmos_data[s->cmos_index] = data;
416 /* if in set mode, do not update the time */
417 if (rtc_running(s)) {
418 rtc_set_time(s);
419 check_update_timer(s);
421 break;
422 case RTC_REG_A:
423 if ((data & 0x60) == 0x60) {
424 if (rtc_running(s)) {
425 rtc_update_time(s);
427 /* What happens to UIP when divider reset is enabled is
428 * unclear from the datasheet. Shouldn't matter much
429 * though.
431 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
432 } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
433 (data & 0x70) <= 0x20) {
434 /* when the divider reset is removed, the first update cycle
435 * begins one-half second later*/
436 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
437 s->offset = 500000000;
438 rtc_set_time(s);
440 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
442 /* UIP bit is read only */
443 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
444 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
445 periodic_timer_update(s, qemu_get_clock_ns(rtc_clock));
446 check_update_timer(s);
447 break;
448 case RTC_REG_B:
449 if (data & REG_B_SET) {
450 /* update cmos to when the rtc was stopping */
451 if (rtc_running(s)) {
452 rtc_update_time(s);
454 /* set mode: reset UIP mode */
455 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
456 data &= ~REG_B_UIE;
457 } else {
458 /* if disabling set mode, update the time */
459 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
460 (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
461 s->offset = get_guest_rtc_ns(s) % NSEC_PER_SEC;
462 rtc_set_time(s);
465 /* if an interrupt flag is already set when the interrupt
466 * becomes enabled, raise an interrupt immediately. */
467 if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
468 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
469 qemu_irq_raise(s->irq);
470 } else {
471 s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
472 qemu_irq_lower(s->irq);
474 s->cmos_data[RTC_REG_B] = data;
475 periodic_timer_update(s, qemu_get_clock_ns(rtc_clock));
476 check_update_timer(s);
477 break;
478 case RTC_REG_C:
479 case RTC_REG_D:
480 /* cannot write to them */
481 break;
482 default:
483 s->cmos_data[s->cmos_index] = data;
484 break;
489 static inline int rtc_to_bcd(RTCState *s, int a)
491 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
492 return a;
493 } else {
494 return ((a / 10) << 4) | (a % 10);
498 static inline int rtc_from_bcd(RTCState *s, int a)
500 if ((a & 0xc0) == 0xc0) {
501 return -1;
503 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
504 return a;
505 } else {
506 return ((a >> 4) * 10) + (a & 0x0f);
510 static void rtc_get_time(RTCState *s, struct tm *tm)
512 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
513 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
514 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
515 if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
516 tm->tm_hour %= 12;
517 if (s->cmos_data[RTC_HOURS] & 0x80) {
518 tm->tm_hour += 12;
521 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
522 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
523 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
524 tm->tm_year =
525 rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
526 rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
529 static void rtc_set_time(RTCState *s)
531 struct tm tm;
533 rtc_get_time(s, &tm);
534 s->base_rtc = mktimegm(&tm);
535 s->last_update = qemu_get_clock_ns(rtc_clock);
537 rtc_change_mon_event(&tm);
540 static void rtc_set_cmos(RTCState *s, const struct tm *tm)
542 int year;
544 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
545 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
546 if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
547 /* 24 hour format */
548 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
549 } else {
550 /* 12 hour format */
551 int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
552 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
553 if (tm->tm_hour >= 12)
554 s->cmos_data[RTC_HOURS] |= 0x80;
556 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
557 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
558 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
559 year = tm->tm_year + 1900 - s->base_year;
560 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
561 s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
564 static void rtc_update_time(RTCState *s)
566 struct tm ret;
567 time_t guest_sec;
568 int64_t guest_nsec;
570 guest_nsec = get_guest_rtc_ns(s);
571 guest_sec = guest_nsec / NSEC_PER_SEC;
572 gmtime_r(&guest_sec, &ret);
574 /* Is SET flag of Register B disabled? */
575 if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
576 rtc_set_cmos(s, &ret);
580 static int update_in_progress(RTCState *s)
582 int64_t guest_nsec;
584 if (!rtc_running(s)) {
585 return 0;
587 if (qemu_timer_pending(s->update_timer)) {
588 int64_t next_update_time = qemu_timer_expire_time_ns(s->update_timer);
589 /* Latch UIP until the timer expires. */
590 if (qemu_get_clock_ns(rtc_clock) >= (next_update_time - UIP_HOLD_LENGTH)) {
591 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
592 return 1;
596 guest_nsec = get_guest_rtc_ns(s);
597 /* UIP bit will be set at last 244us of every second. */
598 if ((guest_nsec % NSEC_PER_SEC) >= (NSEC_PER_SEC - UIP_HOLD_LENGTH)) {
599 return 1;
601 return 0;
604 static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
605 unsigned size)
607 RTCState *s = opaque;
608 int ret;
609 if ((addr & 1) == 0) {
610 return 0xff;
611 } else {
612 switch(s->cmos_index) {
613 case RTC_IBM_PS2_CENTURY_BYTE:
614 s->cmos_index = RTC_CENTURY;
615 /* fall through */
616 case RTC_CENTURY:
617 case RTC_SECONDS:
618 case RTC_MINUTES:
619 case RTC_HOURS:
620 case RTC_DAY_OF_WEEK:
621 case RTC_DAY_OF_MONTH:
622 case RTC_MONTH:
623 case RTC_YEAR:
624 /* if not in set mode, calibrate cmos before
625 * reading*/
626 if (rtc_running(s)) {
627 rtc_update_time(s);
629 ret = s->cmos_data[s->cmos_index];
630 break;
631 case RTC_REG_A:
632 if (update_in_progress(s)) {
633 s->cmos_data[s->cmos_index] |= REG_A_UIP;
634 } else {
635 s->cmos_data[s->cmos_index] &= ~REG_A_UIP;
637 ret = s->cmos_data[s->cmos_index];
638 break;
639 case RTC_REG_C:
640 ret = s->cmos_data[s->cmos_index];
641 qemu_irq_lower(s->irq);
642 s->cmos_data[RTC_REG_C] = 0x00;
643 if (ret & (REG_C_UF | REG_C_AF)) {
644 check_update_timer(s);
646 #ifdef TARGET_I386
647 if(s->irq_coalesced &&
648 (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
649 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
650 s->irq_reinject_on_ack_count++;
651 s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
652 apic_reset_irq_delivered();
653 DPRINTF_C("cmos: injecting on ack\n");
654 qemu_irq_raise(s->irq);
655 if (apic_get_irq_delivered()) {
656 s->irq_coalesced--;
657 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
658 s->irq_coalesced);
661 #endif
662 break;
663 default:
664 ret = s->cmos_data[s->cmos_index];
665 break;
667 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
668 s->cmos_index, ret);
669 return ret;
673 void rtc_set_memory(ISADevice *dev, int addr, int val)
675 RTCState *s = DO_UPCAST(RTCState, dev, dev);
676 if (addr >= 0 && addr <= 127)
677 s->cmos_data[addr] = val;
680 static void rtc_set_date_from_host(ISADevice *dev)
682 RTCState *s = DO_UPCAST(RTCState, dev, dev);
683 struct tm tm;
685 qemu_get_timedate(&tm, 0);
687 s->base_rtc = mktimegm(&tm);
688 s->last_update = qemu_get_clock_ns(rtc_clock);
689 s->offset = 0;
691 /* set the CMOS date */
692 rtc_set_cmos(s, &tm);
695 static int rtc_post_load(void *opaque, int version_id)
697 RTCState *s = opaque;
699 if (version_id <= 2) {
700 rtc_set_time(s);
701 s->offset = 0;
702 check_update_timer(s);
705 #ifdef TARGET_I386
706 if (version_id >= 2) {
707 if (s->lost_tick_policy == LOST_TICK_SLEW) {
708 rtc_coalesced_timer_update(s);
711 #endif
712 return 0;
715 static const VMStateDescription vmstate_rtc = {
716 .name = "mc146818rtc",
717 .version_id = 3,
718 .minimum_version_id = 1,
719 .minimum_version_id_old = 1,
720 .post_load = rtc_post_load,
721 .fields = (VMStateField []) {
722 VMSTATE_BUFFER(cmos_data, RTCState),
723 VMSTATE_UINT8(cmos_index, RTCState),
724 VMSTATE_UNUSED(7*4),
725 VMSTATE_TIMER(periodic_timer, RTCState),
726 VMSTATE_INT64(next_periodic_time, RTCState),
727 VMSTATE_UNUSED(3*8),
728 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
729 VMSTATE_UINT32_V(period, RTCState, 2),
730 VMSTATE_UINT64_V(base_rtc, RTCState, 3),
731 VMSTATE_UINT64_V(last_update, RTCState, 3),
732 VMSTATE_INT64_V(offset, RTCState, 3),
733 VMSTATE_TIMER_V(update_timer, RTCState, 3),
734 VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
735 VMSTATE_END_OF_LIST()
739 static void rtc_notify_clock_reset(Notifier *notifier, void *data)
741 RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
742 int64_t now = *(int64_t *)data;
744 rtc_set_date_from_host(&s->dev);
745 periodic_timer_update(s, now);
746 check_update_timer(s);
747 #ifdef TARGET_I386
748 if (s->lost_tick_policy == LOST_TICK_SLEW) {
749 rtc_coalesced_timer_update(s);
751 #endif
754 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
755 BIOS will read it and start S3 resume at POST Entry */
756 static void rtc_notify_suspend(Notifier *notifier, void *data)
758 RTCState *s = container_of(notifier, RTCState, suspend_notifier);
759 rtc_set_memory(&s->dev, 0xF, 0xFE);
762 static void rtc_reset(void *opaque)
764 RTCState *s = opaque;
766 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
767 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
768 check_update_timer(s);
770 qemu_irq_lower(s->irq);
772 #ifdef TARGET_I386
773 if (s->lost_tick_policy == LOST_TICK_SLEW) {
774 s->irq_coalesced = 0;
776 #endif
779 static const MemoryRegionOps cmos_ops = {
780 .read = cmos_ioport_read,
781 .write = cmos_ioport_write,
782 .impl = {
783 .min_access_size = 1,
784 .max_access_size = 1,
786 .endianness = DEVICE_LITTLE_ENDIAN,
789 static void rtc_get_date(Object *obj, Visitor *v, void *opaque,
790 const char *name, Error **errp)
792 ISADevice *isa = ISA_DEVICE(obj);
793 RTCState *s = DO_UPCAST(RTCState, dev, isa);
794 struct tm current_tm;
796 rtc_update_time(s);
797 rtc_get_time(s, &current_tm);
798 visit_start_struct(v, NULL, "struct tm", name, 0, errp);
799 visit_type_int32(v, &current_tm.tm_year, "tm_year", errp);
800 visit_type_int32(v, &current_tm.tm_mon, "tm_mon", errp);
801 visit_type_int32(v, &current_tm.tm_mday, "tm_mday", errp);
802 visit_type_int32(v, &current_tm.tm_hour, "tm_hour", errp);
803 visit_type_int32(v, &current_tm.tm_min, "tm_min", errp);
804 visit_type_int32(v, &current_tm.tm_sec, "tm_sec", errp);
805 visit_end_struct(v, errp);
808 static int rtc_initfn(ISADevice *dev)
810 RTCState *s = DO_UPCAST(RTCState, dev, dev);
811 int base = 0x70;
813 s->cmos_data[RTC_REG_A] = 0x26;
814 s->cmos_data[RTC_REG_B] = 0x02;
815 s->cmos_data[RTC_REG_C] = 0x00;
816 s->cmos_data[RTC_REG_D] = 0x80;
818 /* This is for historical reasons. The default base year qdev property
819 * was set to 2000 for most machine types before the century byte was
820 * implemented.
822 * This if statement means that the century byte will be always 0
823 * (at least until 2079...) for base_year = 1980, but will be set
824 * correctly for base_year = 2000.
826 if (s->base_year == 2000) {
827 s->base_year = 0;
830 rtc_set_date_from_host(dev);
832 #ifdef TARGET_I386
833 switch (s->lost_tick_policy) {
834 case LOST_TICK_SLEW:
835 s->coalesced_timer =
836 qemu_new_timer_ns(rtc_clock, rtc_coalesced_timer, s);
837 break;
838 case LOST_TICK_DISCARD:
839 break;
840 default:
841 return -EINVAL;
843 #endif
845 s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s);
846 s->update_timer = qemu_new_timer_ns(rtc_clock, rtc_update_timer, s);
847 check_update_timer(s);
849 s->clock_reset_notifier.notify = rtc_notify_clock_reset;
850 qemu_register_clock_reset_notifier(rtc_clock, &s->clock_reset_notifier);
852 s->suspend_notifier.notify = rtc_notify_suspend;
853 qemu_register_suspend_notifier(&s->suspend_notifier);
855 memory_region_init_io(&s->io, &cmos_ops, s, "rtc", 2);
856 isa_register_ioport(dev, &s->io, base);
858 qdev_set_legacy_instance_id(&dev->qdev, base, 3);
859 qemu_register_reset(rtc_reset, s);
861 object_property_add(OBJECT(s), "date", "struct tm",
862 rtc_get_date, NULL, NULL, s, NULL);
864 return 0;
867 ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
869 ISADevice *dev;
870 RTCState *s;
872 dev = isa_create(bus, "mc146818rtc");
873 s = DO_UPCAST(RTCState, dev, dev);
874 qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
875 qdev_init_nofail(&dev->qdev);
876 if (intercept_irq) {
877 s->irq = intercept_irq;
878 } else {
879 isa_init_irq(dev, &s->irq, RTC_ISA_IRQ);
881 return dev;
884 static Property mc146818rtc_properties[] = {
885 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
886 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
887 lost_tick_policy, LOST_TICK_DISCARD),
888 DEFINE_PROP_END_OF_LIST(),
891 static void rtc_class_initfn(ObjectClass *klass, void *data)
893 DeviceClass *dc = DEVICE_CLASS(klass);
894 ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
895 ic->init = rtc_initfn;
896 dc->no_user = 1;
897 dc->vmsd = &vmstate_rtc;
898 dc->props = mc146818rtc_properties;
901 static const TypeInfo mc146818rtc_info = {
902 .name = "mc146818rtc",
903 .parent = TYPE_ISA_DEVICE,
904 .instance_size = sizeof(RTCState),
905 .class_init = rtc_class_initfn,
908 static void mc146818rtc_register_types(void)
910 type_register_static(&mc146818rtc_info);
913 type_init(mc146818rtc_register_types)