target/arm: Fold regime_tcr() and regime_tcr_value() together
[qemu/ar7.git] / target / arm / helper.c
blob8847f5b90ad3de08099a11d86cdd6e1fe1a4f9e1
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "qemu/log.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/host-utils.h"
17 #include "qemu/main-loop.h"
18 #include "qemu/timer.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "qemu/range.h"
30 #include "qapi/qapi-commands-machine-target.h"
31 #include "qapi/error.h"
32 #include "qemu/guest-random.h"
33 #ifdef CONFIG_TCG
34 #include "arm_ldst.h"
35 #include "exec/cpu_ldst.h"
36 #include "semihosting/common-semi.h"
37 #endif
38 #include "cpregs.h"
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
42 static void switch_mode(CPUARMState *env, int mode);
44 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
46 assert(ri->fieldoffset);
47 if (cpreg_field_is_64bit(ri)) {
48 return CPREG_FIELD64(env, ri);
49 } else {
50 return CPREG_FIELD32(env, ri);
54 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
56 assert(ri->fieldoffset);
57 if (cpreg_field_is_64bit(ri)) {
58 CPREG_FIELD64(env, ri) = value;
59 } else {
60 CPREG_FIELD32(env, ri) = value;
64 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
66 return (char *)env + ri->fieldoffset;
69 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
71 /* Raw read of a coprocessor register (as needed for migration, etc). */
72 if (ri->type & ARM_CP_CONST) {
73 return ri->resetvalue;
74 } else if (ri->raw_readfn) {
75 return ri->raw_readfn(env, ri);
76 } else if (ri->readfn) {
77 return ri->readfn(env, ri);
78 } else {
79 return raw_read(env, ri);
83 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
84 uint64_t v)
86 /* Raw write of a coprocessor register (as needed for migration, etc).
87 * Note that constant registers are treated as write-ignored; the
88 * caller should check for success by whether a readback gives the
89 * value written.
91 if (ri->type & ARM_CP_CONST) {
92 return;
93 } else if (ri->raw_writefn) {
94 ri->raw_writefn(env, ri, v);
95 } else if (ri->writefn) {
96 ri->writefn(env, ri, v);
97 } else {
98 raw_write(env, ri, v);
102 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
104 /* Return true if the regdef would cause an assertion if you called
105 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
106 * program bug for it not to have the NO_RAW flag).
107 * NB that returning false here doesn't necessarily mean that calling
108 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
109 * read/write access functions which are safe for raw use" from "has
110 * read/write access functions which have side effects but has forgotten
111 * to provide raw access functions".
112 * The tests here line up with the conditions in read/write_raw_cp_reg()
113 * and assertions in raw_read()/raw_write().
115 if ((ri->type & ARM_CP_CONST) ||
116 ri->fieldoffset ||
117 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
118 return false;
120 return true;
123 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
125 /* Write the coprocessor state from cpu->env to the (index,value) list. */
126 int i;
127 bool ok = true;
129 for (i = 0; i < cpu->cpreg_array_len; i++) {
130 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
131 const ARMCPRegInfo *ri;
132 uint64_t newval;
134 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
135 if (!ri) {
136 ok = false;
137 continue;
139 if (ri->type & ARM_CP_NO_RAW) {
140 continue;
143 newval = read_raw_cp_reg(&cpu->env, ri);
144 if (kvm_sync) {
146 * Only sync if the previous list->cpustate sync succeeded.
147 * Rather than tracking the success/failure state for every
148 * item in the list, we just recheck "does the raw write we must
149 * have made in write_list_to_cpustate() read back OK" here.
151 uint64_t oldval = cpu->cpreg_values[i];
153 if (oldval == newval) {
154 continue;
157 write_raw_cp_reg(&cpu->env, ri, oldval);
158 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
159 continue;
162 write_raw_cp_reg(&cpu->env, ri, newval);
164 cpu->cpreg_values[i] = newval;
166 return ok;
169 bool write_list_to_cpustate(ARMCPU *cpu)
171 int i;
172 bool ok = true;
174 for (i = 0; i < cpu->cpreg_array_len; i++) {
175 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
176 uint64_t v = cpu->cpreg_values[i];
177 const ARMCPRegInfo *ri;
179 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
180 if (!ri) {
181 ok = false;
182 continue;
184 if (ri->type & ARM_CP_NO_RAW) {
185 continue;
187 /* Write value and confirm it reads back as written
188 * (to catch read-only registers and partially read-only
189 * registers where the incoming migration value doesn't match)
191 write_raw_cp_reg(&cpu->env, ri, v);
192 if (read_raw_cp_reg(&cpu->env, ri) != v) {
193 ok = false;
196 return ok;
199 static void add_cpreg_to_list(gpointer key, gpointer opaque)
201 ARMCPU *cpu = opaque;
202 uint32_t regidx = (uintptr_t)key;
203 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
205 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
206 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
207 /* The value array need not be initialized at this point */
208 cpu->cpreg_array_len++;
212 static void count_cpreg(gpointer key, gpointer opaque)
214 ARMCPU *cpu = opaque;
215 const ARMCPRegInfo *ri;
217 ri = g_hash_table_lookup(cpu->cp_regs, key);
219 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
220 cpu->cpreg_array_len++;
224 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
226 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
227 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
229 if (aidx > bidx) {
230 return 1;
232 if (aidx < bidx) {
233 return -1;
235 return 0;
238 void init_cpreg_list(ARMCPU *cpu)
240 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
241 * Note that we require cpreg_tuples[] to be sorted by key ID.
243 GList *keys;
244 int arraylen;
246 keys = g_hash_table_get_keys(cpu->cp_regs);
247 keys = g_list_sort(keys, cpreg_key_compare);
249 cpu->cpreg_array_len = 0;
251 g_list_foreach(keys, count_cpreg, cpu);
253 arraylen = cpu->cpreg_array_len;
254 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
255 cpu->cpreg_values = g_new(uint64_t, arraylen);
256 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
257 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
258 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
259 cpu->cpreg_array_len = 0;
261 g_list_foreach(keys, add_cpreg_to_list, cpu);
263 assert(cpu->cpreg_array_len == arraylen);
265 g_list_free(keys);
269 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
271 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
272 const ARMCPRegInfo *ri,
273 bool isread)
275 if (!is_a64(env) && arm_current_el(env) == 3 &&
276 arm_is_secure_below_el3(env)) {
277 return CP_ACCESS_TRAP_UNCATEGORIZED;
279 return CP_ACCESS_OK;
282 /* Some secure-only AArch32 registers trap to EL3 if used from
283 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
284 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
285 * We assume that the .access field is set to PL1_RW.
287 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
288 const ARMCPRegInfo *ri,
289 bool isread)
291 if (arm_current_el(env) == 3) {
292 return CP_ACCESS_OK;
294 if (arm_is_secure_below_el3(env)) {
295 if (env->cp15.scr_el3 & SCR_EEL2) {
296 return CP_ACCESS_TRAP_EL2;
298 return CP_ACCESS_TRAP_EL3;
300 /* This will be EL1 NS and EL2 NS, which just UNDEF */
301 return CP_ACCESS_TRAP_UNCATEGORIZED;
304 /* Check for traps to performance monitor registers, which are controlled
305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
308 bool isread)
310 int el = arm_current_el(env);
311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
314 return CP_ACCESS_TRAP_EL2;
316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
317 return CP_ACCESS_TRAP_EL3;
319 return CP_ACCESS_OK;
322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
323 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
324 bool isread)
326 if (arm_current_el(env) == 1) {
327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
328 if (arm_hcr_el2_eff(env) & trap) {
329 return CP_ACCESS_TRAP_EL2;
332 return CP_ACCESS_OK;
335 /* Check for traps from EL1 due to HCR_EL2.TSW. */
336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
337 bool isread)
339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
340 return CP_ACCESS_TRAP_EL2;
342 return CP_ACCESS_OK;
345 /* Check for traps from EL1 due to HCR_EL2.TACR. */
346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
347 bool isread)
349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
350 return CP_ACCESS_TRAP_EL2;
352 return CP_ACCESS_OK;
355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
357 bool isread)
359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
360 return CP_ACCESS_TRAP_EL2;
362 return CP_ACCESS_OK;
365 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
367 ARMCPU *cpu = env_archcpu(env);
369 raw_write(env, ri, value);
370 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
373 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
375 ARMCPU *cpu = env_archcpu(env);
377 if (raw_read(env, ri) != value) {
378 /* Unlike real hardware the qemu TLB uses virtual addresses,
379 * not modified virtual addresses, so this causes a TLB flush.
381 tlb_flush(CPU(cpu));
382 raw_write(env, ri, value);
386 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
387 uint64_t value)
389 ARMCPU *cpu = env_archcpu(env);
391 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
392 && !extended_addresses_enabled(env)) {
393 /* For VMSA (when not using the LPAE long descriptor page table
394 * format) this register includes the ASID, so do a TLB flush.
395 * For PMSA it is purely a process ID and no action is needed.
397 tlb_flush(CPU(cpu));
399 raw_write(env, ri, value);
402 /* IS variants of TLB operations must affect all cores */
403 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
404 uint64_t value)
406 CPUState *cs = env_cpu(env);
408 tlb_flush_all_cpus_synced(cs);
411 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
412 uint64_t value)
414 CPUState *cs = env_cpu(env);
416 tlb_flush_all_cpus_synced(cs);
419 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
420 uint64_t value)
422 CPUState *cs = env_cpu(env);
424 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
427 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
428 uint64_t value)
430 CPUState *cs = env_cpu(env);
432 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
436 * Non-IS variants of TLB operations are upgraded to
437 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
438 * force broadcast of these operations.
440 static bool tlb_force_broadcast(CPUARMState *env)
442 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
445 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
446 uint64_t value)
448 /* Invalidate all (TLBIALL) */
449 CPUState *cs = env_cpu(env);
451 if (tlb_force_broadcast(env)) {
452 tlb_flush_all_cpus_synced(cs);
453 } else {
454 tlb_flush(cs);
458 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
459 uint64_t value)
461 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
462 CPUState *cs = env_cpu(env);
464 value &= TARGET_PAGE_MASK;
465 if (tlb_force_broadcast(env)) {
466 tlb_flush_page_all_cpus_synced(cs, value);
467 } else {
468 tlb_flush_page(cs, value);
472 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
473 uint64_t value)
475 /* Invalidate by ASID (TLBIASID) */
476 CPUState *cs = env_cpu(env);
478 if (tlb_force_broadcast(env)) {
479 tlb_flush_all_cpus_synced(cs);
480 } else {
481 tlb_flush(cs);
485 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
486 uint64_t value)
488 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
489 CPUState *cs = env_cpu(env);
491 value &= TARGET_PAGE_MASK;
492 if (tlb_force_broadcast(env)) {
493 tlb_flush_page_all_cpus_synced(cs, value);
494 } else {
495 tlb_flush_page(cs, value);
499 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
500 uint64_t value)
502 CPUState *cs = env_cpu(env);
504 tlb_flush_by_mmuidx(cs,
505 ARMMMUIdxBit_E10_1 |
506 ARMMMUIdxBit_E10_1_PAN |
507 ARMMMUIdxBit_E10_0);
510 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
511 uint64_t value)
513 CPUState *cs = env_cpu(env);
515 tlb_flush_by_mmuidx_all_cpus_synced(cs,
516 ARMMMUIdxBit_E10_1 |
517 ARMMMUIdxBit_E10_1_PAN |
518 ARMMMUIdxBit_E10_0);
522 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
523 uint64_t value)
525 CPUState *cs = env_cpu(env);
527 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
530 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
531 uint64_t value)
533 CPUState *cs = env_cpu(env);
535 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
538 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
539 uint64_t value)
541 CPUState *cs = env_cpu(env);
542 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
544 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
547 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548 uint64_t value)
550 CPUState *cs = env_cpu(env);
551 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
553 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
554 ARMMMUIdxBit_E2);
557 static const ARMCPRegInfo cp_reginfo[] = {
558 /* Define the secure and non-secure FCSE identifier CP registers
559 * separately because there is no secure bank in V8 (no _EL3). This allows
560 * the secure register to be properly reset and migrated. There is also no
561 * v8 EL1 version of the register so the non-secure instance stands alone.
563 { .name = "FCSEIDR",
564 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
565 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
566 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
567 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
568 { .name = "FCSEIDR_S",
569 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
570 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
571 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
572 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
573 /* Define the secure and non-secure context identifier CP registers
574 * separately because there is no secure bank in V8 (no _EL3). This allows
575 * the secure register to be properly reset and migrated. In the
576 * non-secure case, the 32-bit register will have reset and migration
577 * disabled during registration as it is handled by the 64-bit instance.
579 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
580 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
581 .access = PL1_RW, .accessfn = access_tvm_trvm,
582 .secure = ARM_CP_SECSTATE_NS,
583 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
584 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
585 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
586 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
587 .access = PL1_RW, .accessfn = access_tvm_trvm,
588 .secure = ARM_CP_SECSTATE_S,
589 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
590 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
593 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
594 /* NB: Some of these registers exist in v8 but with more precise
595 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
597 /* MMU Domain access control / MPU write buffer control */
598 { .name = "DACR",
599 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
600 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
601 .writefn = dacr_write, .raw_writefn = raw_write,
602 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
603 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
604 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
605 * For v6 and v5, these mappings are overly broad.
607 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
608 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
609 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
610 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
611 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
612 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
613 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
614 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
615 /* Cache maintenance ops; some of this space may be overridden later. */
616 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
617 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
618 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
621 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
622 /* Not all pre-v6 cores implemented this WFI, so this is slightly
623 * over-broad.
625 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
626 .access = PL1_W, .type = ARM_CP_WFI },
629 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
630 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
631 * is UNPREDICTABLE; we choose to NOP as most implementations do).
633 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
634 .access = PL1_W, .type = ARM_CP_WFI },
635 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
636 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
637 * OMAPCP will override this space.
639 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
640 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
641 .resetvalue = 0 },
642 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
643 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
644 .resetvalue = 0 },
645 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
646 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
647 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
648 .resetvalue = 0 },
649 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
650 * implementing it as RAZ means the "debug architecture version" bits
651 * will read as a reserved value, which should cause Linux to not try
652 * to use the debug hardware.
654 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
655 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
656 /* MMU TLB control. Note that the wildcarding means we cover not just
657 * the unified TLB ops but also the dside/iside/inner-shareable variants.
659 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
660 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
661 .type = ARM_CP_NO_RAW },
662 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
663 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
664 .type = ARM_CP_NO_RAW },
665 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
666 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
667 .type = ARM_CP_NO_RAW },
668 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
669 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
670 .type = ARM_CP_NO_RAW },
671 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
672 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
673 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
674 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
677 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
678 uint64_t value)
680 uint32_t mask = 0;
682 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
683 if (!arm_feature(env, ARM_FEATURE_V8)) {
684 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
685 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
686 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
688 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
689 /* VFP coprocessor: cp10 & cp11 [23:20] */
690 mask |= R_CPACR_ASEDIS_MASK |
691 R_CPACR_D32DIS_MASK |
692 R_CPACR_CP11_MASK |
693 R_CPACR_CP10_MASK;
695 if (!arm_feature(env, ARM_FEATURE_NEON)) {
696 /* ASEDIS [31] bit is RAO/WI */
697 value |= R_CPACR_ASEDIS_MASK;
700 /* VFPv3 and upwards with NEON implement 32 double precision
701 * registers (D0-D31).
703 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
704 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
705 value |= R_CPACR_D32DIS_MASK;
708 value &= mask;
712 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
713 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
715 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
716 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
717 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
718 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
721 env->cp15.cpacr_el1 = value;
724 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
727 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
728 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
730 uint64_t value = env->cp15.cpacr_el1;
732 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
733 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
734 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
736 return value;
740 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
742 /* Call cpacr_write() so that we reset with the correct RAO bits set
743 * for our CPU features.
745 cpacr_write(env, ri, 0);
748 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
749 bool isread)
751 if (arm_feature(env, ARM_FEATURE_V8)) {
752 /* Check if CPACR accesses are to be trapped to EL2 */
753 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
754 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
755 return CP_ACCESS_TRAP_EL2;
756 /* Check if CPACR accesses are to be trapped to EL3 */
757 } else if (arm_current_el(env) < 3 &&
758 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
759 return CP_ACCESS_TRAP_EL3;
763 return CP_ACCESS_OK;
766 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
767 bool isread)
769 /* Check if CPTR accesses are set to trap to EL3 */
770 if (arm_current_el(env) == 2 &&
771 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
772 return CP_ACCESS_TRAP_EL3;
775 return CP_ACCESS_OK;
778 static const ARMCPRegInfo v6_cp_reginfo[] = {
779 /* prefetch by MVA in v6, NOP in v7 */
780 { .name = "MVA_prefetch",
781 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
782 .access = PL1_W, .type = ARM_CP_NOP },
783 /* We need to break the TB after ISB to execute self-modifying code
784 * correctly and also to take any pending interrupts immediately.
785 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
787 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
788 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
789 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
790 .access = PL0_W, .type = ARM_CP_NOP },
791 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
792 .access = PL0_W, .type = ARM_CP_NOP },
793 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
794 .access = PL1_RW, .accessfn = access_tvm_trvm,
795 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
796 offsetof(CPUARMState, cp15.ifar_ns) },
797 .resetvalue = 0, },
798 /* Watchpoint Fault Address Register : should actually only be present
799 * for 1136, 1176, 11MPCore.
801 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
802 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
803 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
804 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
805 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
806 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
809 typedef struct pm_event {
810 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
811 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
812 bool (*supported)(CPUARMState *);
814 * Retrieve the current count of the underlying event. The programmed
815 * counters hold a difference from the return value from this function
817 uint64_t (*get_count)(CPUARMState *);
819 * Return how many nanoseconds it will take (at a minimum) for count events
820 * to occur. A negative value indicates the counter will never overflow, or
821 * that the counter has otherwise arranged for the overflow bit to be set
822 * and the PMU interrupt to be raised on overflow.
824 int64_t (*ns_per_count)(uint64_t);
825 } pm_event;
827 static bool event_always_supported(CPUARMState *env)
829 return true;
832 static uint64_t swinc_get_count(CPUARMState *env)
835 * SW_INCR events are written directly to the pmevcntr's by writes to
836 * PMSWINC, so there is no underlying count maintained by the PMU itself
838 return 0;
841 static int64_t swinc_ns_per(uint64_t ignored)
843 return -1;
847 * Return the underlying cycle count for the PMU cycle counters. If we're in
848 * usermode, simply return 0.
850 static uint64_t cycles_get_count(CPUARMState *env)
852 #ifndef CONFIG_USER_ONLY
853 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
854 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
855 #else
856 return cpu_get_host_ticks();
857 #endif
860 #ifndef CONFIG_USER_ONLY
861 static int64_t cycles_ns_per(uint64_t cycles)
863 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
866 static bool instructions_supported(CPUARMState *env)
868 return icount_enabled() == 1; /* Precise instruction counting */
871 static uint64_t instructions_get_count(CPUARMState *env)
873 return (uint64_t)icount_get_raw();
876 static int64_t instructions_ns_per(uint64_t icount)
878 return icount_to_ns((int64_t)icount);
880 #endif
882 static bool pmu_8_1_events_supported(CPUARMState *env)
884 /* For events which are supported in any v8.1 PMU */
885 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
888 static bool pmu_8_4_events_supported(CPUARMState *env)
890 /* For events which are supported in any v8.1 PMU */
891 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
894 static uint64_t zero_event_get_count(CPUARMState *env)
896 /* For events which on QEMU never fire, so their count is always zero */
897 return 0;
900 static int64_t zero_event_ns_per(uint64_t cycles)
902 /* An event which never fires can never overflow */
903 return -1;
906 static const pm_event pm_events[] = {
907 { .number = 0x000, /* SW_INCR */
908 .supported = event_always_supported,
909 .get_count = swinc_get_count,
910 .ns_per_count = swinc_ns_per,
912 #ifndef CONFIG_USER_ONLY
913 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
914 .supported = instructions_supported,
915 .get_count = instructions_get_count,
916 .ns_per_count = instructions_ns_per,
918 { .number = 0x011, /* CPU_CYCLES, Cycle */
919 .supported = event_always_supported,
920 .get_count = cycles_get_count,
921 .ns_per_count = cycles_ns_per,
923 #endif
924 { .number = 0x023, /* STALL_FRONTEND */
925 .supported = pmu_8_1_events_supported,
926 .get_count = zero_event_get_count,
927 .ns_per_count = zero_event_ns_per,
929 { .number = 0x024, /* STALL_BACKEND */
930 .supported = pmu_8_1_events_supported,
931 .get_count = zero_event_get_count,
932 .ns_per_count = zero_event_ns_per,
934 { .number = 0x03c, /* STALL */
935 .supported = pmu_8_4_events_supported,
936 .get_count = zero_event_get_count,
937 .ns_per_count = zero_event_ns_per,
942 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
943 * events (i.e. the statistical profiling extension), this implementation
944 * should first be updated to something sparse instead of the current
945 * supported_event_map[] array.
947 #define MAX_EVENT_ID 0x3c
948 #define UNSUPPORTED_EVENT UINT16_MAX
949 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
952 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
953 * of ARM event numbers to indices in our pm_events array.
955 * Note: Events in the 0x40XX range are not currently supported.
957 void pmu_init(ARMCPU *cpu)
959 unsigned int i;
962 * Empty supported_event_map and cpu->pmceid[01] before adding supported
963 * events to them
965 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
966 supported_event_map[i] = UNSUPPORTED_EVENT;
968 cpu->pmceid0 = 0;
969 cpu->pmceid1 = 0;
971 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
972 const pm_event *cnt = &pm_events[i];
973 assert(cnt->number <= MAX_EVENT_ID);
974 /* We do not currently support events in the 0x40xx range */
975 assert(cnt->number <= 0x3f);
977 if (cnt->supported(&cpu->env)) {
978 supported_event_map[cnt->number] = i;
979 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
980 if (cnt->number & 0x20) {
981 cpu->pmceid1 |= event_mask;
982 } else {
983 cpu->pmceid0 |= event_mask;
990 * Check at runtime whether a PMU event is supported for the current machine
992 static bool event_supported(uint16_t number)
994 if (number > MAX_EVENT_ID) {
995 return false;
997 return supported_event_map[number] != UNSUPPORTED_EVENT;
1000 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1001 bool isread)
1003 /* Performance monitor registers user accessibility is controlled
1004 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1005 * trapping to EL2 or EL3 for other accesses.
1007 int el = arm_current_el(env);
1008 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1010 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1011 return CP_ACCESS_TRAP;
1013 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1014 return CP_ACCESS_TRAP_EL2;
1016 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1017 return CP_ACCESS_TRAP_EL3;
1020 return CP_ACCESS_OK;
1023 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1024 const ARMCPRegInfo *ri,
1025 bool isread)
1027 /* ER: event counter read trap control */
1028 if (arm_feature(env, ARM_FEATURE_V8)
1029 && arm_current_el(env) == 0
1030 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1031 && isread) {
1032 return CP_ACCESS_OK;
1035 return pmreg_access(env, ri, isread);
1038 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1039 const ARMCPRegInfo *ri,
1040 bool isread)
1042 /* SW: software increment write trap control */
1043 if (arm_feature(env, ARM_FEATURE_V8)
1044 && arm_current_el(env) == 0
1045 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1046 && !isread) {
1047 return CP_ACCESS_OK;
1050 return pmreg_access(env, ri, isread);
1053 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1054 const ARMCPRegInfo *ri,
1055 bool isread)
1057 /* ER: event counter read trap control */
1058 if (arm_feature(env, ARM_FEATURE_V8)
1059 && arm_current_el(env) == 0
1060 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1061 return CP_ACCESS_OK;
1064 return pmreg_access(env, ri, isread);
1067 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1068 const ARMCPRegInfo *ri,
1069 bool isread)
1071 /* CR: cycle counter read trap control */
1072 if (arm_feature(env, ARM_FEATURE_V8)
1073 && arm_current_el(env) == 0
1074 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1075 && isread) {
1076 return CP_ACCESS_OK;
1079 return pmreg_access(env, ri, isread);
1082 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1083 * the current EL, security state, and register configuration.
1085 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1087 uint64_t filter;
1088 bool e, p, u, nsk, nsu, nsh, m;
1089 bool enabled, prohibited, filtered;
1090 bool secure = arm_is_secure(env);
1091 int el = arm_current_el(env);
1092 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1093 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1095 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1096 return false;
1099 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1100 (counter < hpmn || counter == 31)) {
1101 e = env->cp15.c9_pmcr & PMCRE;
1102 } else {
1103 e = mdcr_el2 & MDCR_HPME;
1105 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1107 if (!secure) {
1108 if (el == 2 && (counter < hpmn || counter == 31)) {
1109 prohibited = mdcr_el2 & MDCR_HPMD;
1110 } else {
1111 prohibited = false;
1113 } else {
1114 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1115 !(env->cp15.mdcr_el3 & MDCR_SPME);
1118 if (prohibited && counter == 31) {
1119 prohibited = env->cp15.c9_pmcr & PMCRDP;
1122 if (counter == 31) {
1123 filter = env->cp15.pmccfiltr_el0;
1124 } else {
1125 filter = env->cp15.c14_pmevtyper[counter];
1128 p = filter & PMXEVTYPER_P;
1129 u = filter & PMXEVTYPER_U;
1130 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1131 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1132 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1133 m = arm_el_is_aa64(env, 1) &&
1134 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1136 if (el == 0) {
1137 filtered = secure ? u : u != nsu;
1138 } else if (el == 1) {
1139 filtered = secure ? p : p != nsk;
1140 } else if (el == 2) {
1141 filtered = !nsh;
1142 } else { /* EL3 */
1143 filtered = m != p;
1146 if (counter != 31) {
1148 * If not checking PMCCNTR, ensure the counter is setup to an event we
1149 * support
1151 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1152 if (!event_supported(event)) {
1153 return false;
1157 return enabled && !prohibited && !filtered;
1160 static void pmu_update_irq(CPUARMState *env)
1162 ARMCPU *cpu = env_archcpu(env);
1163 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1164 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1168 * Ensure c15_ccnt is the guest-visible count so that operations such as
1169 * enabling/disabling the counter or filtering, modifying the count itself,
1170 * etc. can be done logically. This is essentially a no-op if the counter is
1171 * not enabled at the time of the call.
1173 static void pmccntr_op_start(CPUARMState *env)
1175 uint64_t cycles = cycles_get_count(env);
1177 if (pmu_counter_enabled(env, 31)) {
1178 uint64_t eff_cycles = cycles;
1179 if (env->cp15.c9_pmcr & PMCRD) {
1180 /* Increment once every 64 processor clock cycles */
1181 eff_cycles /= 64;
1184 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1186 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1187 1ull << 63 : 1ull << 31;
1188 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1189 env->cp15.c9_pmovsr |= (1 << 31);
1190 pmu_update_irq(env);
1193 env->cp15.c15_ccnt = new_pmccntr;
1195 env->cp15.c15_ccnt_delta = cycles;
1199 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1200 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1201 * pmccntr_op_start.
1203 static void pmccntr_op_finish(CPUARMState *env)
1205 if (pmu_counter_enabled(env, 31)) {
1206 #ifndef CONFIG_USER_ONLY
1207 /* Calculate when the counter will next overflow */
1208 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1209 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1210 remaining_cycles = (uint32_t)remaining_cycles;
1212 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1214 if (overflow_in > 0) {
1215 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1216 overflow_in;
1217 ARMCPU *cpu = env_archcpu(env);
1218 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1220 #endif
1222 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1223 if (env->cp15.c9_pmcr & PMCRD) {
1224 /* Increment once every 64 processor clock cycles */
1225 prev_cycles /= 64;
1227 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1231 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1234 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1235 uint64_t count = 0;
1236 if (event_supported(event)) {
1237 uint16_t event_idx = supported_event_map[event];
1238 count = pm_events[event_idx].get_count(env);
1241 if (pmu_counter_enabled(env, counter)) {
1242 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1244 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1245 env->cp15.c9_pmovsr |= (1 << counter);
1246 pmu_update_irq(env);
1248 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1250 env->cp15.c14_pmevcntr_delta[counter] = count;
1253 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1255 if (pmu_counter_enabled(env, counter)) {
1256 #ifndef CONFIG_USER_ONLY
1257 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1258 uint16_t event_idx = supported_event_map[event];
1259 uint64_t delta = UINT32_MAX -
1260 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1261 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1263 if (overflow_in > 0) {
1264 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1265 overflow_in;
1266 ARMCPU *cpu = env_archcpu(env);
1267 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1269 #endif
1271 env->cp15.c14_pmevcntr_delta[counter] -=
1272 env->cp15.c14_pmevcntr[counter];
1276 void pmu_op_start(CPUARMState *env)
1278 unsigned int i;
1279 pmccntr_op_start(env);
1280 for (i = 0; i < pmu_num_counters(env); i++) {
1281 pmevcntr_op_start(env, i);
1285 void pmu_op_finish(CPUARMState *env)
1287 unsigned int i;
1288 pmccntr_op_finish(env);
1289 for (i = 0; i < pmu_num_counters(env); i++) {
1290 pmevcntr_op_finish(env, i);
1294 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1296 pmu_op_start(&cpu->env);
1299 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1301 pmu_op_finish(&cpu->env);
1304 void arm_pmu_timer_cb(void *opaque)
1306 ARMCPU *cpu = opaque;
1309 * Update all the counter values based on the current underlying counts,
1310 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1311 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1312 * counter may expire.
1314 pmu_op_start(&cpu->env);
1315 pmu_op_finish(&cpu->env);
1318 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1319 uint64_t value)
1321 pmu_op_start(env);
1323 if (value & PMCRC) {
1324 /* The counter has been reset */
1325 env->cp15.c15_ccnt = 0;
1328 if (value & PMCRP) {
1329 unsigned int i;
1330 for (i = 0; i < pmu_num_counters(env); i++) {
1331 env->cp15.c14_pmevcntr[i] = 0;
1335 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1336 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1338 pmu_op_finish(env);
1341 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1342 uint64_t value)
1344 unsigned int i;
1345 for (i = 0; i < pmu_num_counters(env); i++) {
1346 /* Increment a counter's count iff: */
1347 if ((value & (1 << i)) && /* counter's bit is set */
1348 /* counter is enabled and not filtered */
1349 pmu_counter_enabled(env, i) &&
1350 /* counter is SW_INCR */
1351 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1352 pmevcntr_op_start(env, i);
1355 * Detect if this write causes an overflow since we can't predict
1356 * PMSWINC overflows like we can for other events
1358 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1360 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1361 env->cp15.c9_pmovsr |= (1 << i);
1362 pmu_update_irq(env);
1365 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1367 pmevcntr_op_finish(env, i);
1372 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1374 uint64_t ret;
1375 pmccntr_op_start(env);
1376 ret = env->cp15.c15_ccnt;
1377 pmccntr_op_finish(env);
1378 return ret;
1381 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1382 uint64_t value)
1384 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1385 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1386 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1387 * accessed.
1389 env->cp15.c9_pmselr = value & 0x1f;
1392 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1393 uint64_t value)
1395 pmccntr_op_start(env);
1396 env->cp15.c15_ccnt = value;
1397 pmccntr_op_finish(env);
1400 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1401 uint64_t value)
1403 uint64_t cur_val = pmccntr_read(env, NULL);
1405 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1408 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1409 uint64_t value)
1411 pmccntr_op_start(env);
1412 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1413 pmccntr_op_finish(env);
1416 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1417 uint64_t value)
1419 pmccntr_op_start(env);
1420 /* M is not accessible from AArch32 */
1421 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1422 (value & PMCCFILTR);
1423 pmccntr_op_finish(env);
1426 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1428 /* M is not visible in AArch32 */
1429 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1432 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1433 uint64_t value)
1435 value &= pmu_counter_mask(env);
1436 env->cp15.c9_pmcnten |= value;
1439 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1440 uint64_t value)
1442 value &= pmu_counter_mask(env);
1443 env->cp15.c9_pmcnten &= ~value;
1446 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1447 uint64_t value)
1449 value &= pmu_counter_mask(env);
1450 env->cp15.c9_pmovsr &= ~value;
1451 pmu_update_irq(env);
1454 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455 uint64_t value)
1457 value &= pmu_counter_mask(env);
1458 env->cp15.c9_pmovsr |= value;
1459 pmu_update_irq(env);
1462 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1463 uint64_t value, const uint8_t counter)
1465 if (counter == 31) {
1466 pmccfiltr_write(env, ri, value);
1467 } else if (counter < pmu_num_counters(env)) {
1468 pmevcntr_op_start(env, counter);
1471 * If this counter's event type is changing, store the current
1472 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1473 * pmevcntr_op_finish has the correct baseline when it converts back to
1474 * a delta.
1476 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1477 PMXEVTYPER_EVTCOUNT;
1478 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1479 if (old_event != new_event) {
1480 uint64_t count = 0;
1481 if (event_supported(new_event)) {
1482 uint16_t event_idx = supported_event_map[new_event];
1483 count = pm_events[event_idx].get_count(env);
1485 env->cp15.c14_pmevcntr_delta[counter] = count;
1488 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1489 pmevcntr_op_finish(env, counter);
1491 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1492 * PMSELR value is equal to or greater than the number of implemented
1493 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1497 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1498 const uint8_t counter)
1500 if (counter == 31) {
1501 return env->cp15.pmccfiltr_el0;
1502 } else if (counter < pmu_num_counters(env)) {
1503 return env->cp15.c14_pmevtyper[counter];
1504 } else {
1506 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1507 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1509 return 0;
1513 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1514 uint64_t value)
1516 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1517 pmevtyper_write(env, ri, value, counter);
1520 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1521 uint64_t value)
1523 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1524 env->cp15.c14_pmevtyper[counter] = value;
1527 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1528 * pmu_op_finish calls when loading saved state for a migration. Because
1529 * we're potentially updating the type of event here, the value written to
1530 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1531 * different counter type. Therefore, we need to set this value to the
1532 * current count for the counter type we're writing so that pmu_op_finish
1533 * has the correct count for its calculation.
1535 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1536 if (event_supported(event)) {
1537 uint16_t event_idx = supported_event_map[event];
1538 env->cp15.c14_pmevcntr_delta[counter] =
1539 pm_events[event_idx].get_count(env);
1543 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1545 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1546 return pmevtyper_read(env, ri, counter);
1549 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1550 uint64_t value)
1552 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1555 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1557 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1560 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1561 uint64_t value, uint8_t counter)
1563 if (counter < pmu_num_counters(env)) {
1564 pmevcntr_op_start(env, counter);
1565 env->cp15.c14_pmevcntr[counter] = value;
1566 pmevcntr_op_finish(env, counter);
1569 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1570 * are CONSTRAINED UNPREDICTABLE.
1574 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1575 uint8_t counter)
1577 if (counter < pmu_num_counters(env)) {
1578 uint64_t ret;
1579 pmevcntr_op_start(env, counter);
1580 ret = env->cp15.c14_pmevcntr[counter];
1581 pmevcntr_op_finish(env, counter);
1582 return ret;
1583 } else {
1584 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1585 * are CONSTRAINED UNPREDICTABLE. */
1586 return 0;
1590 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1591 uint64_t value)
1593 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1594 pmevcntr_write(env, ri, value, counter);
1597 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1599 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1600 return pmevcntr_read(env, ri, counter);
1603 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1604 uint64_t value)
1606 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1607 assert(counter < pmu_num_counters(env));
1608 env->cp15.c14_pmevcntr[counter] = value;
1609 pmevcntr_write(env, ri, value, counter);
1612 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1614 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1615 assert(counter < pmu_num_counters(env));
1616 return env->cp15.c14_pmevcntr[counter];
1619 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1620 uint64_t value)
1622 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1625 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1627 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1630 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1631 uint64_t value)
1633 if (arm_feature(env, ARM_FEATURE_V8)) {
1634 env->cp15.c9_pmuserenr = value & 0xf;
1635 } else {
1636 env->cp15.c9_pmuserenr = value & 1;
1640 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1641 uint64_t value)
1643 /* We have no event counters so only the C bit can be changed */
1644 value &= pmu_counter_mask(env);
1645 env->cp15.c9_pminten |= value;
1646 pmu_update_irq(env);
1649 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1650 uint64_t value)
1652 value &= pmu_counter_mask(env);
1653 env->cp15.c9_pminten &= ~value;
1654 pmu_update_irq(env);
1657 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1658 uint64_t value)
1660 /* Note that even though the AArch64 view of this register has bits
1661 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1662 * architectural requirements for bits which are RES0 only in some
1663 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1664 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1666 raw_write(env, ri, value & ~0x1FULL);
1669 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1671 /* Begin with base v8.0 state. */
1672 uint32_t valid_mask = 0x3fff;
1673 ARMCPU *cpu = env_archcpu(env);
1676 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1677 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1678 * Instead, choose the format based on the mode of EL3.
1680 if (arm_el_is_aa64(env, 3)) {
1681 value |= SCR_FW | SCR_AW; /* RES1 */
1682 valid_mask &= ~SCR_NET; /* RES0 */
1684 if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1685 !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1686 value |= SCR_RW; /* RAO/WI */
1688 if (cpu_isar_feature(aa64_ras, cpu)) {
1689 valid_mask |= SCR_TERR;
1691 if (cpu_isar_feature(aa64_lor, cpu)) {
1692 valid_mask |= SCR_TLOR;
1694 if (cpu_isar_feature(aa64_pauth, cpu)) {
1695 valid_mask |= SCR_API | SCR_APK;
1697 if (cpu_isar_feature(aa64_sel2, cpu)) {
1698 valid_mask |= SCR_EEL2;
1700 if (cpu_isar_feature(aa64_mte, cpu)) {
1701 valid_mask |= SCR_ATA;
1703 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1704 valid_mask |= SCR_ENSCXT;
1706 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1707 valid_mask |= SCR_EASE | SCR_NMEA;
1709 } else {
1710 valid_mask &= ~(SCR_RW | SCR_ST);
1711 if (cpu_isar_feature(aa32_ras, cpu)) {
1712 valid_mask |= SCR_TERR;
1716 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1717 valid_mask &= ~SCR_HCE;
1719 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1720 * supported if EL2 exists. The bit is UNK/SBZP when
1721 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1722 * when EL2 is unavailable.
1723 * On ARMv8, this bit is always available.
1725 if (arm_feature(env, ARM_FEATURE_V7) &&
1726 !arm_feature(env, ARM_FEATURE_V8)) {
1727 valid_mask &= ~SCR_SMD;
1731 /* Clear all-context RES0 bits. */
1732 value &= valid_mask;
1733 raw_write(env, ri, value);
1736 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1739 * scr_write will set the RES1 bits on an AArch64-only CPU.
1740 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1742 scr_write(env, ri, 0);
1745 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1746 const ARMCPRegInfo *ri,
1747 bool isread)
1749 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1750 return CP_ACCESS_TRAP_EL2;
1753 return CP_ACCESS_OK;
1756 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1758 ARMCPU *cpu = env_archcpu(env);
1760 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1761 * bank
1763 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1764 ri->secure & ARM_CP_SECSTATE_S);
1766 return cpu->ccsidr[index];
1769 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1770 uint64_t value)
1772 raw_write(env, ri, value & 0xf);
1775 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1777 CPUState *cs = env_cpu(env);
1778 bool el1 = arm_current_el(env) == 1;
1779 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1780 uint64_t ret = 0;
1782 if (hcr_el2 & HCR_IMO) {
1783 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1784 ret |= CPSR_I;
1786 } else {
1787 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1788 ret |= CPSR_I;
1792 if (hcr_el2 & HCR_FMO) {
1793 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1794 ret |= CPSR_F;
1796 } else {
1797 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1798 ret |= CPSR_F;
1802 if (hcr_el2 & HCR_AMO) {
1803 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1804 ret |= CPSR_A;
1808 return ret;
1811 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1812 bool isread)
1814 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1815 return CP_ACCESS_TRAP_EL2;
1818 return CP_ACCESS_OK;
1821 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1822 bool isread)
1824 if (arm_feature(env, ARM_FEATURE_V8)) {
1825 return access_aa64_tid1(env, ri, isread);
1828 return CP_ACCESS_OK;
1831 static const ARMCPRegInfo v7_cp_reginfo[] = {
1832 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1833 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1834 .access = PL1_W, .type = ARM_CP_NOP },
1835 /* Performance monitors are implementation defined in v7,
1836 * but with an ARM recommended set of registers, which we
1837 * follow.
1839 * Performance registers fall into three categories:
1840 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1841 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1842 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1843 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1844 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1846 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1847 .access = PL0_RW, .type = ARM_CP_ALIAS,
1848 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1849 .writefn = pmcntenset_write,
1850 .accessfn = pmreg_access,
1851 .raw_writefn = raw_write },
1852 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1853 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1854 .access = PL0_RW, .accessfn = pmreg_access,
1855 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1856 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1857 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1858 .access = PL0_RW,
1859 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1860 .accessfn = pmreg_access,
1861 .writefn = pmcntenclr_write,
1862 .type = ARM_CP_ALIAS },
1863 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1864 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1865 .access = PL0_RW, .accessfn = pmreg_access,
1866 .type = ARM_CP_ALIAS,
1867 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1868 .writefn = pmcntenclr_write },
1869 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1870 .access = PL0_RW, .type = ARM_CP_IO,
1871 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1872 .accessfn = pmreg_access,
1873 .writefn = pmovsr_write,
1874 .raw_writefn = raw_write },
1875 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1876 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1877 .access = PL0_RW, .accessfn = pmreg_access,
1878 .type = ARM_CP_ALIAS | ARM_CP_IO,
1879 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1880 .writefn = pmovsr_write,
1881 .raw_writefn = raw_write },
1882 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1883 .access = PL0_W, .accessfn = pmreg_access_swinc,
1884 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1885 .writefn = pmswinc_write },
1886 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1887 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1888 .access = PL0_W, .accessfn = pmreg_access_swinc,
1889 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1890 .writefn = pmswinc_write },
1891 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1892 .access = PL0_RW, .type = ARM_CP_ALIAS,
1893 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1894 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1895 .raw_writefn = raw_write},
1896 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1897 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1898 .access = PL0_RW, .accessfn = pmreg_access_selr,
1899 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1900 .writefn = pmselr_write, .raw_writefn = raw_write, },
1901 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1902 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1903 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1904 .accessfn = pmreg_access_ccntr },
1905 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1906 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1907 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1908 .type = ARM_CP_IO,
1909 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1910 .readfn = pmccntr_read, .writefn = pmccntr_write,
1911 .raw_readfn = raw_read, .raw_writefn = raw_write, },
1912 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1913 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1914 .access = PL0_RW, .accessfn = pmreg_access,
1915 .type = ARM_CP_ALIAS | ARM_CP_IO,
1916 .resetvalue = 0, },
1917 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1918 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1919 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
1920 .access = PL0_RW, .accessfn = pmreg_access,
1921 .type = ARM_CP_IO,
1922 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1923 .resetvalue = 0, },
1924 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1925 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1926 .accessfn = pmreg_access,
1927 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1928 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1929 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1930 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1931 .accessfn = pmreg_access,
1932 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1933 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1934 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1935 .accessfn = pmreg_access_xevcntr,
1936 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
1937 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
1938 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
1939 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1940 .accessfn = pmreg_access_xevcntr,
1941 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
1942 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1943 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1944 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
1945 .resetvalue = 0,
1946 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1947 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1948 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1949 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1950 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1951 .resetvalue = 0,
1952 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1953 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1954 .access = PL1_RW, .accessfn = access_tpm,
1955 .type = ARM_CP_ALIAS | ARM_CP_IO,
1956 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1957 .resetvalue = 0,
1958 .writefn = pmintenset_write, .raw_writefn = raw_write },
1959 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1960 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1961 .access = PL1_RW, .accessfn = access_tpm,
1962 .type = ARM_CP_IO,
1963 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1964 .writefn = pmintenset_write, .raw_writefn = raw_write,
1965 .resetvalue = 0x0 },
1966 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1967 .access = PL1_RW, .accessfn = access_tpm,
1968 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
1969 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1970 .writefn = pmintenclr_write, },
1971 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1972 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1973 .access = PL1_RW, .accessfn = access_tpm,
1974 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
1975 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1976 .writefn = pmintenclr_write },
1977 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1978 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1979 .access = PL1_R,
1980 .accessfn = access_aa64_tid2,
1981 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1982 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1983 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1984 .access = PL1_RW,
1985 .accessfn = access_aa64_tid2,
1986 .writefn = csselr_write, .resetvalue = 0,
1987 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1988 offsetof(CPUARMState, cp15.csselr_ns) } },
1989 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1990 * just RAZ for all cores:
1992 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1993 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1994 .access = PL1_R, .type = ARM_CP_CONST,
1995 .accessfn = access_aa64_tid1,
1996 .resetvalue = 0 },
1997 /* Auxiliary fault status registers: these also are IMPDEF, and we
1998 * choose to RAZ/WI for all cores.
2000 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2001 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2002 .access = PL1_RW, .accessfn = access_tvm_trvm,
2003 .type = ARM_CP_CONST, .resetvalue = 0 },
2004 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2005 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2006 .access = PL1_RW, .accessfn = access_tvm_trvm,
2007 .type = ARM_CP_CONST, .resetvalue = 0 },
2008 /* MAIR can just read-as-written because we don't implement caches
2009 * and so don't need to care about memory attributes.
2011 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2012 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2013 .access = PL1_RW, .accessfn = access_tvm_trvm,
2014 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2015 .resetvalue = 0 },
2016 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2017 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2018 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2019 .resetvalue = 0 },
2020 /* For non-long-descriptor page tables these are PRRR and NMRR;
2021 * regardless they still act as reads-as-written for QEMU.
2023 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2024 * allows them to assign the correct fieldoffset based on the endianness
2025 * handled in the field definitions.
2027 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2028 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2029 .access = PL1_RW, .accessfn = access_tvm_trvm,
2030 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2031 offsetof(CPUARMState, cp15.mair0_ns) },
2032 .resetfn = arm_cp_reset_ignore },
2033 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2034 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2035 .access = PL1_RW, .accessfn = access_tvm_trvm,
2036 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2037 offsetof(CPUARMState, cp15.mair1_ns) },
2038 .resetfn = arm_cp_reset_ignore },
2039 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2040 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2041 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2042 /* 32 bit ITLB invalidates */
2043 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2044 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2045 .writefn = tlbiall_write },
2046 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2047 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2048 .writefn = tlbimva_write },
2049 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2050 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2051 .writefn = tlbiasid_write },
2052 /* 32 bit DTLB invalidates */
2053 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2054 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2055 .writefn = tlbiall_write },
2056 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2057 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2058 .writefn = tlbimva_write },
2059 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2060 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2061 .writefn = tlbiasid_write },
2062 /* 32 bit TLB invalidates */
2063 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2064 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2065 .writefn = tlbiall_write },
2066 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2067 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2068 .writefn = tlbimva_write },
2069 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2070 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2071 .writefn = tlbiasid_write },
2072 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2073 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2074 .writefn = tlbimvaa_write },
2077 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2078 /* 32 bit TLB invalidates, Inner Shareable */
2079 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2080 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2081 .writefn = tlbiall_is_write },
2082 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2083 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2084 .writefn = tlbimva_is_write },
2085 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2086 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2087 .writefn = tlbiasid_is_write },
2088 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2089 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2090 .writefn = tlbimvaa_is_write },
2093 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2094 /* PMOVSSET is not implemented in v7 before v7ve */
2095 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2096 .access = PL0_RW, .accessfn = pmreg_access,
2097 .type = ARM_CP_ALIAS | ARM_CP_IO,
2098 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2099 .writefn = pmovsset_write,
2100 .raw_writefn = raw_write },
2101 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2102 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2103 .access = PL0_RW, .accessfn = pmreg_access,
2104 .type = ARM_CP_ALIAS | ARM_CP_IO,
2105 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2106 .writefn = pmovsset_write,
2107 .raw_writefn = raw_write },
2110 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2111 uint64_t value)
2113 value &= 1;
2114 env->teecr = value;
2117 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2118 bool isread)
2121 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2122 * at all, so we don't need to check whether we're v8A.
2124 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2125 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2126 return CP_ACCESS_TRAP_EL2;
2128 return CP_ACCESS_OK;
2131 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2132 bool isread)
2134 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2135 return CP_ACCESS_TRAP;
2137 return teecr_access(env, ri, isread);
2140 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2141 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2142 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2143 .resetvalue = 0,
2144 .writefn = teecr_write, .accessfn = teecr_access },
2145 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2146 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2147 .accessfn = teehbr_access, .resetvalue = 0 },
2150 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2151 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2152 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2153 .access = PL0_RW,
2154 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2155 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2156 .access = PL0_RW,
2157 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2158 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2159 .resetfn = arm_cp_reset_ignore },
2160 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2161 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2162 .access = PL0_R|PL1_W,
2163 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2164 .resetvalue = 0},
2165 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2166 .access = PL0_R|PL1_W,
2167 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2168 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2169 .resetfn = arm_cp_reset_ignore },
2170 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2171 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2172 .access = PL1_RW,
2173 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2174 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2175 .access = PL1_RW,
2176 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2177 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2178 .resetvalue = 0 },
2181 #ifndef CONFIG_USER_ONLY
2183 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2184 bool isread)
2186 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2187 * Writable only at the highest implemented exception level.
2189 int el = arm_current_el(env);
2190 uint64_t hcr;
2191 uint32_t cntkctl;
2193 switch (el) {
2194 case 0:
2195 hcr = arm_hcr_el2_eff(env);
2196 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2197 cntkctl = env->cp15.cnthctl_el2;
2198 } else {
2199 cntkctl = env->cp15.c14_cntkctl;
2201 if (!extract32(cntkctl, 0, 2)) {
2202 return CP_ACCESS_TRAP;
2204 break;
2205 case 1:
2206 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2207 arm_is_secure_below_el3(env)) {
2208 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2209 return CP_ACCESS_TRAP_UNCATEGORIZED;
2211 break;
2212 case 2:
2213 case 3:
2214 break;
2217 if (!isread && el < arm_highest_el(env)) {
2218 return CP_ACCESS_TRAP_UNCATEGORIZED;
2221 return CP_ACCESS_OK;
2224 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2225 bool isread)
2227 unsigned int cur_el = arm_current_el(env);
2228 bool has_el2 = arm_is_el2_enabled(env);
2229 uint64_t hcr = arm_hcr_el2_eff(env);
2231 switch (cur_el) {
2232 case 0:
2233 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2234 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2235 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2236 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2239 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2240 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2241 return CP_ACCESS_TRAP;
2244 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2245 if (hcr & HCR_E2H) {
2246 if (timeridx == GTIMER_PHYS &&
2247 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2248 return CP_ACCESS_TRAP_EL2;
2250 } else {
2251 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2252 if (has_el2 && timeridx == GTIMER_PHYS &&
2253 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2254 return CP_ACCESS_TRAP_EL2;
2257 break;
2259 case 1:
2260 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2261 if (has_el2 && timeridx == GTIMER_PHYS &&
2262 (hcr & HCR_E2H
2263 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2264 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2265 return CP_ACCESS_TRAP_EL2;
2267 break;
2269 return CP_ACCESS_OK;
2272 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2273 bool isread)
2275 unsigned int cur_el = arm_current_el(env);
2276 bool has_el2 = arm_is_el2_enabled(env);
2277 uint64_t hcr = arm_hcr_el2_eff(env);
2279 switch (cur_el) {
2280 case 0:
2281 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2282 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2283 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2284 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2288 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2289 * EL0 if EL0[PV]TEN is zero.
2291 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2292 return CP_ACCESS_TRAP;
2294 /* fall through */
2296 case 1:
2297 if (has_el2 && timeridx == GTIMER_PHYS) {
2298 if (hcr & HCR_E2H) {
2299 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2300 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2301 return CP_ACCESS_TRAP_EL2;
2303 } else {
2304 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2305 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2306 return CP_ACCESS_TRAP_EL2;
2310 break;
2312 return CP_ACCESS_OK;
2315 static CPAccessResult gt_pct_access(CPUARMState *env,
2316 const ARMCPRegInfo *ri,
2317 bool isread)
2319 return gt_counter_access(env, GTIMER_PHYS, isread);
2322 static CPAccessResult gt_vct_access(CPUARMState *env,
2323 const ARMCPRegInfo *ri,
2324 bool isread)
2326 return gt_counter_access(env, GTIMER_VIRT, isread);
2329 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2330 bool isread)
2332 return gt_timer_access(env, GTIMER_PHYS, isread);
2335 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2336 bool isread)
2338 return gt_timer_access(env, GTIMER_VIRT, isread);
2341 static CPAccessResult gt_stimer_access(CPUARMState *env,
2342 const ARMCPRegInfo *ri,
2343 bool isread)
2345 /* The AArch64 register view of the secure physical timer is
2346 * always accessible from EL3, and configurably accessible from
2347 * Secure EL1.
2349 switch (arm_current_el(env)) {
2350 case 1:
2351 if (!arm_is_secure(env)) {
2352 return CP_ACCESS_TRAP;
2354 if (!(env->cp15.scr_el3 & SCR_ST)) {
2355 return CP_ACCESS_TRAP_EL3;
2357 return CP_ACCESS_OK;
2358 case 0:
2359 case 2:
2360 return CP_ACCESS_TRAP;
2361 case 3:
2362 return CP_ACCESS_OK;
2363 default:
2364 g_assert_not_reached();
2368 static uint64_t gt_get_countervalue(CPUARMState *env)
2370 ARMCPU *cpu = env_archcpu(env);
2372 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2375 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2377 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2379 if (gt->ctl & 1) {
2380 /* Timer enabled: calculate and set current ISTATUS, irq, and
2381 * reset timer to when ISTATUS next has to change
2383 uint64_t offset = timeridx == GTIMER_VIRT ?
2384 cpu->env.cp15.cntvoff_el2 : 0;
2385 uint64_t count = gt_get_countervalue(&cpu->env);
2386 /* Note that this must be unsigned 64 bit arithmetic: */
2387 int istatus = count - offset >= gt->cval;
2388 uint64_t nexttick;
2389 int irqstate;
2391 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2393 irqstate = (istatus && !(gt->ctl & 2));
2394 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2396 if (istatus) {
2397 /* Next transition is when count rolls back over to zero */
2398 nexttick = UINT64_MAX;
2399 } else {
2400 /* Next transition is when we hit cval */
2401 nexttick = gt->cval + offset;
2403 /* Note that the desired next expiry time might be beyond the
2404 * signed-64-bit range of a QEMUTimer -- in this case we just
2405 * set the timer for as far in the future as possible. When the
2406 * timer expires we will reset the timer for any remaining period.
2408 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2409 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2410 } else {
2411 timer_mod(cpu->gt_timer[timeridx], nexttick);
2413 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2414 } else {
2415 /* Timer disabled: ISTATUS and timer output always clear */
2416 gt->ctl &= ~4;
2417 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2418 timer_del(cpu->gt_timer[timeridx]);
2419 trace_arm_gt_recalc_disabled(timeridx);
2423 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2424 int timeridx)
2426 ARMCPU *cpu = env_archcpu(env);
2428 timer_del(cpu->gt_timer[timeridx]);
2431 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2433 return gt_get_countervalue(env);
2436 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2438 uint64_t hcr;
2440 switch (arm_current_el(env)) {
2441 case 2:
2442 hcr = arm_hcr_el2_eff(env);
2443 if (hcr & HCR_E2H) {
2444 return 0;
2446 break;
2447 case 0:
2448 hcr = arm_hcr_el2_eff(env);
2449 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2450 return 0;
2452 break;
2455 return env->cp15.cntvoff_el2;
2458 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2460 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2463 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2464 int timeridx,
2465 uint64_t value)
2467 trace_arm_gt_cval_write(timeridx, value);
2468 env->cp15.c14_timer[timeridx].cval = value;
2469 gt_recalc_timer(env_archcpu(env), timeridx);
2472 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2473 int timeridx)
2475 uint64_t offset = 0;
2477 switch (timeridx) {
2478 case GTIMER_VIRT:
2479 case GTIMER_HYPVIRT:
2480 offset = gt_virt_cnt_offset(env);
2481 break;
2484 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2485 (gt_get_countervalue(env) - offset));
2488 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2489 int timeridx,
2490 uint64_t value)
2492 uint64_t offset = 0;
2494 switch (timeridx) {
2495 case GTIMER_VIRT:
2496 case GTIMER_HYPVIRT:
2497 offset = gt_virt_cnt_offset(env);
2498 break;
2501 trace_arm_gt_tval_write(timeridx, value);
2502 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2503 sextract64(value, 0, 32);
2504 gt_recalc_timer(env_archcpu(env), timeridx);
2507 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2508 int timeridx,
2509 uint64_t value)
2511 ARMCPU *cpu = env_archcpu(env);
2512 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2514 trace_arm_gt_ctl_write(timeridx, value);
2515 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2516 if ((oldval ^ value) & 1) {
2517 /* Enable toggled */
2518 gt_recalc_timer(cpu, timeridx);
2519 } else if ((oldval ^ value) & 2) {
2520 /* IMASK toggled: don't need to recalculate,
2521 * just set the interrupt line based on ISTATUS
2523 int irqstate = (oldval & 4) && !(value & 2);
2525 trace_arm_gt_imask_toggle(timeridx, irqstate);
2526 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2530 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2532 gt_timer_reset(env, ri, GTIMER_PHYS);
2535 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2536 uint64_t value)
2538 gt_cval_write(env, ri, GTIMER_PHYS, value);
2541 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2543 return gt_tval_read(env, ri, GTIMER_PHYS);
2546 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2547 uint64_t value)
2549 gt_tval_write(env, ri, GTIMER_PHYS, value);
2552 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2553 uint64_t value)
2555 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2558 static int gt_phys_redir_timeridx(CPUARMState *env)
2560 switch (arm_mmu_idx(env)) {
2561 case ARMMMUIdx_E20_0:
2562 case ARMMMUIdx_E20_2:
2563 case ARMMMUIdx_E20_2_PAN:
2564 case ARMMMUIdx_SE20_0:
2565 case ARMMMUIdx_SE20_2:
2566 case ARMMMUIdx_SE20_2_PAN:
2567 return GTIMER_HYP;
2568 default:
2569 return GTIMER_PHYS;
2573 static int gt_virt_redir_timeridx(CPUARMState *env)
2575 switch (arm_mmu_idx(env)) {
2576 case ARMMMUIdx_E20_0:
2577 case ARMMMUIdx_E20_2:
2578 case ARMMMUIdx_E20_2_PAN:
2579 case ARMMMUIdx_SE20_0:
2580 case ARMMMUIdx_SE20_2:
2581 case ARMMMUIdx_SE20_2_PAN:
2582 return GTIMER_HYPVIRT;
2583 default:
2584 return GTIMER_VIRT;
2588 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2589 const ARMCPRegInfo *ri)
2591 int timeridx = gt_phys_redir_timeridx(env);
2592 return env->cp15.c14_timer[timeridx].cval;
2595 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2596 uint64_t value)
2598 int timeridx = gt_phys_redir_timeridx(env);
2599 gt_cval_write(env, ri, timeridx, value);
2602 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2603 const ARMCPRegInfo *ri)
2605 int timeridx = gt_phys_redir_timeridx(env);
2606 return gt_tval_read(env, ri, timeridx);
2609 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2610 uint64_t value)
2612 int timeridx = gt_phys_redir_timeridx(env);
2613 gt_tval_write(env, ri, timeridx, value);
2616 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2617 const ARMCPRegInfo *ri)
2619 int timeridx = gt_phys_redir_timeridx(env);
2620 return env->cp15.c14_timer[timeridx].ctl;
2623 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2624 uint64_t value)
2626 int timeridx = gt_phys_redir_timeridx(env);
2627 gt_ctl_write(env, ri, timeridx, value);
2630 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2632 gt_timer_reset(env, ri, GTIMER_VIRT);
2635 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2636 uint64_t value)
2638 gt_cval_write(env, ri, GTIMER_VIRT, value);
2641 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2643 return gt_tval_read(env, ri, GTIMER_VIRT);
2646 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2647 uint64_t value)
2649 gt_tval_write(env, ri, GTIMER_VIRT, value);
2652 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2653 uint64_t value)
2655 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2658 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2659 uint64_t value)
2661 ARMCPU *cpu = env_archcpu(env);
2663 trace_arm_gt_cntvoff_write(value);
2664 raw_write(env, ri, value);
2665 gt_recalc_timer(cpu, GTIMER_VIRT);
2668 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2669 const ARMCPRegInfo *ri)
2671 int timeridx = gt_virt_redir_timeridx(env);
2672 return env->cp15.c14_timer[timeridx].cval;
2675 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2676 uint64_t value)
2678 int timeridx = gt_virt_redir_timeridx(env);
2679 gt_cval_write(env, ri, timeridx, value);
2682 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2683 const ARMCPRegInfo *ri)
2685 int timeridx = gt_virt_redir_timeridx(env);
2686 return gt_tval_read(env, ri, timeridx);
2689 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2690 uint64_t value)
2692 int timeridx = gt_virt_redir_timeridx(env);
2693 gt_tval_write(env, ri, timeridx, value);
2696 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2697 const ARMCPRegInfo *ri)
2699 int timeridx = gt_virt_redir_timeridx(env);
2700 return env->cp15.c14_timer[timeridx].ctl;
2703 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2704 uint64_t value)
2706 int timeridx = gt_virt_redir_timeridx(env);
2707 gt_ctl_write(env, ri, timeridx, value);
2710 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2712 gt_timer_reset(env, ri, GTIMER_HYP);
2715 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2716 uint64_t value)
2718 gt_cval_write(env, ri, GTIMER_HYP, value);
2721 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2723 return gt_tval_read(env, ri, GTIMER_HYP);
2726 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2727 uint64_t value)
2729 gt_tval_write(env, ri, GTIMER_HYP, value);
2732 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2733 uint64_t value)
2735 gt_ctl_write(env, ri, GTIMER_HYP, value);
2738 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2740 gt_timer_reset(env, ri, GTIMER_SEC);
2743 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2744 uint64_t value)
2746 gt_cval_write(env, ri, GTIMER_SEC, value);
2749 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2751 return gt_tval_read(env, ri, GTIMER_SEC);
2754 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2755 uint64_t value)
2757 gt_tval_write(env, ri, GTIMER_SEC, value);
2760 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2761 uint64_t value)
2763 gt_ctl_write(env, ri, GTIMER_SEC, value);
2766 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2768 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2771 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2772 uint64_t value)
2774 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2777 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2779 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2782 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2783 uint64_t value)
2785 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2788 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2789 uint64_t value)
2791 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2794 void arm_gt_ptimer_cb(void *opaque)
2796 ARMCPU *cpu = opaque;
2798 gt_recalc_timer(cpu, GTIMER_PHYS);
2801 void arm_gt_vtimer_cb(void *opaque)
2803 ARMCPU *cpu = opaque;
2805 gt_recalc_timer(cpu, GTIMER_VIRT);
2808 void arm_gt_htimer_cb(void *opaque)
2810 ARMCPU *cpu = opaque;
2812 gt_recalc_timer(cpu, GTIMER_HYP);
2815 void arm_gt_stimer_cb(void *opaque)
2817 ARMCPU *cpu = opaque;
2819 gt_recalc_timer(cpu, GTIMER_SEC);
2822 void arm_gt_hvtimer_cb(void *opaque)
2824 ARMCPU *cpu = opaque;
2826 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2829 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2831 ARMCPU *cpu = env_archcpu(env);
2833 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2836 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2837 /* Note that CNTFRQ is purely reads-as-written for the benefit
2838 * of software; writing it doesn't actually change the timer frequency.
2839 * Our reset value matches the fixed frequency we implement the timer at.
2841 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2842 .type = ARM_CP_ALIAS,
2843 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2844 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2846 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2847 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2848 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2849 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2850 .resetfn = arm_gt_cntfrq_reset,
2852 /* overall control: mostly access permissions */
2853 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2854 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2855 .access = PL1_RW,
2856 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2857 .resetvalue = 0,
2859 /* per-timer control */
2860 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2861 .secure = ARM_CP_SECSTATE_NS,
2862 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2863 .accessfn = gt_ptimer_access,
2864 .fieldoffset = offsetoflow32(CPUARMState,
2865 cp15.c14_timer[GTIMER_PHYS].ctl),
2866 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2867 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2869 { .name = "CNTP_CTL_S",
2870 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2871 .secure = ARM_CP_SECSTATE_S,
2872 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2873 .accessfn = gt_ptimer_access,
2874 .fieldoffset = offsetoflow32(CPUARMState,
2875 cp15.c14_timer[GTIMER_SEC].ctl),
2876 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2878 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2879 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2880 .type = ARM_CP_IO, .access = PL0_RW,
2881 .accessfn = gt_ptimer_access,
2882 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2883 .resetvalue = 0,
2884 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2885 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2887 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2888 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2889 .accessfn = gt_vtimer_access,
2890 .fieldoffset = offsetoflow32(CPUARMState,
2891 cp15.c14_timer[GTIMER_VIRT].ctl),
2892 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2893 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2895 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2896 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2897 .type = ARM_CP_IO, .access = PL0_RW,
2898 .accessfn = gt_vtimer_access,
2899 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2900 .resetvalue = 0,
2901 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2902 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2904 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2905 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2906 .secure = ARM_CP_SECSTATE_NS,
2907 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2908 .accessfn = gt_ptimer_access,
2909 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2911 { .name = "CNTP_TVAL_S",
2912 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2913 .secure = ARM_CP_SECSTATE_S,
2914 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2915 .accessfn = gt_ptimer_access,
2916 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2918 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2919 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2920 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2921 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2922 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2924 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2925 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2926 .accessfn = gt_vtimer_access,
2927 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2929 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2930 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2931 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2932 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2933 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2935 /* The counter itself */
2936 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2937 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2938 .accessfn = gt_pct_access,
2939 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2941 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2942 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2943 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2944 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2946 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2947 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2948 .accessfn = gt_vct_access,
2949 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2951 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2952 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2953 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2954 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2956 /* Comparison value, indicating when the timer goes off */
2957 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2958 .secure = ARM_CP_SECSTATE_NS,
2959 .access = PL0_RW,
2960 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2961 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2962 .accessfn = gt_ptimer_access,
2963 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
2964 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
2966 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2967 .secure = ARM_CP_SECSTATE_S,
2968 .access = PL0_RW,
2969 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2970 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2971 .accessfn = gt_ptimer_access,
2972 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2974 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2975 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2976 .access = PL0_RW,
2977 .type = ARM_CP_IO,
2978 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2979 .resetvalue = 0, .accessfn = gt_ptimer_access,
2980 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
2981 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
2983 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2984 .access = PL0_RW,
2985 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2986 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2987 .accessfn = gt_vtimer_access,
2988 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
2989 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
2991 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2992 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2993 .access = PL0_RW,
2994 .type = ARM_CP_IO,
2995 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2996 .resetvalue = 0, .accessfn = gt_vtimer_access,
2997 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
2998 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3000 /* Secure timer -- this is actually restricted to only EL3
3001 * and configurably Secure-EL1 via the accessfn.
3003 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3004 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3005 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3006 .accessfn = gt_stimer_access,
3007 .readfn = gt_sec_tval_read,
3008 .writefn = gt_sec_tval_write,
3009 .resetfn = gt_sec_timer_reset,
3011 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3012 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3013 .type = ARM_CP_IO, .access = PL1_RW,
3014 .accessfn = gt_stimer_access,
3015 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3016 .resetvalue = 0,
3017 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3019 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3020 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3021 .type = ARM_CP_IO, .access = PL1_RW,
3022 .accessfn = gt_stimer_access,
3023 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3024 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3028 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3029 bool isread)
3031 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3032 return CP_ACCESS_TRAP;
3034 return CP_ACCESS_OK;
3037 #else
3039 /* In user-mode most of the generic timer registers are inaccessible
3040 * however modern kernels (4.12+) allow access to cntvct_el0
3043 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3045 ARMCPU *cpu = env_archcpu(env);
3047 /* Currently we have no support for QEMUTimer in linux-user so we
3048 * can't call gt_get_countervalue(env), instead we directly
3049 * call the lower level functions.
3051 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3054 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3055 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3056 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3057 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3058 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3059 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3061 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3062 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3063 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3064 .readfn = gt_virt_cnt_read,
3068 #endif
3070 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3072 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3073 raw_write(env, ri, value);
3074 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3075 raw_write(env, ri, value & 0xfffff6ff);
3076 } else {
3077 raw_write(env, ri, value & 0xfffff1ff);
3081 #ifndef CONFIG_USER_ONLY
3082 /* get_phys_addr() isn't present for user-mode-only targets */
3084 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3085 bool isread)
3087 if (ri->opc2 & 4) {
3088 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3089 * Secure EL1 (which can only happen if EL3 is AArch64).
3090 * They are simply UNDEF if executed from NS EL1.
3091 * They function normally from EL2 or EL3.
3093 if (arm_current_el(env) == 1) {
3094 if (arm_is_secure_below_el3(env)) {
3095 if (env->cp15.scr_el3 & SCR_EEL2) {
3096 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3098 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3100 return CP_ACCESS_TRAP_UNCATEGORIZED;
3103 return CP_ACCESS_OK;
3106 #ifdef CONFIG_TCG
3107 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3108 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3110 hwaddr phys_addr;
3111 target_ulong page_size;
3112 int prot;
3113 bool ret;
3114 uint64_t par64;
3115 bool format64 = false;
3116 MemTxAttrs attrs = {};
3117 ARMMMUFaultInfo fi = {};
3118 ARMCacheAttrs cacheattrs = {};
3120 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3121 &prot, &page_size, &fi, &cacheattrs);
3124 * ATS operations only do S1 or S1+S2 translations, so we never
3125 * have to deal with the ARMCacheAttrs format for S2 only.
3127 assert(!cacheattrs.is_s2_format);
3129 if (ret) {
3131 * Some kinds of translation fault must cause exceptions rather
3132 * than being reported in the PAR.
3134 int current_el = arm_current_el(env);
3135 int target_el;
3136 uint32_t syn, fsr, fsc;
3137 bool take_exc = false;
3139 if (fi.s1ptw && current_el == 1
3140 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3142 * Synchronous stage 2 fault on an access made as part of the
3143 * translation table walk for AT S1E0* or AT S1E1* insn
3144 * executed from NS EL1. If this is a synchronous external abort
3145 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3146 * to EL3. Otherwise the fault is taken as an exception to EL2,
3147 * and HPFAR_EL2 holds the faulting IPA.
3149 if (fi.type == ARMFault_SyncExternalOnWalk &&
3150 (env->cp15.scr_el3 & SCR_EA)) {
3151 target_el = 3;
3152 } else {
3153 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3154 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3155 env->cp15.hpfar_el2 |= HPFAR_NS;
3157 target_el = 2;
3159 take_exc = true;
3160 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3162 * Synchronous external aborts during a translation table walk
3163 * are taken as Data Abort exceptions.
3165 if (fi.stage2) {
3166 if (current_el == 3) {
3167 target_el = 3;
3168 } else {
3169 target_el = 2;
3171 } else {
3172 target_el = exception_target_el(env);
3174 take_exc = true;
3177 if (take_exc) {
3178 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3179 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3180 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3181 fsr = arm_fi_to_lfsc(&fi);
3182 fsc = extract32(fsr, 0, 6);
3183 } else {
3184 fsr = arm_fi_to_sfsc(&fi);
3185 fsc = 0x3f;
3188 * Report exception with ESR indicating a fault due to a
3189 * translation table walk for a cache maintenance instruction.
3191 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3192 fi.ea, 1, fi.s1ptw, 1, fsc);
3193 env->exception.vaddress = value;
3194 env->exception.fsr = fsr;
3195 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3199 if (is_a64(env)) {
3200 format64 = true;
3201 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3203 * ATS1Cxx:
3204 * * TTBCR.EAE determines whether the result is returned using the
3205 * 32-bit or the 64-bit PAR format
3206 * * Instructions executed in Hyp mode always use the 64bit format
3208 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3209 * * The Non-secure TTBCR.EAE bit is set to 1
3210 * * The implementation includes EL2, and the value of HCR.VM is 1
3212 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3214 * ATS1Hx always uses the 64bit format.
3216 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3218 if (arm_feature(env, ARM_FEATURE_EL2)) {
3219 if (mmu_idx == ARMMMUIdx_E10_0 ||
3220 mmu_idx == ARMMMUIdx_E10_1 ||
3221 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3222 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3223 } else {
3224 format64 |= arm_current_el(env) == 2;
3229 if (format64) {
3230 /* Create a 64-bit PAR */
3231 par64 = (1 << 11); /* LPAE bit always set */
3232 if (!ret) {
3233 par64 |= phys_addr & ~0xfffULL;
3234 if (!attrs.secure) {
3235 par64 |= (1 << 9); /* NS */
3237 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3238 par64 |= cacheattrs.shareability << 7; /* SH */
3239 } else {
3240 uint32_t fsr = arm_fi_to_lfsc(&fi);
3242 par64 |= 1; /* F */
3243 par64 |= (fsr & 0x3f) << 1; /* FS */
3244 if (fi.stage2) {
3245 par64 |= (1 << 9); /* S */
3247 if (fi.s1ptw) {
3248 par64 |= (1 << 8); /* PTW */
3251 } else {
3252 /* fsr is a DFSR/IFSR value for the short descriptor
3253 * translation table format (with WnR always clear).
3254 * Convert it to a 32-bit PAR.
3256 if (!ret) {
3257 /* We do not set any attribute bits in the PAR */
3258 if (page_size == (1 << 24)
3259 && arm_feature(env, ARM_FEATURE_V7)) {
3260 par64 = (phys_addr & 0xff000000) | (1 << 1);
3261 } else {
3262 par64 = phys_addr & 0xfffff000;
3264 if (!attrs.secure) {
3265 par64 |= (1 << 9); /* NS */
3267 } else {
3268 uint32_t fsr = arm_fi_to_sfsc(&fi);
3270 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3271 ((fsr & 0xf) << 1) | 1;
3274 return par64;
3276 #endif /* CONFIG_TCG */
3278 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3280 #ifdef CONFIG_TCG
3281 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3282 uint64_t par64;
3283 ARMMMUIdx mmu_idx;
3284 int el = arm_current_el(env);
3285 bool secure = arm_is_secure_below_el3(env);
3287 switch (ri->opc2 & 6) {
3288 case 0:
3289 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3290 switch (el) {
3291 case 3:
3292 mmu_idx = ARMMMUIdx_SE3;
3293 break;
3294 case 2:
3295 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3296 /* fall through */
3297 case 1:
3298 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3299 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3300 : ARMMMUIdx_Stage1_E1_PAN);
3301 } else {
3302 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3304 break;
3305 default:
3306 g_assert_not_reached();
3308 break;
3309 case 2:
3310 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3311 switch (el) {
3312 case 3:
3313 mmu_idx = ARMMMUIdx_SE10_0;
3314 break;
3315 case 2:
3316 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3317 mmu_idx = ARMMMUIdx_Stage1_E0;
3318 break;
3319 case 1:
3320 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3321 break;
3322 default:
3323 g_assert_not_reached();
3325 break;
3326 case 4:
3327 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3328 mmu_idx = ARMMMUIdx_E10_1;
3329 break;
3330 case 6:
3331 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3332 mmu_idx = ARMMMUIdx_E10_0;
3333 break;
3334 default:
3335 g_assert_not_reached();
3338 par64 = do_ats_write(env, value, access_type, mmu_idx);
3340 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3341 #else
3342 /* Handled by hardware accelerator. */
3343 g_assert_not_reached();
3344 #endif /* CONFIG_TCG */
3347 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3348 uint64_t value)
3350 #ifdef CONFIG_TCG
3351 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3352 uint64_t par64;
3354 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3356 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3357 #else
3358 /* Handled by hardware accelerator. */
3359 g_assert_not_reached();
3360 #endif /* CONFIG_TCG */
3363 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3364 bool isread)
3366 if (arm_current_el(env) == 3 &&
3367 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3368 return CP_ACCESS_TRAP;
3370 return CP_ACCESS_OK;
3373 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3374 uint64_t value)
3376 #ifdef CONFIG_TCG
3377 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3378 ARMMMUIdx mmu_idx;
3379 int secure = arm_is_secure_below_el3(env);
3381 switch (ri->opc2 & 6) {
3382 case 0:
3383 switch (ri->opc1) {
3384 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3385 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3386 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3387 : ARMMMUIdx_Stage1_E1_PAN);
3388 } else {
3389 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3391 break;
3392 case 4: /* AT S1E2R, AT S1E2W */
3393 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3394 break;
3395 case 6: /* AT S1E3R, AT S1E3W */
3396 mmu_idx = ARMMMUIdx_SE3;
3397 break;
3398 default:
3399 g_assert_not_reached();
3401 break;
3402 case 2: /* AT S1E0R, AT S1E0W */
3403 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3404 break;
3405 case 4: /* AT S12E1R, AT S12E1W */
3406 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3407 break;
3408 case 6: /* AT S12E0R, AT S12E0W */
3409 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3410 break;
3411 default:
3412 g_assert_not_reached();
3415 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3416 #else
3417 /* Handled by hardware accelerator. */
3418 g_assert_not_reached();
3419 #endif /* CONFIG_TCG */
3421 #endif
3423 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3424 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3425 .access = PL1_RW, .resetvalue = 0,
3426 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3427 offsetoflow32(CPUARMState, cp15.par_ns) },
3428 .writefn = par_write },
3429 #ifndef CONFIG_USER_ONLY
3430 /* This underdecoding is safe because the reginfo is NO_RAW. */
3431 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3432 .access = PL1_W, .accessfn = ats_access,
3433 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3434 #endif
3437 /* Return basic MPU access permission bits. */
3438 static uint32_t simple_mpu_ap_bits(uint32_t val)
3440 uint32_t ret;
3441 uint32_t mask;
3442 int i;
3443 ret = 0;
3444 mask = 3;
3445 for (i = 0; i < 16; i += 2) {
3446 ret |= (val >> i) & mask;
3447 mask <<= 2;
3449 return ret;
3452 /* Pad basic MPU access permission bits to extended format. */
3453 static uint32_t extended_mpu_ap_bits(uint32_t val)
3455 uint32_t ret;
3456 uint32_t mask;
3457 int i;
3458 ret = 0;
3459 mask = 3;
3460 for (i = 0; i < 16; i += 2) {
3461 ret |= (val & mask) << i;
3462 mask <<= 2;
3464 return ret;
3467 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3468 uint64_t value)
3470 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3473 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3475 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3478 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3479 uint64_t value)
3481 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3484 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3486 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3489 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3491 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3493 if (!u32p) {
3494 return 0;
3497 u32p += env->pmsav7.rnr[M_REG_NS];
3498 return *u32p;
3501 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3502 uint64_t value)
3504 ARMCPU *cpu = env_archcpu(env);
3505 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3507 if (!u32p) {
3508 return;
3511 u32p += env->pmsav7.rnr[M_REG_NS];
3512 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3513 *u32p = value;
3516 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3517 uint64_t value)
3519 ARMCPU *cpu = env_archcpu(env);
3520 uint32_t nrgs = cpu->pmsav7_dregion;
3522 if (value >= nrgs) {
3523 qemu_log_mask(LOG_GUEST_ERROR,
3524 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3525 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3526 return;
3529 raw_write(env, ri, value);
3532 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3533 /* Reset for all these registers is handled in arm_cpu_reset(),
3534 * because the PMSAv7 is also used by M-profile CPUs, which do
3535 * not register cpregs but still need the state to be reset.
3537 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3538 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3539 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3540 .readfn = pmsav7_read, .writefn = pmsav7_write,
3541 .resetfn = arm_cp_reset_ignore },
3542 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3543 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3544 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3545 .readfn = pmsav7_read, .writefn = pmsav7_write,
3546 .resetfn = arm_cp_reset_ignore },
3547 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3548 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3549 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3550 .readfn = pmsav7_read, .writefn = pmsav7_write,
3551 .resetfn = arm_cp_reset_ignore },
3552 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3553 .access = PL1_RW,
3554 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3555 .writefn = pmsav7_rgnr_write,
3556 .resetfn = arm_cp_reset_ignore },
3559 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3560 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3561 .access = PL1_RW, .type = ARM_CP_ALIAS,
3562 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3563 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3564 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3565 .access = PL1_RW, .type = ARM_CP_ALIAS,
3566 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3567 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3568 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3569 .access = PL1_RW,
3570 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3571 .resetvalue = 0, },
3572 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3573 .access = PL1_RW,
3574 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3575 .resetvalue = 0, },
3576 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3577 .access = PL1_RW,
3578 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3579 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3580 .access = PL1_RW,
3581 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3582 /* Protection region base and size registers */
3583 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3584 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3585 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3586 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3587 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3588 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3589 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3590 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3591 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3592 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3593 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3594 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3595 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3596 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3597 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3598 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3599 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3600 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3601 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3602 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3603 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3604 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3605 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3606 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3609 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3610 uint64_t value)
3612 TCR *tcr = raw_ptr(env, ri);
3613 int maskshift = extract32(value, 0, 3);
3615 if (!arm_feature(env, ARM_FEATURE_V8)) {
3616 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3617 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3618 * using Long-desciptor translation table format */
3619 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3620 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3621 /* In an implementation that includes the Security Extensions
3622 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3623 * Short-descriptor translation table format.
3625 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3626 } else {
3627 value &= TTBCR_N;
3631 /* Update the masks corresponding to the TCR bank being written
3632 * Note that we always calculate mask and base_mask, but
3633 * they are only used for short-descriptor tables (ie if EAE is 0);
3634 * for long-descriptor tables the TCR fields are used differently
3635 * and the mask and base_mask values are meaningless.
3637 tcr->raw_tcr = value;
3638 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3639 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3642 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3643 uint64_t value)
3645 ARMCPU *cpu = env_archcpu(env);
3646 TCR *tcr = raw_ptr(env, ri);
3648 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3649 /* With LPAE the TTBCR could result in a change of ASID
3650 * via the TTBCR.A1 bit, so do a TLB flush.
3652 tlb_flush(CPU(cpu));
3654 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3655 value = deposit64(tcr->raw_tcr, 0, 32, value);
3656 vmsa_ttbcr_raw_write(env, ri, value);
3659 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3661 TCR *tcr = raw_ptr(env, ri);
3663 /* Reset both the TCR as well as the masks corresponding to the bank of
3664 * the TCR being reset.
3666 tcr->raw_tcr = 0;
3667 tcr->mask = 0;
3668 tcr->base_mask = 0xffffc000u;
3671 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3672 uint64_t value)
3674 ARMCPU *cpu = env_archcpu(env);
3675 TCR *tcr = raw_ptr(env, ri);
3677 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3678 tlb_flush(CPU(cpu));
3679 tcr->raw_tcr = value;
3682 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3683 uint64_t value)
3685 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3686 if (cpreg_field_is_64bit(ri) &&
3687 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3688 ARMCPU *cpu = env_archcpu(env);
3689 tlb_flush(CPU(cpu));
3691 raw_write(env, ri, value);
3694 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3695 uint64_t value)
3698 * If we are running with E2&0 regime, then an ASID is active.
3699 * Flush if that might be changing. Note we're not checking
3700 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3701 * holds the active ASID, only checking the field that might.
3703 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3704 (arm_hcr_el2_eff(env) & HCR_E2H)) {
3705 uint16_t mask = ARMMMUIdxBit_E20_2 |
3706 ARMMMUIdxBit_E20_2_PAN |
3707 ARMMMUIdxBit_E20_0;
3709 if (arm_is_secure_below_el3(env)) {
3710 mask >>= ARM_MMU_IDX_A_NS;
3713 tlb_flush_by_mmuidx(env_cpu(env), mask);
3715 raw_write(env, ri, value);
3718 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3719 uint64_t value)
3721 ARMCPU *cpu = env_archcpu(env);
3722 CPUState *cs = CPU(cpu);
3725 * A change in VMID to the stage2 page table (Stage2) invalidates
3726 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3728 if (raw_read(env, ri) != value) {
3729 uint16_t mask = ARMMMUIdxBit_E10_1 |
3730 ARMMMUIdxBit_E10_1_PAN |
3731 ARMMMUIdxBit_E10_0;
3733 if (arm_is_secure_below_el3(env)) {
3734 mask >>= ARM_MMU_IDX_A_NS;
3737 tlb_flush_by_mmuidx(cs, mask);
3738 raw_write(env, ri, value);
3742 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3743 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3744 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
3745 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3746 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3747 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3748 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3749 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3750 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3751 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3752 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3753 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3754 offsetof(CPUARMState, cp15.dfar_ns) } },
3755 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3756 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3757 .access = PL1_RW, .accessfn = access_tvm_trvm,
3758 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3759 .resetvalue = 0, },
3762 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3763 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3764 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3765 .access = PL1_RW, .accessfn = access_tvm_trvm,
3766 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3767 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3768 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3769 .access = PL1_RW, .accessfn = access_tvm_trvm,
3770 .writefn = vmsa_ttbr_write, .resetvalue = 0,
3771 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3772 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3773 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3774 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3775 .access = PL1_RW, .accessfn = access_tvm_trvm,
3776 .writefn = vmsa_ttbr_write, .resetvalue = 0,
3777 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3778 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3779 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3780 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3781 .access = PL1_RW, .accessfn = access_tvm_trvm,
3782 .writefn = vmsa_tcr_el12_write,
3783 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3784 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3785 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3786 .access = PL1_RW, .accessfn = access_tvm_trvm,
3787 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3788 .raw_writefn = vmsa_ttbcr_raw_write,
3789 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
3790 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
3791 offsetof(CPUARMState, cp15.tcr_el[1])} },
3794 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3795 * qemu tlbs nor adjusting cached masks.
3797 static const ARMCPRegInfo ttbcr2_reginfo = {
3798 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3799 .access = PL1_RW, .accessfn = access_tvm_trvm,
3800 .type = ARM_CP_ALIAS,
3801 .bank_fieldoffsets = {
3802 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
3803 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
3807 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3808 uint64_t value)
3810 env->cp15.c15_ticonfig = value & 0xe7;
3811 /* The OS_TYPE bit in this register changes the reported CPUID! */
3812 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3813 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3816 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3817 uint64_t value)
3819 env->cp15.c15_threadid = value & 0xffff;
3822 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3823 uint64_t value)
3825 /* Wait-for-interrupt (deprecated) */
3826 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3829 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3830 uint64_t value)
3832 /* On OMAP there are registers indicating the max/min index of dcache lines
3833 * containing a dirty line; cache flush operations have to reset these.
3835 env->cp15.c15_i_max = 0x000;
3836 env->cp15.c15_i_min = 0xff0;
3839 static const ARMCPRegInfo omap_cp_reginfo[] = {
3840 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3841 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3842 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3843 .resetvalue = 0, },
3844 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3845 .access = PL1_RW, .type = ARM_CP_NOP },
3846 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3847 .access = PL1_RW,
3848 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3849 .writefn = omap_ticonfig_write },
3850 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3851 .access = PL1_RW,
3852 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3853 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3854 .access = PL1_RW, .resetvalue = 0xff0,
3855 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3856 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3857 .access = PL1_RW,
3858 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3859 .writefn = omap_threadid_write },
3860 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3861 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3862 .type = ARM_CP_NO_RAW,
3863 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3864 /* TODO: Peripheral port remap register:
3865 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3866 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3867 * when MMU is off.
3869 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3870 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3871 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3872 .writefn = omap_cachemaint_write },
3873 { .name = "C9", .cp = 15, .crn = 9,
3874 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3875 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3878 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3879 uint64_t value)
3881 env->cp15.c15_cpar = value & 0x3fff;
3884 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3885 { .name = "XSCALE_CPAR",
3886 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3887 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3888 .writefn = xscale_cpar_write, },
3889 { .name = "XSCALE_AUXCR",
3890 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3891 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3892 .resetvalue = 0, },
3893 /* XScale specific cache-lockdown: since we have no cache we NOP these
3894 * and hope the guest does not really rely on cache behaviour.
3896 { .name = "XSCALE_LOCK_ICACHE_LINE",
3897 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3898 .access = PL1_W, .type = ARM_CP_NOP },
3899 { .name = "XSCALE_UNLOCK_ICACHE",
3900 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3901 .access = PL1_W, .type = ARM_CP_NOP },
3902 { .name = "XSCALE_DCACHE_LOCK",
3903 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3904 .access = PL1_RW, .type = ARM_CP_NOP },
3905 { .name = "XSCALE_UNLOCK_DCACHE",
3906 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3907 .access = PL1_W, .type = ARM_CP_NOP },
3910 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3911 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3912 * implementation of this implementation-defined space.
3913 * Ideally this should eventually disappear in favour of actually
3914 * implementing the correct behaviour for all cores.
3916 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3917 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3918 .access = PL1_RW,
3919 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3920 .resetvalue = 0 },
3923 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3924 /* Cache status: RAZ because we have no cache so it's always clean */
3925 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3926 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3927 .resetvalue = 0 },
3930 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3931 /* We never have a a block transfer operation in progress */
3932 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3933 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3934 .resetvalue = 0 },
3935 /* The cache ops themselves: these all NOP for QEMU */
3936 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3937 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3938 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3939 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3940 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3941 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3942 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3943 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3944 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3945 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3946 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3947 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3950 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3951 /* The cache test-and-clean instructions always return (1 << 30)
3952 * to indicate that there are no dirty cache lines.
3954 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3955 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3956 .resetvalue = (1 << 30) },
3957 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3958 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3959 .resetvalue = (1 << 30) },
3962 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3963 /* Ignore ReadBuffer accesses */
3964 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3965 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3966 .access = PL1_RW, .resetvalue = 0,
3967 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3970 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3972 unsigned int cur_el = arm_current_el(env);
3974 if (arm_is_el2_enabled(env) && cur_el == 1) {
3975 return env->cp15.vpidr_el2;
3977 return raw_read(env, ri);
3980 static uint64_t mpidr_read_val(CPUARMState *env)
3982 ARMCPU *cpu = env_archcpu(env);
3983 uint64_t mpidr = cpu->mp_affinity;
3985 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3986 mpidr |= (1U << 31);
3987 /* Cores which are uniprocessor (non-coherent)
3988 * but still implement the MP extensions set
3989 * bit 30. (For instance, Cortex-R5).
3991 if (cpu->mp_is_up) {
3992 mpidr |= (1u << 30);
3995 return mpidr;
3998 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4000 unsigned int cur_el = arm_current_el(env);
4002 if (arm_is_el2_enabled(env) && cur_el == 1) {
4003 return env->cp15.vmpidr_el2;
4005 return mpidr_read_val(env);
4008 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4009 /* NOP AMAIR0/1 */
4010 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4011 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4012 .access = PL1_RW, .accessfn = access_tvm_trvm,
4013 .type = ARM_CP_CONST, .resetvalue = 0 },
4014 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4015 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4016 .access = PL1_RW, .accessfn = access_tvm_trvm,
4017 .type = ARM_CP_CONST, .resetvalue = 0 },
4018 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4019 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4020 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4021 offsetof(CPUARMState, cp15.par_ns)} },
4022 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4023 .access = PL1_RW, .accessfn = access_tvm_trvm,
4024 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4025 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4026 offsetof(CPUARMState, cp15.ttbr0_ns) },
4027 .writefn = vmsa_ttbr_write, },
4028 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4029 .access = PL1_RW, .accessfn = access_tvm_trvm,
4030 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4031 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4032 offsetof(CPUARMState, cp15.ttbr1_ns) },
4033 .writefn = vmsa_ttbr_write, },
4036 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4038 return vfp_get_fpcr(env);
4041 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4042 uint64_t value)
4044 vfp_set_fpcr(env, value);
4047 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4049 return vfp_get_fpsr(env);
4052 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4053 uint64_t value)
4055 vfp_set_fpsr(env, value);
4058 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4059 bool isread)
4061 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4062 return CP_ACCESS_TRAP;
4064 return CP_ACCESS_OK;
4067 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4068 uint64_t value)
4070 env->daif = value & PSTATE_DAIF;
4073 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4075 return env->pstate & PSTATE_PAN;
4078 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4079 uint64_t value)
4081 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4084 static const ARMCPRegInfo pan_reginfo = {
4085 .name = "PAN", .state = ARM_CP_STATE_AA64,
4086 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4087 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4088 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4091 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4093 return env->pstate & PSTATE_UAO;
4096 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4097 uint64_t value)
4099 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4102 static const ARMCPRegInfo uao_reginfo = {
4103 .name = "UAO", .state = ARM_CP_STATE_AA64,
4104 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4105 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4106 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4109 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4111 return env->pstate & PSTATE_DIT;
4114 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115 uint64_t value)
4117 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4120 static const ARMCPRegInfo dit_reginfo = {
4121 .name = "DIT", .state = ARM_CP_STATE_AA64,
4122 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4123 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4124 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4127 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4129 return env->pstate & PSTATE_SSBS;
4132 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4133 uint64_t value)
4135 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4138 static const ARMCPRegInfo ssbs_reginfo = {
4139 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4140 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4141 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4142 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4145 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4146 const ARMCPRegInfo *ri,
4147 bool isread)
4149 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4150 switch (arm_current_el(env)) {
4151 case 0:
4152 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4153 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4154 return CP_ACCESS_TRAP;
4156 /* fall through */
4157 case 1:
4158 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4159 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4160 return CP_ACCESS_TRAP_EL2;
4162 break;
4164 return CP_ACCESS_OK;
4167 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4168 const ARMCPRegInfo *ri,
4169 bool isread)
4171 /* Cache invalidate/clean to Point of Unification... */
4172 switch (arm_current_el(env)) {
4173 case 0:
4174 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4175 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4176 return CP_ACCESS_TRAP;
4178 /* fall through */
4179 case 1:
4180 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4181 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4182 return CP_ACCESS_TRAP_EL2;
4184 break;
4186 return CP_ACCESS_OK;
4189 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4190 * Page D4-1736 (DDI0487A.b)
4193 static int vae1_tlbmask(CPUARMState *env)
4195 uint64_t hcr = arm_hcr_el2_eff(env);
4196 uint16_t mask;
4198 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4199 mask = ARMMMUIdxBit_E20_2 |
4200 ARMMMUIdxBit_E20_2_PAN |
4201 ARMMMUIdxBit_E20_0;
4202 } else {
4203 mask = ARMMMUIdxBit_E10_1 |
4204 ARMMMUIdxBit_E10_1_PAN |
4205 ARMMMUIdxBit_E10_0;
4208 if (arm_is_secure_below_el3(env)) {
4209 mask >>= ARM_MMU_IDX_A_NS;
4212 return mask;
4215 /* Return 56 if TBI is enabled, 64 otherwise. */
4216 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4217 uint64_t addr)
4219 uint64_t tcr = regime_tcr(env, mmu_idx);
4220 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4221 int select = extract64(addr, 55, 1);
4223 return (tbi >> select) & 1 ? 56 : 64;
4226 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4228 uint64_t hcr = arm_hcr_el2_eff(env);
4229 ARMMMUIdx mmu_idx;
4231 /* Only the regime of the mmu_idx below is significant. */
4232 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4233 mmu_idx = ARMMMUIdx_E20_0;
4234 } else {
4235 mmu_idx = ARMMMUIdx_E10_0;
4238 if (arm_is_secure_below_el3(env)) {
4239 mmu_idx &= ~ARM_MMU_IDX_A_NS;
4242 return tlbbits_for_regime(env, mmu_idx, addr);
4245 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4246 uint64_t value)
4248 CPUState *cs = env_cpu(env);
4249 int mask = vae1_tlbmask(env);
4251 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4254 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4255 uint64_t value)
4257 CPUState *cs = env_cpu(env);
4258 int mask = vae1_tlbmask(env);
4260 if (tlb_force_broadcast(env)) {
4261 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4262 } else {
4263 tlb_flush_by_mmuidx(cs, mask);
4267 static int alle1_tlbmask(CPUARMState *env)
4270 * Note that the 'ALL' scope must invalidate both stage 1 and
4271 * stage 2 translations, whereas most other scopes only invalidate
4272 * stage 1 translations.
4274 if (arm_is_secure_below_el3(env)) {
4275 return ARMMMUIdxBit_SE10_1 |
4276 ARMMMUIdxBit_SE10_1_PAN |
4277 ARMMMUIdxBit_SE10_0;
4278 } else {
4279 return ARMMMUIdxBit_E10_1 |
4280 ARMMMUIdxBit_E10_1_PAN |
4281 ARMMMUIdxBit_E10_0;
4285 static int e2_tlbmask(CPUARMState *env)
4287 if (arm_is_secure_below_el3(env)) {
4288 return ARMMMUIdxBit_SE20_0 |
4289 ARMMMUIdxBit_SE20_2 |
4290 ARMMMUIdxBit_SE20_2_PAN |
4291 ARMMMUIdxBit_SE2;
4292 } else {
4293 return ARMMMUIdxBit_E20_0 |
4294 ARMMMUIdxBit_E20_2 |
4295 ARMMMUIdxBit_E20_2_PAN |
4296 ARMMMUIdxBit_E2;
4300 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4301 uint64_t value)
4303 CPUState *cs = env_cpu(env);
4304 int mask = alle1_tlbmask(env);
4306 tlb_flush_by_mmuidx(cs, mask);
4309 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4310 uint64_t value)
4312 CPUState *cs = env_cpu(env);
4313 int mask = e2_tlbmask(env);
4315 tlb_flush_by_mmuidx(cs, mask);
4318 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4319 uint64_t value)
4321 ARMCPU *cpu = env_archcpu(env);
4322 CPUState *cs = CPU(cpu);
4324 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4327 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4328 uint64_t value)
4330 CPUState *cs = env_cpu(env);
4331 int mask = alle1_tlbmask(env);
4333 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4336 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4337 uint64_t value)
4339 CPUState *cs = env_cpu(env);
4340 int mask = e2_tlbmask(env);
4342 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4345 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4346 uint64_t value)
4348 CPUState *cs = env_cpu(env);
4350 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4353 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4354 uint64_t value)
4356 /* Invalidate by VA, EL2
4357 * Currently handles both VAE2 and VALE2, since we don't support
4358 * flush-last-level-only.
4360 CPUState *cs = env_cpu(env);
4361 int mask = e2_tlbmask(env);
4362 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4364 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4367 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4368 uint64_t value)
4370 /* Invalidate by VA, EL3
4371 * Currently handles both VAE3 and VALE3, since we don't support
4372 * flush-last-level-only.
4374 ARMCPU *cpu = env_archcpu(env);
4375 CPUState *cs = CPU(cpu);
4376 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4378 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4381 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4382 uint64_t value)
4384 CPUState *cs = env_cpu(env);
4385 int mask = vae1_tlbmask(env);
4386 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4387 int bits = vae1_tlbbits(env, pageaddr);
4389 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4392 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4393 uint64_t value)
4395 /* Invalidate by VA, EL1&0 (AArch64 version).
4396 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4397 * since we don't support flush-for-specific-ASID-only or
4398 * flush-last-level-only.
4400 CPUState *cs = env_cpu(env);
4401 int mask = vae1_tlbmask(env);
4402 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4403 int bits = vae1_tlbbits(env, pageaddr);
4405 if (tlb_force_broadcast(env)) {
4406 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4407 } else {
4408 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4412 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4413 uint64_t value)
4415 CPUState *cs = env_cpu(env);
4416 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4417 bool secure = arm_is_secure_below_el3(env);
4418 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4419 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4420 pageaddr);
4422 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4425 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4426 uint64_t value)
4428 CPUState *cs = env_cpu(env);
4429 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4430 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4432 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4433 ARMMMUIdxBit_SE3, bits);
4436 #ifdef TARGET_AARCH64
4437 typedef struct {
4438 uint64_t base;
4439 uint64_t length;
4440 } TLBIRange;
4442 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4443 uint64_t value)
4445 unsigned int page_size_granule, page_shift, num, scale, exponent;
4446 /* Extract one bit to represent the va selector in use. */
4447 uint64_t select = sextract64(value, 36, 1);
4448 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4449 TLBIRange ret = { };
4451 page_size_granule = extract64(value, 46, 2);
4453 /* The granule encoded in value must match the granule in use. */
4454 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) {
4455 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4456 page_size_granule);
4457 return ret;
4460 page_shift = (page_size_granule - 1) * 2 + 12;
4461 num = extract64(value, 39, 5);
4462 scale = extract64(value, 44, 2);
4463 exponent = (5 * scale) + 1;
4465 ret.length = (num + 1) << (exponent + page_shift);
4467 if (param.select) {
4468 ret.base = sextract64(value, 0, 37);
4469 } else {
4470 ret.base = extract64(value, 0, 37);
4472 if (param.ds) {
4474 * With DS=1, BaseADDR is always shifted 16 so that it is able
4475 * to address all 52 va bits. The input address is perforce
4476 * aligned on a 64k boundary regardless of translation granule.
4478 page_shift = 16;
4480 ret.base <<= page_shift;
4482 return ret;
4485 static void do_rvae_write(CPUARMState *env, uint64_t value,
4486 int idxmap, bool synced)
4488 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4489 TLBIRange range;
4490 int bits;
4492 range = tlbi_aa64_get_range(env, one_idx, value);
4493 bits = tlbbits_for_regime(env, one_idx, range.base);
4495 if (synced) {
4496 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4497 range.base,
4498 range.length,
4499 idxmap,
4500 bits);
4501 } else {
4502 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4503 range.length, idxmap, bits);
4507 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4508 const ARMCPRegInfo *ri,
4509 uint64_t value)
4512 * Invalidate by VA range, EL1&0.
4513 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4514 * since we don't support flush-for-specific-ASID-only or
4515 * flush-last-level-only.
4518 do_rvae_write(env, value, vae1_tlbmask(env),
4519 tlb_force_broadcast(env));
4522 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4523 const ARMCPRegInfo *ri,
4524 uint64_t value)
4527 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4528 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4529 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4530 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4531 * shareable specific flushes.
4534 do_rvae_write(env, value, vae1_tlbmask(env), true);
4537 static int vae2_tlbmask(CPUARMState *env)
4539 return (arm_is_secure_below_el3(env)
4540 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4543 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4544 const ARMCPRegInfo *ri,
4545 uint64_t value)
4548 * Invalidate by VA range, EL2.
4549 * Currently handles all of RVAE2 and RVALE2,
4550 * since we don't support flush-for-specific-ASID-only or
4551 * flush-last-level-only.
4554 do_rvae_write(env, value, vae2_tlbmask(env),
4555 tlb_force_broadcast(env));
4560 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4561 const ARMCPRegInfo *ri,
4562 uint64_t value)
4565 * Invalidate by VA range, Inner/Outer Shareable, EL2.
4566 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4567 * since we don't support flush-for-specific-ASID-only,
4568 * flush-last-level-only or inner/outer shareable specific flushes.
4571 do_rvae_write(env, value, vae2_tlbmask(env), true);
4575 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4576 const ARMCPRegInfo *ri,
4577 uint64_t value)
4580 * Invalidate by VA range, EL3.
4581 * Currently handles all of RVAE3 and RVALE3,
4582 * since we don't support flush-for-specific-ASID-only or
4583 * flush-last-level-only.
4586 do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4587 tlb_force_broadcast(env));
4590 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4591 const ARMCPRegInfo *ri,
4592 uint64_t value)
4595 * Invalidate by VA range, EL3, Inner/Outer Shareable.
4596 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4597 * since we don't support flush-for-specific-ASID-only,
4598 * flush-last-level-only or inner/outer specific flushes.
4601 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4603 #endif
4605 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4606 bool isread)
4608 int cur_el = arm_current_el(env);
4610 if (cur_el < 2) {
4611 uint64_t hcr = arm_hcr_el2_eff(env);
4613 if (cur_el == 0) {
4614 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4615 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4616 return CP_ACCESS_TRAP_EL2;
4618 } else {
4619 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4620 return CP_ACCESS_TRAP;
4622 if (hcr & HCR_TDZ) {
4623 return CP_ACCESS_TRAP_EL2;
4626 } else if (hcr & HCR_TDZ) {
4627 return CP_ACCESS_TRAP_EL2;
4630 return CP_ACCESS_OK;
4633 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4635 ARMCPU *cpu = env_archcpu(env);
4636 int dzp_bit = 1 << 4;
4638 /* DZP indicates whether DC ZVA access is allowed */
4639 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4640 dzp_bit = 0;
4642 return cpu->dcz_blocksize | dzp_bit;
4645 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4646 bool isread)
4648 if (!(env->pstate & PSTATE_SP)) {
4649 /* Access to SP_EL0 is undefined if it's being used as
4650 * the stack pointer.
4652 return CP_ACCESS_TRAP_UNCATEGORIZED;
4654 return CP_ACCESS_OK;
4657 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4659 return env->pstate & PSTATE_SP;
4662 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4664 update_spsel(env, val);
4667 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4668 uint64_t value)
4670 ARMCPU *cpu = env_archcpu(env);
4672 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4673 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4674 value &= ~SCTLR_M;
4677 /* ??? Lots of these bits are not implemented. */
4679 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4680 if (ri->opc1 == 6) { /* SCTLR_EL3 */
4681 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4682 } else {
4683 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4684 SCTLR_ATA0 | SCTLR_ATA);
4688 if (raw_read(env, ri) == value) {
4689 /* Skip the TLB flush if nothing actually changed; Linux likes
4690 * to do a lot of pointless SCTLR writes.
4692 return;
4695 raw_write(env, ri, value);
4697 /* This may enable/disable the MMU, so do a TLB flush. */
4698 tlb_flush(CPU(cpu));
4700 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4702 * Normally we would always end the TB on an SCTLR write; see the
4703 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4704 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4705 * of hflags from the translator, so do it here.
4707 arm_rebuild_hflags(env);
4711 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4712 uint64_t value)
4714 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4717 static const ARMCPRegInfo v8_cp_reginfo[] = {
4718 /* Minimal set of EL0-visible registers. This will need to be expanded
4719 * significantly for system emulation of AArch64 CPUs.
4721 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4722 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4723 .access = PL0_RW, .type = ARM_CP_NZCV },
4724 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4725 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4726 .type = ARM_CP_NO_RAW,
4727 .access = PL0_RW, .accessfn = aa64_daif_access,
4728 .fieldoffset = offsetof(CPUARMState, daif),
4729 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4730 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4731 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4732 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4733 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4734 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4735 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4736 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4737 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4738 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4739 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4740 .access = PL0_R, .type = ARM_CP_NO_RAW,
4741 .readfn = aa64_dczid_read },
4742 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4743 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4744 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4745 #ifndef CONFIG_USER_ONLY
4746 /* Avoid overhead of an access check that always passes in user-mode */
4747 .accessfn = aa64_zva_access,
4748 #endif
4750 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4751 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4752 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4753 /* Cache ops: all NOPs since we don't emulate caches */
4754 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4755 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4756 .access = PL1_W, .type = ARM_CP_NOP,
4757 .accessfn = aa64_cacheop_pou_access },
4758 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4759 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4760 .access = PL1_W, .type = ARM_CP_NOP,
4761 .accessfn = aa64_cacheop_pou_access },
4762 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4763 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4764 .access = PL0_W, .type = ARM_CP_NOP,
4765 .accessfn = aa64_cacheop_pou_access },
4766 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4767 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4768 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4769 .type = ARM_CP_NOP },
4770 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4771 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4772 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4773 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4774 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4775 .access = PL0_W, .type = ARM_CP_NOP,
4776 .accessfn = aa64_cacheop_poc_access },
4777 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4778 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4779 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4780 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4781 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4782 .access = PL0_W, .type = ARM_CP_NOP,
4783 .accessfn = aa64_cacheop_pou_access },
4784 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4785 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4786 .access = PL0_W, .type = ARM_CP_NOP,
4787 .accessfn = aa64_cacheop_poc_access },
4788 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4789 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4790 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4791 /* TLBI operations */
4792 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4793 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4794 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4795 .writefn = tlbi_aa64_vmalle1is_write },
4796 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4797 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4798 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4799 .writefn = tlbi_aa64_vae1is_write },
4800 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4801 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4802 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4803 .writefn = tlbi_aa64_vmalle1is_write },
4804 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4805 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4806 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4807 .writefn = tlbi_aa64_vae1is_write },
4808 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4809 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4810 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4811 .writefn = tlbi_aa64_vae1is_write },
4812 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4813 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4814 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4815 .writefn = tlbi_aa64_vae1is_write },
4816 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4817 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4818 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4819 .writefn = tlbi_aa64_vmalle1_write },
4820 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4821 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4822 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4823 .writefn = tlbi_aa64_vae1_write },
4824 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4825 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4826 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4827 .writefn = tlbi_aa64_vmalle1_write },
4828 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4829 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4830 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4831 .writefn = tlbi_aa64_vae1_write },
4832 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4833 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4834 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4835 .writefn = tlbi_aa64_vae1_write },
4836 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4837 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4838 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4839 .writefn = tlbi_aa64_vae1_write },
4840 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4841 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4842 .access = PL2_W, .type = ARM_CP_NOP },
4843 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4844 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4845 .access = PL2_W, .type = ARM_CP_NOP },
4846 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4847 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4848 .access = PL2_W, .type = ARM_CP_NO_RAW,
4849 .writefn = tlbi_aa64_alle1is_write },
4850 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4851 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4852 .access = PL2_W, .type = ARM_CP_NO_RAW,
4853 .writefn = tlbi_aa64_alle1is_write },
4854 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4855 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4856 .access = PL2_W, .type = ARM_CP_NOP },
4857 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4858 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4859 .access = PL2_W, .type = ARM_CP_NOP },
4860 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4861 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4862 .access = PL2_W, .type = ARM_CP_NO_RAW,
4863 .writefn = tlbi_aa64_alle1_write },
4864 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4865 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4866 .access = PL2_W, .type = ARM_CP_NO_RAW,
4867 .writefn = tlbi_aa64_alle1is_write },
4868 #ifndef CONFIG_USER_ONLY
4869 /* 64 bit address translation operations */
4870 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4871 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4872 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4873 .writefn = ats_write64 },
4874 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4875 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4876 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4877 .writefn = ats_write64 },
4878 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4879 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4880 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4881 .writefn = ats_write64 },
4882 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4883 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4884 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4885 .writefn = ats_write64 },
4886 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4887 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4888 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4889 .writefn = ats_write64 },
4890 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4891 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4892 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4893 .writefn = ats_write64 },
4894 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4895 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4896 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4897 .writefn = ats_write64 },
4898 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4899 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4900 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4901 .writefn = ats_write64 },
4902 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4903 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4904 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4905 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4906 .writefn = ats_write64 },
4907 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4908 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4909 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4910 .writefn = ats_write64 },
4911 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4912 .type = ARM_CP_ALIAS,
4913 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4914 .access = PL1_RW, .resetvalue = 0,
4915 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4916 .writefn = par_write },
4917 #endif
4918 /* TLB invalidate last level of translation table walk */
4919 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4920 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4921 .writefn = tlbimva_is_write },
4922 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4923 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4924 .writefn = tlbimvaa_is_write },
4925 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4926 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4927 .writefn = tlbimva_write },
4928 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4929 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4930 .writefn = tlbimvaa_write },
4931 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4932 .type = ARM_CP_NO_RAW, .access = PL2_W,
4933 .writefn = tlbimva_hyp_write },
4934 { .name = "TLBIMVALHIS",
4935 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4936 .type = ARM_CP_NO_RAW, .access = PL2_W,
4937 .writefn = tlbimva_hyp_is_write },
4938 { .name = "TLBIIPAS2",
4939 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4940 .type = ARM_CP_NOP, .access = PL2_W },
4941 { .name = "TLBIIPAS2IS",
4942 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4943 .type = ARM_CP_NOP, .access = PL2_W },
4944 { .name = "TLBIIPAS2L",
4945 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4946 .type = ARM_CP_NOP, .access = PL2_W },
4947 { .name = "TLBIIPAS2LIS",
4948 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4949 .type = ARM_CP_NOP, .access = PL2_W },
4950 /* 32 bit cache operations */
4951 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4952 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
4953 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4954 .type = ARM_CP_NOP, .access = PL1_W },
4955 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4956 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
4957 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4958 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
4959 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4960 .type = ARM_CP_NOP, .access = PL1_W },
4961 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4962 .type = ARM_CP_NOP, .access = PL1_W },
4963 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4964 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
4965 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4966 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
4967 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4968 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
4969 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4970 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
4971 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4972 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
4973 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4974 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
4975 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4976 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
4977 /* MMU Domain access control / MPU write buffer control */
4978 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4979 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4980 .writefn = dacr_write, .raw_writefn = raw_write,
4981 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4982 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4983 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4984 .type = ARM_CP_ALIAS,
4985 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4986 .access = PL1_RW,
4987 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4988 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4989 .type = ARM_CP_ALIAS,
4990 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4991 .access = PL1_RW,
4992 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4993 /* We rely on the access checks not allowing the guest to write to the
4994 * state field when SPSel indicates that it's being used as the stack
4995 * pointer.
4997 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4998 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4999 .access = PL1_RW, .accessfn = sp_el0_access,
5000 .type = ARM_CP_ALIAS,
5001 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5002 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5003 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5004 .access = PL2_RW, .type = ARM_CP_ALIAS,
5005 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5006 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5007 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5008 .type = ARM_CP_NO_RAW,
5009 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5010 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5011 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5012 .access = PL2_RW,
5013 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5014 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5015 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5016 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5017 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5018 .writefn = dacr_write, .raw_writefn = raw_write,
5019 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5020 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5021 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5022 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5023 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5024 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5025 .type = ARM_CP_ALIAS,
5026 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5027 .access = PL2_RW,
5028 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5029 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5030 .type = ARM_CP_ALIAS,
5031 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5032 .access = PL2_RW,
5033 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5034 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5035 .type = ARM_CP_ALIAS,
5036 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5037 .access = PL2_RW,
5038 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5039 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5040 .type = ARM_CP_ALIAS,
5041 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5042 .access = PL2_RW,
5043 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5044 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5045 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5046 .resetvalue = 0,
5047 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5048 { .name = "SDCR", .type = ARM_CP_ALIAS,
5049 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5050 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5051 .writefn = sdcr_write,
5052 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5055 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5057 ARMCPU *cpu = env_archcpu(env);
5059 if (arm_feature(env, ARM_FEATURE_V8)) {
5060 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5061 } else {
5062 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5065 if (arm_feature(env, ARM_FEATURE_EL3)) {
5066 valid_mask &= ~HCR_HCD;
5067 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5068 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5069 * However, if we're using the SMC PSCI conduit then QEMU is
5070 * effectively acting like EL3 firmware and so the guest at
5071 * EL2 should retain the ability to prevent EL1 from being
5072 * able to make SMC calls into the ersatz firmware, so in
5073 * that case HCR.TSC should be read/write.
5075 valid_mask &= ~HCR_TSC;
5078 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5079 if (cpu_isar_feature(aa64_vh, cpu)) {
5080 valid_mask |= HCR_E2H;
5082 if (cpu_isar_feature(aa64_ras, cpu)) {
5083 valid_mask |= HCR_TERR | HCR_TEA;
5085 if (cpu_isar_feature(aa64_lor, cpu)) {
5086 valid_mask |= HCR_TLOR;
5088 if (cpu_isar_feature(aa64_pauth, cpu)) {
5089 valid_mask |= HCR_API | HCR_APK;
5091 if (cpu_isar_feature(aa64_mte, cpu)) {
5092 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5094 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5095 valid_mask |= HCR_ENSCXT;
5097 if (cpu_isar_feature(aa64_fwb, cpu)) {
5098 valid_mask |= HCR_FWB;
5102 /* Clear RES0 bits. */
5103 value &= valid_mask;
5106 * These bits change the MMU setup:
5107 * HCR_VM enables stage 2 translation
5108 * HCR_PTW forbids certain page-table setups
5109 * HCR_DC disables stage1 and enables stage2 translation
5110 * HCR_DCT enables tagging on (disabled) stage1 translation
5111 * HCR_FWB changes the interpretation of stage2 descriptor bits
5113 if ((env->cp15.hcr_el2 ^ value) &
5114 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5115 tlb_flush(CPU(cpu));
5117 env->cp15.hcr_el2 = value;
5120 * Updates to VI and VF require us to update the status of
5121 * virtual interrupts, which are the logical OR of these bits
5122 * and the state of the input lines from the GIC. (This requires
5123 * that we have the iothread lock, which is done by marking the
5124 * reginfo structs as ARM_CP_IO.)
5125 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5126 * possible for it to be taken immediately, because VIRQ and
5127 * VFIQ are masked unless running at EL0 or EL1, and HCR
5128 * can only be written at EL2.
5130 g_assert(qemu_mutex_iothread_locked());
5131 arm_cpu_update_virq(cpu);
5132 arm_cpu_update_vfiq(cpu);
5133 arm_cpu_update_vserr(cpu);
5136 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5138 do_hcr_write(env, value, 0);
5141 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5142 uint64_t value)
5144 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5145 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5146 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5149 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5150 uint64_t value)
5152 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5153 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5154 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5158 * Return the effective value of HCR_EL2.
5159 * Bits that are not included here:
5160 * RW (read from SCR_EL3.RW as needed)
5162 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5164 uint64_t ret = env->cp15.hcr_el2;
5166 if (!arm_is_el2_enabled(env)) {
5168 * "This register has no effect if EL2 is not enabled in the
5169 * current Security state". This is ARMv8.4-SecEL2 speak for
5170 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5172 * Prior to that, the language was "In an implementation that
5173 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5174 * as if this field is 0 for all purposes other than a direct
5175 * read or write access of HCR_EL2". With lots of enumeration
5176 * on a per-field basis. In current QEMU, this is condition
5177 * is arm_is_secure_below_el3.
5179 * Since the v8.4 language applies to the entire register, and
5180 * appears to be backward compatible, use that.
5182 return 0;
5186 * For a cpu that supports both aarch64 and aarch32, we can set bits
5187 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5188 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5190 if (!arm_el_is_aa64(env, 2)) {
5191 uint64_t aa32_valid;
5194 * These bits are up-to-date as of ARMv8.6.
5195 * For HCR, it's easiest to list just the 2 bits that are invalid.
5196 * For HCR2, list those that are valid.
5198 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5199 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5200 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5201 ret &= aa32_valid;
5204 if (ret & HCR_TGE) {
5205 /* These bits are up-to-date as of ARMv8.6. */
5206 if (ret & HCR_E2H) {
5207 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5208 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5209 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5210 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5211 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5212 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5213 } else {
5214 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5216 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5217 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5218 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5219 HCR_TLOR);
5222 return ret;
5226 * Corresponds to ARM pseudocode function ELIsInHost().
5228 bool el_is_in_host(CPUARMState *env, int el)
5230 uint64_t mask;
5233 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5234 * Perform the simplest bit tests first, and validate EL2 afterward.
5236 if (el & 1) {
5237 return false; /* EL1 or EL3 */
5241 * Note that hcr_write() checks isar_feature_aa64_vh(),
5242 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5244 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5245 if ((env->cp15.hcr_el2 & mask) != mask) {
5246 return false;
5249 /* TGE and/or E2H set: double check those bits are currently legal. */
5250 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5253 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5254 uint64_t value)
5256 uint64_t valid_mask = 0;
5258 /* No features adding bits to HCRX are implemented. */
5260 /* Clear RES0 bits. */
5261 env->cp15.hcrx_el2 = value & valid_mask;
5264 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5265 bool isread)
5267 if (arm_current_el(env) < 3
5268 && arm_feature(env, ARM_FEATURE_EL3)
5269 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5270 return CP_ACCESS_TRAP_EL3;
5272 return CP_ACCESS_OK;
5275 static const ARMCPRegInfo hcrx_el2_reginfo = {
5276 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5277 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5278 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5279 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5282 /* Return the effective value of HCRX_EL2. */
5283 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5286 * The bits in this register behave as 0 for all purposes other than
5287 * direct reads of the register if:
5288 * - EL2 is not enabled in the current security state,
5289 * - SCR_EL3.HXEn is 0.
5291 if (!arm_is_el2_enabled(env)
5292 || (arm_feature(env, ARM_FEATURE_EL3)
5293 && !(env->cp15.scr_el3 & SCR_HXEN))) {
5294 return 0;
5296 return env->cp15.hcrx_el2;
5299 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5300 uint64_t value)
5303 * For A-profile AArch32 EL3, if NSACR.CP10
5304 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5306 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5307 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5308 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5309 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5311 env->cp15.cptr_el[2] = value;
5314 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5317 * For A-profile AArch32 EL3, if NSACR.CP10
5318 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5320 uint64_t value = env->cp15.cptr_el[2];
5322 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5323 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5324 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5326 return value;
5329 static const ARMCPRegInfo el2_cp_reginfo[] = {
5330 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5331 .type = ARM_CP_IO,
5332 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5333 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5334 .writefn = hcr_write },
5335 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5336 .type = ARM_CP_ALIAS | ARM_CP_IO,
5337 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5338 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5339 .writefn = hcr_writelow },
5340 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5341 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5342 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5343 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5344 .type = ARM_CP_ALIAS,
5345 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5346 .access = PL2_RW,
5347 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5348 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5349 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5350 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5351 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5352 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5353 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5354 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5355 .type = ARM_CP_ALIAS,
5356 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5357 .access = PL2_RW,
5358 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5359 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5360 .type = ARM_CP_ALIAS,
5361 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5362 .access = PL2_RW,
5363 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5364 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5365 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5366 .access = PL2_RW, .writefn = vbar_write,
5367 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5368 .resetvalue = 0 },
5369 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5370 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5371 .access = PL3_RW, .type = ARM_CP_ALIAS,
5372 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5373 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5374 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5375 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5376 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5377 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5378 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5379 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5380 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5381 .resetvalue = 0 },
5382 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5383 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5384 .access = PL2_RW, .type = ARM_CP_ALIAS,
5385 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5386 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5387 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5388 .access = PL2_RW, .type = ARM_CP_CONST,
5389 .resetvalue = 0 },
5390 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5391 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5392 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5393 .access = PL2_RW, .type = ARM_CP_CONST,
5394 .resetvalue = 0 },
5395 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5396 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5397 .access = PL2_RW, .type = ARM_CP_CONST,
5398 .resetvalue = 0 },
5399 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5400 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5401 .access = PL2_RW, .type = ARM_CP_CONST,
5402 .resetvalue = 0 },
5403 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5404 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5405 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5406 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5407 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5408 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5409 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5410 .type = ARM_CP_ALIAS,
5411 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5412 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5413 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5414 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5415 .access = PL2_RW,
5416 /* no .writefn needed as this can't cause an ASID change;
5417 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5419 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5420 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5421 .cp = 15, .opc1 = 6, .crm = 2,
5422 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5423 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5424 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5425 .writefn = vttbr_write },
5426 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5427 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5428 .access = PL2_RW, .writefn = vttbr_write,
5429 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5430 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5431 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5432 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5433 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5434 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5435 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5436 .access = PL2_RW, .resetvalue = 0,
5437 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5438 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5439 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5440 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5441 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5442 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5443 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5444 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5445 { .name = "TLBIALLNSNH",
5446 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5447 .type = ARM_CP_NO_RAW, .access = PL2_W,
5448 .writefn = tlbiall_nsnh_write },
5449 { .name = "TLBIALLNSNHIS",
5450 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5451 .type = ARM_CP_NO_RAW, .access = PL2_W,
5452 .writefn = tlbiall_nsnh_is_write },
5453 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5454 .type = ARM_CP_NO_RAW, .access = PL2_W,
5455 .writefn = tlbiall_hyp_write },
5456 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5457 .type = ARM_CP_NO_RAW, .access = PL2_W,
5458 .writefn = tlbiall_hyp_is_write },
5459 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5460 .type = ARM_CP_NO_RAW, .access = PL2_W,
5461 .writefn = tlbimva_hyp_write },
5462 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5463 .type = ARM_CP_NO_RAW, .access = PL2_W,
5464 .writefn = tlbimva_hyp_is_write },
5465 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5466 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5467 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5468 .writefn = tlbi_aa64_alle2_write },
5469 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5470 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5471 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5472 .writefn = tlbi_aa64_vae2_write },
5473 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5474 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5475 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5476 .writefn = tlbi_aa64_vae2_write },
5477 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5478 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5479 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5480 .writefn = tlbi_aa64_alle2is_write },
5481 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5482 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5483 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5484 .writefn = tlbi_aa64_vae2is_write },
5485 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5486 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5487 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5488 .writefn = tlbi_aa64_vae2is_write },
5489 #ifndef CONFIG_USER_ONLY
5490 /* Unlike the other EL2-related AT operations, these must
5491 * UNDEF from EL3 if EL2 is not implemented, which is why we
5492 * define them here rather than with the rest of the AT ops.
5494 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5495 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5496 .access = PL2_W, .accessfn = at_s1e2_access,
5497 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5498 .writefn = ats_write64 },
5499 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5500 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5501 .access = PL2_W, .accessfn = at_s1e2_access,
5502 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5503 .writefn = ats_write64 },
5504 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5505 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5506 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5507 * to behave as if SCR.NS was 1.
5509 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5510 .access = PL2_W,
5511 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5512 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5513 .access = PL2_W,
5514 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5515 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5516 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5517 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5518 * reset values as IMPDEF. We choose to reset to 3 to comply with
5519 * both ARMv7 and ARMv8.
5521 .access = PL2_RW, .resetvalue = 3,
5522 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5523 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5524 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5525 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5526 .writefn = gt_cntvoff_write,
5527 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5528 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5529 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5530 .writefn = gt_cntvoff_write,
5531 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5532 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5533 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5534 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5535 .type = ARM_CP_IO, .access = PL2_RW,
5536 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5537 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5538 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5539 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5540 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5541 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5542 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5543 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5544 .resetfn = gt_hyp_timer_reset,
5545 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5546 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5547 .type = ARM_CP_IO,
5548 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5549 .access = PL2_RW,
5550 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5551 .resetvalue = 0,
5552 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5553 #endif
5554 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5555 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5556 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5557 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5558 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5559 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5560 .access = PL2_RW,
5561 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5562 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5563 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5564 .access = PL2_RW,
5565 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5568 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5569 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5570 .type = ARM_CP_ALIAS | ARM_CP_IO,
5571 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5572 .access = PL2_RW,
5573 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5574 .writefn = hcr_writehigh },
5577 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5578 bool isread)
5580 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5581 return CP_ACCESS_OK;
5583 return CP_ACCESS_TRAP_UNCATEGORIZED;
5586 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5587 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5588 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5589 .access = PL2_RW, .accessfn = sel2_access,
5590 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5591 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5592 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5593 .access = PL2_RW, .accessfn = sel2_access,
5594 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5597 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5598 bool isread)
5600 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5601 * At Secure EL1 it traps to EL3 or EL2.
5603 if (arm_current_el(env) == 3) {
5604 return CP_ACCESS_OK;
5606 if (arm_is_secure_below_el3(env)) {
5607 if (env->cp15.scr_el3 & SCR_EEL2) {
5608 return CP_ACCESS_TRAP_EL2;
5610 return CP_ACCESS_TRAP_EL3;
5612 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5613 if (isread) {
5614 return CP_ACCESS_OK;
5616 return CP_ACCESS_TRAP_UNCATEGORIZED;
5619 static const ARMCPRegInfo el3_cp_reginfo[] = {
5620 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5621 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5622 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5623 .resetfn = scr_reset, .writefn = scr_write },
5624 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5625 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5626 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5627 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5628 .writefn = scr_write },
5629 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5630 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5631 .access = PL3_RW, .resetvalue = 0,
5632 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5633 { .name = "SDER",
5634 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5635 .access = PL3_RW, .resetvalue = 0,
5636 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5637 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5638 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5639 .writefn = vbar_write, .resetvalue = 0,
5640 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5641 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5642 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5643 .access = PL3_RW, .resetvalue = 0,
5644 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5645 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5646 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5647 .access = PL3_RW,
5648 /* no .writefn needed as this can't cause an ASID change;
5649 * we must provide a .raw_writefn and .resetfn because we handle
5650 * reset and migration for the AArch32 TTBCR(S), which might be
5651 * using mask and base_mask.
5653 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5654 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5655 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5656 .type = ARM_CP_ALIAS,
5657 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5658 .access = PL3_RW,
5659 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5660 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5661 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5662 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5663 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5664 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5665 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5666 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5667 .type = ARM_CP_ALIAS,
5668 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5669 .access = PL3_RW,
5670 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5671 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5672 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5673 .access = PL3_RW, .writefn = vbar_write,
5674 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5675 .resetvalue = 0 },
5676 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5677 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5678 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5679 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5680 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5681 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5682 .access = PL3_RW, .resetvalue = 0,
5683 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5684 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5685 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5686 .access = PL3_RW, .type = ARM_CP_CONST,
5687 .resetvalue = 0 },
5688 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5689 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5690 .access = PL3_RW, .type = ARM_CP_CONST,
5691 .resetvalue = 0 },
5692 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5693 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5694 .access = PL3_RW, .type = ARM_CP_CONST,
5695 .resetvalue = 0 },
5696 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5697 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5698 .access = PL3_W, .type = ARM_CP_NO_RAW,
5699 .writefn = tlbi_aa64_alle3is_write },
5700 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5701 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5702 .access = PL3_W, .type = ARM_CP_NO_RAW,
5703 .writefn = tlbi_aa64_vae3is_write },
5704 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5705 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5706 .access = PL3_W, .type = ARM_CP_NO_RAW,
5707 .writefn = tlbi_aa64_vae3is_write },
5708 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5709 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5710 .access = PL3_W, .type = ARM_CP_NO_RAW,
5711 .writefn = tlbi_aa64_alle3_write },
5712 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5713 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5714 .access = PL3_W, .type = ARM_CP_NO_RAW,
5715 .writefn = tlbi_aa64_vae3_write },
5716 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5717 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5718 .access = PL3_W, .type = ARM_CP_NO_RAW,
5719 .writefn = tlbi_aa64_vae3_write },
5722 #ifndef CONFIG_USER_ONLY
5723 /* Test if system register redirection is to occur in the current state. */
5724 static bool redirect_for_e2h(CPUARMState *env)
5726 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5729 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5731 CPReadFn *readfn;
5733 if (redirect_for_e2h(env)) {
5734 /* Switch to the saved EL2 version of the register. */
5735 ri = ri->opaque;
5736 readfn = ri->readfn;
5737 } else {
5738 readfn = ri->orig_readfn;
5740 if (readfn == NULL) {
5741 readfn = raw_read;
5743 return readfn(env, ri);
5746 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5747 uint64_t value)
5749 CPWriteFn *writefn;
5751 if (redirect_for_e2h(env)) {
5752 /* Switch to the saved EL2 version of the register. */
5753 ri = ri->opaque;
5754 writefn = ri->writefn;
5755 } else {
5756 writefn = ri->orig_writefn;
5758 if (writefn == NULL) {
5759 writefn = raw_write;
5761 writefn(env, ri, value);
5764 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5766 struct E2HAlias {
5767 uint32_t src_key, dst_key, new_key;
5768 const char *src_name, *dst_name, *new_name;
5769 bool (*feature)(const ARMISARegisters *id);
5772 #define K(op0, op1, crn, crm, op2) \
5773 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5775 static const struct E2HAlias aliases[] = {
5776 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5777 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5778 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5779 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5780 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5781 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5782 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5783 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5784 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5785 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5786 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5787 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5788 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5789 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5790 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5791 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5792 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5793 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5794 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5795 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5796 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5797 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5798 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5799 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5800 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5801 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5802 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5803 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5804 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5805 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5806 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5807 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5810 * Note that redirection of ZCR is mentioned in the description
5811 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5812 * not in the summary table.
5814 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5815 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5816 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
5817 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
5819 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
5820 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5822 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
5823 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
5824 isar_feature_aa64_scxtnum },
5826 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5827 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5829 #undef K
5831 size_t i;
5833 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5834 const struct E2HAlias *a = &aliases[i];
5835 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
5836 bool ok;
5838 if (a->feature && !a->feature(&cpu->isar)) {
5839 continue;
5842 src_reg = g_hash_table_lookup(cpu->cp_regs,
5843 (gpointer)(uintptr_t)a->src_key);
5844 dst_reg = g_hash_table_lookup(cpu->cp_regs,
5845 (gpointer)(uintptr_t)a->dst_key);
5846 g_assert(src_reg != NULL);
5847 g_assert(dst_reg != NULL);
5849 /* Cross-compare names to detect typos in the keys. */
5850 g_assert(strcmp(src_reg->name, a->src_name) == 0);
5851 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5853 /* None of the core system registers use opaque; we will. */
5854 g_assert(src_reg->opaque == NULL);
5856 /* Create alias before redirection so we dup the right data. */
5857 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5859 new_reg->name = a->new_name;
5860 new_reg->type |= ARM_CP_ALIAS;
5861 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
5862 new_reg->access &= PL2_RW | PL3_RW;
5864 ok = g_hash_table_insert(cpu->cp_regs,
5865 (gpointer)(uintptr_t)a->new_key, new_reg);
5866 g_assert(ok);
5868 src_reg->opaque = dst_reg;
5869 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5870 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5871 if (!src_reg->raw_readfn) {
5872 src_reg->raw_readfn = raw_read;
5874 if (!src_reg->raw_writefn) {
5875 src_reg->raw_writefn = raw_write;
5877 src_reg->readfn = el2_e2h_read;
5878 src_reg->writefn = el2_e2h_write;
5881 #endif
5883 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5884 bool isread)
5886 int cur_el = arm_current_el(env);
5888 if (cur_el < 2) {
5889 uint64_t hcr = arm_hcr_el2_eff(env);
5891 if (cur_el == 0) {
5892 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5893 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5894 return CP_ACCESS_TRAP_EL2;
5896 } else {
5897 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5898 return CP_ACCESS_TRAP;
5900 if (hcr & HCR_TID2) {
5901 return CP_ACCESS_TRAP_EL2;
5904 } else if (hcr & HCR_TID2) {
5905 return CP_ACCESS_TRAP_EL2;
5909 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5910 return CP_ACCESS_TRAP_EL2;
5913 return CP_ACCESS_OK;
5917 * Check for traps to RAS registers, which are controlled
5918 * by HCR_EL2.TERR and SCR_EL3.TERR.
5920 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
5921 bool isread)
5923 int el = arm_current_el(env);
5925 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
5926 return CP_ACCESS_TRAP_EL2;
5928 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
5929 return CP_ACCESS_TRAP_EL3;
5931 return CP_ACCESS_OK;
5934 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
5936 int el = arm_current_el(env);
5938 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
5939 return env->cp15.vdisr_el2;
5941 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
5942 return 0; /* RAZ/WI */
5944 return env->cp15.disr_el1;
5947 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5949 int el = arm_current_el(env);
5951 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
5952 env->cp15.vdisr_el2 = val;
5953 return;
5955 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
5956 return; /* RAZ/WI */
5958 env->cp15.disr_el1 = val;
5962 * Minimal RAS implementation with no Error Records.
5963 * Which means that all of the Error Record registers:
5964 * ERXADDR_EL1
5965 * ERXCTLR_EL1
5966 * ERXFR_EL1
5967 * ERXMISC0_EL1
5968 * ERXMISC1_EL1
5969 * ERXMISC2_EL1
5970 * ERXMISC3_EL1
5971 * ERXPFGCDN_EL1 (RASv1p1)
5972 * ERXPFGCTL_EL1 (RASv1p1)
5973 * ERXPFGF_EL1 (RASv1p1)
5974 * ERXSTATUS_EL1
5975 * and
5976 * ERRSELR_EL1
5977 * may generate UNDEFINED, which is the effect we get by not
5978 * listing them at all.
5980 static const ARMCPRegInfo minimal_ras_reginfo[] = {
5981 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
5982 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
5983 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
5984 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
5985 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
5986 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
5987 .access = PL1_R, .accessfn = access_terr,
5988 .type = ARM_CP_CONST, .resetvalue = 0 },
5989 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
5990 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
5991 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
5992 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
5993 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
5994 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
5998 * Return the exception level to which exceptions should be taken
5999 * via SVEAccessTrap. This excludes the check for whether the exception
6000 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
6001 * be found by testing 0 < fp_exception_el < sve_exception_el.
6003 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
6004 * pseudocode does *not* separate out the FP trap checks, but has them
6005 * all in one function.
6007 int sve_exception_el(CPUARMState *env, int el)
6009 #ifndef CONFIG_USER_ONLY
6010 if (el <= 1 && !el_is_in_host(env, el)) {
6011 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6012 case 1:
6013 if (el != 0) {
6014 break;
6016 /* fall through */
6017 case 0:
6018 case 2:
6019 return 1;
6023 if (el <= 2 && arm_is_el2_enabled(env)) {
6024 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6025 if (env->cp15.hcr_el2 & HCR_E2H) {
6026 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6027 case 1:
6028 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6029 break;
6031 /* fall through */
6032 case 0:
6033 case 2:
6034 return 2;
6036 } else {
6037 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6038 return 2;
6043 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6044 if (arm_feature(env, ARM_FEATURE_EL3)
6045 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6046 return 3;
6048 #endif
6049 return 0;
6053 * Return the exception level to which exceptions should be taken for SME.
6054 * C.f. the ARM pseudocode function CheckSMEAccess.
6056 int sme_exception_el(CPUARMState *env, int el)
6058 #ifndef CONFIG_USER_ONLY
6059 if (el <= 1 && !el_is_in_host(env, el)) {
6060 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6061 case 1:
6062 if (el != 0) {
6063 break;
6065 /* fall through */
6066 case 0:
6067 case 2:
6068 return 1;
6072 if (el <= 2 && arm_is_el2_enabled(env)) {
6073 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6074 if (env->cp15.hcr_el2 & HCR_E2H) {
6075 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6076 case 1:
6077 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6078 break;
6080 /* fall through */
6081 case 0:
6082 case 2:
6083 return 2;
6085 } else {
6086 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6087 return 2;
6092 /* CPTR_EL3. Since ESM is negative we must check for EL3. */
6093 if (arm_feature(env, ARM_FEATURE_EL3)
6094 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6095 return 3;
6097 #endif
6098 return 0;
6101 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
6102 static bool sme_fa64(CPUARMState *env, int el)
6104 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
6105 return false;
6108 if (el <= 1 && !el_is_in_host(env, el)) {
6109 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
6110 return false;
6113 if (el <= 2 && arm_is_el2_enabled(env)) {
6114 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
6115 return false;
6118 if (arm_feature(env, ARM_FEATURE_EL3)) {
6119 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
6120 return false;
6124 return true;
6128 * Given that SVE is enabled, return the vector length for EL.
6130 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6132 ARMCPU *cpu = env_archcpu(env);
6133 uint64_t *cr = env->vfp.zcr_el;
6134 uint32_t map = cpu->sve_vq.map;
6135 uint32_t len = ARM_MAX_VQ - 1;
6137 if (sm) {
6138 cr = env->vfp.smcr_el;
6139 map = cpu->sme_vq.map;
6142 if (el <= 1 && !el_is_in_host(env, el)) {
6143 len = MIN(len, 0xf & (uint32_t)cr[1]);
6145 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6146 len = MIN(len, 0xf & (uint32_t)cr[2]);
6148 if (arm_feature(env, ARM_FEATURE_EL3)) {
6149 len = MIN(len, 0xf & (uint32_t)cr[3]);
6152 map &= MAKE_64BIT_MASK(0, len + 1);
6153 if (map != 0) {
6154 return 31 - clz32(map);
6157 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6158 assert(sm);
6159 return ctz32(cpu->sme_vq.map);
6162 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6164 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6167 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6168 uint64_t value)
6170 int cur_el = arm_current_el(env);
6171 int old_len = sve_vqm1_for_el(env, cur_el);
6172 int new_len;
6174 /* Bits other than [3:0] are RAZ/WI. */
6175 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6176 raw_write(env, ri, value & 0xf);
6179 * Because we arrived here, we know both FP and SVE are enabled;
6180 * otherwise we would have trapped access to the ZCR_ELn register.
6182 new_len = sve_vqm1_for_el(env, cur_el);
6183 if (new_len < old_len) {
6184 aarch64_sve_narrow_vq(env, new_len + 1);
6188 static const ARMCPRegInfo zcr_reginfo[] = {
6189 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6190 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6191 .access = PL1_RW, .type = ARM_CP_SVE,
6192 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6193 .writefn = zcr_write, .raw_writefn = raw_write },
6194 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6195 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6196 .access = PL2_RW, .type = ARM_CP_SVE,
6197 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6198 .writefn = zcr_write, .raw_writefn = raw_write },
6199 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6200 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6201 .access = PL3_RW, .type = ARM_CP_SVE,
6202 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6203 .writefn = zcr_write, .raw_writefn = raw_write },
6206 #ifdef TARGET_AARCH64
6207 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6208 bool isread)
6210 int el = arm_current_el(env);
6212 if (el == 0) {
6213 uint64_t sctlr = arm_sctlr(env, el);
6214 if (!(sctlr & SCTLR_EnTP2)) {
6215 return CP_ACCESS_TRAP;
6218 /* TODO: FEAT_FGT */
6219 if (el < 3
6220 && arm_feature(env, ARM_FEATURE_EL3)
6221 && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6222 return CP_ACCESS_TRAP_EL3;
6224 return CP_ACCESS_OK;
6227 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6228 bool isread)
6230 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6231 if (arm_current_el(env) < 3
6232 && arm_feature(env, ARM_FEATURE_EL3)
6233 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6234 return CP_ACCESS_TRAP_EL3;
6236 return CP_ACCESS_OK;
6239 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6240 uint64_t value)
6242 helper_set_pstate_sm(env, FIELD_EX64(value, SVCR, SM));
6243 helper_set_pstate_za(env, FIELD_EX64(value, SVCR, ZA));
6244 arm_rebuild_hflags(env);
6247 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6248 uint64_t value)
6250 int cur_el = arm_current_el(env);
6251 int old_len = sve_vqm1_for_el(env, cur_el);
6252 int new_len;
6254 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6255 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6256 raw_write(env, ri, value);
6259 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6260 * when SVL is widened (old values kept, or zeros). Choose to keep the
6261 * current values for simplicity. But for QEMU internals, we must still
6262 * apply the narrower SVL to the Zregs and Pregs -- see the comment
6263 * above aarch64_sve_narrow_vq.
6265 new_len = sve_vqm1_for_el(env, cur_el);
6266 if (new_len < old_len) {
6267 aarch64_sve_narrow_vq(env, new_len + 1);
6271 static const ARMCPRegInfo sme_reginfo[] = {
6272 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6273 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6274 .access = PL0_RW, .accessfn = access_tpidr2,
6275 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6276 { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6277 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6278 .access = PL0_RW, .type = ARM_CP_SME,
6279 .fieldoffset = offsetof(CPUARMState, svcr),
6280 .writefn = svcr_write, .raw_writefn = raw_write },
6281 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6282 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6283 .access = PL1_RW, .type = ARM_CP_SME,
6284 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6285 .writefn = smcr_write, .raw_writefn = raw_write },
6286 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6287 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6288 .access = PL2_RW, .type = ARM_CP_SME,
6289 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6290 .writefn = smcr_write, .raw_writefn = raw_write },
6291 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6292 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6293 .access = PL3_RW, .type = ARM_CP_SME,
6294 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6295 .writefn = smcr_write, .raw_writefn = raw_write },
6296 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6297 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6298 .access = PL1_R, .accessfn = access_aa64_tid1,
6300 * IMPLEMENTOR = 0 (software)
6301 * REVISION = 0 (implementation defined)
6302 * SMPS = 0 (no streaming execution priority in QEMU)
6303 * AFFINITY = 0 (streaming sve mode not shared with other PEs)
6305 .type = ARM_CP_CONST, .resetvalue = 0, },
6307 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6309 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6310 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6311 .access = PL1_RW, .accessfn = access_esm,
6312 .type = ARM_CP_CONST, .resetvalue = 0 },
6313 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6314 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6315 .access = PL2_RW, .accessfn = access_esm,
6316 .type = ARM_CP_CONST, .resetvalue = 0 },
6318 #endif /* TARGET_AARCH64 */
6320 static void define_pmu_regs(ARMCPU *cpu)
6323 * v7 performance monitor control register: same implementor
6324 * field as main ID register, and we implement four counters in
6325 * addition to the cycle count register.
6327 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
6328 ARMCPRegInfo pmcr = {
6329 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6330 .access = PL0_RW,
6331 .type = ARM_CP_IO | ARM_CP_ALIAS,
6332 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6333 .accessfn = pmreg_access, .writefn = pmcr_write,
6334 .raw_writefn = raw_write,
6336 ARMCPRegInfo pmcr64 = {
6337 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6338 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6339 .access = PL0_RW, .accessfn = pmreg_access,
6340 .type = ARM_CP_IO,
6341 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6342 .resetvalue = cpu->isar.reset_pmcr_el0,
6343 .writefn = pmcr_write, .raw_writefn = raw_write,
6346 define_one_arm_cp_reg(cpu, &pmcr);
6347 define_one_arm_cp_reg(cpu, &pmcr64);
6348 for (i = 0; i < pmcrn; i++) {
6349 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6350 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6351 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6352 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6353 ARMCPRegInfo pmev_regs[] = {
6354 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6355 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6356 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6357 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6358 .accessfn = pmreg_access_xevcntr },
6359 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6360 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6361 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6362 .type = ARM_CP_IO,
6363 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6364 .raw_readfn = pmevcntr_rawread,
6365 .raw_writefn = pmevcntr_rawwrite },
6366 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6367 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6368 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6369 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6370 .accessfn = pmreg_access },
6371 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6372 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6373 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6374 .type = ARM_CP_IO,
6375 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6376 .raw_writefn = pmevtyper_rawwrite },
6378 define_arm_cp_regs(cpu, pmev_regs);
6379 g_free(pmevcntr_name);
6380 g_free(pmevcntr_el0_name);
6381 g_free(pmevtyper_name);
6382 g_free(pmevtyper_el0_name);
6384 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6385 ARMCPRegInfo v81_pmu_regs[] = {
6386 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6387 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6388 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6389 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6390 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6391 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6392 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6393 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6395 define_arm_cp_regs(cpu, v81_pmu_regs);
6397 if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6398 static const ARMCPRegInfo v84_pmmir = {
6399 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6400 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6401 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6402 .resetvalue = 0
6404 define_one_arm_cp_reg(cpu, &v84_pmmir);
6408 /* We don't know until after realize whether there's a GICv3
6409 * attached, and that is what registers the gicv3 sysregs.
6410 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6411 * at runtime.
6413 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6415 ARMCPU *cpu = env_archcpu(env);
6416 uint64_t pfr1 = cpu->isar.id_pfr1;
6418 if (env->gicv3state) {
6419 pfr1 |= 1 << 28;
6421 return pfr1;
6424 #ifndef CONFIG_USER_ONLY
6425 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6427 ARMCPU *cpu = env_archcpu(env);
6428 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6430 if (env->gicv3state) {
6431 pfr0 |= 1 << 24;
6433 return pfr0;
6435 #endif
6437 /* Shared logic between LORID and the rest of the LOR* registers.
6438 * Secure state exclusion has already been dealt with.
6440 static CPAccessResult access_lor_ns(CPUARMState *env,
6441 const ARMCPRegInfo *ri, bool isread)
6443 int el = arm_current_el(env);
6445 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6446 return CP_ACCESS_TRAP_EL2;
6448 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6449 return CP_ACCESS_TRAP_EL3;
6451 return CP_ACCESS_OK;
6454 static CPAccessResult access_lor_other(CPUARMState *env,
6455 const ARMCPRegInfo *ri, bool isread)
6457 if (arm_is_secure_below_el3(env)) {
6458 /* Access denied in secure mode. */
6459 return CP_ACCESS_TRAP;
6461 return access_lor_ns(env, ri, isread);
6465 * A trivial implementation of ARMv8.1-LOR leaves all of these
6466 * registers fixed at 0, which indicates that there are zero
6467 * supported Limited Ordering regions.
6469 static const ARMCPRegInfo lor_reginfo[] = {
6470 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6471 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6472 .access = PL1_RW, .accessfn = access_lor_other,
6473 .type = ARM_CP_CONST, .resetvalue = 0 },
6474 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6475 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6476 .access = PL1_RW, .accessfn = access_lor_other,
6477 .type = ARM_CP_CONST, .resetvalue = 0 },
6478 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6479 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6480 .access = PL1_RW, .accessfn = access_lor_other,
6481 .type = ARM_CP_CONST, .resetvalue = 0 },
6482 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6483 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6484 .access = PL1_RW, .accessfn = access_lor_other,
6485 .type = ARM_CP_CONST, .resetvalue = 0 },
6486 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6487 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6488 .access = PL1_R, .accessfn = access_lor_ns,
6489 .type = ARM_CP_CONST, .resetvalue = 0 },
6492 #ifdef TARGET_AARCH64
6493 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6494 bool isread)
6496 int el = arm_current_el(env);
6498 if (el < 2 &&
6499 arm_is_el2_enabled(env) &&
6500 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6501 return CP_ACCESS_TRAP_EL2;
6503 if (el < 3 &&
6504 arm_feature(env, ARM_FEATURE_EL3) &&
6505 !(env->cp15.scr_el3 & SCR_APK)) {
6506 return CP_ACCESS_TRAP_EL3;
6508 return CP_ACCESS_OK;
6511 static const ARMCPRegInfo pauth_reginfo[] = {
6512 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6513 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6514 .access = PL1_RW, .accessfn = access_pauth,
6515 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6516 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6517 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6518 .access = PL1_RW, .accessfn = access_pauth,
6519 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6520 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6521 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6522 .access = PL1_RW, .accessfn = access_pauth,
6523 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6524 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6525 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6526 .access = PL1_RW, .accessfn = access_pauth,
6527 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6528 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6529 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6530 .access = PL1_RW, .accessfn = access_pauth,
6531 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6532 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6533 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6534 .access = PL1_RW, .accessfn = access_pauth,
6535 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6536 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6537 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6538 .access = PL1_RW, .accessfn = access_pauth,
6539 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6540 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6541 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6542 .access = PL1_RW, .accessfn = access_pauth,
6543 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6544 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6545 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6546 .access = PL1_RW, .accessfn = access_pauth,
6547 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6548 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6549 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6550 .access = PL1_RW, .accessfn = access_pauth,
6551 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6554 static const ARMCPRegInfo tlbirange_reginfo[] = {
6555 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
6556 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
6557 .access = PL1_W, .type = ARM_CP_NO_RAW,
6558 .writefn = tlbi_aa64_rvae1is_write },
6559 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
6560 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
6561 .access = PL1_W, .type = ARM_CP_NO_RAW,
6562 .writefn = tlbi_aa64_rvae1is_write },
6563 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
6564 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
6565 .access = PL1_W, .type = ARM_CP_NO_RAW,
6566 .writefn = tlbi_aa64_rvae1is_write },
6567 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
6568 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
6569 .access = PL1_W, .type = ARM_CP_NO_RAW,
6570 .writefn = tlbi_aa64_rvae1is_write },
6571 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
6572 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
6573 .access = PL1_W, .type = ARM_CP_NO_RAW,
6574 .writefn = tlbi_aa64_rvae1is_write },
6575 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
6576 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
6577 .access = PL1_W, .type = ARM_CP_NO_RAW,
6578 .writefn = tlbi_aa64_rvae1is_write },
6579 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
6580 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
6581 .access = PL1_W, .type = ARM_CP_NO_RAW,
6582 .writefn = tlbi_aa64_rvae1is_write },
6583 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
6584 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
6585 .access = PL1_W, .type = ARM_CP_NO_RAW,
6586 .writefn = tlbi_aa64_rvae1is_write },
6587 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
6588 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
6589 .access = PL1_W, .type = ARM_CP_NO_RAW,
6590 .writefn = tlbi_aa64_rvae1_write },
6591 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
6592 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
6593 .access = PL1_W, .type = ARM_CP_NO_RAW,
6594 .writefn = tlbi_aa64_rvae1_write },
6595 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
6596 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
6597 .access = PL1_W, .type = ARM_CP_NO_RAW,
6598 .writefn = tlbi_aa64_rvae1_write },
6599 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
6600 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
6601 .access = PL1_W, .type = ARM_CP_NO_RAW,
6602 .writefn = tlbi_aa64_rvae1_write },
6603 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
6604 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
6605 .access = PL2_W, .type = ARM_CP_NOP },
6606 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
6607 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
6608 .access = PL2_W, .type = ARM_CP_NOP },
6609 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
6610 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
6611 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6612 .writefn = tlbi_aa64_rvae2is_write },
6613 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
6614 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
6615 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6616 .writefn = tlbi_aa64_rvae2is_write },
6617 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
6618 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
6619 .access = PL2_W, .type = ARM_CP_NOP },
6620 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
6621 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
6622 .access = PL2_W, .type = ARM_CP_NOP },
6623 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
6624 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
6625 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6626 .writefn = tlbi_aa64_rvae2is_write },
6627 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
6628 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
6629 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6630 .writefn = tlbi_aa64_rvae2is_write },
6631 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
6632 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
6633 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6634 .writefn = tlbi_aa64_rvae2_write },
6635 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
6636 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
6637 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6638 .writefn = tlbi_aa64_rvae2_write },
6639 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
6640 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
6641 .access = PL3_W, .type = ARM_CP_NO_RAW,
6642 .writefn = tlbi_aa64_rvae3is_write },
6643 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
6644 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
6645 .access = PL3_W, .type = ARM_CP_NO_RAW,
6646 .writefn = tlbi_aa64_rvae3is_write },
6647 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
6648 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
6649 .access = PL3_W, .type = ARM_CP_NO_RAW,
6650 .writefn = tlbi_aa64_rvae3is_write },
6651 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
6652 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
6653 .access = PL3_W, .type = ARM_CP_NO_RAW,
6654 .writefn = tlbi_aa64_rvae3is_write },
6655 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
6656 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
6657 .access = PL3_W, .type = ARM_CP_NO_RAW,
6658 .writefn = tlbi_aa64_rvae3_write },
6659 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
6660 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
6661 .access = PL3_W, .type = ARM_CP_NO_RAW,
6662 .writefn = tlbi_aa64_rvae3_write },
6665 static const ARMCPRegInfo tlbios_reginfo[] = {
6666 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
6667 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
6668 .access = PL1_W, .type = ARM_CP_NO_RAW,
6669 .writefn = tlbi_aa64_vmalle1is_write },
6670 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
6671 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
6672 .access = PL1_W, .type = ARM_CP_NO_RAW,
6673 .writefn = tlbi_aa64_vae1is_write },
6674 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
6675 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
6676 .access = PL1_W, .type = ARM_CP_NO_RAW,
6677 .writefn = tlbi_aa64_vmalle1is_write },
6678 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
6679 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
6680 .access = PL1_W, .type = ARM_CP_NO_RAW,
6681 .writefn = tlbi_aa64_vae1is_write },
6682 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
6683 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
6684 .access = PL1_W, .type = ARM_CP_NO_RAW,
6685 .writefn = tlbi_aa64_vae1is_write },
6686 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
6687 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
6688 .access = PL1_W, .type = ARM_CP_NO_RAW,
6689 .writefn = tlbi_aa64_vae1is_write },
6690 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
6691 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
6692 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6693 .writefn = tlbi_aa64_alle2is_write },
6694 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
6695 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
6696 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6697 .writefn = tlbi_aa64_vae2is_write },
6698 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
6699 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
6700 .access = PL2_W, .type = ARM_CP_NO_RAW,
6701 .writefn = tlbi_aa64_alle1is_write },
6702 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
6703 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
6704 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6705 .writefn = tlbi_aa64_vae2is_write },
6706 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
6707 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
6708 .access = PL2_W, .type = ARM_CP_NO_RAW,
6709 .writefn = tlbi_aa64_alle1is_write },
6710 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
6711 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
6712 .access = PL2_W, .type = ARM_CP_NOP },
6713 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
6714 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
6715 .access = PL2_W, .type = ARM_CP_NOP },
6716 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6717 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
6718 .access = PL2_W, .type = ARM_CP_NOP },
6719 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6720 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
6721 .access = PL2_W, .type = ARM_CP_NOP },
6722 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
6723 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
6724 .access = PL3_W, .type = ARM_CP_NO_RAW,
6725 .writefn = tlbi_aa64_alle3is_write },
6726 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
6727 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
6728 .access = PL3_W, .type = ARM_CP_NO_RAW,
6729 .writefn = tlbi_aa64_vae3is_write },
6730 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
6731 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
6732 .access = PL3_W, .type = ARM_CP_NO_RAW,
6733 .writefn = tlbi_aa64_vae3is_write },
6736 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6738 Error *err = NULL;
6739 uint64_t ret;
6741 /* Success sets NZCV = 0000. */
6742 env->NF = env->CF = env->VF = 0, env->ZF = 1;
6744 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6746 * ??? Failed, for unknown reasons in the crypto subsystem.
6747 * The best we can do is log the reason and return the
6748 * timed-out indication to the guest. There is no reason
6749 * we know to expect this failure to be transitory, so the
6750 * guest may well hang retrying the operation.
6752 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6753 ri->name, error_get_pretty(err));
6754 error_free(err);
6756 env->ZF = 0; /* NZCF = 0100 */
6757 return 0;
6759 return ret;
6762 /* We do not support re-seeding, so the two registers operate the same. */
6763 static const ARMCPRegInfo rndr_reginfo[] = {
6764 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6765 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6766 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6767 .access = PL0_R, .readfn = rndr_readfn },
6768 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6769 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6770 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6771 .access = PL0_R, .readfn = rndr_readfn },
6774 #ifndef CONFIG_USER_ONLY
6775 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6776 uint64_t value)
6778 ARMCPU *cpu = env_archcpu(env);
6779 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6780 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6781 uint64_t vaddr_in = (uint64_t) value;
6782 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6783 void *haddr;
6784 int mem_idx = cpu_mmu_index(env, false);
6786 /* This won't be crossing page boundaries */
6787 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6788 if (haddr) {
6790 ram_addr_t offset;
6791 MemoryRegion *mr;
6793 /* RCU lock is already being held */
6794 mr = memory_region_from_host(haddr, &offset);
6796 if (mr) {
6797 memory_region_writeback(mr, offset, dline_size);
6802 static const ARMCPRegInfo dcpop_reg[] = {
6803 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6804 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6805 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6806 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6809 static const ARMCPRegInfo dcpodp_reg[] = {
6810 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6811 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6812 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6813 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6815 #endif /*CONFIG_USER_ONLY*/
6817 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
6818 bool isread)
6820 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
6821 return CP_ACCESS_TRAP_EL2;
6824 return CP_ACCESS_OK;
6827 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
6828 bool isread)
6830 int el = arm_current_el(env);
6832 if (el < 2 && arm_is_el2_enabled(env)) {
6833 uint64_t hcr = arm_hcr_el2_eff(env);
6834 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
6835 return CP_ACCESS_TRAP_EL2;
6838 if (el < 3 &&
6839 arm_feature(env, ARM_FEATURE_EL3) &&
6840 !(env->cp15.scr_el3 & SCR_ATA)) {
6841 return CP_ACCESS_TRAP_EL3;
6843 return CP_ACCESS_OK;
6846 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
6848 return env->pstate & PSTATE_TCO;
6851 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6853 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
6856 static const ARMCPRegInfo mte_reginfo[] = {
6857 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
6858 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
6859 .access = PL1_RW, .accessfn = access_mte,
6860 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
6861 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
6862 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
6863 .access = PL1_RW, .accessfn = access_mte,
6864 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
6865 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
6866 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
6867 .access = PL2_RW, .accessfn = access_mte,
6868 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
6869 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
6870 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
6871 .access = PL3_RW,
6872 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
6873 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
6874 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
6875 .access = PL1_RW, .accessfn = access_mte,
6876 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
6877 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
6878 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
6879 .access = PL1_RW, .accessfn = access_mte,
6880 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
6881 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
6882 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
6883 .access = PL1_R, .accessfn = access_aa64_tid5,
6884 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
6885 { .name = "TCO", .state = ARM_CP_STATE_AA64,
6886 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6887 .type = ARM_CP_NO_RAW,
6888 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
6889 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
6890 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
6891 .type = ARM_CP_NOP, .access = PL1_W,
6892 .accessfn = aa64_cacheop_poc_access },
6893 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
6894 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
6895 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6896 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
6897 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
6898 .type = ARM_CP_NOP, .access = PL1_W,
6899 .accessfn = aa64_cacheop_poc_access },
6900 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
6901 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
6902 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6903 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
6904 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
6905 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6906 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
6907 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
6908 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6909 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
6910 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
6911 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6912 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
6913 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
6914 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6917 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
6918 { .name = "TCO", .state = ARM_CP_STATE_AA64,
6919 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6920 .type = ARM_CP_CONST, .access = PL0_RW, },
6923 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
6924 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
6925 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
6926 .type = ARM_CP_NOP, .access = PL0_W,
6927 .accessfn = aa64_cacheop_poc_access },
6928 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
6929 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
6930 .type = ARM_CP_NOP, .access = PL0_W,
6931 .accessfn = aa64_cacheop_poc_access },
6932 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
6933 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
6934 .type = ARM_CP_NOP, .access = PL0_W,
6935 .accessfn = aa64_cacheop_poc_access },
6936 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
6937 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
6938 .type = ARM_CP_NOP, .access = PL0_W,
6939 .accessfn = aa64_cacheop_poc_access },
6940 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
6941 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
6942 .type = ARM_CP_NOP, .access = PL0_W,
6943 .accessfn = aa64_cacheop_poc_access },
6944 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
6945 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
6946 .type = ARM_CP_NOP, .access = PL0_W,
6947 .accessfn = aa64_cacheop_poc_access },
6948 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
6949 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
6950 .type = ARM_CP_NOP, .access = PL0_W,
6951 .accessfn = aa64_cacheop_poc_access },
6952 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
6953 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
6954 .type = ARM_CP_NOP, .access = PL0_W,
6955 .accessfn = aa64_cacheop_poc_access },
6956 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
6957 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
6958 .access = PL0_W, .type = ARM_CP_DC_GVA,
6959 #ifndef CONFIG_USER_ONLY
6960 /* Avoid overhead of an access check that always passes in user-mode */
6961 .accessfn = aa64_zva_access,
6962 #endif
6964 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
6965 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
6966 .access = PL0_W, .type = ARM_CP_DC_GZVA,
6967 #ifndef CONFIG_USER_ONLY
6968 /* Avoid overhead of an access check that always passes in user-mode */
6969 .accessfn = aa64_zva_access,
6970 #endif
6974 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
6975 bool isread)
6977 uint64_t hcr = arm_hcr_el2_eff(env);
6978 int el = arm_current_el(env);
6980 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
6981 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
6982 if (hcr & HCR_TGE) {
6983 return CP_ACCESS_TRAP_EL2;
6985 return CP_ACCESS_TRAP;
6987 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
6988 return CP_ACCESS_TRAP_EL2;
6990 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
6991 return CP_ACCESS_TRAP_EL2;
6993 if (el < 3
6994 && arm_feature(env, ARM_FEATURE_EL3)
6995 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
6996 return CP_ACCESS_TRAP_EL3;
6998 return CP_ACCESS_OK;
7001 static const ARMCPRegInfo scxtnum_reginfo[] = {
7002 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7003 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7004 .access = PL0_RW, .accessfn = access_scxtnum,
7005 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7006 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7007 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7008 .access = PL1_RW, .accessfn = access_scxtnum,
7009 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7010 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7011 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7012 .access = PL2_RW, .accessfn = access_scxtnum,
7013 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7014 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7015 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7016 .access = PL3_RW,
7017 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7019 #endif /* TARGET_AARCH64 */
7021 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7022 bool isread)
7024 int el = arm_current_el(env);
7026 if (el == 0) {
7027 uint64_t sctlr = arm_sctlr(env, el);
7028 if (!(sctlr & SCTLR_EnRCTX)) {
7029 return CP_ACCESS_TRAP;
7031 } else if (el == 1) {
7032 uint64_t hcr = arm_hcr_el2_eff(env);
7033 if (hcr & HCR_NV) {
7034 return CP_ACCESS_TRAP_EL2;
7037 return CP_ACCESS_OK;
7040 static const ARMCPRegInfo predinv_reginfo[] = {
7041 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7042 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7043 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7044 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7045 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7046 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7047 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7048 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7049 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7051 * Note the AArch32 opcodes have a different OPC1.
7053 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7054 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7055 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7056 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7057 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7058 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7059 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7060 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7061 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7064 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7066 /* Read the high 32 bits of the current CCSIDR */
7067 return extract64(ccsidr_read(env, ri), 32, 32);
7070 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7071 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7072 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7073 .access = PL1_R,
7074 .accessfn = access_aa64_tid2,
7075 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7078 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7079 bool isread)
7081 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7082 return CP_ACCESS_TRAP_EL2;
7085 return CP_ACCESS_OK;
7088 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7089 bool isread)
7091 if (arm_feature(env, ARM_FEATURE_V8)) {
7092 return access_aa64_tid3(env, ri, isread);
7095 return CP_ACCESS_OK;
7098 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7099 bool isread)
7101 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7102 return CP_ACCESS_TRAP_EL2;
7105 return CP_ACCESS_OK;
7108 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7109 const ARMCPRegInfo *ri, bool isread)
7112 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7113 * in v7A, not in v8A.
7115 if (!arm_feature(env, ARM_FEATURE_V8) &&
7116 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7117 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7118 return CP_ACCESS_TRAP_EL2;
7120 return CP_ACCESS_OK;
7123 static const ARMCPRegInfo jazelle_regs[] = {
7124 { .name = "JIDR",
7125 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7126 .access = PL1_R, .accessfn = access_jazelle,
7127 .type = ARM_CP_CONST, .resetvalue = 0 },
7128 { .name = "JOSCR",
7129 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7130 .accessfn = access_joscr_jmcr,
7131 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7132 { .name = "JMCR",
7133 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7134 .accessfn = access_joscr_jmcr,
7135 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7138 static const ARMCPRegInfo contextidr_el2 = {
7139 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7140 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7141 .access = PL2_RW,
7142 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7145 static const ARMCPRegInfo vhe_reginfo[] = {
7146 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7147 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7148 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7149 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7150 #ifndef CONFIG_USER_ONLY
7151 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7152 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7153 .fieldoffset =
7154 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7155 .type = ARM_CP_IO, .access = PL2_RW,
7156 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7157 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7158 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7159 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7160 .resetfn = gt_hv_timer_reset,
7161 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7162 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7163 .type = ARM_CP_IO,
7164 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7165 .access = PL2_RW,
7166 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7167 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7168 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7169 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7170 .type = ARM_CP_IO | ARM_CP_ALIAS,
7171 .access = PL2_RW, .accessfn = e2h_access,
7172 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7173 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7174 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7175 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7176 .type = ARM_CP_IO | ARM_CP_ALIAS,
7177 .access = PL2_RW, .accessfn = e2h_access,
7178 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7179 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7180 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7181 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7182 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7183 .access = PL2_RW, .accessfn = e2h_access,
7184 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7185 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7186 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7187 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7188 .access = PL2_RW, .accessfn = e2h_access,
7189 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7190 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7191 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7192 .type = ARM_CP_IO | ARM_CP_ALIAS,
7193 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7194 .access = PL2_RW, .accessfn = e2h_access,
7195 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7196 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7197 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7198 .type = ARM_CP_IO | ARM_CP_ALIAS,
7199 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7200 .access = PL2_RW, .accessfn = e2h_access,
7201 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7202 #endif
7205 #ifndef CONFIG_USER_ONLY
7206 static const ARMCPRegInfo ats1e1_reginfo[] = {
7207 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7208 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7209 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7210 .writefn = ats_write64 },
7211 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7212 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7213 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7214 .writefn = ats_write64 },
7217 static const ARMCPRegInfo ats1cp_reginfo[] = {
7218 { .name = "ATS1CPRP",
7219 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7220 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7221 .writefn = ats_write },
7222 { .name = "ATS1CPWP",
7223 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7224 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7225 .writefn = ats_write },
7227 #endif
7230 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7231 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7232 * is non-zero, which is never for ARMv7, optionally in ARMv8
7233 * and mandatorily for ARMv8.2 and up.
7234 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7235 * implementation is RAZ/WI we can ignore this detail, as we
7236 * do for ACTLR.
7238 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7239 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7240 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7241 .access = PL1_RW, .accessfn = access_tacr,
7242 .type = ARM_CP_CONST, .resetvalue = 0 },
7243 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7244 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7245 .access = PL2_RW, .type = ARM_CP_CONST,
7246 .resetvalue = 0 },
7249 void register_cp_regs_for_features(ARMCPU *cpu)
7251 /* Register all the coprocessor registers based on feature bits */
7252 CPUARMState *env = &cpu->env;
7253 if (arm_feature(env, ARM_FEATURE_M)) {
7254 /* M profile has no coprocessor registers */
7255 return;
7258 define_arm_cp_regs(cpu, cp_reginfo);
7259 if (!arm_feature(env, ARM_FEATURE_V8)) {
7260 /* Must go early as it is full of wildcards that may be
7261 * overridden by later definitions.
7263 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7266 if (arm_feature(env, ARM_FEATURE_V6)) {
7267 /* The ID registers all have impdef reset values */
7268 ARMCPRegInfo v6_idregs[] = {
7269 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7270 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7271 .access = PL1_R, .type = ARM_CP_CONST,
7272 .accessfn = access_aa32_tid3,
7273 .resetvalue = cpu->isar.id_pfr0 },
7274 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7275 * the value of the GIC field until after we define these regs.
7277 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7278 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7279 .access = PL1_R, .type = ARM_CP_NO_RAW,
7280 .accessfn = access_aa32_tid3,
7281 .readfn = id_pfr1_read,
7282 .writefn = arm_cp_write_ignore },
7283 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7284 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7285 .access = PL1_R, .type = ARM_CP_CONST,
7286 .accessfn = access_aa32_tid3,
7287 .resetvalue = cpu->isar.id_dfr0 },
7288 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7289 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7290 .access = PL1_R, .type = ARM_CP_CONST,
7291 .accessfn = access_aa32_tid3,
7292 .resetvalue = cpu->id_afr0 },
7293 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7294 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7295 .access = PL1_R, .type = ARM_CP_CONST,
7296 .accessfn = access_aa32_tid3,
7297 .resetvalue = cpu->isar.id_mmfr0 },
7298 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7299 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7300 .access = PL1_R, .type = ARM_CP_CONST,
7301 .accessfn = access_aa32_tid3,
7302 .resetvalue = cpu->isar.id_mmfr1 },
7303 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7304 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7305 .access = PL1_R, .type = ARM_CP_CONST,
7306 .accessfn = access_aa32_tid3,
7307 .resetvalue = cpu->isar.id_mmfr2 },
7308 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7309 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7310 .access = PL1_R, .type = ARM_CP_CONST,
7311 .accessfn = access_aa32_tid3,
7312 .resetvalue = cpu->isar.id_mmfr3 },
7313 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7314 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7315 .access = PL1_R, .type = ARM_CP_CONST,
7316 .accessfn = access_aa32_tid3,
7317 .resetvalue = cpu->isar.id_isar0 },
7318 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7319 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7320 .access = PL1_R, .type = ARM_CP_CONST,
7321 .accessfn = access_aa32_tid3,
7322 .resetvalue = cpu->isar.id_isar1 },
7323 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7324 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7325 .access = PL1_R, .type = ARM_CP_CONST,
7326 .accessfn = access_aa32_tid3,
7327 .resetvalue = cpu->isar.id_isar2 },
7328 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7329 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7330 .access = PL1_R, .type = ARM_CP_CONST,
7331 .accessfn = access_aa32_tid3,
7332 .resetvalue = cpu->isar.id_isar3 },
7333 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7334 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7335 .access = PL1_R, .type = ARM_CP_CONST,
7336 .accessfn = access_aa32_tid3,
7337 .resetvalue = cpu->isar.id_isar4 },
7338 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7339 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7340 .access = PL1_R, .type = ARM_CP_CONST,
7341 .accessfn = access_aa32_tid3,
7342 .resetvalue = cpu->isar.id_isar5 },
7343 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7344 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7345 .access = PL1_R, .type = ARM_CP_CONST,
7346 .accessfn = access_aa32_tid3,
7347 .resetvalue = cpu->isar.id_mmfr4 },
7348 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7349 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7350 .access = PL1_R, .type = ARM_CP_CONST,
7351 .accessfn = access_aa32_tid3,
7352 .resetvalue = cpu->isar.id_isar6 },
7354 define_arm_cp_regs(cpu, v6_idregs);
7355 define_arm_cp_regs(cpu, v6_cp_reginfo);
7356 } else {
7357 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7359 if (arm_feature(env, ARM_FEATURE_V6K)) {
7360 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7362 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7363 !arm_feature(env, ARM_FEATURE_PMSA)) {
7364 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7366 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7367 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7369 if (arm_feature(env, ARM_FEATURE_V7)) {
7370 ARMCPRegInfo clidr = {
7371 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7372 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7373 .access = PL1_R, .type = ARM_CP_CONST,
7374 .accessfn = access_aa64_tid2,
7375 .resetvalue = cpu->clidr
7377 define_one_arm_cp_reg(cpu, &clidr);
7378 define_arm_cp_regs(cpu, v7_cp_reginfo);
7379 define_debug_regs(cpu);
7380 define_pmu_regs(cpu);
7381 } else {
7382 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7384 if (arm_feature(env, ARM_FEATURE_V8)) {
7385 /* AArch64 ID registers, which all have impdef reset values.
7386 * Note that within the ID register ranges the unused slots
7387 * must all RAZ, not UNDEF; future architecture versions may
7388 * define new registers here.
7390 ARMCPRegInfo v8_idregs[] = {
7392 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7393 * emulation because we don't know the right value for the
7394 * GIC field until after we define these regs.
7396 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7397 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7398 .access = PL1_R,
7399 #ifdef CONFIG_USER_ONLY
7400 .type = ARM_CP_CONST,
7401 .resetvalue = cpu->isar.id_aa64pfr0
7402 #else
7403 .type = ARM_CP_NO_RAW,
7404 .accessfn = access_aa64_tid3,
7405 .readfn = id_aa64pfr0_read,
7406 .writefn = arm_cp_write_ignore
7407 #endif
7409 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7410 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7411 .access = PL1_R, .type = ARM_CP_CONST,
7412 .accessfn = access_aa64_tid3,
7413 .resetvalue = cpu->isar.id_aa64pfr1},
7414 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7415 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7416 .access = PL1_R, .type = ARM_CP_CONST,
7417 .accessfn = access_aa64_tid3,
7418 .resetvalue = 0 },
7419 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7420 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7421 .access = PL1_R, .type = ARM_CP_CONST,
7422 .accessfn = access_aa64_tid3,
7423 .resetvalue = 0 },
7424 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7425 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7426 .access = PL1_R, .type = ARM_CP_CONST,
7427 .accessfn = access_aa64_tid3,
7428 .resetvalue = cpu->isar.id_aa64zfr0 },
7429 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
7430 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7431 .access = PL1_R, .type = ARM_CP_CONST,
7432 .accessfn = access_aa64_tid3,
7433 .resetvalue = cpu->isar.id_aa64smfr0 },
7434 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7435 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7436 .access = PL1_R, .type = ARM_CP_CONST,
7437 .accessfn = access_aa64_tid3,
7438 .resetvalue = 0 },
7439 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7440 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7441 .access = PL1_R, .type = ARM_CP_CONST,
7442 .accessfn = access_aa64_tid3,
7443 .resetvalue = 0 },
7444 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7445 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7446 .access = PL1_R, .type = ARM_CP_CONST,
7447 .accessfn = access_aa64_tid3,
7448 .resetvalue = cpu->isar.id_aa64dfr0 },
7449 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7450 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7451 .access = PL1_R, .type = ARM_CP_CONST,
7452 .accessfn = access_aa64_tid3,
7453 .resetvalue = cpu->isar.id_aa64dfr1 },
7454 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7455 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7456 .access = PL1_R, .type = ARM_CP_CONST,
7457 .accessfn = access_aa64_tid3,
7458 .resetvalue = 0 },
7459 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7460 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7461 .access = PL1_R, .type = ARM_CP_CONST,
7462 .accessfn = access_aa64_tid3,
7463 .resetvalue = 0 },
7464 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7465 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7466 .access = PL1_R, .type = ARM_CP_CONST,
7467 .accessfn = access_aa64_tid3,
7468 .resetvalue = cpu->id_aa64afr0 },
7469 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7470 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7471 .access = PL1_R, .type = ARM_CP_CONST,
7472 .accessfn = access_aa64_tid3,
7473 .resetvalue = cpu->id_aa64afr1 },
7474 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7475 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7476 .access = PL1_R, .type = ARM_CP_CONST,
7477 .accessfn = access_aa64_tid3,
7478 .resetvalue = 0 },
7479 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7480 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7481 .access = PL1_R, .type = ARM_CP_CONST,
7482 .accessfn = access_aa64_tid3,
7483 .resetvalue = 0 },
7484 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7485 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7486 .access = PL1_R, .type = ARM_CP_CONST,
7487 .accessfn = access_aa64_tid3,
7488 .resetvalue = cpu->isar.id_aa64isar0 },
7489 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7490 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7491 .access = PL1_R, .type = ARM_CP_CONST,
7492 .accessfn = access_aa64_tid3,
7493 .resetvalue = cpu->isar.id_aa64isar1 },
7494 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7495 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7496 .access = PL1_R, .type = ARM_CP_CONST,
7497 .accessfn = access_aa64_tid3,
7498 .resetvalue = 0 },
7499 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7500 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7501 .access = PL1_R, .type = ARM_CP_CONST,
7502 .accessfn = access_aa64_tid3,
7503 .resetvalue = 0 },
7504 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7505 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7506 .access = PL1_R, .type = ARM_CP_CONST,
7507 .accessfn = access_aa64_tid3,
7508 .resetvalue = 0 },
7509 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7510 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7511 .access = PL1_R, .type = ARM_CP_CONST,
7512 .accessfn = access_aa64_tid3,
7513 .resetvalue = 0 },
7514 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7515 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7516 .access = PL1_R, .type = ARM_CP_CONST,
7517 .accessfn = access_aa64_tid3,
7518 .resetvalue = 0 },
7519 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7520 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7521 .access = PL1_R, .type = ARM_CP_CONST,
7522 .accessfn = access_aa64_tid3,
7523 .resetvalue = 0 },
7524 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7525 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7526 .access = PL1_R, .type = ARM_CP_CONST,
7527 .accessfn = access_aa64_tid3,
7528 .resetvalue = cpu->isar.id_aa64mmfr0 },
7529 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7530 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7531 .access = PL1_R, .type = ARM_CP_CONST,
7532 .accessfn = access_aa64_tid3,
7533 .resetvalue = cpu->isar.id_aa64mmfr1 },
7534 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7535 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7536 .access = PL1_R, .type = ARM_CP_CONST,
7537 .accessfn = access_aa64_tid3,
7538 .resetvalue = cpu->isar.id_aa64mmfr2 },
7539 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7541 .access = PL1_R, .type = ARM_CP_CONST,
7542 .accessfn = access_aa64_tid3,
7543 .resetvalue = 0 },
7544 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7545 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7546 .access = PL1_R, .type = ARM_CP_CONST,
7547 .accessfn = access_aa64_tid3,
7548 .resetvalue = 0 },
7549 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7550 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7551 .access = PL1_R, .type = ARM_CP_CONST,
7552 .accessfn = access_aa64_tid3,
7553 .resetvalue = 0 },
7554 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7556 .access = PL1_R, .type = ARM_CP_CONST,
7557 .accessfn = access_aa64_tid3,
7558 .resetvalue = 0 },
7559 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7561 .access = PL1_R, .type = ARM_CP_CONST,
7562 .accessfn = access_aa64_tid3,
7563 .resetvalue = 0 },
7564 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7566 .access = PL1_R, .type = ARM_CP_CONST,
7567 .accessfn = access_aa64_tid3,
7568 .resetvalue = cpu->isar.mvfr0 },
7569 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7570 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7571 .access = PL1_R, .type = ARM_CP_CONST,
7572 .accessfn = access_aa64_tid3,
7573 .resetvalue = cpu->isar.mvfr1 },
7574 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7576 .access = PL1_R, .type = ARM_CP_CONST,
7577 .accessfn = access_aa64_tid3,
7578 .resetvalue = cpu->isar.mvfr2 },
7579 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7581 .access = PL1_R, .type = ARM_CP_CONST,
7582 .accessfn = access_aa64_tid3,
7583 .resetvalue = 0 },
7584 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7585 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7586 .access = PL1_R, .type = ARM_CP_CONST,
7587 .accessfn = access_aa64_tid3,
7588 .resetvalue = cpu->isar.id_pfr2 },
7589 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7590 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7591 .access = PL1_R, .type = ARM_CP_CONST,
7592 .accessfn = access_aa64_tid3,
7593 .resetvalue = 0 },
7594 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7595 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7596 .access = PL1_R, .type = ARM_CP_CONST,
7597 .accessfn = access_aa64_tid3,
7598 .resetvalue = 0 },
7599 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7601 .access = PL1_R, .type = ARM_CP_CONST,
7602 .accessfn = access_aa64_tid3,
7603 .resetvalue = 0 },
7604 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7605 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7606 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7607 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7608 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7609 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7610 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7611 .resetvalue = cpu->pmceid0 },
7612 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7613 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7614 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7615 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7616 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7617 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7618 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7619 .resetvalue = cpu->pmceid1 },
7621 #ifdef CONFIG_USER_ONLY
7622 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7623 { .name = "ID_AA64PFR0_EL1",
7624 .exported_bits = 0x000f000f00ff0000,
7625 .fixed_bits = 0x0000000000000011 },
7626 { .name = "ID_AA64PFR1_EL1",
7627 .exported_bits = 0x00000000000000f0 },
7628 { .name = "ID_AA64PFR*_EL1_RESERVED",
7629 .is_glob = true },
7630 { .name = "ID_AA64ZFR0_EL1" },
7631 { .name = "ID_AA64MMFR0_EL1",
7632 .fixed_bits = 0x00000000ff000000 },
7633 { .name = "ID_AA64MMFR1_EL1" },
7634 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7635 .is_glob = true },
7636 { .name = "ID_AA64DFR0_EL1",
7637 .fixed_bits = 0x0000000000000006 },
7638 { .name = "ID_AA64DFR1_EL1" },
7639 { .name = "ID_AA64DFR*_EL1_RESERVED",
7640 .is_glob = true },
7641 { .name = "ID_AA64AFR*",
7642 .is_glob = true },
7643 { .name = "ID_AA64ISAR0_EL1",
7644 .exported_bits = 0x00fffffff0fffff0 },
7645 { .name = "ID_AA64ISAR1_EL1",
7646 .exported_bits = 0x000000f0ffffffff },
7647 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7648 .is_glob = true },
7650 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7651 #endif
7652 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7653 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7654 !arm_feature(env, ARM_FEATURE_EL2)) {
7655 ARMCPRegInfo rvbar = {
7656 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7657 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7658 .access = PL1_R,
7659 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7661 define_one_arm_cp_reg(cpu, &rvbar);
7663 define_arm_cp_regs(cpu, v8_idregs);
7664 define_arm_cp_regs(cpu, v8_cp_reginfo);
7668 * Register the base EL2 cpregs.
7669 * Pre v8, these registers are implemented only as part of the
7670 * Virtualization Extensions (EL2 present). Beginning with v8,
7671 * if EL2 is missing but EL3 is enabled, mostly these become
7672 * RES0 from EL3, with some specific exceptions.
7674 if (arm_feature(env, ARM_FEATURE_EL2)
7675 || (arm_feature(env, ARM_FEATURE_EL3)
7676 && arm_feature(env, ARM_FEATURE_V8))) {
7677 uint64_t vmpidr_def = mpidr_read_val(env);
7678 ARMCPRegInfo vpidr_regs[] = {
7679 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7680 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7681 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7682 .resetvalue = cpu->midr,
7683 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
7684 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7685 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7686 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7687 .access = PL2_RW, .resetvalue = cpu->midr,
7688 .type = ARM_CP_EL3_NO_EL2_C_NZ,
7689 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7690 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7691 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7692 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7693 .resetvalue = vmpidr_def,
7694 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
7695 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7696 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7697 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7698 .access = PL2_RW, .resetvalue = vmpidr_def,
7699 .type = ARM_CP_EL3_NO_EL2_C_NZ,
7700 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7703 * The only field of MDCR_EL2 that has a defined architectural reset
7704 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
7706 ARMCPRegInfo mdcr_el2 = {
7707 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
7708 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
7709 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
7710 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
7712 define_one_arm_cp_reg(cpu, &mdcr_el2);
7713 define_arm_cp_regs(cpu, vpidr_regs);
7714 define_arm_cp_regs(cpu, el2_cp_reginfo);
7715 if (arm_feature(env, ARM_FEATURE_V8)) {
7716 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7718 if (cpu_isar_feature(aa64_sel2, cpu)) {
7719 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
7721 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7722 if (!arm_feature(env, ARM_FEATURE_EL3)) {
7723 ARMCPRegInfo rvbar = {
7724 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7725 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7726 .access = PL2_R,
7727 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7729 define_one_arm_cp_reg(cpu, &rvbar);
7733 /* Register the base EL3 cpregs. */
7734 if (arm_feature(env, ARM_FEATURE_EL3)) {
7735 define_arm_cp_regs(cpu, el3_cp_reginfo);
7736 ARMCPRegInfo el3_regs[] = {
7737 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7738 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7739 .access = PL3_R,
7740 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7742 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7743 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7744 .access = PL3_RW,
7745 .raw_writefn = raw_write, .writefn = sctlr_write,
7746 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7747 .resetvalue = cpu->reset_sctlr },
7750 define_arm_cp_regs(cpu, el3_regs);
7752 /* The behaviour of NSACR is sufficiently various that we don't
7753 * try to describe it in a single reginfo:
7754 * if EL3 is 64 bit, then trap to EL3 from S EL1,
7755 * reads as constant 0xc00 from NS EL1 and NS EL2
7756 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7757 * if v7 without EL3, register doesn't exist
7758 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7760 if (arm_feature(env, ARM_FEATURE_EL3)) {
7761 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7762 static const ARMCPRegInfo nsacr = {
7763 .name = "NSACR", .type = ARM_CP_CONST,
7764 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7765 .access = PL1_RW, .accessfn = nsacr_access,
7766 .resetvalue = 0xc00
7768 define_one_arm_cp_reg(cpu, &nsacr);
7769 } else {
7770 static const ARMCPRegInfo nsacr = {
7771 .name = "NSACR",
7772 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7773 .access = PL3_RW | PL1_R,
7774 .resetvalue = 0,
7775 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7777 define_one_arm_cp_reg(cpu, &nsacr);
7779 } else {
7780 if (arm_feature(env, ARM_FEATURE_V8)) {
7781 static const ARMCPRegInfo nsacr = {
7782 .name = "NSACR", .type = ARM_CP_CONST,
7783 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7784 .access = PL1_R,
7785 .resetvalue = 0xc00
7787 define_one_arm_cp_reg(cpu, &nsacr);
7791 if (arm_feature(env, ARM_FEATURE_PMSA)) {
7792 if (arm_feature(env, ARM_FEATURE_V6)) {
7793 /* PMSAv6 not implemented */
7794 assert(arm_feature(env, ARM_FEATURE_V7));
7795 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7796 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7797 } else {
7798 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7800 } else {
7801 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7802 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7803 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
7804 if (cpu_isar_feature(aa32_hpd, cpu)) {
7805 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7808 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7809 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7811 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7812 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7814 if (arm_feature(env, ARM_FEATURE_VAPA)) {
7815 define_arm_cp_regs(cpu, vapa_cp_reginfo);
7817 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7818 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7820 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7821 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7823 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7824 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7826 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7827 define_arm_cp_regs(cpu, omap_cp_reginfo);
7829 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7830 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7832 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7833 define_arm_cp_regs(cpu, xscale_cp_reginfo);
7835 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7836 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7838 if (arm_feature(env, ARM_FEATURE_LPAE)) {
7839 define_arm_cp_regs(cpu, lpae_cp_reginfo);
7841 if (cpu_isar_feature(aa32_jazelle, cpu)) {
7842 define_arm_cp_regs(cpu, jazelle_regs);
7844 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7845 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7846 * be read-only (ie write causes UNDEF exception).
7849 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7850 /* Pre-v8 MIDR space.
7851 * Note that the MIDR isn't a simple constant register because
7852 * of the TI925 behaviour where writes to another register can
7853 * cause the MIDR value to change.
7855 * Unimplemented registers in the c15 0 0 0 space default to
7856 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7857 * and friends override accordingly.
7859 { .name = "MIDR",
7860 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7861 .access = PL1_R, .resetvalue = cpu->midr,
7862 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7863 .readfn = midr_read,
7864 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7865 .type = ARM_CP_OVERRIDE },
7866 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7867 { .name = "DUMMY",
7868 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7869 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7870 { .name = "DUMMY",
7871 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7872 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7873 { .name = "DUMMY",
7874 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7875 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7876 { .name = "DUMMY",
7877 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7878 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7879 { .name = "DUMMY",
7880 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7881 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7883 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7884 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7885 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7886 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7887 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7888 .readfn = midr_read },
7889 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7890 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7891 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7892 .access = PL1_R, .resetvalue = cpu->midr },
7893 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7894 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7895 .access = PL1_R, .resetvalue = cpu->midr },
7896 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7898 .access = PL1_R,
7899 .accessfn = access_aa64_tid1,
7900 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7902 ARMCPRegInfo id_cp_reginfo[] = {
7903 /* These are common to v8 and pre-v8 */
7904 { .name = "CTR",
7905 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7906 .access = PL1_R, .accessfn = ctr_el0_access,
7907 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7908 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7909 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7910 .access = PL0_R, .accessfn = ctr_el0_access,
7911 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7912 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
7913 { .name = "TCMTR",
7914 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
7915 .access = PL1_R,
7916 .accessfn = access_aa32_tid1,
7917 .type = ARM_CP_CONST, .resetvalue = 0 },
7919 /* TLBTR is specific to VMSA */
7920 ARMCPRegInfo id_tlbtr_reginfo = {
7921 .name = "TLBTR",
7922 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
7923 .access = PL1_R,
7924 .accessfn = access_aa32_tid1,
7925 .type = ARM_CP_CONST, .resetvalue = 0,
7927 /* MPUIR is specific to PMSA V6+ */
7928 ARMCPRegInfo id_mpuir_reginfo = {
7929 .name = "MPUIR",
7930 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7931 .access = PL1_R, .type = ARM_CP_CONST,
7932 .resetvalue = cpu->pmsav7_dregion << 8
7934 static const ARMCPRegInfo crn0_wi_reginfo = {
7935 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
7936 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
7937 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
7939 #ifdef CONFIG_USER_ONLY
7940 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
7941 { .name = "MIDR_EL1",
7942 .exported_bits = 0x00000000ffffffff },
7943 { .name = "REVIDR_EL1" },
7945 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
7946 #endif
7947 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
7948 arm_feature(env, ARM_FEATURE_STRONGARM)) {
7949 size_t i;
7950 /* Register the blanket "writes ignored" value first to cover the
7951 * whole space. Then update the specific ID registers to allow write
7952 * access, so that they ignore writes rather than causing them to
7953 * UNDEF.
7955 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
7956 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
7957 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
7959 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
7960 id_cp_reginfo[i].access = PL1_RW;
7962 id_mpuir_reginfo.access = PL1_RW;
7963 id_tlbtr_reginfo.access = PL1_RW;
7965 if (arm_feature(env, ARM_FEATURE_V8)) {
7966 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
7967 } else {
7968 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
7970 define_arm_cp_regs(cpu, id_cp_reginfo);
7971 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
7972 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
7973 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7974 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
7978 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
7979 ARMCPRegInfo mpidr_cp_reginfo[] = {
7980 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
7981 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7982 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
7984 #ifdef CONFIG_USER_ONLY
7985 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
7986 { .name = "MPIDR_EL1",
7987 .fixed_bits = 0x0000000080000000 },
7989 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
7990 #endif
7991 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
7994 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
7995 ARMCPRegInfo auxcr_reginfo[] = {
7996 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
7997 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
7998 .access = PL1_RW, .accessfn = access_tacr,
7999 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8000 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8001 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8002 .access = PL2_RW, .type = ARM_CP_CONST,
8003 .resetvalue = 0 },
8004 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8005 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8006 .access = PL3_RW, .type = ARM_CP_CONST,
8007 .resetvalue = 0 },
8009 define_arm_cp_regs(cpu, auxcr_reginfo);
8010 if (cpu_isar_feature(aa32_ac2, cpu)) {
8011 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8015 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8017 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8018 * There are two flavours:
8019 * (1) older 32-bit only cores have a simple 32-bit CBAR
8020 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8021 * 32-bit register visible to AArch32 at a different encoding
8022 * to the "flavour 1" register and with the bits rearranged to
8023 * be able to squash a 64-bit address into the 32-bit view.
8024 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8025 * in future if we support AArch32-only configs of some of the
8026 * AArch64 cores we might need to add a specific feature flag
8027 * to indicate cores with "flavour 2" CBAR.
8029 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8030 /* 32 bit view is [31:18] 0...0 [43:32]. */
8031 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8032 | extract64(cpu->reset_cbar, 32, 12);
8033 ARMCPRegInfo cbar_reginfo[] = {
8034 { .name = "CBAR",
8035 .type = ARM_CP_CONST,
8036 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8037 .access = PL1_R, .resetvalue = cbar32 },
8038 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8039 .type = ARM_CP_CONST,
8040 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8041 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8043 /* We don't implement a r/w 64 bit CBAR currently */
8044 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8045 define_arm_cp_regs(cpu, cbar_reginfo);
8046 } else {
8047 ARMCPRegInfo cbar = {
8048 .name = "CBAR",
8049 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8050 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8051 .fieldoffset = offsetof(CPUARMState,
8052 cp15.c15_config_base_address)
8054 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8055 cbar.access = PL1_R;
8056 cbar.fieldoffset = 0;
8057 cbar.type = ARM_CP_CONST;
8059 define_one_arm_cp_reg(cpu, &cbar);
8063 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8064 static const ARMCPRegInfo vbar_cp_reginfo[] = {
8065 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8066 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8067 .access = PL1_RW, .writefn = vbar_write,
8068 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8069 offsetof(CPUARMState, cp15.vbar_ns) },
8070 .resetvalue = 0 },
8072 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8075 /* Generic registers whose values depend on the implementation */
8077 ARMCPRegInfo sctlr = {
8078 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8079 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8080 .access = PL1_RW, .accessfn = access_tvm_trvm,
8081 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8082 offsetof(CPUARMState, cp15.sctlr_ns) },
8083 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8084 .raw_writefn = raw_write,
8086 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8087 /* Normally we would always end the TB on an SCTLR write, but Linux
8088 * arch/arm/mach-pxa/sleep.S expects two instructions following
8089 * an MMU enable to execute from cache. Imitate this behaviour.
8091 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8093 define_one_arm_cp_reg(cpu, &sctlr);
8096 if (cpu_isar_feature(aa64_lor, cpu)) {
8097 define_arm_cp_regs(cpu, lor_reginfo);
8099 if (cpu_isar_feature(aa64_pan, cpu)) {
8100 define_one_arm_cp_reg(cpu, &pan_reginfo);
8102 #ifndef CONFIG_USER_ONLY
8103 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8104 define_arm_cp_regs(cpu, ats1e1_reginfo);
8106 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8107 define_arm_cp_regs(cpu, ats1cp_reginfo);
8109 #endif
8110 if (cpu_isar_feature(aa64_uao, cpu)) {
8111 define_one_arm_cp_reg(cpu, &uao_reginfo);
8114 if (cpu_isar_feature(aa64_dit, cpu)) {
8115 define_one_arm_cp_reg(cpu, &dit_reginfo);
8117 if (cpu_isar_feature(aa64_ssbs, cpu)) {
8118 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8120 if (cpu_isar_feature(any_ras, cpu)) {
8121 define_arm_cp_regs(cpu, minimal_ras_reginfo);
8124 if (cpu_isar_feature(aa64_vh, cpu) ||
8125 cpu_isar_feature(aa64_debugv8p2, cpu)) {
8126 define_one_arm_cp_reg(cpu, &contextidr_el2);
8128 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8129 define_arm_cp_regs(cpu, vhe_reginfo);
8132 if (cpu_isar_feature(aa64_sve, cpu)) {
8133 define_arm_cp_regs(cpu, zcr_reginfo);
8136 if (cpu_isar_feature(aa64_hcx, cpu)) {
8137 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
8140 #ifdef TARGET_AARCH64
8141 if (cpu_isar_feature(aa64_sme, cpu)) {
8142 define_arm_cp_regs(cpu, sme_reginfo);
8144 if (cpu_isar_feature(aa64_pauth, cpu)) {
8145 define_arm_cp_regs(cpu, pauth_reginfo);
8147 if (cpu_isar_feature(aa64_rndr, cpu)) {
8148 define_arm_cp_regs(cpu, rndr_reginfo);
8150 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8151 define_arm_cp_regs(cpu, tlbirange_reginfo);
8153 if (cpu_isar_feature(aa64_tlbios, cpu)) {
8154 define_arm_cp_regs(cpu, tlbios_reginfo);
8156 #ifndef CONFIG_USER_ONLY
8157 /* Data Cache clean instructions up to PoP */
8158 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8159 define_one_arm_cp_reg(cpu, dcpop_reg);
8161 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8162 define_one_arm_cp_reg(cpu, dcpodp_reg);
8165 #endif /*CONFIG_USER_ONLY*/
8168 * If full MTE is enabled, add all of the system registers.
8169 * If only "instructions available at EL0" are enabled,
8170 * then define only a RAZ/WI version of PSTATE.TCO.
8172 if (cpu_isar_feature(aa64_mte, cpu)) {
8173 define_arm_cp_regs(cpu, mte_reginfo);
8174 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8175 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8176 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8177 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8180 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
8181 define_arm_cp_regs(cpu, scxtnum_reginfo);
8183 #endif
8185 if (cpu_isar_feature(any_predinv, cpu)) {
8186 define_arm_cp_regs(cpu, predinv_reginfo);
8189 if (cpu_isar_feature(any_ccidx, cpu)) {
8190 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8193 #ifndef CONFIG_USER_ONLY
8195 * Register redirections and aliases must be done last,
8196 * after the registers from the other extensions have been defined.
8198 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8199 define_arm_vh_e2h_redirects_aliases(cpu);
8201 #endif
8204 /* Sort alphabetically by type name, except for "any". */
8205 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8207 ObjectClass *class_a = (ObjectClass *)a;
8208 ObjectClass *class_b = (ObjectClass *)b;
8209 const char *name_a, *name_b;
8211 name_a = object_class_get_name(class_a);
8212 name_b = object_class_get_name(class_b);
8213 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8214 return 1;
8215 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8216 return -1;
8217 } else {
8218 return strcmp(name_a, name_b);
8222 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8224 ObjectClass *oc = data;
8225 const char *typename;
8226 char *name;
8228 typename = object_class_get_name(oc);
8229 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8230 qemu_printf(" %s\n", name);
8231 g_free(name);
8234 void arm_cpu_list(void)
8236 GSList *list;
8238 list = object_class_get_list(TYPE_ARM_CPU, false);
8239 list = g_slist_sort(list, arm_cpu_list_compare);
8240 qemu_printf("Available CPUs:\n");
8241 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8242 g_slist_free(list);
8245 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8247 ObjectClass *oc = data;
8248 CpuDefinitionInfoList **cpu_list = user_data;
8249 CpuDefinitionInfo *info;
8250 const char *typename;
8252 typename = object_class_get_name(oc);
8253 info = g_malloc0(sizeof(*info));
8254 info->name = g_strndup(typename,
8255 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8256 info->q_typename = g_strdup(typename);
8258 QAPI_LIST_PREPEND(*cpu_list, info);
8261 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8263 CpuDefinitionInfoList *cpu_list = NULL;
8264 GSList *list;
8266 list = object_class_get_list(TYPE_ARM_CPU, false);
8267 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8268 g_slist_free(list);
8270 return cpu_list;
8274 * Private utility function for define_one_arm_cp_reg_with_opaque():
8275 * add a single reginfo struct to the hash table.
8277 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8278 void *opaque, CPState state,
8279 CPSecureState secstate,
8280 int crm, int opc1, int opc2,
8281 const char *name)
8283 CPUARMState *env = &cpu->env;
8284 uint32_t key;
8285 ARMCPRegInfo *r2;
8286 bool is64 = r->type & ARM_CP_64BIT;
8287 bool ns = secstate & ARM_CP_SECSTATE_NS;
8288 int cp = r->cp;
8289 size_t name_len;
8290 bool make_const;
8292 switch (state) {
8293 case ARM_CP_STATE_AA32:
8294 /* We assume it is a cp15 register if the .cp field is left unset. */
8295 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
8296 cp = 15;
8298 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
8299 break;
8300 case ARM_CP_STATE_AA64:
8302 * To allow abbreviation of ARMCPRegInfo definitions, we treat
8303 * cp == 0 as equivalent to the value for "standard guest-visible
8304 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
8305 * in their AArch64 view (the .cp value may be non-zero for the
8306 * benefit of the AArch32 view).
8308 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8309 cp = CP_REG_ARM64_SYSREG_CP;
8311 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
8312 break;
8313 default:
8314 g_assert_not_reached();
8317 /* Overriding of an existing definition must be explicitly requested. */
8318 if (!(r->type & ARM_CP_OVERRIDE)) {
8319 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
8320 if (oldreg) {
8321 assert(oldreg->type & ARM_CP_OVERRIDE);
8326 * Eliminate registers that are not present because the EL is missing.
8327 * Doing this here makes it easier to put all registers for a given
8328 * feature into the same ARMCPRegInfo array and define them all at once.
8330 make_const = false;
8331 if (arm_feature(env, ARM_FEATURE_EL3)) {
8333 * An EL2 register without EL2 but with EL3 is (usually) RES0.
8334 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
8336 int min_el = ctz32(r->access) / 2;
8337 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
8338 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
8339 return;
8341 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
8343 } else {
8344 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
8345 ? PL2_RW : PL1_RW);
8346 if ((r->access & max_el) == 0) {
8347 return;
8351 /* Combine cpreg and name into one allocation. */
8352 name_len = strlen(name) + 1;
8353 r2 = g_malloc(sizeof(*r2) + name_len);
8354 *r2 = *r;
8355 r2->name = memcpy(r2 + 1, name, name_len);
8358 * Update fields to match the instantiation, overwiting wildcards
8359 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
8361 r2->cp = cp;
8362 r2->crm = crm;
8363 r2->opc1 = opc1;
8364 r2->opc2 = opc2;
8365 r2->state = state;
8366 r2->secure = secstate;
8367 if (opaque) {
8368 r2->opaque = opaque;
8371 if (make_const) {
8372 /* This should not have been a very special register to begin. */
8373 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
8374 assert(old_special == 0 || old_special == ARM_CP_NOP);
8376 * Set the special function to CONST, retaining the other flags.
8377 * This is important for e.g. ARM_CP_SVE so that we still
8378 * take the SVE trap if CPTR_EL3.EZ == 0.
8380 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
8382 * Usually, these registers become RES0, but there are a few
8383 * special cases like VPIDR_EL2 which have a constant non-zero
8384 * value with writes ignored.
8386 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
8387 r2->resetvalue = 0;
8390 * ARM_CP_CONST has precedence, so removing the callbacks and
8391 * offsets are not strictly necessary, but it is potentially
8392 * less confusing to debug later.
8394 r2->readfn = NULL;
8395 r2->writefn = NULL;
8396 r2->raw_readfn = NULL;
8397 r2->raw_writefn = NULL;
8398 r2->resetfn = NULL;
8399 r2->fieldoffset = 0;
8400 r2->bank_fieldoffsets[0] = 0;
8401 r2->bank_fieldoffsets[1] = 0;
8402 } else {
8403 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
8405 if (isbanked) {
8407 * Register is banked (using both entries in array).
8408 * Overwriting fieldoffset as the array is only used to define
8409 * banked registers but later only fieldoffset is used.
8411 r2->fieldoffset = r->bank_fieldoffsets[ns];
8413 if (state == ARM_CP_STATE_AA32) {
8414 if (isbanked) {
8416 * If the register is banked then we don't need to migrate or
8417 * reset the 32-bit instance in certain cases:
8419 * 1) If the register has both 32-bit and 64-bit instances
8420 * then we can count on the 64-bit instance taking care
8421 * of the non-secure bank.
8422 * 2) If ARMv8 is enabled then we can count on a 64-bit
8423 * version taking care of the secure bank. This requires
8424 * that separate 32 and 64-bit definitions are provided.
8426 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8427 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
8428 r2->type |= ARM_CP_ALIAS;
8430 } else if ((secstate != r->secure) && !ns) {
8432 * The register is not banked so we only want to allow
8433 * migration of the non-secure instance.
8435 r2->type |= ARM_CP_ALIAS;
8438 if (HOST_BIG_ENDIAN &&
8439 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
8440 r2->fieldoffset += sizeof(uint32_t);
8446 * By convention, for wildcarded registers only the first
8447 * entry is used for migration; the others are marked as
8448 * ALIAS so we don't try to transfer the register
8449 * multiple times. Special registers (ie NOP/WFI) are
8450 * never migratable and not even raw-accessible.
8452 if (r2->type & ARM_CP_SPECIAL_MASK) {
8453 r2->type |= ARM_CP_NO_RAW;
8455 if (((r->crm == CP_ANY) && crm != 0) ||
8456 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8457 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8458 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8462 * Check that raw accesses are either forbidden or handled. Note that
8463 * we can't assert this earlier because the setup of fieldoffset for
8464 * banked registers has to be done first.
8466 if (!(r2->type & ARM_CP_NO_RAW)) {
8467 assert(!raw_accessors_invalid(r2));
8470 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
8474 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8475 const ARMCPRegInfo *r, void *opaque)
8477 /* Define implementations of coprocessor registers.
8478 * We store these in a hashtable because typically
8479 * there are less than 150 registers in a space which
8480 * is 16*16*16*8*8 = 262144 in size.
8481 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8482 * If a register is defined twice then the second definition is
8483 * used, so this can be used to define some generic registers and
8484 * then override them with implementation specific variations.
8485 * At least one of the original and the second definition should
8486 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8487 * against accidental use.
8489 * The state field defines whether the register is to be
8490 * visible in the AArch32 or AArch64 execution state. If the
8491 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8492 * reginfo structure for the AArch32 view, which sees the lower
8493 * 32 bits of the 64 bit register.
8495 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8496 * be wildcarded. AArch64 registers are always considered to be 64
8497 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8498 * the register, if any.
8500 int crm, opc1, opc2;
8501 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8502 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8503 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8504 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8505 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8506 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8507 CPState state;
8509 /* 64 bit registers have only CRm and Opc1 fields */
8510 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8511 /* op0 only exists in the AArch64 encodings */
8512 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8513 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8514 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8516 * This API is only for Arm's system coprocessors (14 and 15) or
8517 * (M-profile or v7A-and-earlier only) for implementation defined
8518 * coprocessors in the range 0..7. Our decode assumes this, since
8519 * 8..13 can be used for other insns including VFP and Neon. See
8520 * valid_cp() in translate.c. Assert here that we haven't tried
8521 * to use an invalid coprocessor number.
8523 switch (r->state) {
8524 case ARM_CP_STATE_BOTH:
8525 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8526 if (r->cp == 0) {
8527 break;
8529 /* fall through */
8530 case ARM_CP_STATE_AA32:
8531 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8532 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8533 assert(r->cp >= 14 && r->cp <= 15);
8534 } else {
8535 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8537 break;
8538 case ARM_CP_STATE_AA64:
8539 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8540 break;
8541 default:
8542 g_assert_not_reached();
8544 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8545 * encodes a minimum access level for the register. We roll this
8546 * runtime check into our general permission check code, so check
8547 * here that the reginfo's specified permissions are strict enough
8548 * to encompass the generic architectural permission check.
8550 if (r->state != ARM_CP_STATE_AA32) {
8551 CPAccessRights mask;
8552 switch (r->opc1) {
8553 case 0:
8554 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8555 mask = PL0U_R | PL1_RW;
8556 break;
8557 case 1: case 2:
8558 /* min_EL EL1 */
8559 mask = PL1_RW;
8560 break;
8561 case 3:
8562 /* min_EL EL0 */
8563 mask = PL0_RW;
8564 break;
8565 case 4:
8566 case 5:
8567 /* min_EL EL2 */
8568 mask = PL2_RW;
8569 break;
8570 case 6:
8571 /* min_EL EL3 */
8572 mask = PL3_RW;
8573 break;
8574 case 7:
8575 /* min_EL EL1, secure mode only (we don't check the latter) */
8576 mask = PL1_RW;
8577 break;
8578 default:
8579 /* broken reginfo with out-of-range opc1 */
8580 g_assert_not_reached();
8582 /* assert our permissions are not too lax (stricter is fine) */
8583 assert((r->access & ~mask) == 0);
8586 /* Check that the register definition has enough info to handle
8587 * reads and writes if they are permitted.
8589 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
8590 if (r->access & PL3_R) {
8591 assert((r->fieldoffset ||
8592 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8593 r->readfn);
8595 if (r->access & PL3_W) {
8596 assert((r->fieldoffset ||
8597 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8598 r->writefn);
8602 for (crm = crmmin; crm <= crmmax; crm++) {
8603 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8604 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8605 for (state = ARM_CP_STATE_AA32;
8606 state <= ARM_CP_STATE_AA64; state++) {
8607 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8608 continue;
8610 if (state == ARM_CP_STATE_AA32) {
8611 /* Under AArch32 CP registers can be common
8612 * (same for secure and non-secure world) or banked.
8614 char *name;
8616 switch (r->secure) {
8617 case ARM_CP_SECSTATE_S:
8618 case ARM_CP_SECSTATE_NS:
8619 add_cpreg_to_hashtable(cpu, r, opaque, state,
8620 r->secure, crm, opc1, opc2,
8621 r->name);
8622 break;
8623 case ARM_CP_SECSTATE_BOTH:
8624 name = g_strdup_printf("%s_S", r->name);
8625 add_cpreg_to_hashtable(cpu, r, opaque, state,
8626 ARM_CP_SECSTATE_S,
8627 crm, opc1, opc2, name);
8628 g_free(name);
8629 add_cpreg_to_hashtable(cpu, r, opaque, state,
8630 ARM_CP_SECSTATE_NS,
8631 crm, opc1, opc2, r->name);
8632 break;
8633 default:
8634 g_assert_not_reached();
8636 } else {
8637 /* AArch64 registers get mapped to non-secure instance
8638 * of AArch32 */
8639 add_cpreg_to_hashtable(cpu, r, opaque, state,
8640 ARM_CP_SECSTATE_NS,
8641 crm, opc1, opc2, r->name);
8649 /* Define a whole list of registers */
8650 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
8651 void *opaque, size_t len)
8653 size_t i;
8654 for (i = 0; i < len; ++i) {
8655 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
8660 * Modify ARMCPRegInfo for access from userspace.
8662 * This is a data driven modification directed by
8663 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8664 * user-space cannot alter any values and dynamic values pertaining to
8665 * execution state are hidden from user space view anyway.
8667 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
8668 const ARMCPRegUserSpaceInfo *mods,
8669 size_t mods_len)
8671 for (size_t mi = 0; mi < mods_len; ++mi) {
8672 const ARMCPRegUserSpaceInfo *m = mods + mi;
8673 GPatternSpec *pat = NULL;
8675 if (m->is_glob) {
8676 pat = g_pattern_spec_new(m->name);
8678 for (size_t ri = 0; ri < regs_len; ++ri) {
8679 ARMCPRegInfo *r = regs + ri;
8681 if (pat && g_pattern_match_string(pat, r->name)) {
8682 r->type = ARM_CP_CONST;
8683 r->access = PL0U_R;
8684 r->resetvalue = 0;
8685 /* continue */
8686 } else if (strcmp(r->name, m->name) == 0) {
8687 r->type = ARM_CP_CONST;
8688 r->access = PL0U_R;
8689 r->resetvalue &= m->exported_bits;
8690 r->resetvalue |= m->fixed_bits;
8691 break;
8694 if (pat) {
8695 g_pattern_spec_free(pat);
8700 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8702 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
8705 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8706 uint64_t value)
8708 /* Helper coprocessor write function for write-ignore registers */
8711 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8713 /* Helper coprocessor write function for read-as-zero registers */
8714 return 0;
8717 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8719 /* Helper coprocessor reset function for do-nothing-on-reset registers */
8722 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8724 /* Return true if it is not valid for us to switch to
8725 * this CPU mode (ie all the UNPREDICTABLE cases in
8726 * the ARM ARM CPSRWriteByInstr pseudocode).
8729 /* Changes to or from Hyp via MSR and CPS are illegal. */
8730 if (write_type == CPSRWriteByInstr &&
8731 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8732 mode == ARM_CPU_MODE_HYP)) {
8733 return 1;
8736 switch (mode) {
8737 case ARM_CPU_MODE_USR:
8738 return 0;
8739 case ARM_CPU_MODE_SYS:
8740 case ARM_CPU_MODE_SVC:
8741 case ARM_CPU_MODE_ABT:
8742 case ARM_CPU_MODE_UND:
8743 case ARM_CPU_MODE_IRQ:
8744 case ARM_CPU_MODE_FIQ:
8745 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8746 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8748 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8749 * and CPS are treated as illegal mode changes.
8751 if (write_type == CPSRWriteByInstr &&
8752 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8753 (arm_hcr_el2_eff(env) & HCR_TGE)) {
8754 return 1;
8756 return 0;
8757 case ARM_CPU_MODE_HYP:
8758 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
8759 case ARM_CPU_MODE_MON:
8760 return arm_current_el(env) < 3;
8761 default:
8762 return 1;
8766 uint32_t cpsr_read(CPUARMState *env)
8768 int ZF;
8769 ZF = (env->ZF == 0);
8770 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8771 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8772 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8773 | ((env->condexec_bits & 0xfc) << 8)
8774 | (env->GE << 16) | (env->daif & CPSR_AIF);
8777 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8778 CPSRWriteType write_type)
8780 uint32_t changed_daif;
8781 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
8782 (mask & (CPSR_M | CPSR_E | CPSR_IL));
8784 if (mask & CPSR_NZCV) {
8785 env->ZF = (~val) & CPSR_Z;
8786 env->NF = val;
8787 env->CF = (val >> 29) & 1;
8788 env->VF = (val << 3) & 0x80000000;
8790 if (mask & CPSR_Q)
8791 env->QF = ((val & CPSR_Q) != 0);
8792 if (mask & CPSR_T)
8793 env->thumb = ((val & CPSR_T) != 0);
8794 if (mask & CPSR_IT_0_1) {
8795 env->condexec_bits &= ~3;
8796 env->condexec_bits |= (val >> 25) & 3;
8798 if (mask & CPSR_IT_2_7) {
8799 env->condexec_bits &= 3;
8800 env->condexec_bits |= (val >> 8) & 0xfc;
8802 if (mask & CPSR_GE) {
8803 env->GE = (val >> 16) & 0xf;
8806 /* In a V7 implementation that includes the security extensions but does
8807 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8808 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8809 * bits respectively.
8811 * In a V8 implementation, it is permitted for privileged software to
8812 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8814 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8815 arm_feature(env, ARM_FEATURE_EL3) &&
8816 !arm_feature(env, ARM_FEATURE_EL2) &&
8817 !arm_is_secure(env)) {
8819 changed_daif = (env->daif ^ val) & mask;
8821 if (changed_daif & CPSR_A) {
8822 /* Check to see if we are allowed to change the masking of async
8823 * abort exceptions from a non-secure state.
8825 if (!(env->cp15.scr_el3 & SCR_AW)) {
8826 qemu_log_mask(LOG_GUEST_ERROR,
8827 "Ignoring attempt to switch CPSR_A flag from "
8828 "non-secure world with SCR.AW bit clear\n");
8829 mask &= ~CPSR_A;
8833 if (changed_daif & CPSR_F) {
8834 /* Check to see if we are allowed to change the masking of FIQ
8835 * exceptions from a non-secure state.
8837 if (!(env->cp15.scr_el3 & SCR_FW)) {
8838 qemu_log_mask(LOG_GUEST_ERROR,
8839 "Ignoring attempt to switch CPSR_F flag from "
8840 "non-secure world with SCR.FW bit clear\n");
8841 mask &= ~CPSR_F;
8844 /* Check whether non-maskable FIQ (NMFI) support is enabled.
8845 * If this bit is set software is not allowed to mask
8846 * FIQs, but is allowed to set CPSR_F to 0.
8848 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8849 (val & CPSR_F)) {
8850 qemu_log_mask(LOG_GUEST_ERROR,
8851 "Ignoring attempt to enable CPSR_F flag "
8852 "(non-maskable FIQ [NMFI] support enabled)\n");
8853 mask &= ~CPSR_F;
8858 env->daif &= ~(CPSR_AIF & mask);
8859 env->daif |= val & CPSR_AIF & mask;
8861 if (write_type != CPSRWriteRaw &&
8862 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8863 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8864 /* Note that we can only get here in USR mode if this is a
8865 * gdb stub write; for this case we follow the architectural
8866 * behaviour for guest writes in USR mode of ignoring an attempt
8867 * to switch mode. (Those are caught by translate.c for writes
8868 * triggered by guest instructions.)
8870 mask &= ~CPSR_M;
8871 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8872 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8873 * v7, and has defined behaviour in v8:
8874 * + leave CPSR.M untouched
8875 * + allow changes to the other CPSR fields
8876 * + set PSTATE.IL
8877 * For user changes via the GDB stub, we don't set PSTATE.IL,
8878 * as this would be unnecessarily harsh for a user error.
8880 mask &= ~CPSR_M;
8881 if (write_type != CPSRWriteByGDBStub &&
8882 arm_feature(env, ARM_FEATURE_V8)) {
8883 mask |= CPSR_IL;
8884 val |= CPSR_IL;
8886 qemu_log_mask(LOG_GUEST_ERROR,
8887 "Illegal AArch32 mode switch attempt from %s to %s\n",
8888 aarch32_mode_name(env->uncached_cpsr),
8889 aarch32_mode_name(val));
8890 } else {
8891 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8892 write_type == CPSRWriteExceptionReturn ?
8893 "Exception return from AArch32" :
8894 "AArch32 mode switch from",
8895 aarch32_mode_name(env->uncached_cpsr),
8896 aarch32_mode_name(val), env->regs[15]);
8897 switch_mode(env, val & CPSR_M);
8900 mask &= ~CACHED_CPSR_BITS;
8901 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8902 if (rebuild_hflags) {
8903 arm_rebuild_hflags(env);
8907 /* Sign/zero extend */
8908 uint32_t HELPER(sxtb16)(uint32_t x)
8910 uint32_t res;
8911 res = (uint16_t)(int8_t)x;
8912 res |= (uint32_t)(int8_t)(x >> 16) << 16;
8913 return res;
8916 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
8919 * Take a division-by-zero exception if necessary; otherwise return
8920 * to get the usual non-trapping division behaviour (result of 0)
8922 if (arm_feature(env, ARM_FEATURE_M)
8923 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
8924 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
8928 uint32_t HELPER(uxtb16)(uint32_t x)
8930 uint32_t res;
8931 res = (uint16_t)(uint8_t)x;
8932 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8933 return res;
8936 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
8938 if (den == 0) {
8939 handle_possible_div0_trap(env, GETPC());
8940 return 0;
8942 if (num == INT_MIN && den == -1) {
8943 return INT_MIN;
8945 return num / den;
8948 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
8950 if (den == 0) {
8951 handle_possible_div0_trap(env, GETPC());
8952 return 0;
8954 return num / den;
8957 uint32_t HELPER(rbit)(uint32_t x)
8959 return revbit32(x);
8962 #ifdef CONFIG_USER_ONLY
8964 static void switch_mode(CPUARMState *env, int mode)
8966 ARMCPU *cpu = env_archcpu(env);
8968 if (mode != ARM_CPU_MODE_USR) {
8969 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
8973 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8974 uint32_t cur_el, bool secure)
8976 return 1;
8979 void aarch64_sync_64_to_32(CPUARMState *env)
8981 g_assert_not_reached();
8984 #else
8986 static void switch_mode(CPUARMState *env, int mode)
8988 int old_mode;
8989 int i;
8991 old_mode = env->uncached_cpsr & CPSR_M;
8992 if (mode == old_mode)
8993 return;
8995 if (old_mode == ARM_CPU_MODE_FIQ) {
8996 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8997 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
8998 } else if (mode == ARM_CPU_MODE_FIQ) {
8999 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9000 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9003 i = bank_number(old_mode);
9004 env->banked_r13[i] = env->regs[13];
9005 env->banked_spsr[i] = env->spsr;
9007 i = bank_number(mode);
9008 env->regs[13] = env->banked_r13[i];
9009 env->spsr = env->banked_spsr[i];
9011 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9012 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9015 /* Physical Interrupt Target EL Lookup Table
9017 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9019 * The below multi-dimensional table is used for looking up the target
9020 * exception level given numerous condition criteria. Specifically, the
9021 * target EL is based on SCR and HCR routing controls as well as the
9022 * currently executing EL and secure state.
9024 * Dimensions:
9025 * target_el_table[2][2][2][2][2][4]
9026 * | | | | | +--- Current EL
9027 * | | | | +------ Non-secure(0)/Secure(1)
9028 * | | | +--------- HCR mask override
9029 * | | +------------ SCR exec state control
9030 * | +--------------- SCR mask override
9031 * +------------------ 32-bit(0)/64-bit(1) EL3
9033 * The table values are as such:
9034 * 0-3 = EL0-EL3
9035 * -1 = Cannot occur
9037 * The ARM ARM target EL table includes entries indicating that an "exception
9038 * is not taken". The two cases where this is applicable are:
9039 * 1) An exception is taken from EL3 but the SCR does not have the exception
9040 * routed to EL3.
9041 * 2) An exception is taken from EL2 but the HCR does not have the exception
9042 * routed to EL2.
9043 * In these two cases, the below table contain a target of EL1. This value is
9044 * returned as it is expected that the consumer of the table data will check
9045 * for "target EL >= current EL" to ensure the exception is not taken.
9047 * SCR HCR
9048 * 64 EA AMO From
9049 * BIT IRQ IMO Non-secure Secure
9050 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9052 static const int8_t target_el_table[2][2][2][2][2][4] = {
9053 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9054 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9055 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9056 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9057 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9058 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9059 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9060 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9061 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9062 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
9063 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
9064 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
9065 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9066 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
9067 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
9068 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
9072 * Determine the target EL for physical exceptions
9074 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9075 uint32_t cur_el, bool secure)
9077 CPUARMState *env = cs->env_ptr;
9078 bool rw;
9079 bool scr;
9080 bool hcr;
9081 int target_el;
9082 /* Is the highest EL AArch64? */
9083 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9084 uint64_t hcr_el2;
9086 if (arm_feature(env, ARM_FEATURE_EL3)) {
9087 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9088 } else {
9089 /* Either EL2 is the highest EL (and so the EL2 register width
9090 * is given by is64); or there is no EL2 or EL3, in which case
9091 * the value of 'rw' does not affect the table lookup anyway.
9093 rw = is64;
9096 hcr_el2 = arm_hcr_el2_eff(env);
9097 switch (excp_idx) {
9098 case EXCP_IRQ:
9099 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9100 hcr = hcr_el2 & HCR_IMO;
9101 break;
9102 case EXCP_FIQ:
9103 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9104 hcr = hcr_el2 & HCR_FMO;
9105 break;
9106 default:
9107 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9108 hcr = hcr_el2 & HCR_AMO;
9109 break;
9113 * For these purposes, TGE and AMO/IMO/FMO both force the
9114 * interrupt to EL2. Fold TGE into the bit extracted above.
9116 hcr |= (hcr_el2 & HCR_TGE) != 0;
9118 /* Perform a table-lookup for the target EL given the current state */
9119 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9121 assert(target_el > 0);
9123 return target_el;
9126 void arm_log_exception(CPUState *cs)
9128 int idx = cs->exception_index;
9130 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9131 const char *exc = NULL;
9132 static const char * const excnames[] = {
9133 [EXCP_UDEF] = "Undefined Instruction",
9134 [EXCP_SWI] = "SVC",
9135 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9136 [EXCP_DATA_ABORT] = "Data Abort",
9137 [EXCP_IRQ] = "IRQ",
9138 [EXCP_FIQ] = "FIQ",
9139 [EXCP_BKPT] = "Breakpoint",
9140 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9141 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9142 [EXCP_HVC] = "Hypervisor Call",
9143 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9144 [EXCP_SMC] = "Secure Monitor Call",
9145 [EXCP_VIRQ] = "Virtual IRQ",
9146 [EXCP_VFIQ] = "Virtual FIQ",
9147 [EXCP_SEMIHOST] = "Semihosting call",
9148 [EXCP_NOCP] = "v7M NOCP UsageFault",
9149 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9150 [EXCP_STKOF] = "v8M STKOF UsageFault",
9151 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9152 [EXCP_LSERR] = "v8M LSERR UsageFault",
9153 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9154 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9155 [EXCP_VSERR] = "Virtual SERR",
9158 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9159 exc = excnames[idx];
9161 if (!exc) {
9162 exc = "unknown";
9164 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
9165 idx, exc, cs->cpu_index);
9170 * Function used to synchronize QEMU's AArch64 register set with AArch32
9171 * register set. This is necessary when switching between AArch32 and AArch64
9172 * execution state.
9174 void aarch64_sync_32_to_64(CPUARMState *env)
9176 int i;
9177 uint32_t mode = env->uncached_cpsr & CPSR_M;
9179 /* We can blanket copy R[0:7] to X[0:7] */
9180 for (i = 0; i < 8; i++) {
9181 env->xregs[i] = env->regs[i];
9185 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9186 * Otherwise, they come from the banked user regs.
9188 if (mode == ARM_CPU_MODE_FIQ) {
9189 for (i = 8; i < 13; i++) {
9190 env->xregs[i] = env->usr_regs[i - 8];
9192 } else {
9193 for (i = 8; i < 13; i++) {
9194 env->xregs[i] = env->regs[i];
9199 * Registers x13-x23 are the various mode SP and FP registers. Registers
9200 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9201 * from the mode banked register.
9203 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9204 env->xregs[13] = env->regs[13];
9205 env->xregs[14] = env->regs[14];
9206 } else {
9207 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9208 /* HYP is an exception in that it is copied from r14 */
9209 if (mode == ARM_CPU_MODE_HYP) {
9210 env->xregs[14] = env->regs[14];
9211 } else {
9212 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9216 if (mode == ARM_CPU_MODE_HYP) {
9217 env->xregs[15] = env->regs[13];
9218 } else {
9219 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9222 if (mode == ARM_CPU_MODE_IRQ) {
9223 env->xregs[16] = env->regs[14];
9224 env->xregs[17] = env->regs[13];
9225 } else {
9226 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9227 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9230 if (mode == ARM_CPU_MODE_SVC) {
9231 env->xregs[18] = env->regs[14];
9232 env->xregs[19] = env->regs[13];
9233 } else {
9234 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9235 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9238 if (mode == ARM_CPU_MODE_ABT) {
9239 env->xregs[20] = env->regs[14];
9240 env->xregs[21] = env->regs[13];
9241 } else {
9242 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9243 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9246 if (mode == ARM_CPU_MODE_UND) {
9247 env->xregs[22] = env->regs[14];
9248 env->xregs[23] = env->regs[13];
9249 } else {
9250 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9251 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9255 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9256 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9257 * FIQ bank for r8-r14.
9259 if (mode == ARM_CPU_MODE_FIQ) {
9260 for (i = 24; i < 31; i++) {
9261 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9263 } else {
9264 for (i = 24; i < 29; i++) {
9265 env->xregs[i] = env->fiq_regs[i - 24];
9267 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9268 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9271 env->pc = env->regs[15];
9275 * Function used to synchronize QEMU's AArch32 register set with AArch64
9276 * register set. This is necessary when switching between AArch32 and AArch64
9277 * execution state.
9279 void aarch64_sync_64_to_32(CPUARMState *env)
9281 int i;
9282 uint32_t mode = env->uncached_cpsr & CPSR_M;
9284 /* We can blanket copy X[0:7] to R[0:7] */
9285 for (i = 0; i < 8; i++) {
9286 env->regs[i] = env->xregs[i];
9290 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9291 * Otherwise, we copy x8-x12 into the banked user regs.
9293 if (mode == ARM_CPU_MODE_FIQ) {
9294 for (i = 8; i < 13; i++) {
9295 env->usr_regs[i - 8] = env->xregs[i];
9297 } else {
9298 for (i = 8; i < 13; i++) {
9299 env->regs[i] = env->xregs[i];
9304 * Registers r13 & r14 depend on the current mode.
9305 * If we are in a given mode, we copy the corresponding x registers to r13
9306 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9307 * for the mode.
9309 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9310 env->regs[13] = env->xregs[13];
9311 env->regs[14] = env->xregs[14];
9312 } else {
9313 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9316 * HYP is an exception in that it does not have its own banked r14 but
9317 * shares the USR r14
9319 if (mode == ARM_CPU_MODE_HYP) {
9320 env->regs[14] = env->xregs[14];
9321 } else {
9322 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9326 if (mode == ARM_CPU_MODE_HYP) {
9327 env->regs[13] = env->xregs[15];
9328 } else {
9329 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9332 if (mode == ARM_CPU_MODE_IRQ) {
9333 env->regs[14] = env->xregs[16];
9334 env->regs[13] = env->xregs[17];
9335 } else {
9336 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9337 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9340 if (mode == ARM_CPU_MODE_SVC) {
9341 env->regs[14] = env->xregs[18];
9342 env->regs[13] = env->xregs[19];
9343 } else {
9344 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9345 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9348 if (mode == ARM_CPU_MODE_ABT) {
9349 env->regs[14] = env->xregs[20];
9350 env->regs[13] = env->xregs[21];
9351 } else {
9352 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9353 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9356 if (mode == ARM_CPU_MODE_UND) {
9357 env->regs[14] = env->xregs[22];
9358 env->regs[13] = env->xregs[23];
9359 } else {
9360 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9361 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9364 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9365 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9366 * FIQ bank for r8-r14.
9368 if (mode == ARM_CPU_MODE_FIQ) {
9369 for (i = 24; i < 31; i++) {
9370 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9372 } else {
9373 for (i = 24; i < 29; i++) {
9374 env->fiq_regs[i - 24] = env->xregs[i];
9376 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9377 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9380 env->regs[15] = env->pc;
9383 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9384 uint32_t mask, uint32_t offset,
9385 uint32_t newpc)
9387 int new_el;
9389 /* Change the CPU state so as to actually take the exception. */
9390 switch_mode(env, new_mode);
9393 * For exceptions taken to AArch32 we must clear the SS bit in both
9394 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9396 env->pstate &= ~PSTATE_SS;
9397 env->spsr = cpsr_read(env);
9398 /* Clear IT bits. */
9399 env->condexec_bits = 0;
9400 /* Switch to the new mode, and to the correct instruction set. */
9401 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9403 /* This must be after mode switching. */
9404 new_el = arm_current_el(env);
9406 /* Set new mode endianness */
9407 env->uncached_cpsr &= ~CPSR_E;
9408 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9409 env->uncached_cpsr |= CPSR_E;
9411 /* J and IL must always be cleared for exception entry */
9412 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9413 env->daif |= mask;
9415 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9416 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9417 env->uncached_cpsr |= CPSR_SSBS;
9418 } else {
9419 env->uncached_cpsr &= ~CPSR_SSBS;
9423 if (new_mode == ARM_CPU_MODE_HYP) {
9424 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9425 env->elr_el[2] = env->regs[15];
9426 } else {
9427 /* CPSR.PAN is normally preserved preserved unless... */
9428 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9429 switch (new_el) {
9430 case 3:
9431 if (!arm_is_secure_below_el3(env)) {
9432 /* ... the target is EL3, from non-secure state. */
9433 env->uncached_cpsr &= ~CPSR_PAN;
9434 break;
9436 /* ... the target is EL3, from secure state ... */
9437 /* fall through */
9438 case 1:
9439 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9440 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9441 env->uncached_cpsr |= CPSR_PAN;
9443 break;
9447 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9448 * and we should just guard the thumb mode on V4
9450 if (arm_feature(env, ARM_FEATURE_V4T)) {
9451 env->thumb =
9452 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9454 env->regs[14] = env->regs[15] + offset;
9456 env->regs[15] = newpc;
9457 arm_rebuild_hflags(env);
9460 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9463 * Handle exception entry to Hyp mode; this is sufficiently
9464 * different to entry to other AArch32 modes that we handle it
9465 * separately here.
9467 * The vector table entry used is always the 0x14 Hyp mode entry point,
9468 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
9469 * The offset applied to the preferred return address is always zero
9470 * (see DDI0487C.a section G1.12.3).
9471 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9473 uint32_t addr, mask;
9474 ARMCPU *cpu = ARM_CPU(cs);
9475 CPUARMState *env = &cpu->env;
9477 switch (cs->exception_index) {
9478 case EXCP_UDEF:
9479 addr = 0x04;
9480 break;
9481 case EXCP_SWI:
9482 addr = 0x08;
9483 break;
9484 case EXCP_BKPT:
9485 /* Fall through to prefetch abort. */
9486 case EXCP_PREFETCH_ABORT:
9487 env->cp15.ifar_s = env->exception.vaddress;
9488 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9489 (uint32_t)env->exception.vaddress);
9490 addr = 0x0c;
9491 break;
9492 case EXCP_DATA_ABORT:
9493 env->cp15.dfar_s = env->exception.vaddress;
9494 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9495 (uint32_t)env->exception.vaddress);
9496 addr = 0x10;
9497 break;
9498 case EXCP_IRQ:
9499 addr = 0x18;
9500 break;
9501 case EXCP_FIQ:
9502 addr = 0x1c;
9503 break;
9504 case EXCP_HVC:
9505 addr = 0x08;
9506 break;
9507 case EXCP_HYP_TRAP:
9508 addr = 0x14;
9509 break;
9510 default:
9511 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9514 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9515 if (!arm_feature(env, ARM_FEATURE_V8)) {
9517 * QEMU syndrome values are v8-style. v7 has the IL bit
9518 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9519 * If this is a v7 CPU, squash the IL bit in those cases.
9521 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9522 (cs->exception_index == EXCP_DATA_ABORT &&
9523 !(env->exception.syndrome & ARM_EL_ISV)) ||
9524 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9525 env->exception.syndrome &= ~ARM_EL_IL;
9528 env->cp15.esr_el[2] = env->exception.syndrome;
9531 if (arm_current_el(env) != 2 && addr < 0x14) {
9532 addr = 0x14;
9535 mask = 0;
9536 if (!(env->cp15.scr_el3 & SCR_EA)) {
9537 mask |= CPSR_A;
9539 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9540 mask |= CPSR_I;
9542 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9543 mask |= CPSR_F;
9546 addr += env->cp15.hvbar;
9548 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9551 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9553 ARMCPU *cpu = ARM_CPU(cs);
9554 CPUARMState *env = &cpu->env;
9555 uint32_t addr;
9556 uint32_t mask;
9557 int new_mode;
9558 uint32_t offset;
9559 uint32_t moe;
9561 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9562 switch (syn_get_ec(env->exception.syndrome)) {
9563 case EC_BREAKPOINT:
9564 case EC_BREAKPOINT_SAME_EL:
9565 moe = 1;
9566 break;
9567 case EC_WATCHPOINT:
9568 case EC_WATCHPOINT_SAME_EL:
9569 moe = 10;
9570 break;
9571 case EC_AA32_BKPT:
9572 moe = 3;
9573 break;
9574 case EC_VECTORCATCH:
9575 moe = 5;
9576 break;
9577 default:
9578 moe = 0;
9579 break;
9582 if (moe) {
9583 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9586 if (env->exception.target_el == 2) {
9587 arm_cpu_do_interrupt_aarch32_hyp(cs);
9588 return;
9591 switch (cs->exception_index) {
9592 case EXCP_UDEF:
9593 new_mode = ARM_CPU_MODE_UND;
9594 addr = 0x04;
9595 mask = CPSR_I;
9596 if (env->thumb)
9597 offset = 2;
9598 else
9599 offset = 4;
9600 break;
9601 case EXCP_SWI:
9602 new_mode = ARM_CPU_MODE_SVC;
9603 addr = 0x08;
9604 mask = CPSR_I;
9605 /* The PC already points to the next instruction. */
9606 offset = 0;
9607 break;
9608 case EXCP_BKPT:
9609 /* Fall through to prefetch abort. */
9610 case EXCP_PREFETCH_ABORT:
9611 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9612 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9613 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9614 env->exception.fsr, (uint32_t)env->exception.vaddress);
9615 new_mode = ARM_CPU_MODE_ABT;
9616 addr = 0x0c;
9617 mask = CPSR_A | CPSR_I;
9618 offset = 4;
9619 break;
9620 case EXCP_DATA_ABORT:
9621 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9622 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9623 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9624 env->exception.fsr,
9625 (uint32_t)env->exception.vaddress);
9626 new_mode = ARM_CPU_MODE_ABT;
9627 addr = 0x10;
9628 mask = CPSR_A | CPSR_I;
9629 offset = 8;
9630 break;
9631 case EXCP_IRQ:
9632 new_mode = ARM_CPU_MODE_IRQ;
9633 addr = 0x18;
9634 /* Disable IRQ and imprecise data aborts. */
9635 mask = CPSR_A | CPSR_I;
9636 offset = 4;
9637 if (env->cp15.scr_el3 & SCR_IRQ) {
9638 /* IRQ routed to monitor mode */
9639 new_mode = ARM_CPU_MODE_MON;
9640 mask |= CPSR_F;
9642 break;
9643 case EXCP_FIQ:
9644 new_mode = ARM_CPU_MODE_FIQ;
9645 addr = 0x1c;
9646 /* Disable FIQ, IRQ and imprecise data aborts. */
9647 mask = CPSR_A | CPSR_I | CPSR_F;
9648 if (env->cp15.scr_el3 & SCR_FIQ) {
9649 /* FIQ routed to monitor mode */
9650 new_mode = ARM_CPU_MODE_MON;
9652 offset = 4;
9653 break;
9654 case EXCP_VIRQ:
9655 new_mode = ARM_CPU_MODE_IRQ;
9656 addr = 0x18;
9657 /* Disable IRQ and imprecise data aborts. */
9658 mask = CPSR_A | CPSR_I;
9659 offset = 4;
9660 break;
9661 case EXCP_VFIQ:
9662 new_mode = ARM_CPU_MODE_FIQ;
9663 addr = 0x1c;
9664 /* Disable FIQ, IRQ and imprecise data aborts. */
9665 mask = CPSR_A | CPSR_I | CPSR_F;
9666 offset = 4;
9667 break;
9668 case EXCP_VSERR:
9671 * Note that this is reported as a data abort, but the DFAR
9672 * has an UNKNOWN value. Construct the SError syndrome from
9673 * AET and ExT fields.
9675 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
9677 if (extended_addresses_enabled(env)) {
9678 env->exception.fsr = arm_fi_to_lfsc(&fi);
9679 } else {
9680 env->exception.fsr = arm_fi_to_sfsc(&fi);
9682 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
9683 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9684 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
9685 env->exception.fsr);
9687 new_mode = ARM_CPU_MODE_ABT;
9688 addr = 0x10;
9689 mask = CPSR_A | CPSR_I;
9690 offset = 8;
9692 break;
9693 case EXCP_SMC:
9694 new_mode = ARM_CPU_MODE_MON;
9695 addr = 0x08;
9696 mask = CPSR_A | CPSR_I | CPSR_F;
9697 offset = 0;
9698 break;
9699 default:
9700 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9701 return; /* Never happens. Keep compiler happy. */
9704 if (new_mode == ARM_CPU_MODE_MON) {
9705 addr += env->cp15.mvbar;
9706 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9707 /* High vectors. When enabled, base address cannot be remapped. */
9708 addr += 0xffff0000;
9709 } else {
9710 /* ARM v7 architectures provide a vector base address register to remap
9711 * the interrupt vector table.
9712 * This register is only followed in non-monitor mode, and is banked.
9713 * Note: only bits 31:5 are valid.
9715 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9718 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9719 env->cp15.scr_el3 &= ~SCR_NS;
9722 take_aarch32_exception(env, new_mode, mask, offset, addr);
9725 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9728 * Return the register number of the AArch64 view of the AArch32
9729 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9730 * be that of the AArch32 mode the exception came from.
9732 int mode = env->uncached_cpsr & CPSR_M;
9734 switch (aarch32_reg) {
9735 case 0 ... 7:
9736 return aarch32_reg;
9737 case 8 ... 12:
9738 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9739 case 13:
9740 switch (mode) {
9741 case ARM_CPU_MODE_USR:
9742 case ARM_CPU_MODE_SYS:
9743 return 13;
9744 case ARM_CPU_MODE_HYP:
9745 return 15;
9746 case ARM_CPU_MODE_IRQ:
9747 return 17;
9748 case ARM_CPU_MODE_SVC:
9749 return 19;
9750 case ARM_CPU_MODE_ABT:
9751 return 21;
9752 case ARM_CPU_MODE_UND:
9753 return 23;
9754 case ARM_CPU_MODE_FIQ:
9755 return 29;
9756 default:
9757 g_assert_not_reached();
9759 case 14:
9760 switch (mode) {
9761 case ARM_CPU_MODE_USR:
9762 case ARM_CPU_MODE_SYS:
9763 case ARM_CPU_MODE_HYP:
9764 return 14;
9765 case ARM_CPU_MODE_IRQ:
9766 return 16;
9767 case ARM_CPU_MODE_SVC:
9768 return 18;
9769 case ARM_CPU_MODE_ABT:
9770 return 20;
9771 case ARM_CPU_MODE_UND:
9772 return 22;
9773 case ARM_CPU_MODE_FIQ:
9774 return 30;
9775 default:
9776 g_assert_not_reached();
9778 case 15:
9779 return 31;
9780 default:
9781 g_assert_not_reached();
9785 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
9787 uint32_t ret = cpsr_read(env);
9789 /* Move DIT to the correct location for SPSR_ELx */
9790 if (ret & CPSR_DIT) {
9791 ret &= ~CPSR_DIT;
9792 ret |= PSTATE_DIT;
9794 /* Merge PSTATE.SS into SPSR_ELx */
9795 ret |= env->pstate & PSTATE_SS;
9797 return ret;
9800 static bool syndrome_is_sync_extabt(uint32_t syndrome)
9802 /* Return true if this syndrome value is a synchronous external abort */
9803 switch (syn_get_ec(syndrome)) {
9804 case EC_INSNABORT:
9805 case EC_INSNABORT_SAME_EL:
9806 case EC_DATAABORT:
9807 case EC_DATAABORT_SAME_EL:
9808 /* Look at fault status code for all the synchronous ext abort cases */
9809 switch (syndrome & 0x3f) {
9810 case 0x10:
9811 case 0x13:
9812 case 0x14:
9813 case 0x15:
9814 case 0x16:
9815 case 0x17:
9816 return true;
9817 default:
9818 return false;
9820 default:
9821 return false;
9825 /* Handle exception entry to a target EL which is using AArch64 */
9826 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9828 ARMCPU *cpu = ARM_CPU(cs);
9829 CPUARMState *env = &cpu->env;
9830 unsigned int new_el = env->exception.target_el;
9831 target_ulong addr = env->cp15.vbar_el[new_el];
9832 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9833 unsigned int old_mode;
9834 unsigned int cur_el = arm_current_el(env);
9835 int rt;
9838 * Note that new_el can never be 0. If cur_el is 0, then
9839 * el0_a64 is is_a64(), else el0_a64 is ignored.
9841 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9843 if (cur_el < new_el) {
9844 /* Entry vector offset depends on whether the implemented EL
9845 * immediately lower than the target level is using AArch32 or AArch64
9847 bool is_aa64;
9848 uint64_t hcr;
9850 switch (new_el) {
9851 case 3:
9852 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9853 break;
9854 case 2:
9855 hcr = arm_hcr_el2_eff(env);
9856 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9857 is_aa64 = (hcr & HCR_RW) != 0;
9858 break;
9860 /* fall through */
9861 case 1:
9862 is_aa64 = is_a64(env);
9863 break;
9864 default:
9865 g_assert_not_reached();
9868 if (is_aa64) {
9869 addr += 0x400;
9870 } else {
9871 addr += 0x600;
9873 } else if (pstate_read(env) & PSTATE_SP) {
9874 addr += 0x200;
9877 switch (cs->exception_index) {
9878 case EXCP_PREFETCH_ABORT:
9879 case EXCP_DATA_ABORT:
9881 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
9882 * to be taken to the SError vector entrypoint.
9884 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
9885 syndrome_is_sync_extabt(env->exception.syndrome)) {
9886 addr += 0x180;
9888 env->cp15.far_el[new_el] = env->exception.vaddress;
9889 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9890 env->cp15.far_el[new_el]);
9891 /* fall through */
9892 case EXCP_BKPT:
9893 case EXCP_UDEF:
9894 case EXCP_SWI:
9895 case EXCP_HVC:
9896 case EXCP_HYP_TRAP:
9897 case EXCP_SMC:
9898 switch (syn_get_ec(env->exception.syndrome)) {
9899 case EC_ADVSIMDFPACCESSTRAP:
9901 * QEMU internal FP/SIMD syndromes from AArch32 include the
9902 * TA and coproc fields which are only exposed if the exception
9903 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9904 * AArch64 format syndrome.
9906 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9907 break;
9908 case EC_CP14RTTRAP:
9909 case EC_CP15RTTRAP:
9910 case EC_CP14DTTRAP:
9912 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
9913 * the raw register field from the insn; when taking this to
9914 * AArch64 we must convert it to the AArch64 view of the register
9915 * number. Notice that we read a 4-bit AArch32 register number and
9916 * write back a 5-bit AArch64 one.
9918 rt = extract32(env->exception.syndrome, 5, 4);
9919 rt = aarch64_regnum(env, rt);
9920 env->exception.syndrome = deposit32(env->exception.syndrome,
9921 5, 5, rt);
9922 break;
9923 case EC_CP15RRTTRAP:
9924 case EC_CP14RRTTRAP:
9925 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
9926 rt = extract32(env->exception.syndrome, 5, 4);
9927 rt = aarch64_regnum(env, rt);
9928 env->exception.syndrome = deposit32(env->exception.syndrome,
9929 5, 5, rt);
9930 rt = extract32(env->exception.syndrome, 10, 4);
9931 rt = aarch64_regnum(env, rt);
9932 env->exception.syndrome = deposit32(env->exception.syndrome,
9933 10, 5, rt);
9934 break;
9936 env->cp15.esr_el[new_el] = env->exception.syndrome;
9937 break;
9938 case EXCP_IRQ:
9939 case EXCP_VIRQ:
9940 addr += 0x80;
9941 break;
9942 case EXCP_FIQ:
9943 case EXCP_VFIQ:
9944 addr += 0x100;
9945 break;
9946 case EXCP_VSERR:
9947 addr += 0x180;
9948 /* Construct the SError syndrome from IDS and ISS fields. */
9949 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
9950 env->cp15.esr_el[new_el] = env->exception.syndrome;
9951 break;
9952 default:
9953 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9956 if (is_a64(env)) {
9957 old_mode = pstate_read(env);
9958 aarch64_save_sp(env, arm_current_el(env));
9959 env->elr_el[new_el] = env->pc;
9960 } else {
9961 old_mode = cpsr_read_for_spsr_elx(env);
9962 env->elr_el[new_el] = env->regs[15];
9964 aarch64_sync_32_to_64(env);
9966 env->condexec_bits = 0;
9968 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9970 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9971 env->elr_el[new_el]);
9973 if (cpu_isar_feature(aa64_pan, cpu)) {
9974 /* The value of PSTATE.PAN is normally preserved, except when ... */
9975 new_mode |= old_mode & PSTATE_PAN;
9976 switch (new_el) {
9977 case 2:
9978 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
9979 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9980 != (HCR_E2H | HCR_TGE)) {
9981 break;
9983 /* fall through */
9984 case 1:
9985 /* ... the target is EL1 ... */
9986 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
9987 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9988 new_mode |= PSTATE_PAN;
9990 break;
9993 if (cpu_isar_feature(aa64_mte, cpu)) {
9994 new_mode |= PSTATE_TCO;
9997 if (cpu_isar_feature(aa64_ssbs, cpu)) {
9998 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
9999 new_mode |= PSTATE_SSBS;
10000 } else {
10001 new_mode &= ~PSTATE_SSBS;
10005 pstate_write(env, PSTATE_DAIF | new_mode);
10006 env->aarch64 = true;
10007 aarch64_restore_sp(env, new_el);
10008 helper_rebuild_hflags_a64(env, new_el);
10010 env->pc = addr;
10012 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10013 new_el, env->pc, pstate_read(env));
10017 * Do semihosting call and set the appropriate return value. All the
10018 * permission and validity checks have been done at translate time.
10020 * We only see semihosting exceptions in TCG only as they are not
10021 * trapped to the hypervisor in KVM.
10023 #ifdef CONFIG_TCG
10024 static void handle_semihosting(CPUState *cs)
10026 ARMCPU *cpu = ARM_CPU(cs);
10027 CPUARMState *env = &cpu->env;
10029 if (is_a64(env)) {
10030 qemu_log_mask(CPU_LOG_INT,
10031 "...handling as semihosting call 0x%" PRIx64 "\n",
10032 env->xregs[0]);
10033 do_common_semihosting(cs);
10034 env->pc += 4;
10035 } else {
10036 qemu_log_mask(CPU_LOG_INT,
10037 "...handling as semihosting call 0x%x\n",
10038 env->regs[0]);
10039 do_common_semihosting(cs);
10040 env->regs[15] += env->thumb ? 2 : 4;
10043 #endif
10045 /* Handle a CPU exception for A and R profile CPUs.
10046 * Do any appropriate logging, handle PSCI calls, and then hand off
10047 * to the AArch64-entry or AArch32-entry function depending on the
10048 * target exception level's register width.
10050 * Note: this is used for both TCG (as the do_interrupt tcg op),
10051 * and KVM to re-inject guest debug exceptions, and to
10052 * inject a Synchronous-External-Abort.
10054 void arm_cpu_do_interrupt(CPUState *cs)
10056 ARMCPU *cpu = ARM_CPU(cs);
10057 CPUARMState *env = &cpu->env;
10058 unsigned int new_el = env->exception.target_el;
10060 assert(!arm_feature(env, ARM_FEATURE_M));
10062 arm_log_exception(cs);
10063 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10064 new_el);
10065 if (qemu_loglevel_mask(CPU_LOG_INT)
10066 && !excp_is_internal(cs->exception_index)) {
10067 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10068 syn_get_ec(env->exception.syndrome),
10069 env->exception.syndrome);
10072 if (arm_is_psci_call(cpu, cs->exception_index)) {
10073 arm_handle_psci_call(cpu);
10074 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10075 return;
10079 * Semihosting semantics depend on the register width of the code
10080 * that caused the exception, not the target exception level, so
10081 * must be handled here.
10083 #ifdef CONFIG_TCG
10084 if (cs->exception_index == EXCP_SEMIHOST) {
10085 handle_semihosting(cs);
10086 return;
10088 #endif
10090 /* Hooks may change global state so BQL should be held, also the
10091 * BQL needs to be held for any modification of
10092 * cs->interrupt_request.
10094 g_assert(qemu_mutex_iothread_locked());
10096 arm_call_pre_el_change_hook(cpu);
10098 assert(!excp_is_internal(cs->exception_index));
10099 if (arm_el_is_aa64(env, new_el)) {
10100 arm_cpu_do_interrupt_aarch64(cs);
10101 } else {
10102 arm_cpu_do_interrupt_aarch32(cs);
10105 arm_call_el_change_hook(cpu);
10107 if (!kvm_enabled()) {
10108 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10111 #endif /* !CONFIG_USER_ONLY */
10113 uint64_t arm_sctlr(CPUARMState *env, int el)
10115 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10116 if (el == 0) {
10117 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10118 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10119 ? 2 : 1;
10121 return env->cp15.sctlr_el[el];
10124 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10126 if (regime_has_2_ranges(mmu_idx)) {
10127 return extract64(tcr, 37, 2);
10128 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10129 return 0; /* VTCR_EL2 */
10130 } else {
10131 /* Replicate the single TBI bit so we always have 2 bits. */
10132 return extract32(tcr, 20, 1) * 3;
10136 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10138 if (regime_has_2_ranges(mmu_idx)) {
10139 return extract64(tcr, 51, 2);
10140 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10141 return 0; /* VTCR_EL2 */
10142 } else {
10143 /* Replicate the single TBID bit so we always have 2 bits. */
10144 return extract32(tcr, 29, 1) * 3;
10148 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
10150 if (regime_has_2_ranges(mmu_idx)) {
10151 return extract64(tcr, 57, 2);
10152 } else {
10153 /* Replicate the single TCMA bit so we always have 2 bits. */
10154 return extract32(tcr, 30, 1) * 3;
10158 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10159 ARMMMUIdx mmu_idx, bool data)
10161 uint64_t tcr = regime_tcr(env, mmu_idx);
10162 bool epd, hpd, using16k, using64k, tsz_oob, ds;
10163 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
10164 ARMCPU *cpu = env_archcpu(env);
10166 if (!regime_has_2_ranges(mmu_idx)) {
10167 select = 0;
10168 tsz = extract32(tcr, 0, 6);
10169 using64k = extract32(tcr, 14, 1);
10170 using16k = extract32(tcr, 15, 1);
10171 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10172 /* VTCR_EL2 */
10173 hpd = false;
10174 } else {
10175 hpd = extract32(tcr, 24, 1);
10177 epd = false;
10178 sh = extract32(tcr, 12, 2);
10179 ps = extract32(tcr, 16, 3);
10180 ds = extract64(tcr, 32, 1);
10181 } else {
10183 * Bit 55 is always between the two regions, and is canonical for
10184 * determining if address tagging is enabled.
10186 select = extract64(va, 55, 1);
10187 if (!select) {
10188 tsz = extract32(tcr, 0, 6);
10189 epd = extract32(tcr, 7, 1);
10190 sh = extract32(tcr, 12, 2);
10191 using64k = extract32(tcr, 14, 1);
10192 using16k = extract32(tcr, 15, 1);
10193 hpd = extract64(tcr, 41, 1);
10194 } else {
10195 int tg = extract32(tcr, 30, 2);
10196 using16k = tg == 1;
10197 using64k = tg == 3;
10198 tsz = extract32(tcr, 16, 6);
10199 epd = extract32(tcr, 23, 1);
10200 sh = extract32(tcr, 28, 2);
10201 hpd = extract64(tcr, 42, 1);
10203 ps = extract64(tcr, 32, 3);
10204 ds = extract64(tcr, 59, 1);
10207 if (cpu_isar_feature(aa64_st, cpu)) {
10208 max_tsz = 48 - using64k;
10209 } else {
10210 max_tsz = 39;
10214 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
10215 * adjust the effective value of DS, as documented.
10217 min_tsz = 16;
10218 if (using64k) {
10219 if (cpu_isar_feature(aa64_lva, cpu)) {
10220 min_tsz = 12;
10222 ds = false;
10223 } else if (ds) {
10224 switch (mmu_idx) {
10225 case ARMMMUIdx_Stage2:
10226 case ARMMMUIdx_Stage2_S:
10227 if (using16k) {
10228 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
10229 } else {
10230 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
10232 break;
10233 default:
10234 if (using16k) {
10235 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
10236 } else {
10237 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
10239 break;
10241 if (ds) {
10242 min_tsz = 12;
10246 if (tsz > max_tsz) {
10247 tsz = max_tsz;
10248 tsz_oob = true;
10249 } else if (tsz < min_tsz) {
10250 tsz = min_tsz;
10251 tsz_oob = true;
10252 } else {
10253 tsz_oob = false;
10256 /* Present TBI as a composite with TBID. */
10257 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10258 if (!data) {
10259 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10261 tbi = (tbi >> select) & 1;
10263 return (ARMVAParameters) {
10264 .tsz = tsz,
10265 .ps = ps,
10266 .sh = sh,
10267 .select = select,
10268 .tbi = tbi,
10269 .epd = epd,
10270 .hpd = hpd,
10271 .using16k = using16k,
10272 .using64k = using64k,
10273 .tsz_oob = tsz_oob,
10274 .ds = ds,
10278 /* Note that signed overflow is undefined in C. The following routines are
10279 careful to use unsigned types where modulo arithmetic is required.
10280 Failure to do so _will_ break on newer gcc. */
10282 /* Signed saturating arithmetic. */
10284 /* Perform 16-bit signed saturating addition. */
10285 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10287 uint16_t res;
10289 res = a + b;
10290 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10291 if (a & 0x8000)
10292 res = 0x8000;
10293 else
10294 res = 0x7fff;
10296 return res;
10299 /* Perform 8-bit signed saturating addition. */
10300 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10302 uint8_t res;
10304 res = a + b;
10305 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10306 if (a & 0x80)
10307 res = 0x80;
10308 else
10309 res = 0x7f;
10311 return res;
10314 /* Perform 16-bit signed saturating subtraction. */
10315 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10317 uint16_t res;
10319 res = a - b;
10320 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10321 if (a & 0x8000)
10322 res = 0x8000;
10323 else
10324 res = 0x7fff;
10326 return res;
10329 /* Perform 8-bit signed saturating subtraction. */
10330 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10332 uint8_t res;
10334 res = a - b;
10335 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10336 if (a & 0x80)
10337 res = 0x80;
10338 else
10339 res = 0x7f;
10341 return res;
10344 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10345 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10346 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10347 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10348 #define PFX q
10350 #include "op_addsub.h"
10352 /* Unsigned saturating arithmetic. */
10353 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10355 uint16_t res;
10356 res = a + b;
10357 if (res < a)
10358 res = 0xffff;
10359 return res;
10362 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10364 if (a > b)
10365 return a - b;
10366 else
10367 return 0;
10370 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10372 uint8_t res;
10373 res = a + b;
10374 if (res < a)
10375 res = 0xff;
10376 return res;
10379 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10381 if (a > b)
10382 return a - b;
10383 else
10384 return 0;
10387 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10388 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10389 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
10390 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
10391 #define PFX uq
10393 #include "op_addsub.h"
10395 /* Signed modulo arithmetic. */
10396 #define SARITH16(a, b, n, op) do { \
10397 int32_t sum; \
10398 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10399 RESULT(sum, n, 16); \
10400 if (sum >= 0) \
10401 ge |= 3 << (n * 2); \
10402 } while(0)
10404 #define SARITH8(a, b, n, op) do { \
10405 int32_t sum; \
10406 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10407 RESULT(sum, n, 8); \
10408 if (sum >= 0) \
10409 ge |= 1 << n; \
10410 } while(0)
10413 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10414 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10415 #define ADD8(a, b, n) SARITH8(a, b, n, +)
10416 #define SUB8(a, b, n) SARITH8(a, b, n, -)
10417 #define PFX s
10418 #define ARITH_GE
10420 #include "op_addsub.h"
10422 /* Unsigned modulo arithmetic. */
10423 #define ADD16(a, b, n) do { \
10424 uint32_t sum; \
10425 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10426 RESULT(sum, n, 16); \
10427 if ((sum >> 16) == 1) \
10428 ge |= 3 << (n * 2); \
10429 } while(0)
10431 #define ADD8(a, b, n) do { \
10432 uint32_t sum; \
10433 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10434 RESULT(sum, n, 8); \
10435 if ((sum >> 8) == 1) \
10436 ge |= 1 << n; \
10437 } while(0)
10439 #define SUB16(a, b, n) do { \
10440 uint32_t sum; \
10441 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10442 RESULT(sum, n, 16); \
10443 if ((sum >> 16) == 0) \
10444 ge |= 3 << (n * 2); \
10445 } while(0)
10447 #define SUB8(a, b, n) do { \
10448 uint32_t sum; \
10449 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10450 RESULT(sum, n, 8); \
10451 if ((sum >> 8) == 0) \
10452 ge |= 1 << n; \
10453 } while(0)
10455 #define PFX u
10456 #define ARITH_GE
10458 #include "op_addsub.h"
10460 /* Halved signed arithmetic. */
10461 #define ADD16(a, b, n) \
10462 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10463 #define SUB16(a, b, n) \
10464 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10465 #define ADD8(a, b, n) \
10466 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10467 #define SUB8(a, b, n) \
10468 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10469 #define PFX sh
10471 #include "op_addsub.h"
10473 /* Halved unsigned arithmetic. */
10474 #define ADD16(a, b, n) \
10475 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10476 #define SUB16(a, b, n) \
10477 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10478 #define ADD8(a, b, n) \
10479 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10480 #define SUB8(a, b, n) \
10481 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10482 #define PFX uh
10484 #include "op_addsub.h"
10486 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10488 if (a > b)
10489 return a - b;
10490 else
10491 return b - a;
10494 /* Unsigned sum of absolute byte differences. */
10495 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10497 uint32_t sum;
10498 sum = do_usad(a, b);
10499 sum += do_usad(a >> 8, b >> 8);
10500 sum += do_usad(a >> 16, b >> 16);
10501 sum += do_usad(a >> 24, b >> 24);
10502 return sum;
10505 /* For ARMv6 SEL instruction. */
10506 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10508 uint32_t mask;
10510 mask = 0;
10511 if (flags & 1)
10512 mask |= 0xff;
10513 if (flags & 2)
10514 mask |= 0xff00;
10515 if (flags & 4)
10516 mask |= 0xff0000;
10517 if (flags & 8)
10518 mask |= 0xff000000;
10519 return (a & mask) | (b & ~mask);
10522 /* CRC helpers.
10523 * The upper bytes of val (above the number specified by 'bytes') must have
10524 * been zeroed out by the caller.
10526 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10528 uint8_t buf[4];
10530 stl_le_p(buf, val);
10532 /* zlib crc32 converts the accumulator and output to one's complement. */
10533 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10536 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10538 uint8_t buf[4];
10540 stl_le_p(buf, val);
10542 /* Linux crc32c converts the output to one's complement. */
10543 return crc32c(acc, buf, bytes) ^ 0xffffffff;
10546 /* Return the exception level to which FP-disabled exceptions should
10547 * be taken, or 0 if FP is enabled.
10549 int fp_exception_el(CPUARMState *env, int cur_el)
10551 #ifndef CONFIG_USER_ONLY
10552 uint64_t hcr_el2;
10554 /* CPACR and the CPTR registers don't exist before v6, so FP is
10555 * always accessible
10557 if (!arm_feature(env, ARM_FEATURE_V6)) {
10558 return 0;
10561 if (arm_feature(env, ARM_FEATURE_M)) {
10562 /* CPACR can cause a NOCP UsageFault taken to current security state */
10563 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
10564 return 1;
10567 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
10568 if (!extract32(env->v7m.nsacr, 10, 1)) {
10569 /* FP insns cause a NOCP UsageFault taken to Secure */
10570 return 3;
10574 return 0;
10577 hcr_el2 = arm_hcr_el2_eff(env);
10579 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
10580 * 0, 2 : trap EL0 and EL1/PL1 accesses
10581 * 1 : trap only EL0 accesses
10582 * 3 : trap no accesses
10583 * This register is ignored if E2H+TGE are both set.
10585 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10586 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
10588 switch (fpen) {
10589 case 1:
10590 if (cur_el != 0) {
10591 break;
10593 /* fall through */
10594 case 0:
10595 case 2:
10596 /* Trap from Secure PL0 or PL1 to Secure PL1. */
10597 if (!arm_el_is_aa64(env, 3)
10598 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
10599 return 3;
10601 if (cur_el <= 1) {
10602 return 1;
10604 break;
10609 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
10610 * to control non-secure access to the FPU. It doesn't have any
10611 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
10613 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
10614 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
10615 if (!extract32(env->cp15.nsacr, 10, 1)) {
10616 /* FP insns act as UNDEF */
10617 return cur_el == 2 ? 2 : 1;
10622 * CPTR_EL2 is present in v7VE or v8, and changes format
10623 * with HCR_EL2.E2H (regardless of TGE).
10625 if (cur_el <= 2) {
10626 if (hcr_el2 & HCR_E2H) {
10627 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
10628 case 1:
10629 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
10630 break;
10632 /* fall through */
10633 case 0:
10634 case 2:
10635 return 2;
10637 } else if (arm_is_el2_enabled(env)) {
10638 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
10639 return 2;
10644 /* CPTR_EL3 : present in v8 */
10645 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
10646 /* Trap all FP ops to EL3 */
10647 return 3;
10649 #endif
10650 return 0;
10653 /* Return the exception level we're running at if this is our mmu_idx */
10654 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
10656 if (mmu_idx & ARM_MMU_IDX_M) {
10657 return mmu_idx & ARM_MMU_IDX_M_PRIV;
10660 switch (mmu_idx) {
10661 case ARMMMUIdx_E10_0:
10662 case ARMMMUIdx_E20_0:
10663 case ARMMMUIdx_SE10_0:
10664 case ARMMMUIdx_SE20_0:
10665 return 0;
10666 case ARMMMUIdx_E10_1:
10667 case ARMMMUIdx_E10_1_PAN:
10668 case ARMMMUIdx_SE10_1:
10669 case ARMMMUIdx_SE10_1_PAN:
10670 return 1;
10671 case ARMMMUIdx_E2:
10672 case ARMMMUIdx_E20_2:
10673 case ARMMMUIdx_E20_2_PAN:
10674 case ARMMMUIdx_SE2:
10675 case ARMMMUIdx_SE20_2:
10676 case ARMMMUIdx_SE20_2_PAN:
10677 return 2;
10678 case ARMMMUIdx_SE3:
10679 return 3;
10680 default:
10681 g_assert_not_reached();
10685 #ifndef CONFIG_TCG
10686 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
10688 g_assert_not_reached();
10690 #endif
10692 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
10694 ARMMMUIdx idx;
10695 uint64_t hcr;
10697 if (arm_feature(env, ARM_FEATURE_M)) {
10698 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
10701 /* See ARM pseudo-function ELIsInHost. */
10702 switch (el) {
10703 case 0:
10704 hcr = arm_hcr_el2_eff(env);
10705 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
10706 idx = ARMMMUIdx_E20_0;
10707 } else {
10708 idx = ARMMMUIdx_E10_0;
10710 break;
10711 case 1:
10712 if (env->pstate & PSTATE_PAN) {
10713 idx = ARMMMUIdx_E10_1_PAN;
10714 } else {
10715 idx = ARMMMUIdx_E10_1;
10717 break;
10718 case 2:
10719 /* Note that TGE does not apply at EL2. */
10720 if (arm_hcr_el2_eff(env) & HCR_E2H) {
10721 if (env->pstate & PSTATE_PAN) {
10722 idx = ARMMMUIdx_E20_2_PAN;
10723 } else {
10724 idx = ARMMMUIdx_E20_2;
10726 } else {
10727 idx = ARMMMUIdx_E2;
10729 break;
10730 case 3:
10731 return ARMMMUIdx_SE3;
10732 default:
10733 g_assert_not_reached();
10736 if (arm_is_secure_below_el3(env)) {
10737 idx &= ~ARM_MMU_IDX_A_NS;
10740 return idx;
10743 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
10745 return arm_mmu_idx_el(env, arm_current_el(env));
10748 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
10749 ARMMMUIdx mmu_idx,
10750 CPUARMTBFlags flags)
10752 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
10753 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
10755 if (arm_singlestep_active(env)) {
10756 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
10758 return flags;
10761 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
10762 ARMMMUIdx mmu_idx,
10763 CPUARMTBFlags flags)
10765 bool sctlr_b = arm_sctlr_b(env);
10767 if (sctlr_b) {
10768 DP_TBFLAG_A32(flags, SCTLR__B, 1);
10770 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
10771 DP_TBFLAG_ANY(flags, BE_DATA, 1);
10773 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
10775 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
10778 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
10779 ARMMMUIdx mmu_idx)
10781 CPUARMTBFlags flags = {};
10782 uint32_t ccr = env->v7m.ccr[env->v7m.secure];
10784 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
10785 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
10786 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
10789 if (arm_v7m_is_handler_mode(env)) {
10790 DP_TBFLAG_M32(flags, HANDLER, 1);
10794 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
10795 * is suppressing them because the requested execution priority
10796 * is less than 0.
10798 if (arm_feature(env, ARM_FEATURE_V8) &&
10799 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
10800 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
10801 DP_TBFLAG_M32(flags, STACKCHECK, 1);
10804 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
10807 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
10808 ARMMMUIdx mmu_idx)
10810 CPUARMTBFlags flags = {};
10811 int el = arm_current_el(env);
10813 if (arm_sctlr(env, el) & SCTLR_A) {
10814 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
10817 if (arm_el_is_aa64(env, 1)) {
10818 DP_TBFLAG_A32(flags, VFPEN, 1);
10821 if (el < 2 && env->cp15.hstr_el2 &&
10822 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10823 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
10826 if (env->uncached_cpsr & CPSR_IL) {
10827 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
10831 * The SME exception we are testing for is raised via
10832 * AArch64.CheckFPAdvSIMDEnabled(), as called from
10833 * AArch32.CheckAdvSIMDOrFPEnabled().
10835 if (el == 0
10836 && FIELD_EX64(env->svcr, SVCR, SM)
10837 && (!arm_is_el2_enabled(env)
10838 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
10839 && arm_el_is_aa64(env, 1)
10840 && !sme_fa64(env, el)) {
10841 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
10844 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
10847 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
10848 ARMMMUIdx mmu_idx)
10850 CPUARMTBFlags flags = {};
10851 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
10852 uint64_t tcr = regime_tcr(env, mmu_idx);
10853 uint64_t sctlr;
10854 int tbii, tbid;
10856 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
10858 /* Get control bits for tagged addresses. */
10859 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
10860 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
10862 DP_TBFLAG_A64(flags, TBII, tbii);
10863 DP_TBFLAG_A64(flags, TBID, tbid);
10865 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
10866 int sve_el = sve_exception_el(env, el);
10869 * If either FP or SVE are disabled, translator does not need len.
10870 * If SVE EL > FP EL, FP exception has precedence, and translator
10871 * does not need SVE EL. Save potential re-translations by forcing
10872 * the unneeded data to zero.
10874 if (fp_el != 0) {
10875 if (sve_el > fp_el) {
10876 sve_el = 0;
10878 } else if (sve_el == 0) {
10879 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
10881 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
10883 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
10884 int sme_el = sme_exception_el(env, el);
10885 bool sm = FIELD_EX64(env->svcr, SVCR, SM);
10887 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
10888 if (sme_el == 0) {
10889 /* Similarly, do not compute SVL if SME is disabled. */
10890 int svl = sve_vqm1_for_el_sm(env, el, true);
10891 DP_TBFLAG_A64(flags, SVL, svl);
10892 if (sm) {
10893 /* If SVE is disabled, we will not have set VL above. */
10894 DP_TBFLAG_A64(flags, VL, svl);
10897 if (sm) {
10898 DP_TBFLAG_A64(flags, PSTATE_SM, 1);
10899 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
10901 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
10904 sctlr = regime_sctlr(env, stage1);
10906 if (sctlr & SCTLR_A) {
10907 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
10910 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
10911 DP_TBFLAG_ANY(flags, BE_DATA, 1);
10914 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
10916 * In order to save space in flags, we record only whether
10917 * pauth is "inactive", meaning all insns are implemented as
10918 * a nop, or "active" when some action must be performed.
10919 * The decision of which action to take is left to a helper.
10921 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
10922 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
10926 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
10927 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
10928 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
10929 DP_TBFLAG_A64(flags, BT, 1);
10933 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
10934 if (!(env->pstate & PSTATE_UAO)) {
10935 switch (mmu_idx) {
10936 case ARMMMUIdx_E10_1:
10937 case ARMMMUIdx_E10_1_PAN:
10938 case ARMMMUIdx_SE10_1:
10939 case ARMMMUIdx_SE10_1_PAN:
10940 /* TODO: ARMv8.3-NV */
10941 DP_TBFLAG_A64(flags, UNPRIV, 1);
10942 break;
10943 case ARMMMUIdx_E20_2:
10944 case ARMMMUIdx_E20_2_PAN:
10945 case ARMMMUIdx_SE20_2:
10946 case ARMMMUIdx_SE20_2_PAN:
10948 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
10949 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
10951 if (env->cp15.hcr_el2 & HCR_TGE) {
10952 DP_TBFLAG_A64(flags, UNPRIV, 1);
10954 break;
10955 default:
10956 break;
10960 if (env->pstate & PSTATE_IL) {
10961 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
10964 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
10966 * Set MTE_ACTIVE if any access may be Checked, and leave clear
10967 * if all accesses must be Unchecked:
10968 * 1) If no TBI, then there are no tags in the address to check,
10969 * 2) If Tag Check Override, then all accesses are Unchecked,
10970 * 3) If Tag Check Fail == 0, then Checked access have no effect,
10971 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
10973 if (allocation_tag_access_enabled(env, el, sctlr)) {
10974 DP_TBFLAG_A64(flags, ATA, 1);
10975 if (tbid
10976 && !(env->pstate & PSTATE_TCO)
10977 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
10978 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
10981 /* And again for unprivileged accesses, if required. */
10982 if (EX_TBFLAG_A64(flags, UNPRIV)
10983 && tbid
10984 && !(env->pstate & PSTATE_TCO)
10985 && (sctlr & SCTLR_TCF0)
10986 && allocation_tag_access_enabled(env, 0, sctlr)) {
10987 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
10989 /* Cache TCMA as well as TBI. */
10990 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
10993 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
10996 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
10998 int el = arm_current_el(env);
10999 int fp_el = fp_exception_el(env, el);
11000 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11002 if (is_a64(env)) {
11003 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11004 } else if (arm_feature(env, ARM_FEATURE_M)) {
11005 return rebuild_hflags_m32(env, fp_el, mmu_idx);
11006 } else {
11007 return rebuild_hflags_a32(env, fp_el, mmu_idx);
11011 void arm_rebuild_hflags(CPUARMState *env)
11013 env->hflags = rebuild_hflags_internal(env);
11017 * If we have triggered a EL state change we can't rely on the
11018 * translator having passed it to us, we need to recompute.
11020 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
11022 int el = arm_current_el(env);
11023 int fp_el = fp_exception_el(env, el);
11024 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11026 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11029 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
11031 int fp_el = fp_exception_el(env, el);
11032 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11034 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
11038 * If we have triggered a EL state change we can't rely on the
11039 * translator having passed it to us, we need to recompute.
11041 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
11043 int el = arm_current_el(env);
11044 int fp_el = fp_exception_el(env, el);
11045 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11046 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11049 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
11051 int fp_el = fp_exception_el(env, el);
11052 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11054 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
11057 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
11059 int fp_el = fp_exception_el(env, el);
11060 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
11062 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
11065 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
11067 #ifdef CONFIG_DEBUG_TCG
11068 CPUARMTBFlags c = env->hflags;
11069 CPUARMTBFlags r = rebuild_hflags_internal(env);
11071 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
11072 fprintf(stderr, "TCG hflags mismatch "
11073 "(current:(0x%08x,0x" TARGET_FMT_lx ")"
11074 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
11075 c.flags, c.flags2, r.flags, r.flags2);
11076 abort();
11078 #endif
11081 static bool mve_no_pred(CPUARMState *env)
11084 * Return true if there is definitely no predication of MVE
11085 * instructions by VPR or LTPSIZE. (Returning false even if there
11086 * isn't any predication is OK; generated code will just be
11087 * a little worse.)
11088 * If the CPU does not implement MVE then this TB flag is always 0.
11090 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
11091 * logic in gen_update_fp_context() needs to be updated to match.
11093 * We do not include the effect of the ECI bits here -- they are
11094 * tracked in other TB flags. This simplifies the logic for
11095 * "when did we emit code that changes the MVE_NO_PRED TB flag
11096 * and thus need to end the TB?".
11098 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
11099 return false;
11101 if (env->v7m.vpr) {
11102 return false;
11104 if (env->v7m.ltpsize < 4) {
11105 return false;
11107 return true;
11110 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11111 target_ulong *cs_base, uint32_t *pflags)
11113 CPUARMTBFlags flags;
11115 assert_hflags_rebuild_correctly(env);
11116 flags = env->hflags;
11118 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
11119 *pc = env->pc;
11120 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11121 DP_TBFLAG_A64(flags, BTYPE, env->btype);
11123 } else {
11124 *pc = env->regs[15];
11126 if (arm_feature(env, ARM_FEATURE_M)) {
11127 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11128 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11129 != env->v7m.secure) {
11130 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
11133 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11134 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11135 (env->v7m.secure &&
11136 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11138 * ASPEN is set, but FPCA/SFPA indicate that there is no
11139 * active FP context; we must create a new FP context before
11140 * executing any FP insn.
11142 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
11145 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11146 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11147 DP_TBFLAG_M32(flags, LSPACT, 1);
11150 if (mve_no_pred(env)) {
11151 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
11153 } else {
11155 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11156 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11158 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11159 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
11160 } else {
11161 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
11162 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
11164 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
11165 DP_TBFLAG_A32(flags, VFPEN, 1);
11169 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
11170 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
11174 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11175 * states defined in the ARM ARM for software singlestep:
11176 * SS_ACTIVE PSTATE.SS State
11177 * 0 x Inactive (the TB flag for SS is always 0)
11178 * 1 0 Active-pending
11179 * 1 1 Active-not-pending
11180 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
11182 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
11183 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
11186 *pflags = flags.flags;
11187 *cs_base = flags.flags2;
11190 #ifdef TARGET_AARCH64
11192 * The manual says that when SVE is enabled and VQ is widened the
11193 * implementation is allowed to zero the previously inaccessible
11194 * portion of the registers. The corollary to that is that when
11195 * SVE is enabled and VQ is narrowed we are also allowed to zero
11196 * the now inaccessible portion of the registers.
11198 * The intent of this is that no predicate bit beyond VQ is ever set.
11199 * Which means that some operations on predicate registers themselves
11200 * may operate on full uint64_t or even unrolled across the maximum
11201 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
11202 * may well be cheaper than conditionals to restrict the operation
11203 * to the relevant portion of a uint16_t[16].
11205 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11207 int i, j;
11208 uint64_t pmask;
11210 assert(vq >= 1 && vq <= ARM_MAX_VQ);
11211 assert(vq <= env_archcpu(env)->sve_max_vq);
11213 /* Zap the high bits of the zregs. */
11214 for (i = 0; i < 32; i++) {
11215 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11218 /* Zap the high bits of the pregs and ffr. */
11219 pmask = 0;
11220 if (vq & 3) {
11221 pmask = ~(-1ULL << (16 * (vq & 3)));
11223 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11224 for (i = 0; i < 17; ++i) {
11225 env->vfp.pregs[i].p[j] &= pmask;
11227 pmask = 0;
11231 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
11233 int exc_el;
11235 if (sm) {
11236 exc_el = sme_exception_el(env, el);
11237 } else {
11238 exc_el = sve_exception_el(env, el);
11240 if (exc_el) {
11241 return 0; /* disabled */
11243 return sve_vqm1_for_el_sm(env, el, sm);
11247 * Notice a change in SVE vector size when changing EL.
11249 void aarch64_sve_change_el(CPUARMState *env, int old_el,
11250 int new_el, bool el0_a64)
11252 ARMCPU *cpu = env_archcpu(env);
11253 int old_len, new_len;
11254 bool old_a64, new_a64, sm;
11256 /* Nothing to do if no SVE. */
11257 if (!cpu_isar_feature(aa64_sve, cpu)) {
11258 return;
11261 /* Nothing to do if FP is disabled in either EL. */
11262 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11263 return;
11266 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11267 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11270 * Both AArch64.TakeException and AArch64.ExceptionReturn
11271 * invoke ResetSVEState when taking an exception from, or
11272 * returning to, AArch32 state when PSTATE.SM is enabled.
11274 sm = FIELD_EX64(env->svcr, SVCR, SM);
11275 if (old_a64 != new_a64 && sm) {
11276 arm_reset_sve_state(env);
11277 return;
11281 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
11282 * at ELx, or not available because the EL is in AArch32 state, then
11283 * for all purposes other than a direct read, the ZCR_ELx.LEN field
11284 * has an effective value of 0".
11286 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
11287 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
11288 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
11289 * we already have the correct register contents when encountering the
11290 * vq0->vq0 transition between EL0->EL1.
11292 old_len = new_len = 0;
11293 if (old_a64) {
11294 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
11296 if (new_a64) {
11297 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
11300 /* When changing vector length, clear inaccessible state. */
11301 if (new_len < old_len) {
11302 aarch64_sve_narrow_vq(env, new_len + 1);
11305 #endif