4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "exec/helper-proto.h"
21 #include "internals.h"
22 #include "exec/cpu_ldst.h"
24 #define SIGNBIT (uint32_t)0x80000000
25 #define SIGNBIT64 ((uint64_t)1 << 63)
27 static void raise_exception(CPUARMState
*env
, int tt
)
29 ARMCPU
*cpu
= arm_env_get_cpu(env
);
30 CPUState
*cs
= CPU(cpu
);
32 cs
->exception_index
= tt
;
36 uint32_t HELPER(neon_tbl
)(CPUARMState
*env
, uint32_t ireg
, uint32_t def
,
37 uint32_t rn
, uint32_t maxindex
)
44 table
= (uint64_t *)&env
->vfp
.regs
[rn
];
46 for (shift
= 0; shift
< 32; shift
+= 8) {
47 index
= (ireg
>> shift
) & 0xff;
48 if (index
< maxindex
) {
49 tmp
= (table
[index
>> 3] >> ((index
& 7) << 3)) & 0xff;
52 val
|= def
& (0xff << shift
);
58 #if !defined(CONFIG_USER_ONLY)
60 /* try to fill the TLB and return an exception if error. If retaddr is
61 * NULL, it means that the function was called in C code (i.e. not
62 * from generated code or from helper.c)
64 void tlb_fill(CPUState
*cs
, target_ulong addr
, int is_write
, int mmu_idx
,
69 ret
= arm_cpu_handle_mmu_fault(cs
, addr
, is_write
, mmu_idx
);
71 ARMCPU
*cpu
= ARM_CPU(cs
);
72 CPUARMState
*env
= &cpu
->env
;
75 /* now we have a real cpu fault */
76 cpu_restore_state(cs
, retaddr
);
78 raise_exception(env
, cs
->exception_index
);
83 uint32_t HELPER(add_setq
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
86 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
))
91 uint32_t HELPER(add_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
94 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
)) {
96 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
101 uint32_t HELPER(sub_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
103 uint32_t res
= a
- b
;
104 if (((res
^ a
) & SIGNBIT
) && ((a
^ b
) & SIGNBIT
)) {
106 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
111 uint32_t HELPER(double_saturate
)(CPUARMState
*env
, int32_t val
)
114 if (val
>= 0x40000000) {
117 } else if (val
<= (int32_t)0xc0000000) {
126 uint32_t HELPER(add_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
128 uint32_t res
= a
+ b
;
136 uint32_t HELPER(sub_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
138 uint32_t res
= a
- b
;
146 /* Signed saturation. */
147 static inline uint32_t do_ssat(CPUARMState
*env
, int32_t val
, int shift
)
153 mask
= (1u << shift
) - 1;
157 } else if (top
< -1) {
164 /* Unsigned saturation. */
165 static inline uint32_t do_usat(CPUARMState
*env
, int32_t val
, int shift
)
169 max
= (1u << shift
) - 1;
173 } else if (val
> max
) {
180 /* Signed saturate. */
181 uint32_t HELPER(ssat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
183 return do_ssat(env
, x
, shift
);
186 /* Dual halfword signed saturate. */
187 uint32_t HELPER(ssat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
191 res
= (uint16_t)do_ssat(env
, (int16_t)x
, shift
);
192 res
|= do_ssat(env
, ((int32_t)x
) >> 16, shift
) << 16;
196 /* Unsigned saturate. */
197 uint32_t HELPER(usat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
199 return do_usat(env
, x
, shift
);
202 /* Dual halfword unsigned saturate. */
203 uint32_t HELPER(usat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
207 res
= (uint16_t)do_usat(env
, (int16_t)x
, shift
);
208 res
|= do_usat(env
, ((int32_t)x
) >> 16, shift
) << 16;
212 void HELPER(wfi
)(CPUARMState
*env
)
214 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
216 cs
->exception_index
= EXCP_HLT
;
221 void HELPER(wfe
)(CPUARMState
*env
)
223 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
225 /* Don't actually halt the CPU, just yield back to top
228 cs
->exception_index
= EXCP_YIELD
;
232 /* Raise an internal-to-QEMU exception. This is limited to only
233 * those EXCP values which are special cases for QEMU to interrupt
234 * execution and not to be used for exceptions which are passed to
235 * the guest (those must all have syndrome information and thus should
236 * use exception_with_syndrome).
238 void HELPER(exception_internal
)(CPUARMState
*env
, uint32_t excp
)
240 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
242 assert(excp_is_internal(excp
));
243 cs
->exception_index
= excp
;
247 /* Raise an exception with the specified syndrome register value */
248 void HELPER(exception_with_syndrome
)(CPUARMState
*env
, uint32_t excp
,
251 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
253 assert(!excp_is_internal(excp
));
254 cs
->exception_index
= excp
;
255 env
->exception
.syndrome
= syndrome
;
259 uint32_t HELPER(cpsr_read
)(CPUARMState
*env
)
261 return cpsr_read(env
) & ~(CPSR_EXEC
| CPSR_RESERVED
);
264 void HELPER(cpsr_write
)(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
266 cpsr_write(env
, val
, mask
);
269 /* Access to user mode registers from privileged modes. */
270 uint32_t HELPER(get_user_reg
)(CPUARMState
*env
, uint32_t regno
)
275 val
= env
->banked_r13
[0];
276 } else if (regno
== 14) {
277 val
= env
->banked_r14
[0];
278 } else if (regno
>= 8
279 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
280 val
= env
->usr_regs
[regno
- 8];
282 val
= env
->regs
[regno
];
287 void HELPER(set_user_reg
)(CPUARMState
*env
, uint32_t regno
, uint32_t val
)
290 env
->banked_r13
[0] = val
;
291 } else if (regno
== 14) {
292 env
->banked_r14
[0] = val
;
293 } else if (regno
>= 8
294 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
295 env
->usr_regs
[regno
- 8] = val
;
297 env
->regs
[regno
] = val
;
301 void HELPER(access_check_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t syndrome
)
303 const ARMCPRegInfo
*ri
= rip
;
305 if (arm_feature(env
, ARM_FEATURE_XSCALE
) && ri
->cp
< 14
306 && extract32(env
->cp15
.c15_cpar
, ri
->cp
, 1) == 0) {
307 env
->exception
.syndrome
= syndrome
;
308 raise_exception(env
, EXCP_UDEF
);
315 switch (ri
->accessfn(env
, ri
)) {
319 env
->exception
.syndrome
= syndrome
;
321 case CP_ACCESS_TRAP_UNCATEGORIZED
:
322 env
->exception
.syndrome
= syn_uncategorized();
325 g_assert_not_reached();
327 raise_exception(env
, EXCP_UDEF
);
330 void HELPER(set_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t value
)
332 const ARMCPRegInfo
*ri
= rip
;
334 ri
->writefn(env
, ri
, value
);
337 uint32_t HELPER(get_cp_reg
)(CPUARMState
*env
, void *rip
)
339 const ARMCPRegInfo
*ri
= rip
;
341 return ri
->readfn(env
, ri
);
344 void HELPER(set_cp_reg64
)(CPUARMState
*env
, void *rip
, uint64_t value
)
346 const ARMCPRegInfo
*ri
= rip
;
348 ri
->writefn(env
, ri
, value
);
351 uint64_t HELPER(get_cp_reg64
)(CPUARMState
*env
, void *rip
)
353 const ARMCPRegInfo
*ri
= rip
;
355 return ri
->readfn(env
, ri
);
358 void HELPER(msr_i_pstate
)(CPUARMState
*env
, uint32_t op
, uint32_t imm
)
360 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
361 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
362 * to catch that case at translate time.
364 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
365 raise_exception(env
, EXCP_UDEF
);
369 case 0x05: /* SPSel */
370 update_spsel(env
, imm
);
372 case 0x1e: /* DAIFSet */
373 env
->daif
|= (imm
<< 6) & PSTATE_DAIF
;
375 case 0x1f: /* DAIFClear */
376 env
->daif
&= ~((imm
<< 6) & PSTATE_DAIF
);
379 g_assert_not_reached();
383 void HELPER(clear_pstate_ss
)(CPUARMState
*env
)
385 env
->pstate
&= ~PSTATE_SS
;
388 void HELPER(pre_hvc
)(CPUARMState
*env
)
390 ARMCPU
*cpu
= arm_env_get_cpu(env
);
391 int cur_el
= arm_current_el(env
);
392 /* FIXME: Use actual secure state. */
396 if (arm_is_psci_call(cpu
, EXCP_HVC
)) {
397 /* If PSCI is enabled and this looks like a valid PSCI call then
398 * that overrides the architecturally mandated HVC behaviour.
403 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
404 /* If EL2 doesn't exist, HVC always UNDEFs */
406 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
407 /* EL3.HCE has priority over EL2.HCD. */
408 undef
= !(env
->cp15
.scr_el3
& SCR_HCE
);
410 undef
= env
->cp15
.hcr_el2
& HCR_HCD
;
413 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
414 * For ARMv8/AArch64, HVC is allowed in EL3.
415 * Note that we've already trapped HVC from EL0 at translation
418 if (secure
&& (!is_a64(env
) || cur_el
== 1)) {
423 env
->exception
.syndrome
= syn_uncategorized();
424 raise_exception(env
, EXCP_UDEF
);
428 void HELPER(pre_smc
)(CPUARMState
*env
, uint32_t syndrome
)
430 ARMCPU
*cpu
= arm_env_get_cpu(env
);
431 int cur_el
= arm_current_el(env
);
432 bool secure
= arm_is_secure(env
);
433 bool smd
= env
->cp15
.scr_el3
& SCR_SMD
;
434 /* On ARMv8 AArch32, SMD only applies to NS state.
435 * On ARMv7 SMD only applies to NS state and only if EL2 is available.
436 * For ARMv7 non EL2, we force SMD to zero so we don't need to re-check
437 * the EL2 condition here.
439 bool undef
= is_a64(env
) ? smd
: (!secure
&& smd
);
441 if (arm_is_psci_call(cpu
, EXCP_SMC
)) {
442 /* If PSCI is enabled and this looks like a valid PSCI call then
443 * that overrides the architecturally mandated SMC behaviour.
448 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
449 /* If we have no EL3 then SMC always UNDEFs */
451 } else if (!secure
&& cur_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TSC
)) {
452 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
453 env
->exception
.syndrome
= syndrome
;
454 raise_exception(env
, EXCP_HYP_TRAP
);
458 env
->exception
.syndrome
= syn_uncategorized();
459 raise_exception(env
, EXCP_UDEF
);
463 void HELPER(exception_return
)(CPUARMState
*env
)
465 int cur_el
= arm_current_el(env
);
466 unsigned int spsr_idx
= aarch64_banked_spsr_index(cur_el
);
467 uint32_t spsr
= env
->banked_spsr
[spsr_idx
];
470 aarch64_save_sp(env
, cur_el
);
472 env
->exclusive_addr
= -1;
474 /* We must squash the PSTATE.SS bit to zero unless both of the
476 * 1. debug exceptions are currently disabled
477 * 2. singlestep will be active in the EL we return to
478 * We check 1 here and 2 after we've done the pstate/cpsr write() to
479 * transition to the EL we're going to.
481 if (arm_generate_debug_exceptions(env
)) {
485 if (spsr
& PSTATE_nRW
) {
486 /* TODO: We currently assume EL1/2/3 are running in AArch64. */
489 env
->uncached_cpsr
= 0x10;
490 cpsr_write(env
, spsr
, ~0);
491 if (!arm_singlestep_active(env
)) {
492 env
->uncached_cpsr
&= ~PSTATE_SS
;
494 aarch64_sync_64_to_32(env
);
496 env
->regs
[15] = env
->elr_el
[1] & ~0x1;
498 new_el
= extract32(spsr
, 2, 2);
500 || (new_el
== 2 && !arm_feature(env
, ARM_FEATURE_EL2
))) {
501 /* Disallow return to an EL which is unimplemented or higher
502 * than the current one.
506 if (extract32(spsr
, 1, 1)) {
507 /* Return with reserved M[1] bit set */
510 if (new_el
== 0 && (spsr
& PSTATE_SP
)) {
511 /* Return to EL0 with M[0] bit set */
515 pstate_write(env
, spsr
);
516 if (!arm_singlestep_active(env
)) {
517 env
->pstate
&= ~PSTATE_SS
;
519 aarch64_restore_sp(env
, new_el
);
520 env
->pc
= env
->elr_el
[cur_el
];
526 /* Illegal return events of various kinds have architecturally
527 * mandated behaviour:
528 * restore NZCV and DAIF from SPSR_ELx
530 * restore PC from ELR_ELx
531 * no change to exception level, execution state or stack pointer
533 env
->pstate
|= PSTATE_IL
;
534 env
->pc
= env
->elr_el
[cur_el
];
535 spsr
&= PSTATE_NZCV
| PSTATE_DAIF
;
536 spsr
|= pstate_read(env
) & ~(PSTATE_NZCV
| PSTATE_DAIF
);
537 pstate_write(env
, spsr
);
538 if (!arm_singlestep_active(env
)) {
539 env
->pstate
&= ~PSTATE_SS
;
543 /* Return true if the linked breakpoint entry lbn passes its checks */
544 static bool linked_bp_matches(ARMCPU
*cpu
, int lbn
)
546 CPUARMState
*env
= &cpu
->env
;
547 uint64_t bcr
= env
->cp15
.dbgbcr
[lbn
];
548 int brps
= extract32(cpu
->dbgdidr
, 24, 4);
549 int ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
553 /* Links to unimplemented or non-context aware breakpoints are
554 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
555 * as if linked to an UNKNOWN context-aware breakpoint (in which
556 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
557 * We choose the former.
559 if (lbn
> brps
|| lbn
< (brps
- ctx_cmps
)) {
563 bcr
= env
->cp15
.dbgbcr
[lbn
];
565 if (extract64(bcr
, 0, 1) == 0) {
566 /* Linked breakpoint disabled : generate no events */
570 bt
= extract64(bcr
, 20, 4);
572 /* We match the whole register even if this is AArch32 using the
573 * short descriptor format (in which case it holds both PROCID and ASID),
574 * since we don't implement the optional v7 context ID masking.
576 contextidr
= extract64(env
->cp15
.contextidr_el
[1], 0, 32);
579 case 3: /* linked context ID match */
580 if (arm_current_el(env
) > 1) {
581 /* Context matches never fire in EL2 or (AArch64) EL3 */
584 return (contextidr
== extract64(env
->cp15
.dbgbvr
[lbn
], 0, 32));
585 case 5: /* linked address mismatch (reserved in AArch64) */
586 case 9: /* linked VMID match (reserved if no EL2) */
587 case 11: /* linked context ID and VMID match (reserved if no EL2) */
589 /* Links to Unlinked context breakpoints must generate no
590 * events; we choose to do the same for reserved values too.
598 static bool bp_wp_matches(ARMCPU
*cpu
, int n
, bool is_wp
)
600 CPUARMState
*env
= &cpu
->env
;
602 int pac
, hmc
, ssc
, wt
, lbn
;
603 /* TODO: check against CPU security state when we implement TrustZone */
604 bool is_secure
= false;
607 if (!env
->cpu_watchpoint
[n
]
608 || !(env
->cpu_watchpoint
[n
]->flags
& BP_WATCHPOINT_HIT
)) {
611 cr
= env
->cp15
.dbgwcr
[n
];
613 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
615 if (!env
->cpu_breakpoint
[n
] || env
->cpu_breakpoint
[n
]->pc
!= pc
) {
618 cr
= env
->cp15
.dbgbcr
[n
];
620 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
621 * enabled and that the address and access type match; for breakpoints
622 * we know the address matched; check the remaining fields, including
623 * linked breakpoints. We rely on WCR and BCR having the same layout
624 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
625 * Note that some combinations of {PAC, HMC, SSC} are reserved and
626 * must act either like some valid combination or as if the watchpoint
627 * were disabled. We choose the former, and use this together with
628 * the fact that EL3 must always be Secure and EL2 must always be
629 * Non-Secure to simplify the code slightly compared to the full
630 * table in the ARM ARM.
632 pac
= extract64(cr
, 1, 2);
633 hmc
= extract64(cr
, 13, 1);
634 ssc
= extract64(cr
, 14, 2);
652 /* TODO: this is not strictly correct because the LDRT/STRT/LDT/STT
653 * "unprivileged access" instructions should match watchpoints as if
654 * they were accesses done at EL0, even if the CPU is at EL1 or higher.
655 * Implementing this would require reworking the core watchpoint code
656 * to plumb the mmu_idx through to this point. Luckily Linux does not
657 * rely on this behaviour currently.
658 * For breakpoints we do want to use the current CPU state.
660 switch (arm_current_el(env
)) {
668 if (extract32(pac
, 0, 1) == 0) {
673 if (extract32(pac
, 1, 1) == 0) {
678 g_assert_not_reached();
681 wt
= extract64(cr
, 20, 1);
682 lbn
= extract64(cr
, 16, 4);
684 if (wt
&& !linked_bp_matches(cpu
, lbn
)) {
691 static bool check_watchpoints(ARMCPU
*cpu
)
693 CPUARMState
*env
= &cpu
->env
;
696 /* If watchpoints are disabled globally or we can't take debug
697 * exceptions here then watchpoint firings are ignored.
699 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
700 || !arm_generate_debug_exceptions(env
)) {
704 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_watchpoint
); n
++) {
705 if (bp_wp_matches(cpu
, n
, true)) {
712 static bool check_breakpoints(ARMCPU
*cpu
)
714 CPUARMState
*env
= &cpu
->env
;
717 /* If breakpoints are disabled globally or we can't take debug
718 * exceptions here then breakpoint firings are ignored.
720 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
721 || !arm_generate_debug_exceptions(env
)) {
725 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_breakpoint
); n
++) {
726 if (bp_wp_matches(cpu
, n
, false)) {
733 void arm_debug_excp_handler(CPUState
*cs
)
735 /* Called by core code when a watchpoint or breakpoint fires;
736 * need to check which one and raise the appropriate exception.
738 ARMCPU
*cpu
= ARM_CPU(cs
);
739 CPUARMState
*env
= &cpu
->env
;
740 CPUWatchpoint
*wp_hit
= cs
->watchpoint_hit
;
743 if (wp_hit
->flags
& BP_CPU
) {
744 cs
->watchpoint_hit
= NULL
;
745 if (check_watchpoints(cpu
)) {
746 bool wnr
= (wp_hit
->flags
& BP_WATCHPOINT_HIT_WRITE
) != 0;
747 bool same_el
= arm_debug_target_el(env
) == arm_current_el(env
);
749 env
->exception
.syndrome
= syn_watchpoint(same_el
, 0, wnr
);
750 if (extended_addresses_enabled(env
)) {
751 env
->exception
.fsr
= (1 << 9) | 0x22;
753 env
->exception
.fsr
= 0x2;
755 env
->exception
.vaddress
= wp_hit
->hitaddr
;
756 raise_exception(env
, EXCP_DATA_ABORT
);
758 cpu_resume_from_signal(cs
, NULL
);
762 if (check_breakpoints(cpu
)) {
763 bool same_el
= (arm_debug_target_el(env
) == arm_current_el(env
));
764 env
->exception
.syndrome
= syn_breakpoint(same_el
);
765 if (extended_addresses_enabled(env
)) {
766 env
->exception
.fsr
= (1 << 9) | 0x22;
768 env
->exception
.fsr
= 0x2;
770 /* FAR is UNKNOWN, so doesn't need setting */
771 raise_exception(env
, EXCP_PREFETCH_ABORT
);
776 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
777 The only way to do that in TCG is a conditional branch, which clobbers
778 all our temporaries. For now implement these as helper functions. */
780 /* Similarly for variable shift instructions. */
782 uint32_t HELPER(shl_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
784 int shift
= i
& 0xff;
791 } else if (shift
!= 0) {
792 env
->CF
= (x
>> (32 - shift
)) & 1;
798 uint32_t HELPER(shr_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
800 int shift
= i
& 0xff;
803 env
->CF
= (x
>> 31) & 1;
807 } else if (shift
!= 0) {
808 env
->CF
= (x
>> (shift
- 1)) & 1;
814 uint32_t HELPER(sar_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
816 int shift
= i
& 0xff;
818 env
->CF
= (x
>> 31) & 1;
819 return (int32_t)x
>> 31;
820 } else if (shift
!= 0) {
821 env
->CF
= (x
>> (shift
- 1)) & 1;
822 return (int32_t)x
>> shift
;
827 uint32_t HELPER(ror_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
831 shift
= shift1
& 0x1f;
834 env
->CF
= (x
>> 31) & 1;
837 env
->CF
= (x
>> (shift
- 1)) & 1;
838 return ((uint32_t)x
>> shift
) | (x
<< (32 - shift
));