softfloat: Replace flag with bool
[qemu/ar7.git] / target / arm / sve_helper.c
blobe590db663750f9bd655ed10f8f4b67a760a905ba
1 /*
2 * ARM SVE Operations
4 * Copyright (c) 2018 Linaro, Ltd.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "exec/exec-all.h"
24 #include "exec/cpu_ldst.h"
25 #include "exec/helper-proto.h"
26 #include "tcg/tcg-gvec-desc.h"
27 #include "fpu/softfloat.h"
28 #include "tcg/tcg.h"
31 /* Note that vector data is stored in host-endian 64-bit chunks,
32 so addressing units smaller than that needs a host-endian fixup. */
33 #ifdef HOST_WORDS_BIGENDIAN
34 #define H1(x) ((x) ^ 7)
35 #define H1_2(x) ((x) ^ 6)
36 #define H1_4(x) ((x) ^ 4)
37 #define H2(x) ((x) ^ 3)
38 #define H4(x) ((x) ^ 1)
39 #else
40 #define H1(x) (x)
41 #define H1_2(x) (x)
42 #define H1_4(x) (x)
43 #define H2(x) (x)
44 #define H4(x) (x)
45 #endif
47 /* Return a value for NZCV as per the ARM PredTest pseudofunction.
49 * The return value has bit 31 set if N is set, bit 1 set if Z is clear,
50 * and bit 0 set if C is set. Compare the definitions of these variables
51 * within CPUARMState.
54 /* For no G bits set, NZCV = C. */
55 #define PREDTEST_INIT 1
57 /* This is an iterative function, called for each Pd and Pg word
58 * moving forward.
60 static uint32_t iter_predtest_fwd(uint64_t d, uint64_t g, uint32_t flags)
62 if (likely(g)) {
63 /* Compute N from first D & G.
64 Use bit 2 to signal first G bit seen. */
65 if (!(flags & 4)) {
66 flags |= ((d & (g & -g)) != 0) << 31;
67 flags |= 4;
70 /* Accumulate Z from each D & G. */
71 flags |= ((d & g) != 0) << 1;
73 /* Compute C from last !(D & G). Replace previous. */
74 flags = deposit32(flags, 0, 1, (d & pow2floor(g)) == 0);
76 return flags;
79 /* This is an iterative function, called for each Pd and Pg word
80 * moving backward.
82 static uint32_t iter_predtest_bwd(uint64_t d, uint64_t g, uint32_t flags)
84 if (likely(g)) {
85 /* Compute C from first (i.e last) !(D & G).
86 Use bit 2 to signal first G bit seen. */
87 if (!(flags & 4)) {
88 flags += 4 - 1; /* add bit 2, subtract C from PREDTEST_INIT */
89 flags |= (d & pow2floor(g)) == 0;
92 /* Accumulate Z from each D & G. */
93 flags |= ((d & g) != 0) << 1;
95 /* Compute N from last (i.e first) D & G. Replace previous. */
96 flags = deposit32(flags, 31, 1, (d & (g & -g)) != 0);
98 return flags;
101 /* The same for a single word predicate. */
102 uint32_t HELPER(sve_predtest1)(uint64_t d, uint64_t g)
104 return iter_predtest_fwd(d, g, PREDTEST_INIT);
107 /* The same for a multi-word predicate. */
108 uint32_t HELPER(sve_predtest)(void *vd, void *vg, uint32_t words)
110 uint32_t flags = PREDTEST_INIT;
111 uint64_t *d = vd, *g = vg;
112 uintptr_t i = 0;
114 do {
115 flags = iter_predtest_fwd(d[i], g[i], flags);
116 } while (++i < words);
118 return flags;
121 /* Expand active predicate bits to bytes, for byte elements.
122 * for (i = 0; i < 256; ++i) {
123 * unsigned long m = 0;
124 * for (j = 0; j < 8; j++) {
125 * if ((i >> j) & 1) {
126 * m |= 0xfful << (j << 3);
129 * printf("0x%016lx,\n", m);
132 static inline uint64_t expand_pred_b(uint8_t byte)
134 static const uint64_t word[256] = {
135 0x0000000000000000, 0x00000000000000ff, 0x000000000000ff00,
136 0x000000000000ffff, 0x0000000000ff0000, 0x0000000000ff00ff,
137 0x0000000000ffff00, 0x0000000000ffffff, 0x00000000ff000000,
138 0x00000000ff0000ff, 0x00000000ff00ff00, 0x00000000ff00ffff,
139 0x00000000ffff0000, 0x00000000ffff00ff, 0x00000000ffffff00,
140 0x00000000ffffffff, 0x000000ff00000000, 0x000000ff000000ff,
141 0x000000ff0000ff00, 0x000000ff0000ffff, 0x000000ff00ff0000,
142 0x000000ff00ff00ff, 0x000000ff00ffff00, 0x000000ff00ffffff,
143 0x000000ffff000000, 0x000000ffff0000ff, 0x000000ffff00ff00,
144 0x000000ffff00ffff, 0x000000ffffff0000, 0x000000ffffff00ff,
145 0x000000ffffffff00, 0x000000ffffffffff, 0x0000ff0000000000,
146 0x0000ff00000000ff, 0x0000ff000000ff00, 0x0000ff000000ffff,
147 0x0000ff0000ff0000, 0x0000ff0000ff00ff, 0x0000ff0000ffff00,
148 0x0000ff0000ffffff, 0x0000ff00ff000000, 0x0000ff00ff0000ff,
149 0x0000ff00ff00ff00, 0x0000ff00ff00ffff, 0x0000ff00ffff0000,
150 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0x0000ff00ffffffff,
151 0x0000ffff00000000, 0x0000ffff000000ff, 0x0000ffff0000ff00,
152 0x0000ffff0000ffff, 0x0000ffff00ff0000, 0x0000ffff00ff00ff,
153 0x0000ffff00ffff00, 0x0000ffff00ffffff, 0x0000ffffff000000,
154 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0x0000ffffff00ffff,
155 0x0000ffffffff0000, 0x0000ffffffff00ff, 0x0000ffffffffff00,
156 0x0000ffffffffffff, 0x00ff000000000000, 0x00ff0000000000ff,
157 0x00ff00000000ff00, 0x00ff00000000ffff, 0x00ff000000ff0000,
158 0x00ff000000ff00ff, 0x00ff000000ffff00, 0x00ff000000ffffff,
159 0x00ff0000ff000000, 0x00ff0000ff0000ff, 0x00ff0000ff00ff00,
160 0x00ff0000ff00ffff, 0x00ff0000ffff0000, 0x00ff0000ffff00ff,
161 0x00ff0000ffffff00, 0x00ff0000ffffffff, 0x00ff00ff00000000,
162 0x00ff00ff000000ff, 0x00ff00ff0000ff00, 0x00ff00ff0000ffff,
163 0x00ff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00,
164 0x00ff00ff00ffffff, 0x00ff00ffff000000, 0x00ff00ffff0000ff,
165 0x00ff00ffff00ff00, 0x00ff00ffff00ffff, 0x00ff00ffffff0000,
166 0x00ff00ffffff00ff, 0x00ff00ffffffff00, 0x00ff00ffffffffff,
167 0x00ffff0000000000, 0x00ffff00000000ff, 0x00ffff000000ff00,
168 0x00ffff000000ffff, 0x00ffff0000ff0000, 0x00ffff0000ff00ff,
169 0x00ffff0000ffff00, 0x00ffff0000ffffff, 0x00ffff00ff000000,
170 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0x00ffff00ff00ffff,
171 0x00ffff00ffff0000, 0x00ffff00ffff00ff, 0x00ffff00ffffff00,
172 0x00ffff00ffffffff, 0x00ffffff00000000, 0x00ffffff000000ff,
173 0x00ffffff0000ff00, 0x00ffffff0000ffff, 0x00ffffff00ff0000,
174 0x00ffffff00ff00ff, 0x00ffffff00ffff00, 0x00ffffff00ffffff,
175 0x00ffffffff000000, 0x00ffffffff0000ff, 0x00ffffffff00ff00,
176 0x00ffffffff00ffff, 0x00ffffffffff0000, 0x00ffffffffff00ff,
177 0x00ffffffffffff00, 0x00ffffffffffffff, 0xff00000000000000,
178 0xff000000000000ff, 0xff0000000000ff00, 0xff0000000000ffff,
179 0xff00000000ff0000, 0xff00000000ff00ff, 0xff00000000ffff00,
180 0xff00000000ffffff, 0xff000000ff000000, 0xff000000ff0000ff,
181 0xff000000ff00ff00, 0xff000000ff00ffff, 0xff000000ffff0000,
182 0xff000000ffff00ff, 0xff000000ffffff00, 0xff000000ffffffff,
183 0xff0000ff00000000, 0xff0000ff000000ff, 0xff0000ff0000ff00,
184 0xff0000ff0000ffff, 0xff0000ff00ff0000, 0xff0000ff00ff00ff,
185 0xff0000ff00ffff00, 0xff0000ff00ffffff, 0xff0000ffff000000,
186 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0xff0000ffff00ffff,
187 0xff0000ffffff0000, 0xff0000ffffff00ff, 0xff0000ffffffff00,
188 0xff0000ffffffffff, 0xff00ff0000000000, 0xff00ff00000000ff,
189 0xff00ff000000ff00, 0xff00ff000000ffff, 0xff00ff0000ff0000,
190 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0xff00ff0000ffffff,
191 0xff00ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00,
192 0xff00ff00ff00ffff, 0xff00ff00ffff0000, 0xff00ff00ffff00ff,
193 0xff00ff00ffffff00, 0xff00ff00ffffffff, 0xff00ffff00000000,
194 0xff00ffff000000ff, 0xff00ffff0000ff00, 0xff00ffff0000ffff,
195 0xff00ffff00ff0000, 0xff00ffff00ff00ff, 0xff00ffff00ffff00,
196 0xff00ffff00ffffff, 0xff00ffffff000000, 0xff00ffffff0000ff,
197 0xff00ffffff00ff00, 0xff00ffffff00ffff, 0xff00ffffffff0000,
198 0xff00ffffffff00ff, 0xff00ffffffffff00, 0xff00ffffffffffff,
199 0xffff000000000000, 0xffff0000000000ff, 0xffff00000000ff00,
200 0xffff00000000ffff, 0xffff000000ff0000, 0xffff000000ff00ff,
201 0xffff000000ffff00, 0xffff000000ffffff, 0xffff0000ff000000,
202 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0xffff0000ff00ffff,
203 0xffff0000ffff0000, 0xffff0000ffff00ff, 0xffff0000ffffff00,
204 0xffff0000ffffffff, 0xffff00ff00000000, 0xffff00ff000000ff,
205 0xffff00ff0000ff00, 0xffff00ff0000ffff, 0xffff00ff00ff0000,
206 0xffff00ff00ff00ff, 0xffff00ff00ffff00, 0xffff00ff00ffffff,
207 0xffff00ffff000000, 0xffff00ffff0000ff, 0xffff00ffff00ff00,
208 0xffff00ffff00ffff, 0xffff00ffffff0000, 0xffff00ffffff00ff,
209 0xffff00ffffffff00, 0xffff00ffffffffff, 0xffffff0000000000,
210 0xffffff00000000ff, 0xffffff000000ff00, 0xffffff000000ffff,
211 0xffffff0000ff0000, 0xffffff0000ff00ff, 0xffffff0000ffff00,
212 0xffffff0000ffffff, 0xffffff00ff000000, 0xffffff00ff0000ff,
213 0xffffff00ff00ff00, 0xffffff00ff00ffff, 0xffffff00ffff0000,
214 0xffffff00ffff00ff, 0xffffff00ffffff00, 0xffffff00ffffffff,
215 0xffffffff00000000, 0xffffffff000000ff, 0xffffffff0000ff00,
216 0xffffffff0000ffff, 0xffffffff00ff0000, 0xffffffff00ff00ff,
217 0xffffffff00ffff00, 0xffffffff00ffffff, 0xffffffffff000000,
218 0xffffffffff0000ff, 0xffffffffff00ff00, 0xffffffffff00ffff,
219 0xffffffffffff0000, 0xffffffffffff00ff, 0xffffffffffffff00,
220 0xffffffffffffffff,
222 return word[byte];
225 /* Similarly for half-word elements.
226 * for (i = 0; i < 256; ++i) {
227 * unsigned long m = 0;
228 * if (i & 0xaa) {
229 * continue;
231 * for (j = 0; j < 8; j += 2) {
232 * if ((i >> j) & 1) {
233 * m |= 0xfffful << (j << 3);
236 * printf("[0x%x] = 0x%016lx,\n", i, m);
239 static inline uint64_t expand_pred_h(uint8_t byte)
241 static const uint64_t word[] = {
242 [0x01] = 0x000000000000ffff, [0x04] = 0x00000000ffff0000,
243 [0x05] = 0x00000000ffffffff, [0x10] = 0x0000ffff00000000,
244 [0x11] = 0x0000ffff0000ffff, [0x14] = 0x0000ffffffff0000,
245 [0x15] = 0x0000ffffffffffff, [0x40] = 0xffff000000000000,
246 [0x41] = 0xffff00000000ffff, [0x44] = 0xffff0000ffff0000,
247 [0x45] = 0xffff0000ffffffff, [0x50] = 0xffffffff00000000,
248 [0x51] = 0xffffffff0000ffff, [0x54] = 0xffffffffffff0000,
249 [0x55] = 0xffffffffffffffff,
251 return word[byte & 0x55];
254 /* Similarly for single word elements. */
255 static inline uint64_t expand_pred_s(uint8_t byte)
257 static const uint64_t word[] = {
258 [0x01] = 0x00000000ffffffffull,
259 [0x10] = 0xffffffff00000000ull,
260 [0x11] = 0xffffffffffffffffull,
262 return word[byte & 0x11];
265 /* Swap 16-bit words within a 32-bit word. */
266 static inline uint32_t hswap32(uint32_t h)
268 return rol32(h, 16);
271 /* Swap 16-bit words within a 64-bit word. */
272 static inline uint64_t hswap64(uint64_t h)
274 uint64_t m = 0x0000ffff0000ffffull;
275 h = rol64(h, 32);
276 return ((h & m) << 16) | ((h >> 16) & m);
279 /* Swap 32-bit words within a 64-bit word. */
280 static inline uint64_t wswap64(uint64_t h)
282 return rol64(h, 32);
285 #define LOGICAL_PPPP(NAME, FUNC) \
286 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
288 uintptr_t opr_sz = simd_oprsz(desc); \
289 uint64_t *d = vd, *n = vn, *m = vm, *g = vg; \
290 uintptr_t i; \
291 for (i = 0; i < opr_sz / 8; ++i) { \
292 d[i] = FUNC(n[i], m[i], g[i]); \
296 #define DO_AND(N, M, G) (((N) & (M)) & (G))
297 #define DO_BIC(N, M, G) (((N) & ~(M)) & (G))
298 #define DO_EOR(N, M, G) (((N) ^ (M)) & (G))
299 #define DO_ORR(N, M, G) (((N) | (M)) & (G))
300 #define DO_ORN(N, M, G) (((N) | ~(M)) & (G))
301 #define DO_NOR(N, M, G) (~((N) | (M)) & (G))
302 #define DO_NAND(N, M, G) (~((N) & (M)) & (G))
303 #define DO_SEL(N, M, G) (((N) & (G)) | ((M) & ~(G)))
305 LOGICAL_PPPP(sve_and_pppp, DO_AND)
306 LOGICAL_PPPP(sve_bic_pppp, DO_BIC)
307 LOGICAL_PPPP(sve_eor_pppp, DO_EOR)
308 LOGICAL_PPPP(sve_sel_pppp, DO_SEL)
309 LOGICAL_PPPP(sve_orr_pppp, DO_ORR)
310 LOGICAL_PPPP(sve_orn_pppp, DO_ORN)
311 LOGICAL_PPPP(sve_nor_pppp, DO_NOR)
312 LOGICAL_PPPP(sve_nand_pppp, DO_NAND)
314 #undef DO_AND
315 #undef DO_BIC
316 #undef DO_EOR
317 #undef DO_ORR
318 #undef DO_ORN
319 #undef DO_NOR
320 #undef DO_NAND
321 #undef DO_SEL
322 #undef LOGICAL_PPPP
324 /* Fully general three-operand expander, controlled by a predicate.
325 * This is complicated by the host-endian storage of the register file.
327 /* ??? I don't expect the compiler could ever vectorize this itself.
328 * With some tables we can convert bit masks to byte masks, and with
329 * extra care wrt byte/word ordering we could use gcc generic vectors
330 * and do 16 bytes at a time.
332 #define DO_ZPZZ(NAME, TYPE, H, OP) \
333 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
335 intptr_t i, opr_sz = simd_oprsz(desc); \
336 for (i = 0; i < opr_sz; ) { \
337 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
338 do { \
339 if (pg & 1) { \
340 TYPE nn = *(TYPE *)(vn + H(i)); \
341 TYPE mm = *(TYPE *)(vm + H(i)); \
342 *(TYPE *)(vd + H(i)) = OP(nn, mm); \
344 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
345 } while (i & 15); \
349 /* Similarly, specialized for 64-bit operands. */
350 #define DO_ZPZZ_D(NAME, TYPE, OP) \
351 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
353 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
354 TYPE *d = vd, *n = vn, *m = vm; \
355 uint8_t *pg = vg; \
356 for (i = 0; i < opr_sz; i += 1) { \
357 if (pg[H1(i)] & 1) { \
358 TYPE nn = n[i], mm = m[i]; \
359 d[i] = OP(nn, mm); \
364 #define DO_AND(N, M) (N & M)
365 #define DO_EOR(N, M) (N ^ M)
366 #define DO_ORR(N, M) (N | M)
367 #define DO_BIC(N, M) (N & ~M)
368 #define DO_ADD(N, M) (N + M)
369 #define DO_SUB(N, M) (N - M)
370 #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
371 #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
372 #define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N))
373 #define DO_MUL(N, M) (N * M)
377 * We must avoid the C undefined behaviour cases: division by
378 * zero and signed division of INT_MIN by -1. Both of these
379 * have architecturally defined required results for Arm.
380 * We special case all signed divisions by -1 to avoid having
381 * to deduce the minimum integer for the type involved.
383 #define DO_SDIV(N, M) (unlikely(M == 0) ? 0 : unlikely(M == -1) ? -N : N / M)
384 #define DO_UDIV(N, M) (unlikely(M == 0) ? 0 : N / M)
386 DO_ZPZZ(sve_and_zpzz_b, uint8_t, H1, DO_AND)
387 DO_ZPZZ(sve_and_zpzz_h, uint16_t, H1_2, DO_AND)
388 DO_ZPZZ(sve_and_zpzz_s, uint32_t, H1_4, DO_AND)
389 DO_ZPZZ_D(sve_and_zpzz_d, uint64_t, DO_AND)
391 DO_ZPZZ(sve_orr_zpzz_b, uint8_t, H1, DO_ORR)
392 DO_ZPZZ(sve_orr_zpzz_h, uint16_t, H1_2, DO_ORR)
393 DO_ZPZZ(sve_orr_zpzz_s, uint32_t, H1_4, DO_ORR)
394 DO_ZPZZ_D(sve_orr_zpzz_d, uint64_t, DO_ORR)
396 DO_ZPZZ(sve_eor_zpzz_b, uint8_t, H1, DO_EOR)
397 DO_ZPZZ(sve_eor_zpzz_h, uint16_t, H1_2, DO_EOR)
398 DO_ZPZZ(sve_eor_zpzz_s, uint32_t, H1_4, DO_EOR)
399 DO_ZPZZ_D(sve_eor_zpzz_d, uint64_t, DO_EOR)
401 DO_ZPZZ(sve_bic_zpzz_b, uint8_t, H1, DO_BIC)
402 DO_ZPZZ(sve_bic_zpzz_h, uint16_t, H1_2, DO_BIC)
403 DO_ZPZZ(sve_bic_zpzz_s, uint32_t, H1_4, DO_BIC)
404 DO_ZPZZ_D(sve_bic_zpzz_d, uint64_t, DO_BIC)
406 DO_ZPZZ(sve_add_zpzz_b, uint8_t, H1, DO_ADD)
407 DO_ZPZZ(sve_add_zpzz_h, uint16_t, H1_2, DO_ADD)
408 DO_ZPZZ(sve_add_zpzz_s, uint32_t, H1_4, DO_ADD)
409 DO_ZPZZ_D(sve_add_zpzz_d, uint64_t, DO_ADD)
411 DO_ZPZZ(sve_sub_zpzz_b, uint8_t, H1, DO_SUB)
412 DO_ZPZZ(sve_sub_zpzz_h, uint16_t, H1_2, DO_SUB)
413 DO_ZPZZ(sve_sub_zpzz_s, uint32_t, H1_4, DO_SUB)
414 DO_ZPZZ_D(sve_sub_zpzz_d, uint64_t, DO_SUB)
416 DO_ZPZZ(sve_smax_zpzz_b, int8_t, H1, DO_MAX)
417 DO_ZPZZ(sve_smax_zpzz_h, int16_t, H1_2, DO_MAX)
418 DO_ZPZZ(sve_smax_zpzz_s, int32_t, H1_4, DO_MAX)
419 DO_ZPZZ_D(sve_smax_zpzz_d, int64_t, DO_MAX)
421 DO_ZPZZ(sve_umax_zpzz_b, uint8_t, H1, DO_MAX)
422 DO_ZPZZ(sve_umax_zpzz_h, uint16_t, H1_2, DO_MAX)
423 DO_ZPZZ(sve_umax_zpzz_s, uint32_t, H1_4, DO_MAX)
424 DO_ZPZZ_D(sve_umax_zpzz_d, uint64_t, DO_MAX)
426 DO_ZPZZ(sve_smin_zpzz_b, int8_t, H1, DO_MIN)
427 DO_ZPZZ(sve_smin_zpzz_h, int16_t, H1_2, DO_MIN)
428 DO_ZPZZ(sve_smin_zpzz_s, int32_t, H1_4, DO_MIN)
429 DO_ZPZZ_D(sve_smin_zpzz_d, int64_t, DO_MIN)
431 DO_ZPZZ(sve_umin_zpzz_b, uint8_t, H1, DO_MIN)
432 DO_ZPZZ(sve_umin_zpzz_h, uint16_t, H1_2, DO_MIN)
433 DO_ZPZZ(sve_umin_zpzz_s, uint32_t, H1_4, DO_MIN)
434 DO_ZPZZ_D(sve_umin_zpzz_d, uint64_t, DO_MIN)
436 DO_ZPZZ(sve_sabd_zpzz_b, int8_t, H1, DO_ABD)
437 DO_ZPZZ(sve_sabd_zpzz_h, int16_t, H1_2, DO_ABD)
438 DO_ZPZZ(sve_sabd_zpzz_s, int32_t, H1_4, DO_ABD)
439 DO_ZPZZ_D(sve_sabd_zpzz_d, int64_t, DO_ABD)
441 DO_ZPZZ(sve_uabd_zpzz_b, uint8_t, H1, DO_ABD)
442 DO_ZPZZ(sve_uabd_zpzz_h, uint16_t, H1_2, DO_ABD)
443 DO_ZPZZ(sve_uabd_zpzz_s, uint32_t, H1_4, DO_ABD)
444 DO_ZPZZ_D(sve_uabd_zpzz_d, uint64_t, DO_ABD)
446 /* Because the computation type is at least twice as large as required,
447 these work for both signed and unsigned source types. */
448 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
450 return (n * m) >> 8;
453 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
455 return (n * m) >> 16;
458 static inline uint32_t do_mulh_s(int64_t n, int64_t m)
460 return (n * m) >> 32;
463 static inline uint64_t do_smulh_d(uint64_t n, uint64_t m)
465 uint64_t lo, hi;
466 muls64(&lo, &hi, n, m);
467 return hi;
470 static inline uint64_t do_umulh_d(uint64_t n, uint64_t m)
472 uint64_t lo, hi;
473 mulu64(&lo, &hi, n, m);
474 return hi;
477 DO_ZPZZ(sve_mul_zpzz_b, uint8_t, H1, DO_MUL)
478 DO_ZPZZ(sve_mul_zpzz_h, uint16_t, H1_2, DO_MUL)
479 DO_ZPZZ(sve_mul_zpzz_s, uint32_t, H1_4, DO_MUL)
480 DO_ZPZZ_D(sve_mul_zpzz_d, uint64_t, DO_MUL)
482 DO_ZPZZ(sve_smulh_zpzz_b, int8_t, H1, do_mulh_b)
483 DO_ZPZZ(sve_smulh_zpzz_h, int16_t, H1_2, do_mulh_h)
484 DO_ZPZZ(sve_smulh_zpzz_s, int32_t, H1_4, do_mulh_s)
485 DO_ZPZZ_D(sve_smulh_zpzz_d, uint64_t, do_smulh_d)
487 DO_ZPZZ(sve_umulh_zpzz_b, uint8_t, H1, do_mulh_b)
488 DO_ZPZZ(sve_umulh_zpzz_h, uint16_t, H1_2, do_mulh_h)
489 DO_ZPZZ(sve_umulh_zpzz_s, uint32_t, H1_4, do_mulh_s)
490 DO_ZPZZ_D(sve_umulh_zpzz_d, uint64_t, do_umulh_d)
492 DO_ZPZZ(sve_sdiv_zpzz_s, int32_t, H1_4, DO_SDIV)
493 DO_ZPZZ_D(sve_sdiv_zpzz_d, int64_t, DO_SDIV)
495 DO_ZPZZ(sve_udiv_zpzz_s, uint32_t, H1_4, DO_UDIV)
496 DO_ZPZZ_D(sve_udiv_zpzz_d, uint64_t, DO_UDIV)
498 /* Note that all bits of the shift are significant
499 and not modulo the element size. */
500 #define DO_ASR(N, M) (N >> MIN(M, sizeof(N) * 8 - 1))
501 #define DO_LSR(N, M) (M < sizeof(N) * 8 ? N >> M : 0)
502 #define DO_LSL(N, M) (M < sizeof(N) * 8 ? N << M : 0)
504 DO_ZPZZ(sve_asr_zpzz_b, int8_t, H1, DO_ASR)
505 DO_ZPZZ(sve_lsr_zpzz_b, uint8_t, H1_2, DO_LSR)
506 DO_ZPZZ(sve_lsl_zpzz_b, uint8_t, H1_4, DO_LSL)
508 DO_ZPZZ(sve_asr_zpzz_h, int16_t, H1, DO_ASR)
509 DO_ZPZZ(sve_lsr_zpzz_h, uint16_t, H1_2, DO_LSR)
510 DO_ZPZZ(sve_lsl_zpzz_h, uint16_t, H1_4, DO_LSL)
512 DO_ZPZZ(sve_asr_zpzz_s, int32_t, H1, DO_ASR)
513 DO_ZPZZ(sve_lsr_zpzz_s, uint32_t, H1_2, DO_LSR)
514 DO_ZPZZ(sve_lsl_zpzz_s, uint32_t, H1_4, DO_LSL)
516 DO_ZPZZ_D(sve_asr_zpzz_d, int64_t, DO_ASR)
517 DO_ZPZZ_D(sve_lsr_zpzz_d, uint64_t, DO_LSR)
518 DO_ZPZZ_D(sve_lsl_zpzz_d, uint64_t, DO_LSL)
520 #undef DO_ZPZZ
521 #undef DO_ZPZZ_D
523 /* Three-operand expander, controlled by a predicate, in which the
524 * third operand is "wide". That is, for D = N op M, the same 64-bit
525 * value of M is used with all of the narrower values of N.
527 #define DO_ZPZW(NAME, TYPE, TYPEW, H, OP) \
528 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
530 intptr_t i, opr_sz = simd_oprsz(desc); \
531 for (i = 0; i < opr_sz; ) { \
532 uint8_t pg = *(uint8_t *)(vg + H1(i >> 3)); \
533 TYPEW mm = *(TYPEW *)(vm + i); \
534 do { \
535 if (pg & 1) { \
536 TYPE nn = *(TYPE *)(vn + H(i)); \
537 *(TYPE *)(vd + H(i)) = OP(nn, mm); \
539 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
540 } while (i & 7); \
544 DO_ZPZW(sve_asr_zpzw_b, int8_t, uint64_t, H1, DO_ASR)
545 DO_ZPZW(sve_lsr_zpzw_b, uint8_t, uint64_t, H1, DO_LSR)
546 DO_ZPZW(sve_lsl_zpzw_b, uint8_t, uint64_t, H1, DO_LSL)
548 DO_ZPZW(sve_asr_zpzw_h, int16_t, uint64_t, H1_2, DO_ASR)
549 DO_ZPZW(sve_lsr_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
550 DO_ZPZW(sve_lsl_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
552 DO_ZPZW(sve_asr_zpzw_s, int32_t, uint64_t, H1_4, DO_ASR)
553 DO_ZPZW(sve_lsr_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
554 DO_ZPZW(sve_lsl_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
556 #undef DO_ZPZW
558 /* Fully general two-operand expander, controlled by a predicate.
560 #define DO_ZPZ(NAME, TYPE, H, OP) \
561 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
563 intptr_t i, opr_sz = simd_oprsz(desc); \
564 for (i = 0; i < opr_sz; ) { \
565 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
566 do { \
567 if (pg & 1) { \
568 TYPE nn = *(TYPE *)(vn + H(i)); \
569 *(TYPE *)(vd + H(i)) = OP(nn); \
571 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
572 } while (i & 15); \
576 /* Similarly, specialized for 64-bit operands. */
577 #define DO_ZPZ_D(NAME, TYPE, OP) \
578 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
580 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
581 TYPE *d = vd, *n = vn; \
582 uint8_t *pg = vg; \
583 for (i = 0; i < opr_sz; i += 1) { \
584 if (pg[H1(i)] & 1) { \
585 TYPE nn = n[i]; \
586 d[i] = OP(nn); \
591 #define DO_CLS_B(N) (clrsb32(N) - 24)
592 #define DO_CLS_H(N) (clrsb32(N) - 16)
594 DO_ZPZ(sve_cls_b, int8_t, H1, DO_CLS_B)
595 DO_ZPZ(sve_cls_h, int16_t, H1_2, DO_CLS_H)
596 DO_ZPZ(sve_cls_s, int32_t, H1_4, clrsb32)
597 DO_ZPZ_D(sve_cls_d, int64_t, clrsb64)
599 #define DO_CLZ_B(N) (clz32(N) - 24)
600 #define DO_CLZ_H(N) (clz32(N) - 16)
602 DO_ZPZ(sve_clz_b, uint8_t, H1, DO_CLZ_B)
603 DO_ZPZ(sve_clz_h, uint16_t, H1_2, DO_CLZ_H)
604 DO_ZPZ(sve_clz_s, uint32_t, H1_4, clz32)
605 DO_ZPZ_D(sve_clz_d, uint64_t, clz64)
607 DO_ZPZ(sve_cnt_zpz_b, uint8_t, H1, ctpop8)
608 DO_ZPZ(sve_cnt_zpz_h, uint16_t, H1_2, ctpop16)
609 DO_ZPZ(sve_cnt_zpz_s, uint32_t, H1_4, ctpop32)
610 DO_ZPZ_D(sve_cnt_zpz_d, uint64_t, ctpop64)
612 #define DO_CNOT(N) (N == 0)
614 DO_ZPZ(sve_cnot_b, uint8_t, H1, DO_CNOT)
615 DO_ZPZ(sve_cnot_h, uint16_t, H1_2, DO_CNOT)
616 DO_ZPZ(sve_cnot_s, uint32_t, H1_4, DO_CNOT)
617 DO_ZPZ_D(sve_cnot_d, uint64_t, DO_CNOT)
619 #define DO_FABS(N) (N & ((__typeof(N))-1 >> 1))
621 DO_ZPZ(sve_fabs_h, uint16_t, H1_2, DO_FABS)
622 DO_ZPZ(sve_fabs_s, uint32_t, H1_4, DO_FABS)
623 DO_ZPZ_D(sve_fabs_d, uint64_t, DO_FABS)
625 #define DO_FNEG(N) (N ^ ~((__typeof(N))-1 >> 1))
627 DO_ZPZ(sve_fneg_h, uint16_t, H1_2, DO_FNEG)
628 DO_ZPZ(sve_fneg_s, uint32_t, H1_4, DO_FNEG)
629 DO_ZPZ_D(sve_fneg_d, uint64_t, DO_FNEG)
631 #define DO_NOT(N) (~N)
633 DO_ZPZ(sve_not_zpz_b, uint8_t, H1, DO_NOT)
634 DO_ZPZ(sve_not_zpz_h, uint16_t, H1_2, DO_NOT)
635 DO_ZPZ(sve_not_zpz_s, uint32_t, H1_4, DO_NOT)
636 DO_ZPZ_D(sve_not_zpz_d, uint64_t, DO_NOT)
638 #define DO_SXTB(N) ((int8_t)N)
639 #define DO_SXTH(N) ((int16_t)N)
640 #define DO_SXTS(N) ((int32_t)N)
641 #define DO_UXTB(N) ((uint8_t)N)
642 #define DO_UXTH(N) ((uint16_t)N)
643 #define DO_UXTS(N) ((uint32_t)N)
645 DO_ZPZ(sve_sxtb_h, uint16_t, H1_2, DO_SXTB)
646 DO_ZPZ(sve_sxtb_s, uint32_t, H1_4, DO_SXTB)
647 DO_ZPZ(sve_sxth_s, uint32_t, H1_4, DO_SXTH)
648 DO_ZPZ_D(sve_sxtb_d, uint64_t, DO_SXTB)
649 DO_ZPZ_D(sve_sxth_d, uint64_t, DO_SXTH)
650 DO_ZPZ_D(sve_sxtw_d, uint64_t, DO_SXTS)
652 DO_ZPZ(sve_uxtb_h, uint16_t, H1_2, DO_UXTB)
653 DO_ZPZ(sve_uxtb_s, uint32_t, H1_4, DO_UXTB)
654 DO_ZPZ(sve_uxth_s, uint32_t, H1_4, DO_UXTH)
655 DO_ZPZ_D(sve_uxtb_d, uint64_t, DO_UXTB)
656 DO_ZPZ_D(sve_uxth_d, uint64_t, DO_UXTH)
657 DO_ZPZ_D(sve_uxtw_d, uint64_t, DO_UXTS)
659 #define DO_ABS(N) (N < 0 ? -N : N)
661 DO_ZPZ(sve_abs_b, int8_t, H1, DO_ABS)
662 DO_ZPZ(sve_abs_h, int16_t, H1_2, DO_ABS)
663 DO_ZPZ(sve_abs_s, int32_t, H1_4, DO_ABS)
664 DO_ZPZ_D(sve_abs_d, int64_t, DO_ABS)
666 #define DO_NEG(N) (-N)
668 DO_ZPZ(sve_neg_b, uint8_t, H1, DO_NEG)
669 DO_ZPZ(sve_neg_h, uint16_t, H1_2, DO_NEG)
670 DO_ZPZ(sve_neg_s, uint32_t, H1_4, DO_NEG)
671 DO_ZPZ_D(sve_neg_d, uint64_t, DO_NEG)
673 DO_ZPZ(sve_revb_h, uint16_t, H1_2, bswap16)
674 DO_ZPZ(sve_revb_s, uint32_t, H1_4, bswap32)
675 DO_ZPZ_D(sve_revb_d, uint64_t, bswap64)
677 DO_ZPZ(sve_revh_s, uint32_t, H1_4, hswap32)
678 DO_ZPZ_D(sve_revh_d, uint64_t, hswap64)
680 DO_ZPZ_D(sve_revw_d, uint64_t, wswap64)
682 DO_ZPZ(sve_rbit_b, uint8_t, H1, revbit8)
683 DO_ZPZ(sve_rbit_h, uint16_t, H1_2, revbit16)
684 DO_ZPZ(sve_rbit_s, uint32_t, H1_4, revbit32)
685 DO_ZPZ_D(sve_rbit_d, uint64_t, revbit64)
687 /* Three-operand expander, unpredicated, in which the third operand is "wide".
689 #define DO_ZZW(NAME, TYPE, TYPEW, H, OP) \
690 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
692 intptr_t i, opr_sz = simd_oprsz(desc); \
693 for (i = 0; i < opr_sz; ) { \
694 TYPEW mm = *(TYPEW *)(vm + i); \
695 do { \
696 TYPE nn = *(TYPE *)(vn + H(i)); \
697 *(TYPE *)(vd + H(i)) = OP(nn, mm); \
698 i += sizeof(TYPE); \
699 } while (i & 7); \
703 DO_ZZW(sve_asr_zzw_b, int8_t, uint64_t, H1, DO_ASR)
704 DO_ZZW(sve_lsr_zzw_b, uint8_t, uint64_t, H1, DO_LSR)
705 DO_ZZW(sve_lsl_zzw_b, uint8_t, uint64_t, H1, DO_LSL)
707 DO_ZZW(sve_asr_zzw_h, int16_t, uint64_t, H1_2, DO_ASR)
708 DO_ZZW(sve_lsr_zzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
709 DO_ZZW(sve_lsl_zzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
711 DO_ZZW(sve_asr_zzw_s, int32_t, uint64_t, H1_4, DO_ASR)
712 DO_ZZW(sve_lsr_zzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
713 DO_ZZW(sve_lsl_zzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
715 #undef DO_ZZW
717 #undef DO_CLS_B
718 #undef DO_CLS_H
719 #undef DO_CLZ_B
720 #undef DO_CLZ_H
721 #undef DO_CNOT
722 #undef DO_FABS
723 #undef DO_FNEG
724 #undef DO_ABS
725 #undef DO_NEG
726 #undef DO_ZPZ
727 #undef DO_ZPZ_D
729 /* Two-operand reduction expander, controlled by a predicate.
730 * The difference between TYPERED and TYPERET has to do with
731 * sign-extension. E.g. for SMAX, TYPERED must be signed,
732 * but TYPERET must be unsigned so that e.g. a 32-bit value
733 * is not sign-extended to the ABI uint64_t return type.
735 /* ??? If we were to vectorize this by hand the reduction ordering
736 * would change. For integer operands, this is perfectly fine.
738 #define DO_VPZ(NAME, TYPEELT, TYPERED, TYPERET, H, INIT, OP) \
739 uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \
741 intptr_t i, opr_sz = simd_oprsz(desc); \
742 TYPERED ret = INIT; \
743 for (i = 0; i < opr_sz; ) { \
744 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
745 do { \
746 if (pg & 1) { \
747 TYPEELT nn = *(TYPEELT *)(vn + H(i)); \
748 ret = OP(ret, nn); \
750 i += sizeof(TYPEELT), pg >>= sizeof(TYPEELT); \
751 } while (i & 15); \
753 return (TYPERET)ret; \
756 #define DO_VPZ_D(NAME, TYPEE, TYPER, INIT, OP) \
757 uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \
759 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
760 TYPEE *n = vn; \
761 uint8_t *pg = vg; \
762 TYPER ret = INIT; \
763 for (i = 0; i < opr_sz; i += 1) { \
764 if (pg[H1(i)] & 1) { \
765 TYPEE nn = n[i]; \
766 ret = OP(ret, nn); \
769 return ret; \
772 DO_VPZ(sve_orv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_ORR)
773 DO_VPZ(sve_orv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_ORR)
774 DO_VPZ(sve_orv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_ORR)
775 DO_VPZ_D(sve_orv_d, uint64_t, uint64_t, 0, DO_ORR)
777 DO_VPZ(sve_eorv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_EOR)
778 DO_VPZ(sve_eorv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_EOR)
779 DO_VPZ(sve_eorv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_EOR)
780 DO_VPZ_D(sve_eorv_d, uint64_t, uint64_t, 0, DO_EOR)
782 DO_VPZ(sve_andv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_AND)
783 DO_VPZ(sve_andv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_AND)
784 DO_VPZ(sve_andv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_AND)
785 DO_VPZ_D(sve_andv_d, uint64_t, uint64_t, -1, DO_AND)
787 DO_VPZ(sve_saddv_b, int8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
788 DO_VPZ(sve_saddv_h, int16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
789 DO_VPZ(sve_saddv_s, int32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
791 DO_VPZ(sve_uaddv_b, uint8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
792 DO_VPZ(sve_uaddv_h, uint16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
793 DO_VPZ(sve_uaddv_s, uint32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
794 DO_VPZ_D(sve_uaddv_d, uint64_t, uint64_t, 0, DO_ADD)
796 DO_VPZ(sve_smaxv_b, int8_t, int8_t, uint8_t, H1, INT8_MIN, DO_MAX)
797 DO_VPZ(sve_smaxv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MIN, DO_MAX)
798 DO_VPZ(sve_smaxv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MIN, DO_MAX)
799 DO_VPZ_D(sve_smaxv_d, int64_t, int64_t, INT64_MIN, DO_MAX)
801 DO_VPZ(sve_umaxv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_MAX)
802 DO_VPZ(sve_umaxv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_MAX)
803 DO_VPZ(sve_umaxv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_MAX)
804 DO_VPZ_D(sve_umaxv_d, uint64_t, uint64_t, 0, DO_MAX)
806 DO_VPZ(sve_sminv_b, int8_t, int8_t, uint8_t, H1, INT8_MAX, DO_MIN)
807 DO_VPZ(sve_sminv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MAX, DO_MIN)
808 DO_VPZ(sve_sminv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MAX, DO_MIN)
809 DO_VPZ_D(sve_sminv_d, int64_t, int64_t, INT64_MAX, DO_MIN)
811 DO_VPZ(sve_uminv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_MIN)
812 DO_VPZ(sve_uminv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_MIN)
813 DO_VPZ(sve_uminv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_MIN)
814 DO_VPZ_D(sve_uminv_d, uint64_t, uint64_t, -1, DO_MIN)
816 #undef DO_VPZ
817 #undef DO_VPZ_D
819 /* Two vector operand, one scalar operand, unpredicated. */
820 #define DO_ZZI(NAME, TYPE, OP) \
821 void HELPER(NAME)(void *vd, void *vn, uint64_t s64, uint32_t desc) \
823 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(TYPE); \
824 TYPE s = s64, *d = vd, *n = vn; \
825 for (i = 0; i < opr_sz; ++i) { \
826 d[i] = OP(n[i], s); \
830 #define DO_SUBR(X, Y) (Y - X)
832 DO_ZZI(sve_subri_b, uint8_t, DO_SUBR)
833 DO_ZZI(sve_subri_h, uint16_t, DO_SUBR)
834 DO_ZZI(sve_subri_s, uint32_t, DO_SUBR)
835 DO_ZZI(sve_subri_d, uint64_t, DO_SUBR)
837 DO_ZZI(sve_smaxi_b, int8_t, DO_MAX)
838 DO_ZZI(sve_smaxi_h, int16_t, DO_MAX)
839 DO_ZZI(sve_smaxi_s, int32_t, DO_MAX)
840 DO_ZZI(sve_smaxi_d, int64_t, DO_MAX)
842 DO_ZZI(sve_smini_b, int8_t, DO_MIN)
843 DO_ZZI(sve_smini_h, int16_t, DO_MIN)
844 DO_ZZI(sve_smini_s, int32_t, DO_MIN)
845 DO_ZZI(sve_smini_d, int64_t, DO_MIN)
847 DO_ZZI(sve_umaxi_b, uint8_t, DO_MAX)
848 DO_ZZI(sve_umaxi_h, uint16_t, DO_MAX)
849 DO_ZZI(sve_umaxi_s, uint32_t, DO_MAX)
850 DO_ZZI(sve_umaxi_d, uint64_t, DO_MAX)
852 DO_ZZI(sve_umini_b, uint8_t, DO_MIN)
853 DO_ZZI(sve_umini_h, uint16_t, DO_MIN)
854 DO_ZZI(sve_umini_s, uint32_t, DO_MIN)
855 DO_ZZI(sve_umini_d, uint64_t, DO_MIN)
857 #undef DO_ZZI
859 #undef DO_AND
860 #undef DO_ORR
861 #undef DO_EOR
862 #undef DO_BIC
863 #undef DO_ADD
864 #undef DO_SUB
865 #undef DO_MAX
866 #undef DO_MIN
867 #undef DO_ABD
868 #undef DO_MUL
869 #undef DO_DIV
870 #undef DO_ASR
871 #undef DO_LSR
872 #undef DO_LSL
873 #undef DO_SUBR
875 /* Similar to the ARM LastActiveElement pseudocode function, except the
876 result is multiplied by the element size. This includes the not found
877 indication; e.g. not found for esz=3 is -8. */
878 static intptr_t last_active_element(uint64_t *g, intptr_t words, intptr_t esz)
880 uint64_t mask = pred_esz_masks[esz];
881 intptr_t i = words;
883 do {
884 uint64_t this_g = g[--i] & mask;
885 if (this_g) {
886 return i * 64 + (63 - clz64(this_g));
888 } while (i > 0);
889 return (intptr_t)-1 << esz;
892 uint32_t HELPER(sve_pfirst)(void *vd, void *vg, uint32_t words)
894 uint32_t flags = PREDTEST_INIT;
895 uint64_t *d = vd, *g = vg;
896 intptr_t i = 0;
898 do {
899 uint64_t this_d = d[i];
900 uint64_t this_g = g[i];
902 if (this_g) {
903 if (!(flags & 4)) {
904 /* Set in D the first bit of G. */
905 this_d |= this_g & -this_g;
906 d[i] = this_d;
908 flags = iter_predtest_fwd(this_d, this_g, flags);
910 } while (++i < words);
912 return flags;
915 uint32_t HELPER(sve_pnext)(void *vd, void *vg, uint32_t pred_desc)
917 intptr_t words = extract32(pred_desc, 0, SIMD_OPRSZ_BITS);
918 intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
919 uint32_t flags = PREDTEST_INIT;
920 uint64_t *d = vd, *g = vg, esz_mask;
921 intptr_t i, next;
923 next = last_active_element(vd, words, esz) + (1 << esz);
924 esz_mask = pred_esz_masks[esz];
926 /* Similar to the pseudocode for pnext, but scaled by ESZ
927 so that we find the correct bit. */
928 if (next < words * 64) {
929 uint64_t mask = -1;
931 if (next & 63) {
932 mask = ~((1ull << (next & 63)) - 1);
933 next &= -64;
935 do {
936 uint64_t this_g = g[next / 64] & esz_mask & mask;
937 if (this_g != 0) {
938 next = (next & -64) + ctz64(this_g);
939 break;
941 next += 64;
942 mask = -1;
943 } while (next < words * 64);
946 i = 0;
947 do {
948 uint64_t this_d = 0;
949 if (i == next / 64) {
950 this_d = 1ull << (next & 63);
952 d[i] = this_d;
953 flags = iter_predtest_fwd(this_d, g[i] & esz_mask, flags);
954 } while (++i < words);
956 return flags;
959 /* Store zero into every active element of Zd. We will use this for two
960 * and three-operand predicated instructions for which logic dictates a
961 * zero result. In particular, logical shift by element size, which is
962 * otherwise undefined on the host.
964 * For element sizes smaller than uint64_t, we use tables to expand
965 * the N bits of the controlling predicate to a byte mask, and clear
966 * those bytes.
968 void HELPER(sve_clr_b)(void *vd, void *vg, uint32_t desc)
970 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
971 uint64_t *d = vd;
972 uint8_t *pg = vg;
973 for (i = 0; i < opr_sz; i += 1) {
974 d[i] &= ~expand_pred_b(pg[H1(i)]);
978 void HELPER(sve_clr_h)(void *vd, void *vg, uint32_t desc)
980 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
981 uint64_t *d = vd;
982 uint8_t *pg = vg;
983 for (i = 0; i < opr_sz; i += 1) {
984 d[i] &= ~expand_pred_h(pg[H1(i)]);
988 void HELPER(sve_clr_s)(void *vd, void *vg, uint32_t desc)
990 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
991 uint64_t *d = vd;
992 uint8_t *pg = vg;
993 for (i = 0; i < opr_sz; i += 1) {
994 d[i] &= ~expand_pred_s(pg[H1(i)]);
998 void HELPER(sve_clr_d)(void *vd, void *vg, uint32_t desc)
1000 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1001 uint64_t *d = vd;
1002 uint8_t *pg = vg;
1003 for (i = 0; i < opr_sz; i += 1) {
1004 if (pg[H1(i)] & 1) {
1005 d[i] = 0;
1010 /* Copy Zn into Zd, and store zero into inactive elements. */
1011 void HELPER(sve_movz_b)(void *vd, void *vn, void *vg, uint32_t desc)
1013 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1014 uint64_t *d = vd, *n = vn;
1015 uint8_t *pg = vg;
1016 for (i = 0; i < opr_sz; i += 1) {
1017 d[i] = n[i] & expand_pred_b(pg[H1(i)]);
1021 void HELPER(sve_movz_h)(void *vd, void *vn, void *vg, uint32_t desc)
1023 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1024 uint64_t *d = vd, *n = vn;
1025 uint8_t *pg = vg;
1026 for (i = 0; i < opr_sz; i += 1) {
1027 d[i] = n[i] & expand_pred_h(pg[H1(i)]);
1031 void HELPER(sve_movz_s)(void *vd, void *vn, void *vg, uint32_t desc)
1033 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1034 uint64_t *d = vd, *n = vn;
1035 uint8_t *pg = vg;
1036 for (i = 0; i < opr_sz; i += 1) {
1037 d[i] = n[i] & expand_pred_s(pg[H1(i)]);
1041 void HELPER(sve_movz_d)(void *vd, void *vn, void *vg, uint32_t desc)
1043 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1044 uint64_t *d = vd, *n = vn;
1045 uint8_t *pg = vg;
1046 for (i = 0; i < opr_sz; i += 1) {
1047 d[i] = n[i] & -(uint64_t)(pg[H1(i)] & 1);
1051 /* Three-operand expander, immediate operand, controlled by a predicate.
1053 #define DO_ZPZI(NAME, TYPE, H, OP) \
1054 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
1056 intptr_t i, opr_sz = simd_oprsz(desc); \
1057 TYPE imm = simd_data(desc); \
1058 for (i = 0; i < opr_sz; ) { \
1059 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
1060 do { \
1061 if (pg & 1) { \
1062 TYPE nn = *(TYPE *)(vn + H(i)); \
1063 *(TYPE *)(vd + H(i)) = OP(nn, imm); \
1065 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
1066 } while (i & 15); \
1070 /* Similarly, specialized for 64-bit operands. */
1071 #define DO_ZPZI_D(NAME, TYPE, OP) \
1072 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
1074 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
1075 TYPE *d = vd, *n = vn; \
1076 TYPE imm = simd_data(desc); \
1077 uint8_t *pg = vg; \
1078 for (i = 0; i < opr_sz; i += 1) { \
1079 if (pg[H1(i)] & 1) { \
1080 TYPE nn = n[i]; \
1081 d[i] = OP(nn, imm); \
1086 #define DO_SHR(N, M) (N >> M)
1087 #define DO_SHL(N, M) (N << M)
1089 /* Arithmetic shift right for division. This rounds negative numbers
1090 toward zero as per signed division. Therefore before shifting,
1091 when N is negative, add 2**M-1. */
1092 #define DO_ASRD(N, M) ((N + (N < 0 ? ((__typeof(N))1 << M) - 1 : 0)) >> M)
1094 DO_ZPZI(sve_asr_zpzi_b, int8_t, H1, DO_SHR)
1095 DO_ZPZI(sve_asr_zpzi_h, int16_t, H1_2, DO_SHR)
1096 DO_ZPZI(sve_asr_zpzi_s, int32_t, H1_4, DO_SHR)
1097 DO_ZPZI_D(sve_asr_zpzi_d, int64_t, DO_SHR)
1099 DO_ZPZI(sve_lsr_zpzi_b, uint8_t, H1, DO_SHR)
1100 DO_ZPZI(sve_lsr_zpzi_h, uint16_t, H1_2, DO_SHR)
1101 DO_ZPZI(sve_lsr_zpzi_s, uint32_t, H1_4, DO_SHR)
1102 DO_ZPZI_D(sve_lsr_zpzi_d, uint64_t, DO_SHR)
1104 DO_ZPZI(sve_lsl_zpzi_b, uint8_t, H1, DO_SHL)
1105 DO_ZPZI(sve_lsl_zpzi_h, uint16_t, H1_2, DO_SHL)
1106 DO_ZPZI(sve_lsl_zpzi_s, uint32_t, H1_4, DO_SHL)
1107 DO_ZPZI_D(sve_lsl_zpzi_d, uint64_t, DO_SHL)
1109 DO_ZPZI(sve_asrd_b, int8_t, H1, DO_ASRD)
1110 DO_ZPZI(sve_asrd_h, int16_t, H1_2, DO_ASRD)
1111 DO_ZPZI(sve_asrd_s, int32_t, H1_4, DO_ASRD)
1112 DO_ZPZI_D(sve_asrd_d, int64_t, DO_ASRD)
1114 #undef DO_SHR
1115 #undef DO_SHL
1116 #undef DO_ASRD
1117 #undef DO_ZPZI
1118 #undef DO_ZPZI_D
1120 /* Fully general four-operand expander, controlled by a predicate.
1122 #define DO_ZPZZZ(NAME, TYPE, H, OP) \
1123 void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \
1124 void *vg, uint32_t desc) \
1126 intptr_t i, opr_sz = simd_oprsz(desc); \
1127 for (i = 0; i < opr_sz; ) { \
1128 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
1129 do { \
1130 if (pg & 1) { \
1131 TYPE nn = *(TYPE *)(vn + H(i)); \
1132 TYPE mm = *(TYPE *)(vm + H(i)); \
1133 TYPE aa = *(TYPE *)(va + H(i)); \
1134 *(TYPE *)(vd + H(i)) = OP(aa, nn, mm); \
1136 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
1137 } while (i & 15); \
1141 /* Similarly, specialized for 64-bit operands. */
1142 #define DO_ZPZZZ_D(NAME, TYPE, OP) \
1143 void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \
1144 void *vg, uint32_t desc) \
1146 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
1147 TYPE *d = vd, *a = va, *n = vn, *m = vm; \
1148 uint8_t *pg = vg; \
1149 for (i = 0; i < opr_sz; i += 1) { \
1150 if (pg[H1(i)] & 1) { \
1151 TYPE aa = a[i], nn = n[i], mm = m[i]; \
1152 d[i] = OP(aa, nn, mm); \
1157 #define DO_MLA(A, N, M) (A + N * M)
1158 #define DO_MLS(A, N, M) (A - N * M)
1160 DO_ZPZZZ(sve_mla_b, uint8_t, H1, DO_MLA)
1161 DO_ZPZZZ(sve_mls_b, uint8_t, H1, DO_MLS)
1163 DO_ZPZZZ(sve_mla_h, uint16_t, H1_2, DO_MLA)
1164 DO_ZPZZZ(sve_mls_h, uint16_t, H1_2, DO_MLS)
1166 DO_ZPZZZ(sve_mla_s, uint32_t, H1_4, DO_MLA)
1167 DO_ZPZZZ(sve_mls_s, uint32_t, H1_4, DO_MLS)
1169 DO_ZPZZZ_D(sve_mla_d, uint64_t, DO_MLA)
1170 DO_ZPZZZ_D(sve_mls_d, uint64_t, DO_MLS)
1172 #undef DO_MLA
1173 #undef DO_MLS
1174 #undef DO_ZPZZZ
1175 #undef DO_ZPZZZ_D
1177 void HELPER(sve_index_b)(void *vd, uint32_t start,
1178 uint32_t incr, uint32_t desc)
1180 intptr_t i, opr_sz = simd_oprsz(desc);
1181 uint8_t *d = vd;
1182 for (i = 0; i < opr_sz; i += 1) {
1183 d[H1(i)] = start + i * incr;
1187 void HELPER(sve_index_h)(void *vd, uint32_t start,
1188 uint32_t incr, uint32_t desc)
1190 intptr_t i, opr_sz = simd_oprsz(desc) / 2;
1191 uint16_t *d = vd;
1192 for (i = 0; i < opr_sz; i += 1) {
1193 d[H2(i)] = start + i * incr;
1197 void HELPER(sve_index_s)(void *vd, uint32_t start,
1198 uint32_t incr, uint32_t desc)
1200 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1201 uint32_t *d = vd;
1202 for (i = 0; i < opr_sz; i += 1) {
1203 d[H4(i)] = start + i * incr;
1207 void HELPER(sve_index_d)(void *vd, uint64_t start,
1208 uint64_t incr, uint32_t desc)
1210 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1211 uint64_t *d = vd;
1212 for (i = 0; i < opr_sz; i += 1) {
1213 d[i] = start + i * incr;
1217 void HELPER(sve_adr_p32)(void *vd, void *vn, void *vm, uint32_t desc)
1219 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1220 uint32_t sh = simd_data(desc);
1221 uint32_t *d = vd, *n = vn, *m = vm;
1222 for (i = 0; i < opr_sz; i += 1) {
1223 d[i] = n[i] + (m[i] << sh);
1227 void HELPER(sve_adr_p64)(void *vd, void *vn, void *vm, uint32_t desc)
1229 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1230 uint64_t sh = simd_data(desc);
1231 uint64_t *d = vd, *n = vn, *m = vm;
1232 for (i = 0; i < opr_sz; i += 1) {
1233 d[i] = n[i] + (m[i] << sh);
1237 void HELPER(sve_adr_s32)(void *vd, void *vn, void *vm, uint32_t desc)
1239 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1240 uint64_t sh = simd_data(desc);
1241 uint64_t *d = vd, *n = vn, *m = vm;
1242 for (i = 0; i < opr_sz; i += 1) {
1243 d[i] = n[i] + ((uint64_t)(int32_t)m[i] << sh);
1247 void HELPER(sve_adr_u32)(void *vd, void *vn, void *vm, uint32_t desc)
1249 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1250 uint64_t sh = simd_data(desc);
1251 uint64_t *d = vd, *n = vn, *m = vm;
1252 for (i = 0; i < opr_sz; i += 1) {
1253 d[i] = n[i] + ((uint64_t)(uint32_t)m[i] << sh);
1257 void HELPER(sve_fexpa_h)(void *vd, void *vn, uint32_t desc)
1259 /* These constants are cut-and-paste directly from the ARM pseudocode. */
1260 static const uint16_t coeff[] = {
1261 0x0000, 0x0016, 0x002d, 0x0045, 0x005d, 0x0075, 0x008e, 0x00a8,
1262 0x00c2, 0x00dc, 0x00f8, 0x0114, 0x0130, 0x014d, 0x016b, 0x0189,
1263 0x01a8, 0x01c8, 0x01e8, 0x0209, 0x022b, 0x024e, 0x0271, 0x0295,
1264 0x02ba, 0x02e0, 0x0306, 0x032e, 0x0356, 0x037f, 0x03a9, 0x03d4,
1266 intptr_t i, opr_sz = simd_oprsz(desc) / 2;
1267 uint16_t *d = vd, *n = vn;
1269 for (i = 0; i < opr_sz; i++) {
1270 uint16_t nn = n[i];
1271 intptr_t idx = extract32(nn, 0, 5);
1272 uint16_t exp = extract32(nn, 5, 5);
1273 d[i] = coeff[idx] | (exp << 10);
1277 void HELPER(sve_fexpa_s)(void *vd, void *vn, uint32_t desc)
1279 /* These constants are cut-and-paste directly from the ARM pseudocode. */
1280 static const uint32_t coeff[] = {
1281 0x000000, 0x0164d2, 0x02cd87, 0x043a29,
1282 0x05aac3, 0x071f62, 0x08980f, 0x0a14d5,
1283 0x0b95c2, 0x0d1adf, 0x0ea43a, 0x1031dc,
1284 0x11c3d3, 0x135a2b, 0x14f4f0, 0x16942d,
1285 0x1837f0, 0x19e046, 0x1b8d3a, 0x1d3eda,
1286 0x1ef532, 0x20b051, 0x227043, 0x243516,
1287 0x25fed7, 0x27cd94, 0x29a15b, 0x2b7a3a,
1288 0x2d583f, 0x2f3b79, 0x3123f6, 0x3311c4,
1289 0x3504f3, 0x36fd92, 0x38fbaf, 0x3aff5b,
1290 0x3d08a4, 0x3f179a, 0x412c4d, 0x4346cd,
1291 0x45672a, 0x478d75, 0x49b9be, 0x4bec15,
1292 0x4e248c, 0x506334, 0x52a81e, 0x54f35b,
1293 0x5744fd, 0x599d16, 0x5bfbb8, 0x5e60f5,
1294 0x60ccdf, 0x633f89, 0x65b907, 0x68396a,
1295 0x6ac0c7, 0x6d4f30, 0x6fe4ba, 0x728177,
1296 0x75257d, 0x77d0df, 0x7a83b3, 0x7d3e0c,
1298 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1299 uint32_t *d = vd, *n = vn;
1301 for (i = 0; i < opr_sz; i++) {
1302 uint32_t nn = n[i];
1303 intptr_t idx = extract32(nn, 0, 6);
1304 uint32_t exp = extract32(nn, 6, 8);
1305 d[i] = coeff[idx] | (exp << 23);
1309 void HELPER(sve_fexpa_d)(void *vd, void *vn, uint32_t desc)
1311 /* These constants are cut-and-paste directly from the ARM pseudocode. */
1312 static const uint64_t coeff[] = {
1313 0x0000000000000ull, 0x02C9A3E778061ull, 0x059B0D3158574ull,
1314 0x0874518759BC8ull, 0x0B5586CF9890Full, 0x0E3EC32D3D1A2ull,
1315 0x11301D0125B51ull, 0x1429AAEA92DE0ull, 0x172B83C7D517Bull,
1316 0x1A35BEB6FCB75ull, 0x1D4873168B9AAull, 0x2063B88628CD6ull,
1317 0x2387A6E756238ull, 0x26B4565E27CDDull, 0x29E9DF51FDEE1ull,
1318 0x2D285A6E4030Bull, 0x306FE0A31B715ull, 0x33C08B26416FFull,
1319 0x371A7373AA9CBull, 0x3A7DB34E59FF7ull, 0x3DEA64C123422ull,
1320 0x4160A21F72E2Aull, 0x44E086061892Dull, 0x486A2B5C13CD0ull,
1321 0x4BFDAD5362A27ull, 0x4F9B2769D2CA7ull, 0x5342B569D4F82ull,
1322 0x56F4736B527DAull, 0x5AB07DD485429ull, 0x5E76F15AD2148ull,
1323 0x6247EB03A5585ull, 0x6623882552225ull, 0x6A09E667F3BCDull,
1324 0x6DFB23C651A2Full, 0x71F75E8EC5F74ull, 0x75FEB564267C9ull,
1325 0x7A11473EB0187ull, 0x7E2F336CF4E62ull, 0x82589994CCE13ull,
1326 0x868D99B4492EDull, 0x8ACE5422AA0DBull, 0x8F1AE99157736ull,
1327 0x93737B0CDC5E5ull, 0x97D829FDE4E50ull, 0x9C49182A3F090ull,
1328 0xA0C667B5DE565ull, 0xA5503B23E255Dull, 0xA9E6B5579FDBFull,
1329 0xAE89F995AD3ADull, 0xB33A2B84F15FBull, 0xB7F76F2FB5E47ull,
1330 0xBCC1E904BC1D2ull, 0xC199BDD85529Cull, 0xC67F12E57D14Bull,
1331 0xCB720DCEF9069ull, 0xD072D4A07897Cull, 0xD5818DCFBA487ull,
1332 0xDA9E603DB3285ull, 0xDFC97337B9B5Full, 0xE502EE78B3FF6ull,
1333 0xEA4AFA2A490DAull, 0xEFA1BEE615A27ull, 0xF50765B6E4540ull,
1334 0xFA7C1819E90D8ull,
1336 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1337 uint64_t *d = vd, *n = vn;
1339 for (i = 0; i < opr_sz; i++) {
1340 uint64_t nn = n[i];
1341 intptr_t idx = extract32(nn, 0, 6);
1342 uint64_t exp = extract32(nn, 6, 11);
1343 d[i] = coeff[idx] | (exp << 52);
1347 void HELPER(sve_ftssel_h)(void *vd, void *vn, void *vm, uint32_t desc)
1349 intptr_t i, opr_sz = simd_oprsz(desc) / 2;
1350 uint16_t *d = vd, *n = vn, *m = vm;
1351 for (i = 0; i < opr_sz; i += 1) {
1352 uint16_t nn = n[i];
1353 uint16_t mm = m[i];
1354 if (mm & 1) {
1355 nn = float16_one;
1357 d[i] = nn ^ (mm & 2) << 14;
1361 void HELPER(sve_ftssel_s)(void *vd, void *vn, void *vm, uint32_t desc)
1363 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1364 uint32_t *d = vd, *n = vn, *m = vm;
1365 for (i = 0; i < opr_sz; i += 1) {
1366 uint32_t nn = n[i];
1367 uint32_t mm = m[i];
1368 if (mm & 1) {
1369 nn = float32_one;
1371 d[i] = nn ^ (mm & 2) << 30;
1375 void HELPER(sve_ftssel_d)(void *vd, void *vn, void *vm, uint32_t desc)
1377 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1378 uint64_t *d = vd, *n = vn, *m = vm;
1379 for (i = 0; i < opr_sz; i += 1) {
1380 uint64_t nn = n[i];
1381 uint64_t mm = m[i];
1382 if (mm & 1) {
1383 nn = float64_one;
1385 d[i] = nn ^ (mm & 2) << 62;
1390 * Signed saturating addition with scalar operand.
1393 void HELPER(sve_sqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
1395 intptr_t i, oprsz = simd_oprsz(desc);
1397 for (i = 0; i < oprsz; i += sizeof(int8_t)) {
1398 int r = *(int8_t *)(a + i) + b;
1399 if (r > INT8_MAX) {
1400 r = INT8_MAX;
1401 } else if (r < INT8_MIN) {
1402 r = INT8_MIN;
1404 *(int8_t *)(d + i) = r;
1408 void HELPER(sve_sqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
1410 intptr_t i, oprsz = simd_oprsz(desc);
1412 for (i = 0; i < oprsz; i += sizeof(int16_t)) {
1413 int r = *(int16_t *)(a + i) + b;
1414 if (r > INT16_MAX) {
1415 r = INT16_MAX;
1416 } else if (r < INT16_MIN) {
1417 r = INT16_MIN;
1419 *(int16_t *)(d + i) = r;
1423 void HELPER(sve_sqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
1425 intptr_t i, oprsz = simd_oprsz(desc);
1427 for (i = 0; i < oprsz; i += sizeof(int32_t)) {
1428 int64_t r = *(int32_t *)(a + i) + b;
1429 if (r > INT32_MAX) {
1430 r = INT32_MAX;
1431 } else if (r < INT32_MIN) {
1432 r = INT32_MIN;
1434 *(int32_t *)(d + i) = r;
1438 void HELPER(sve_sqaddi_d)(void *d, void *a, int64_t b, uint32_t desc)
1440 intptr_t i, oprsz = simd_oprsz(desc);
1442 for (i = 0; i < oprsz; i += sizeof(int64_t)) {
1443 int64_t ai = *(int64_t *)(a + i);
1444 int64_t r = ai + b;
1445 if (((r ^ ai) & ~(ai ^ b)) < 0) {
1446 /* Signed overflow. */
1447 r = (r < 0 ? INT64_MAX : INT64_MIN);
1449 *(int64_t *)(d + i) = r;
1454 * Unsigned saturating addition with scalar operand.
1457 void HELPER(sve_uqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
1459 intptr_t i, oprsz = simd_oprsz(desc);
1461 for (i = 0; i < oprsz; i += sizeof(uint8_t)) {
1462 int r = *(uint8_t *)(a + i) + b;
1463 if (r > UINT8_MAX) {
1464 r = UINT8_MAX;
1465 } else if (r < 0) {
1466 r = 0;
1468 *(uint8_t *)(d + i) = r;
1472 void HELPER(sve_uqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
1474 intptr_t i, oprsz = simd_oprsz(desc);
1476 for (i = 0; i < oprsz; i += sizeof(uint16_t)) {
1477 int r = *(uint16_t *)(a + i) + b;
1478 if (r > UINT16_MAX) {
1479 r = UINT16_MAX;
1480 } else if (r < 0) {
1481 r = 0;
1483 *(uint16_t *)(d + i) = r;
1487 void HELPER(sve_uqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
1489 intptr_t i, oprsz = simd_oprsz(desc);
1491 for (i = 0; i < oprsz; i += sizeof(uint32_t)) {
1492 int64_t r = *(uint32_t *)(a + i) + b;
1493 if (r > UINT32_MAX) {
1494 r = UINT32_MAX;
1495 } else if (r < 0) {
1496 r = 0;
1498 *(uint32_t *)(d + i) = r;
1502 void HELPER(sve_uqaddi_d)(void *d, void *a, uint64_t b, uint32_t desc)
1504 intptr_t i, oprsz = simd_oprsz(desc);
1506 for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
1507 uint64_t r = *(uint64_t *)(a + i) + b;
1508 if (r < b) {
1509 r = UINT64_MAX;
1511 *(uint64_t *)(d + i) = r;
1515 void HELPER(sve_uqsubi_d)(void *d, void *a, uint64_t b, uint32_t desc)
1517 intptr_t i, oprsz = simd_oprsz(desc);
1519 for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
1520 uint64_t ai = *(uint64_t *)(a + i);
1521 *(uint64_t *)(d + i) = (ai < b ? 0 : ai - b);
1525 /* Two operand predicated copy immediate with merge. All valid immediates
1526 * can fit within 17 signed bits in the simd_data field.
1528 void HELPER(sve_cpy_m_b)(void *vd, void *vn, void *vg,
1529 uint64_t mm, uint32_t desc)
1531 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1532 uint64_t *d = vd, *n = vn;
1533 uint8_t *pg = vg;
1535 mm = dup_const(MO_8, mm);
1536 for (i = 0; i < opr_sz; i += 1) {
1537 uint64_t nn = n[i];
1538 uint64_t pp = expand_pred_b(pg[H1(i)]);
1539 d[i] = (mm & pp) | (nn & ~pp);
1543 void HELPER(sve_cpy_m_h)(void *vd, void *vn, void *vg,
1544 uint64_t mm, uint32_t desc)
1546 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1547 uint64_t *d = vd, *n = vn;
1548 uint8_t *pg = vg;
1550 mm = dup_const(MO_16, mm);
1551 for (i = 0; i < opr_sz; i += 1) {
1552 uint64_t nn = n[i];
1553 uint64_t pp = expand_pred_h(pg[H1(i)]);
1554 d[i] = (mm & pp) | (nn & ~pp);
1558 void HELPER(sve_cpy_m_s)(void *vd, void *vn, void *vg,
1559 uint64_t mm, uint32_t desc)
1561 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1562 uint64_t *d = vd, *n = vn;
1563 uint8_t *pg = vg;
1565 mm = dup_const(MO_32, mm);
1566 for (i = 0; i < opr_sz; i += 1) {
1567 uint64_t nn = n[i];
1568 uint64_t pp = expand_pred_s(pg[H1(i)]);
1569 d[i] = (mm & pp) | (nn & ~pp);
1573 void HELPER(sve_cpy_m_d)(void *vd, void *vn, void *vg,
1574 uint64_t mm, uint32_t desc)
1576 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1577 uint64_t *d = vd, *n = vn;
1578 uint8_t *pg = vg;
1580 for (i = 0; i < opr_sz; i += 1) {
1581 uint64_t nn = n[i];
1582 d[i] = (pg[H1(i)] & 1 ? mm : nn);
1586 void HELPER(sve_cpy_z_b)(void *vd, void *vg, uint64_t val, uint32_t desc)
1588 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1589 uint64_t *d = vd;
1590 uint8_t *pg = vg;
1592 val = dup_const(MO_8, val);
1593 for (i = 0; i < opr_sz; i += 1) {
1594 d[i] = val & expand_pred_b(pg[H1(i)]);
1598 void HELPER(sve_cpy_z_h)(void *vd, void *vg, uint64_t val, uint32_t desc)
1600 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1601 uint64_t *d = vd;
1602 uint8_t *pg = vg;
1604 val = dup_const(MO_16, val);
1605 for (i = 0; i < opr_sz; i += 1) {
1606 d[i] = val & expand_pred_h(pg[H1(i)]);
1610 void HELPER(sve_cpy_z_s)(void *vd, void *vg, uint64_t val, uint32_t desc)
1612 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1613 uint64_t *d = vd;
1614 uint8_t *pg = vg;
1616 val = dup_const(MO_32, val);
1617 for (i = 0; i < opr_sz; i += 1) {
1618 d[i] = val & expand_pred_s(pg[H1(i)]);
1622 void HELPER(sve_cpy_z_d)(void *vd, void *vg, uint64_t val, uint32_t desc)
1624 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1625 uint64_t *d = vd;
1626 uint8_t *pg = vg;
1628 for (i = 0; i < opr_sz; i += 1) {
1629 d[i] = (pg[H1(i)] & 1 ? val : 0);
1633 /* Big-endian hosts need to frob the byte indices. If the copy
1634 * happens to be 8-byte aligned, then no frobbing necessary.
1636 static void swap_memmove(void *vd, void *vs, size_t n)
1638 uintptr_t d = (uintptr_t)vd;
1639 uintptr_t s = (uintptr_t)vs;
1640 uintptr_t o = (d | s | n) & 7;
1641 size_t i;
1643 #ifndef HOST_WORDS_BIGENDIAN
1644 o = 0;
1645 #endif
1646 switch (o) {
1647 case 0:
1648 memmove(vd, vs, n);
1649 break;
1651 case 4:
1652 if (d < s || d >= s + n) {
1653 for (i = 0; i < n; i += 4) {
1654 *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
1656 } else {
1657 for (i = n; i > 0; ) {
1658 i -= 4;
1659 *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
1662 break;
1664 case 2:
1665 case 6:
1666 if (d < s || d >= s + n) {
1667 for (i = 0; i < n; i += 2) {
1668 *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
1670 } else {
1671 for (i = n; i > 0; ) {
1672 i -= 2;
1673 *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
1676 break;
1678 default:
1679 if (d < s || d >= s + n) {
1680 for (i = 0; i < n; i++) {
1681 *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
1683 } else {
1684 for (i = n; i > 0; ) {
1685 i -= 1;
1686 *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
1689 break;
1693 /* Similarly for memset of 0. */
1694 static void swap_memzero(void *vd, size_t n)
1696 uintptr_t d = (uintptr_t)vd;
1697 uintptr_t o = (d | n) & 7;
1698 size_t i;
1700 /* Usually, the first bit of a predicate is set, so N is 0. */
1701 if (likely(n == 0)) {
1702 return;
1705 #ifndef HOST_WORDS_BIGENDIAN
1706 o = 0;
1707 #endif
1708 switch (o) {
1709 case 0:
1710 memset(vd, 0, n);
1711 break;
1713 case 4:
1714 for (i = 0; i < n; i += 4) {
1715 *(uint32_t *)H1_4(d + i) = 0;
1717 break;
1719 case 2:
1720 case 6:
1721 for (i = 0; i < n; i += 2) {
1722 *(uint16_t *)H1_2(d + i) = 0;
1724 break;
1726 default:
1727 for (i = 0; i < n; i++) {
1728 *(uint8_t *)H1(d + i) = 0;
1730 break;
1734 void HELPER(sve_ext)(void *vd, void *vn, void *vm, uint32_t desc)
1736 intptr_t opr_sz = simd_oprsz(desc);
1737 size_t n_ofs = simd_data(desc);
1738 size_t n_siz = opr_sz - n_ofs;
1740 if (vd != vm) {
1741 swap_memmove(vd, vn + n_ofs, n_siz);
1742 swap_memmove(vd + n_siz, vm, n_ofs);
1743 } else if (vd != vn) {
1744 swap_memmove(vd + n_siz, vd, n_ofs);
1745 swap_memmove(vd, vn + n_ofs, n_siz);
1746 } else {
1747 /* vd == vn == vm. Need temp space. */
1748 ARMVectorReg tmp;
1749 swap_memmove(&tmp, vm, n_ofs);
1750 swap_memmove(vd, vd + n_ofs, n_siz);
1751 memcpy(vd + n_siz, &tmp, n_ofs);
1755 #define DO_INSR(NAME, TYPE, H) \
1756 void HELPER(NAME)(void *vd, void *vn, uint64_t val, uint32_t desc) \
1758 intptr_t opr_sz = simd_oprsz(desc); \
1759 swap_memmove(vd + sizeof(TYPE), vn, opr_sz - sizeof(TYPE)); \
1760 *(TYPE *)(vd + H(0)) = val; \
1763 DO_INSR(sve_insr_b, uint8_t, H1)
1764 DO_INSR(sve_insr_h, uint16_t, H1_2)
1765 DO_INSR(sve_insr_s, uint32_t, H1_4)
1766 DO_INSR(sve_insr_d, uint64_t, )
1768 #undef DO_INSR
1770 void HELPER(sve_rev_b)(void *vd, void *vn, uint32_t desc)
1772 intptr_t i, j, opr_sz = simd_oprsz(desc);
1773 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1774 uint64_t f = *(uint64_t *)(vn + i);
1775 uint64_t b = *(uint64_t *)(vn + j);
1776 *(uint64_t *)(vd + i) = bswap64(b);
1777 *(uint64_t *)(vd + j) = bswap64(f);
1781 void HELPER(sve_rev_h)(void *vd, void *vn, uint32_t desc)
1783 intptr_t i, j, opr_sz = simd_oprsz(desc);
1784 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1785 uint64_t f = *(uint64_t *)(vn + i);
1786 uint64_t b = *(uint64_t *)(vn + j);
1787 *(uint64_t *)(vd + i) = hswap64(b);
1788 *(uint64_t *)(vd + j) = hswap64(f);
1792 void HELPER(sve_rev_s)(void *vd, void *vn, uint32_t desc)
1794 intptr_t i, j, opr_sz = simd_oprsz(desc);
1795 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1796 uint64_t f = *(uint64_t *)(vn + i);
1797 uint64_t b = *(uint64_t *)(vn + j);
1798 *(uint64_t *)(vd + i) = rol64(b, 32);
1799 *(uint64_t *)(vd + j) = rol64(f, 32);
1803 void HELPER(sve_rev_d)(void *vd, void *vn, uint32_t desc)
1805 intptr_t i, j, opr_sz = simd_oprsz(desc);
1806 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1807 uint64_t f = *(uint64_t *)(vn + i);
1808 uint64_t b = *(uint64_t *)(vn + j);
1809 *(uint64_t *)(vd + i) = b;
1810 *(uint64_t *)(vd + j) = f;
1814 #define DO_TBL(NAME, TYPE, H) \
1815 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
1817 intptr_t i, opr_sz = simd_oprsz(desc); \
1818 uintptr_t elem = opr_sz / sizeof(TYPE); \
1819 TYPE *d = vd, *n = vn, *m = vm; \
1820 ARMVectorReg tmp; \
1821 if (unlikely(vd == vn)) { \
1822 n = memcpy(&tmp, vn, opr_sz); \
1824 for (i = 0; i < elem; i++) { \
1825 TYPE j = m[H(i)]; \
1826 d[H(i)] = j < elem ? n[H(j)] : 0; \
1830 DO_TBL(sve_tbl_b, uint8_t, H1)
1831 DO_TBL(sve_tbl_h, uint16_t, H2)
1832 DO_TBL(sve_tbl_s, uint32_t, H4)
1833 DO_TBL(sve_tbl_d, uint64_t, )
1835 #undef TBL
1837 #define DO_UNPK(NAME, TYPED, TYPES, HD, HS) \
1838 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1840 intptr_t i, opr_sz = simd_oprsz(desc); \
1841 TYPED *d = vd; \
1842 TYPES *n = vn; \
1843 ARMVectorReg tmp; \
1844 if (unlikely(vn - vd < opr_sz)) { \
1845 n = memcpy(&tmp, n, opr_sz / 2); \
1847 for (i = 0; i < opr_sz / sizeof(TYPED); i++) { \
1848 d[HD(i)] = n[HS(i)]; \
1852 DO_UNPK(sve_sunpk_h, int16_t, int8_t, H2, H1)
1853 DO_UNPK(sve_sunpk_s, int32_t, int16_t, H4, H2)
1854 DO_UNPK(sve_sunpk_d, int64_t, int32_t, , H4)
1856 DO_UNPK(sve_uunpk_h, uint16_t, uint8_t, H2, H1)
1857 DO_UNPK(sve_uunpk_s, uint32_t, uint16_t, H4, H2)
1858 DO_UNPK(sve_uunpk_d, uint64_t, uint32_t, , H4)
1860 #undef DO_UNPK
1862 /* Mask of bits included in the even numbered predicates of width esz.
1863 * We also use this for expand_bits/compress_bits, and so extend the
1864 * same pattern out to 16-bit units.
1866 static const uint64_t even_bit_esz_masks[5] = {
1867 0x5555555555555555ull,
1868 0x3333333333333333ull,
1869 0x0f0f0f0f0f0f0f0full,
1870 0x00ff00ff00ff00ffull,
1871 0x0000ffff0000ffffull,
1874 /* Zero-extend units of 2**N bits to units of 2**(N+1) bits.
1875 * For N==0, this corresponds to the operation that in qemu/bitops.h
1876 * we call half_shuffle64; this algorithm is from Hacker's Delight,
1877 * section 7-2 Shuffling Bits.
1879 static uint64_t expand_bits(uint64_t x, int n)
1881 int i;
1883 x &= 0xffffffffu;
1884 for (i = 4; i >= n; i--) {
1885 int sh = 1 << i;
1886 x = ((x << sh) | x) & even_bit_esz_masks[i];
1888 return x;
1891 /* Compress units of 2**(N+1) bits to units of 2**N bits.
1892 * For N==0, this corresponds to the operation that in qemu/bitops.h
1893 * we call half_unshuffle64; this algorithm is from Hacker's Delight,
1894 * section 7-2 Shuffling Bits, where it is called an inverse half shuffle.
1896 static uint64_t compress_bits(uint64_t x, int n)
1898 int i;
1900 for (i = n; i <= 4; i++) {
1901 int sh = 1 << i;
1902 x &= even_bit_esz_masks[i];
1903 x = (x >> sh) | x;
1905 return x & 0xffffffffu;
1908 void HELPER(sve_zip_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
1910 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
1911 int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
1912 intptr_t high = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1);
1913 uint64_t *d = vd;
1914 intptr_t i;
1916 if (oprsz <= 8) {
1917 uint64_t nn = *(uint64_t *)vn;
1918 uint64_t mm = *(uint64_t *)vm;
1919 int half = 4 * oprsz;
1921 nn = extract64(nn, high * half, half);
1922 mm = extract64(mm, high * half, half);
1923 nn = expand_bits(nn, esz);
1924 mm = expand_bits(mm, esz);
1925 d[0] = nn + (mm << (1 << esz));
1926 } else {
1927 ARMPredicateReg tmp_n, tmp_m;
1929 /* We produce output faster than we consume input.
1930 Therefore we must be mindful of possible overlap. */
1931 if ((vn - vd) < (uintptr_t)oprsz) {
1932 vn = memcpy(&tmp_n, vn, oprsz);
1934 if ((vm - vd) < (uintptr_t)oprsz) {
1935 vm = memcpy(&tmp_m, vm, oprsz);
1937 if (high) {
1938 high = oprsz >> 1;
1941 if ((high & 3) == 0) {
1942 uint32_t *n = vn, *m = vm;
1943 high >>= 2;
1945 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
1946 uint64_t nn = n[H4(high + i)];
1947 uint64_t mm = m[H4(high + i)];
1949 nn = expand_bits(nn, esz);
1950 mm = expand_bits(mm, esz);
1951 d[i] = nn + (mm << (1 << esz));
1953 } else {
1954 uint8_t *n = vn, *m = vm;
1955 uint16_t *d16 = vd;
1957 for (i = 0; i < oprsz / 2; i++) {
1958 uint16_t nn = n[H1(high + i)];
1959 uint16_t mm = m[H1(high + i)];
1961 nn = expand_bits(nn, esz);
1962 mm = expand_bits(mm, esz);
1963 d16[H2(i)] = nn + (mm << (1 << esz));
1969 void HELPER(sve_uzp_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
1971 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
1972 int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
1973 int odd = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1) << esz;
1974 uint64_t *d = vd, *n = vn, *m = vm;
1975 uint64_t l, h;
1976 intptr_t i;
1978 if (oprsz <= 8) {
1979 l = compress_bits(n[0] >> odd, esz);
1980 h = compress_bits(m[0] >> odd, esz);
1981 d[0] = extract64(l + (h << (4 * oprsz)), 0, 8 * oprsz);
1982 } else {
1983 ARMPredicateReg tmp_m;
1984 intptr_t oprsz_16 = oprsz / 16;
1986 if ((vm - vd) < (uintptr_t)oprsz) {
1987 m = memcpy(&tmp_m, vm, oprsz);
1990 for (i = 0; i < oprsz_16; i++) {
1991 l = n[2 * i + 0];
1992 h = n[2 * i + 1];
1993 l = compress_bits(l >> odd, esz);
1994 h = compress_bits(h >> odd, esz);
1995 d[i] = l + (h << 32);
1998 /* For VL which is not a power of 2, the results from M do not
1999 align nicely with the uint64_t for D. Put the aligned results
2000 from M into TMP_M and then copy it into place afterward. */
2001 if (oprsz & 15) {
2002 d[i] = compress_bits(n[2 * i] >> odd, esz);
2004 for (i = 0; i < oprsz_16; i++) {
2005 l = m[2 * i + 0];
2006 h = m[2 * i + 1];
2007 l = compress_bits(l >> odd, esz);
2008 h = compress_bits(h >> odd, esz);
2009 tmp_m.p[i] = l + (h << 32);
2011 tmp_m.p[i] = compress_bits(m[2 * i] >> odd, esz);
2013 swap_memmove(vd + oprsz / 2, &tmp_m, oprsz / 2);
2014 } else {
2015 for (i = 0; i < oprsz_16; i++) {
2016 l = m[2 * i + 0];
2017 h = m[2 * i + 1];
2018 l = compress_bits(l >> odd, esz);
2019 h = compress_bits(h >> odd, esz);
2020 d[oprsz_16 + i] = l + (h << 32);
2026 void HELPER(sve_trn_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
2028 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2029 uintptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
2030 bool odd = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1);
2031 uint64_t *d = vd, *n = vn, *m = vm;
2032 uint64_t mask;
2033 int shr, shl;
2034 intptr_t i;
2036 shl = 1 << esz;
2037 shr = 0;
2038 mask = even_bit_esz_masks[esz];
2039 if (odd) {
2040 mask <<= shl;
2041 shr = shl;
2042 shl = 0;
2045 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
2046 uint64_t nn = (n[i] & mask) >> shr;
2047 uint64_t mm = (m[i] & mask) << shl;
2048 d[i] = nn + mm;
2052 /* Reverse units of 2**N bits. */
2053 static uint64_t reverse_bits_64(uint64_t x, int n)
2055 int i, sh;
2057 x = bswap64(x);
2058 for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
2059 uint64_t mask = even_bit_esz_masks[i];
2060 x = ((x & mask) << sh) | ((x >> sh) & mask);
2062 return x;
2065 static uint8_t reverse_bits_8(uint8_t x, int n)
2067 static const uint8_t mask[3] = { 0x55, 0x33, 0x0f };
2068 int i, sh;
2070 for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
2071 x = ((x & mask[i]) << sh) | ((x >> sh) & mask[i]);
2073 return x;
2076 void HELPER(sve_rev_p)(void *vd, void *vn, uint32_t pred_desc)
2078 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2079 int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
2080 intptr_t i, oprsz_2 = oprsz / 2;
2082 if (oprsz <= 8) {
2083 uint64_t l = *(uint64_t *)vn;
2084 l = reverse_bits_64(l << (64 - 8 * oprsz), esz);
2085 *(uint64_t *)vd = l;
2086 } else if ((oprsz & 15) == 0) {
2087 for (i = 0; i < oprsz_2; i += 8) {
2088 intptr_t ih = oprsz - 8 - i;
2089 uint64_t l = reverse_bits_64(*(uint64_t *)(vn + i), esz);
2090 uint64_t h = reverse_bits_64(*(uint64_t *)(vn + ih), esz);
2091 *(uint64_t *)(vd + i) = h;
2092 *(uint64_t *)(vd + ih) = l;
2094 } else {
2095 for (i = 0; i < oprsz_2; i += 1) {
2096 intptr_t il = H1(i);
2097 intptr_t ih = H1(oprsz - 1 - i);
2098 uint8_t l = reverse_bits_8(*(uint8_t *)(vn + il), esz);
2099 uint8_t h = reverse_bits_8(*(uint8_t *)(vn + ih), esz);
2100 *(uint8_t *)(vd + il) = h;
2101 *(uint8_t *)(vd + ih) = l;
2106 void HELPER(sve_punpk_p)(void *vd, void *vn, uint32_t pred_desc)
2108 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2109 intptr_t high = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1);
2110 uint64_t *d = vd;
2111 intptr_t i;
2113 if (oprsz <= 8) {
2114 uint64_t nn = *(uint64_t *)vn;
2115 int half = 4 * oprsz;
2117 nn = extract64(nn, high * half, half);
2118 nn = expand_bits(nn, 0);
2119 d[0] = nn;
2120 } else {
2121 ARMPredicateReg tmp_n;
2123 /* We produce output faster than we consume input.
2124 Therefore we must be mindful of possible overlap. */
2125 if ((vn - vd) < (uintptr_t)oprsz) {
2126 vn = memcpy(&tmp_n, vn, oprsz);
2128 if (high) {
2129 high = oprsz >> 1;
2132 if ((high & 3) == 0) {
2133 uint32_t *n = vn;
2134 high >>= 2;
2136 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
2137 uint64_t nn = n[H4(high + i)];
2138 d[i] = expand_bits(nn, 0);
2140 } else {
2141 uint16_t *d16 = vd;
2142 uint8_t *n = vn;
2144 for (i = 0; i < oprsz / 2; i++) {
2145 uint16_t nn = n[H1(high + i)];
2146 d16[H2(i)] = expand_bits(nn, 0);
2152 #define DO_ZIP(NAME, TYPE, H) \
2153 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
2155 intptr_t oprsz = simd_oprsz(desc); \
2156 intptr_t i, oprsz_2 = oprsz / 2; \
2157 ARMVectorReg tmp_n, tmp_m; \
2158 /* We produce output faster than we consume input. \
2159 Therefore we must be mindful of possible overlap. */ \
2160 if (unlikely((vn - vd) < (uintptr_t)oprsz)) { \
2161 vn = memcpy(&tmp_n, vn, oprsz_2); \
2163 if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \
2164 vm = memcpy(&tmp_m, vm, oprsz_2); \
2166 for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
2167 *(TYPE *)(vd + H(2 * i + 0)) = *(TYPE *)(vn + H(i)); \
2168 *(TYPE *)(vd + H(2 * i + sizeof(TYPE))) = *(TYPE *)(vm + H(i)); \
2172 DO_ZIP(sve_zip_b, uint8_t, H1)
2173 DO_ZIP(sve_zip_h, uint16_t, H1_2)
2174 DO_ZIP(sve_zip_s, uint32_t, H1_4)
2175 DO_ZIP(sve_zip_d, uint64_t, )
2177 #define DO_UZP(NAME, TYPE, H) \
2178 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
2180 intptr_t oprsz = simd_oprsz(desc); \
2181 intptr_t oprsz_2 = oprsz / 2; \
2182 intptr_t odd_ofs = simd_data(desc); \
2183 intptr_t i; \
2184 ARMVectorReg tmp_m; \
2185 if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \
2186 vm = memcpy(&tmp_m, vm, oprsz); \
2188 for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
2189 *(TYPE *)(vd + H(i)) = *(TYPE *)(vn + H(2 * i + odd_ofs)); \
2191 for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
2192 *(TYPE *)(vd + H(oprsz_2 + i)) = *(TYPE *)(vm + H(2 * i + odd_ofs)); \
2196 DO_UZP(sve_uzp_b, uint8_t, H1)
2197 DO_UZP(sve_uzp_h, uint16_t, H1_2)
2198 DO_UZP(sve_uzp_s, uint32_t, H1_4)
2199 DO_UZP(sve_uzp_d, uint64_t, )
2201 #define DO_TRN(NAME, TYPE, H) \
2202 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
2204 intptr_t oprsz = simd_oprsz(desc); \
2205 intptr_t odd_ofs = simd_data(desc); \
2206 intptr_t i; \
2207 for (i = 0; i < oprsz; i += 2 * sizeof(TYPE)) { \
2208 TYPE ae = *(TYPE *)(vn + H(i + odd_ofs)); \
2209 TYPE be = *(TYPE *)(vm + H(i + odd_ofs)); \
2210 *(TYPE *)(vd + H(i + 0)) = ae; \
2211 *(TYPE *)(vd + H(i + sizeof(TYPE))) = be; \
2215 DO_TRN(sve_trn_b, uint8_t, H1)
2216 DO_TRN(sve_trn_h, uint16_t, H1_2)
2217 DO_TRN(sve_trn_s, uint32_t, H1_4)
2218 DO_TRN(sve_trn_d, uint64_t, )
2220 #undef DO_ZIP
2221 #undef DO_UZP
2222 #undef DO_TRN
2224 void HELPER(sve_compact_s)(void *vd, void *vn, void *vg, uint32_t desc)
2226 intptr_t i, j, opr_sz = simd_oprsz(desc) / 4;
2227 uint32_t *d = vd, *n = vn;
2228 uint8_t *pg = vg;
2230 for (i = j = 0; i < opr_sz; i++) {
2231 if (pg[H1(i / 2)] & (i & 1 ? 0x10 : 0x01)) {
2232 d[H4(j)] = n[H4(i)];
2233 j++;
2236 for (; j < opr_sz; j++) {
2237 d[H4(j)] = 0;
2241 void HELPER(sve_compact_d)(void *vd, void *vn, void *vg, uint32_t desc)
2243 intptr_t i, j, opr_sz = simd_oprsz(desc) / 8;
2244 uint64_t *d = vd, *n = vn;
2245 uint8_t *pg = vg;
2247 for (i = j = 0; i < opr_sz; i++) {
2248 if (pg[H1(i)] & 1) {
2249 d[j] = n[i];
2250 j++;
2253 for (; j < opr_sz; j++) {
2254 d[j] = 0;
2258 /* Similar to the ARM LastActiveElement pseudocode function, except the
2259 * result is multiplied by the element size. This includes the not found
2260 * indication; e.g. not found for esz=3 is -8.
2262 int32_t HELPER(sve_last_active_element)(void *vg, uint32_t pred_desc)
2264 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2265 intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
2267 return last_active_element(vg, DIV_ROUND_UP(oprsz, 8), esz);
2270 void HELPER(sve_splice)(void *vd, void *vn, void *vm, void *vg, uint32_t desc)
2272 intptr_t opr_sz = simd_oprsz(desc) / 8;
2273 int esz = simd_data(desc);
2274 uint64_t pg, first_g, last_g, len, mask = pred_esz_masks[esz];
2275 intptr_t i, first_i, last_i;
2276 ARMVectorReg tmp;
2278 first_i = last_i = 0;
2279 first_g = last_g = 0;
2281 /* Find the extent of the active elements within VG. */
2282 for (i = QEMU_ALIGN_UP(opr_sz, 8) - 8; i >= 0; i -= 8) {
2283 pg = *(uint64_t *)(vg + i) & mask;
2284 if (pg) {
2285 if (last_g == 0) {
2286 last_g = pg;
2287 last_i = i;
2289 first_g = pg;
2290 first_i = i;
2294 len = 0;
2295 if (first_g != 0) {
2296 first_i = first_i * 8 + ctz64(first_g);
2297 last_i = last_i * 8 + 63 - clz64(last_g);
2298 len = last_i - first_i + (1 << esz);
2299 if (vd == vm) {
2300 vm = memcpy(&tmp, vm, opr_sz * 8);
2302 swap_memmove(vd, vn + first_i, len);
2304 swap_memmove(vd + len, vm, opr_sz * 8 - len);
2307 void HELPER(sve_sel_zpzz_b)(void *vd, void *vn, void *vm,
2308 void *vg, uint32_t desc)
2310 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2311 uint64_t *d = vd, *n = vn, *m = vm;
2312 uint8_t *pg = vg;
2314 for (i = 0; i < opr_sz; i += 1) {
2315 uint64_t nn = n[i], mm = m[i];
2316 uint64_t pp = expand_pred_b(pg[H1(i)]);
2317 d[i] = (nn & pp) | (mm & ~pp);
2321 void HELPER(sve_sel_zpzz_h)(void *vd, void *vn, void *vm,
2322 void *vg, uint32_t desc)
2324 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2325 uint64_t *d = vd, *n = vn, *m = vm;
2326 uint8_t *pg = vg;
2328 for (i = 0; i < opr_sz; i += 1) {
2329 uint64_t nn = n[i], mm = m[i];
2330 uint64_t pp = expand_pred_h(pg[H1(i)]);
2331 d[i] = (nn & pp) | (mm & ~pp);
2335 void HELPER(sve_sel_zpzz_s)(void *vd, void *vn, void *vm,
2336 void *vg, uint32_t desc)
2338 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2339 uint64_t *d = vd, *n = vn, *m = vm;
2340 uint8_t *pg = vg;
2342 for (i = 0; i < opr_sz; i += 1) {
2343 uint64_t nn = n[i], mm = m[i];
2344 uint64_t pp = expand_pred_s(pg[H1(i)]);
2345 d[i] = (nn & pp) | (mm & ~pp);
2349 void HELPER(sve_sel_zpzz_d)(void *vd, void *vn, void *vm,
2350 void *vg, uint32_t desc)
2352 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2353 uint64_t *d = vd, *n = vn, *m = vm;
2354 uint8_t *pg = vg;
2356 for (i = 0; i < opr_sz; i += 1) {
2357 uint64_t nn = n[i], mm = m[i];
2358 d[i] = (pg[H1(i)] & 1 ? nn : mm);
2362 /* Two operand comparison controlled by a predicate.
2363 * ??? It is very tempting to want to be able to expand this inline
2364 * with x86 instructions, e.g.
2366 * vcmpeqw zm, zn, %ymm0
2367 * vpmovmskb %ymm0, %eax
2368 * and $0x5555, %eax
2369 * and pg, %eax
2371 * or even aarch64, e.g.
2373 * // mask = 4000 1000 0400 0100 0040 0010 0004 0001
2374 * cmeq v0.8h, zn, zm
2375 * and v0.8h, v0.8h, mask
2376 * addv h0, v0.8h
2377 * and v0.8b, pg
2379 * However, coming up with an abstraction that allows vector inputs and
2380 * a scalar output, and also handles the byte-ordering of sub-uint64_t
2381 * scalar outputs, is tricky.
2383 #define DO_CMP_PPZZ(NAME, TYPE, OP, H, MASK) \
2384 uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
2386 intptr_t opr_sz = simd_oprsz(desc); \
2387 uint32_t flags = PREDTEST_INIT; \
2388 intptr_t i = opr_sz; \
2389 do { \
2390 uint64_t out = 0, pg; \
2391 do { \
2392 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
2393 TYPE nn = *(TYPE *)(vn + H(i)); \
2394 TYPE mm = *(TYPE *)(vm + H(i)); \
2395 out |= nn OP mm; \
2396 } while (i & 63); \
2397 pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
2398 out &= pg; \
2399 *(uint64_t *)(vd + (i >> 3)) = out; \
2400 flags = iter_predtest_bwd(out, pg, flags); \
2401 } while (i > 0); \
2402 return flags; \
2405 #define DO_CMP_PPZZ_B(NAME, TYPE, OP) \
2406 DO_CMP_PPZZ(NAME, TYPE, OP, H1, 0xffffffffffffffffull)
2407 #define DO_CMP_PPZZ_H(NAME, TYPE, OP) \
2408 DO_CMP_PPZZ(NAME, TYPE, OP, H1_2, 0x5555555555555555ull)
2409 #define DO_CMP_PPZZ_S(NAME, TYPE, OP) \
2410 DO_CMP_PPZZ(NAME, TYPE, OP, H1_4, 0x1111111111111111ull)
2411 #define DO_CMP_PPZZ_D(NAME, TYPE, OP) \
2412 DO_CMP_PPZZ(NAME, TYPE, OP, , 0x0101010101010101ull)
2414 DO_CMP_PPZZ_B(sve_cmpeq_ppzz_b, uint8_t, ==)
2415 DO_CMP_PPZZ_H(sve_cmpeq_ppzz_h, uint16_t, ==)
2416 DO_CMP_PPZZ_S(sve_cmpeq_ppzz_s, uint32_t, ==)
2417 DO_CMP_PPZZ_D(sve_cmpeq_ppzz_d, uint64_t, ==)
2419 DO_CMP_PPZZ_B(sve_cmpne_ppzz_b, uint8_t, !=)
2420 DO_CMP_PPZZ_H(sve_cmpne_ppzz_h, uint16_t, !=)
2421 DO_CMP_PPZZ_S(sve_cmpne_ppzz_s, uint32_t, !=)
2422 DO_CMP_PPZZ_D(sve_cmpne_ppzz_d, uint64_t, !=)
2424 DO_CMP_PPZZ_B(sve_cmpgt_ppzz_b, int8_t, >)
2425 DO_CMP_PPZZ_H(sve_cmpgt_ppzz_h, int16_t, >)
2426 DO_CMP_PPZZ_S(sve_cmpgt_ppzz_s, int32_t, >)
2427 DO_CMP_PPZZ_D(sve_cmpgt_ppzz_d, int64_t, >)
2429 DO_CMP_PPZZ_B(sve_cmpge_ppzz_b, int8_t, >=)
2430 DO_CMP_PPZZ_H(sve_cmpge_ppzz_h, int16_t, >=)
2431 DO_CMP_PPZZ_S(sve_cmpge_ppzz_s, int32_t, >=)
2432 DO_CMP_PPZZ_D(sve_cmpge_ppzz_d, int64_t, >=)
2434 DO_CMP_PPZZ_B(sve_cmphi_ppzz_b, uint8_t, >)
2435 DO_CMP_PPZZ_H(sve_cmphi_ppzz_h, uint16_t, >)
2436 DO_CMP_PPZZ_S(sve_cmphi_ppzz_s, uint32_t, >)
2437 DO_CMP_PPZZ_D(sve_cmphi_ppzz_d, uint64_t, >)
2439 DO_CMP_PPZZ_B(sve_cmphs_ppzz_b, uint8_t, >=)
2440 DO_CMP_PPZZ_H(sve_cmphs_ppzz_h, uint16_t, >=)
2441 DO_CMP_PPZZ_S(sve_cmphs_ppzz_s, uint32_t, >=)
2442 DO_CMP_PPZZ_D(sve_cmphs_ppzz_d, uint64_t, >=)
2444 #undef DO_CMP_PPZZ_B
2445 #undef DO_CMP_PPZZ_H
2446 #undef DO_CMP_PPZZ_S
2447 #undef DO_CMP_PPZZ_D
2448 #undef DO_CMP_PPZZ
2450 /* Similar, but the second source is "wide". */
2451 #define DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H, MASK) \
2452 uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
2454 intptr_t opr_sz = simd_oprsz(desc); \
2455 uint32_t flags = PREDTEST_INIT; \
2456 intptr_t i = opr_sz; \
2457 do { \
2458 uint64_t out = 0, pg; \
2459 do { \
2460 TYPEW mm = *(TYPEW *)(vm + i - 8); \
2461 do { \
2462 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
2463 TYPE nn = *(TYPE *)(vn + H(i)); \
2464 out |= nn OP mm; \
2465 } while (i & 7); \
2466 } while (i & 63); \
2467 pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
2468 out &= pg; \
2469 *(uint64_t *)(vd + (i >> 3)) = out; \
2470 flags = iter_predtest_bwd(out, pg, flags); \
2471 } while (i > 0); \
2472 return flags; \
2475 #define DO_CMP_PPZW_B(NAME, TYPE, TYPEW, OP) \
2476 DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1, 0xffffffffffffffffull)
2477 #define DO_CMP_PPZW_H(NAME, TYPE, TYPEW, OP) \
2478 DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_2, 0x5555555555555555ull)
2479 #define DO_CMP_PPZW_S(NAME, TYPE, TYPEW, OP) \
2480 DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_4, 0x1111111111111111ull)
2482 DO_CMP_PPZW_B(sve_cmpeq_ppzw_b, int8_t, uint64_t, ==)
2483 DO_CMP_PPZW_H(sve_cmpeq_ppzw_h, int16_t, uint64_t, ==)
2484 DO_CMP_PPZW_S(sve_cmpeq_ppzw_s, int32_t, uint64_t, ==)
2486 DO_CMP_PPZW_B(sve_cmpne_ppzw_b, int8_t, uint64_t, !=)
2487 DO_CMP_PPZW_H(sve_cmpne_ppzw_h, int16_t, uint64_t, !=)
2488 DO_CMP_PPZW_S(sve_cmpne_ppzw_s, int32_t, uint64_t, !=)
2490 DO_CMP_PPZW_B(sve_cmpgt_ppzw_b, int8_t, int64_t, >)
2491 DO_CMP_PPZW_H(sve_cmpgt_ppzw_h, int16_t, int64_t, >)
2492 DO_CMP_PPZW_S(sve_cmpgt_ppzw_s, int32_t, int64_t, >)
2494 DO_CMP_PPZW_B(sve_cmpge_ppzw_b, int8_t, int64_t, >=)
2495 DO_CMP_PPZW_H(sve_cmpge_ppzw_h, int16_t, int64_t, >=)
2496 DO_CMP_PPZW_S(sve_cmpge_ppzw_s, int32_t, int64_t, >=)
2498 DO_CMP_PPZW_B(sve_cmphi_ppzw_b, uint8_t, uint64_t, >)
2499 DO_CMP_PPZW_H(sve_cmphi_ppzw_h, uint16_t, uint64_t, >)
2500 DO_CMP_PPZW_S(sve_cmphi_ppzw_s, uint32_t, uint64_t, >)
2502 DO_CMP_PPZW_B(sve_cmphs_ppzw_b, uint8_t, uint64_t, >=)
2503 DO_CMP_PPZW_H(sve_cmphs_ppzw_h, uint16_t, uint64_t, >=)
2504 DO_CMP_PPZW_S(sve_cmphs_ppzw_s, uint32_t, uint64_t, >=)
2506 DO_CMP_PPZW_B(sve_cmplt_ppzw_b, int8_t, int64_t, <)
2507 DO_CMP_PPZW_H(sve_cmplt_ppzw_h, int16_t, int64_t, <)
2508 DO_CMP_PPZW_S(sve_cmplt_ppzw_s, int32_t, int64_t, <)
2510 DO_CMP_PPZW_B(sve_cmple_ppzw_b, int8_t, int64_t, <=)
2511 DO_CMP_PPZW_H(sve_cmple_ppzw_h, int16_t, int64_t, <=)
2512 DO_CMP_PPZW_S(sve_cmple_ppzw_s, int32_t, int64_t, <=)
2514 DO_CMP_PPZW_B(sve_cmplo_ppzw_b, uint8_t, uint64_t, <)
2515 DO_CMP_PPZW_H(sve_cmplo_ppzw_h, uint16_t, uint64_t, <)
2516 DO_CMP_PPZW_S(sve_cmplo_ppzw_s, uint32_t, uint64_t, <)
2518 DO_CMP_PPZW_B(sve_cmpls_ppzw_b, uint8_t, uint64_t, <=)
2519 DO_CMP_PPZW_H(sve_cmpls_ppzw_h, uint16_t, uint64_t, <=)
2520 DO_CMP_PPZW_S(sve_cmpls_ppzw_s, uint32_t, uint64_t, <=)
2522 #undef DO_CMP_PPZW_B
2523 #undef DO_CMP_PPZW_H
2524 #undef DO_CMP_PPZW_S
2525 #undef DO_CMP_PPZW
2527 /* Similar, but the second source is immediate. */
2528 #define DO_CMP_PPZI(NAME, TYPE, OP, H, MASK) \
2529 uint32_t HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
2531 intptr_t opr_sz = simd_oprsz(desc); \
2532 uint32_t flags = PREDTEST_INIT; \
2533 TYPE mm = simd_data(desc); \
2534 intptr_t i = opr_sz; \
2535 do { \
2536 uint64_t out = 0, pg; \
2537 do { \
2538 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
2539 TYPE nn = *(TYPE *)(vn + H(i)); \
2540 out |= nn OP mm; \
2541 } while (i & 63); \
2542 pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
2543 out &= pg; \
2544 *(uint64_t *)(vd + (i >> 3)) = out; \
2545 flags = iter_predtest_bwd(out, pg, flags); \
2546 } while (i > 0); \
2547 return flags; \
2550 #define DO_CMP_PPZI_B(NAME, TYPE, OP) \
2551 DO_CMP_PPZI(NAME, TYPE, OP, H1, 0xffffffffffffffffull)
2552 #define DO_CMP_PPZI_H(NAME, TYPE, OP) \
2553 DO_CMP_PPZI(NAME, TYPE, OP, H1_2, 0x5555555555555555ull)
2554 #define DO_CMP_PPZI_S(NAME, TYPE, OP) \
2555 DO_CMP_PPZI(NAME, TYPE, OP, H1_4, 0x1111111111111111ull)
2556 #define DO_CMP_PPZI_D(NAME, TYPE, OP) \
2557 DO_CMP_PPZI(NAME, TYPE, OP, , 0x0101010101010101ull)
2559 DO_CMP_PPZI_B(sve_cmpeq_ppzi_b, uint8_t, ==)
2560 DO_CMP_PPZI_H(sve_cmpeq_ppzi_h, uint16_t, ==)
2561 DO_CMP_PPZI_S(sve_cmpeq_ppzi_s, uint32_t, ==)
2562 DO_CMP_PPZI_D(sve_cmpeq_ppzi_d, uint64_t, ==)
2564 DO_CMP_PPZI_B(sve_cmpne_ppzi_b, uint8_t, !=)
2565 DO_CMP_PPZI_H(sve_cmpne_ppzi_h, uint16_t, !=)
2566 DO_CMP_PPZI_S(sve_cmpne_ppzi_s, uint32_t, !=)
2567 DO_CMP_PPZI_D(sve_cmpne_ppzi_d, uint64_t, !=)
2569 DO_CMP_PPZI_B(sve_cmpgt_ppzi_b, int8_t, >)
2570 DO_CMP_PPZI_H(sve_cmpgt_ppzi_h, int16_t, >)
2571 DO_CMP_PPZI_S(sve_cmpgt_ppzi_s, int32_t, >)
2572 DO_CMP_PPZI_D(sve_cmpgt_ppzi_d, int64_t, >)
2574 DO_CMP_PPZI_B(sve_cmpge_ppzi_b, int8_t, >=)
2575 DO_CMP_PPZI_H(sve_cmpge_ppzi_h, int16_t, >=)
2576 DO_CMP_PPZI_S(sve_cmpge_ppzi_s, int32_t, >=)
2577 DO_CMP_PPZI_D(sve_cmpge_ppzi_d, int64_t, >=)
2579 DO_CMP_PPZI_B(sve_cmphi_ppzi_b, uint8_t, >)
2580 DO_CMP_PPZI_H(sve_cmphi_ppzi_h, uint16_t, >)
2581 DO_CMP_PPZI_S(sve_cmphi_ppzi_s, uint32_t, >)
2582 DO_CMP_PPZI_D(sve_cmphi_ppzi_d, uint64_t, >)
2584 DO_CMP_PPZI_B(sve_cmphs_ppzi_b, uint8_t, >=)
2585 DO_CMP_PPZI_H(sve_cmphs_ppzi_h, uint16_t, >=)
2586 DO_CMP_PPZI_S(sve_cmphs_ppzi_s, uint32_t, >=)
2587 DO_CMP_PPZI_D(sve_cmphs_ppzi_d, uint64_t, >=)
2589 DO_CMP_PPZI_B(sve_cmplt_ppzi_b, int8_t, <)
2590 DO_CMP_PPZI_H(sve_cmplt_ppzi_h, int16_t, <)
2591 DO_CMP_PPZI_S(sve_cmplt_ppzi_s, int32_t, <)
2592 DO_CMP_PPZI_D(sve_cmplt_ppzi_d, int64_t, <)
2594 DO_CMP_PPZI_B(sve_cmple_ppzi_b, int8_t, <=)
2595 DO_CMP_PPZI_H(sve_cmple_ppzi_h, int16_t, <=)
2596 DO_CMP_PPZI_S(sve_cmple_ppzi_s, int32_t, <=)
2597 DO_CMP_PPZI_D(sve_cmple_ppzi_d, int64_t, <=)
2599 DO_CMP_PPZI_B(sve_cmplo_ppzi_b, uint8_t, <)
2600 DO_CMP_PPZI_H(sve_cmplo_ppzi_h, uint16_t, <)
2601 DO_CMP_PPZI_S(sve_cmplo_ppzi_s, uint32_t, <)
2602 DO_CMP_PPZI_D(sve_cmplo_ppzi_d, uint64_t, <)
2604 DO_CMP_PPZI_B(sve_cmpls_ppzi_b, uint8_t, <=)
2605 DO_CMP_PPZI_H(sve_cmpls_ppzi_h, uint16_t, <=)
2606 DO_CMP_PPZI_S(sve_cmpls_ppzi_s, uint32_t, <=)
2607 DO_CMP_PPZI_D(sve_cmpls_ppzi_d, uint64_t, <=)
2609 #undef DO_CMP_PPZI_B
2610 #undef DO_CMP_PPZI_H
2611 #undef DO_CMP_PPZI_S
2612 #undef DO_CMP_PPZI_D
2613 #undef DO_CMP_PPZI
2615 /* Similar to the ARM LastActive pseudocode function. */
2616 static bool last_active_pred(void *vd, void *vg, intptr_t oprsz)
2618 intptr_t i;
2620 for (i = QEMU_ALIGN_UP(oprsz, 8) - 8; i >= 0; i -= 8) {
2621 uint64_t pg = *(uint64_t *)(vg + i);
2622 if (pg) {
2623 return (pow2floor(pg) & *(uint64_t *)(vd + i)) != 0;
2626 return 0;
2629 /* Compute a mask into RETB that is true for all G, up to and including
2630 * (if after) or excluding (if !after) the first G & N.
2631 * Return true if BRK found.
2633 static bool compute_brk(uint64_t *retb, uint64_t n, uint64_t g,
2634 bool brk, bool after)
2636 uint64_t b;
2638 if (brk) {
2639 b = 0;
2640 } else if ((g & n) == 0) {
2641 /* For all G, no N are set; break not found. */
2642 b = g;
2643 } else {
2644 /* Break somewhere in N. Locate it. */
2645 b = g & n; /* guard true, pred true */
2646 b = b & -b; /* first such */
2647 if (after) {
2648 b = b | (b - 1); /* break after same */
2649 } else {
2650 b = b - 1; /* break before same */
2652 brk = true;
2655 *retb = b;
2656 return brk;
2659 /* Compute a zeroing BRK. */
2660 static void compute_brk_z(uint64_t *d, uint64_t *n, uint64_t *g,
2661 intptr_t oprsz, bool after)
2663 bool brk = false;
2664 intptr_t i;
2666 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
2667 uint64_t this_b, this_g = g[i];
2669 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2670 d[i] = this_b & this_g;
2674 /* Likewise, but also compute flags. */
2675 static uint32_t compute_brks_z(uint64_t *d, uint64_t *n, uint64_t *g,
2676 intptr_t oprsz, bool after)
2678 uint32_t flags = PREDTEST_INIT;
2679 bool brk = false;
2680 intptr_t i;
2682 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
2683 uint64_t this_b, this_d, this_g = g[i];
2685 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2686 d[i] = this_d = this_b & this_g;
2687 flags = iter_predtest_fwd(this_d, this_g, flags);
2689 return flags;
2692 /* Compute a merging BRK. */
2693 static void compute_brk_m(uint64_t *d, uint64_t *n, uint64_t *g,
2694 intptr_t oprsz, bool after)
2696 bool brk = false;
2697 intptr_t i;
2699 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
2700 uint64_t this_b, this_g = g[i];
2702 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2703 d[i] = (this_b & this_g) | (d[i] & ~this_g);
2707 /* Likewise, but also compute flags. */
2708 static uint32_t compute_brks_m(uint64_t *d, uint64_t *n, uint64_t *g,
2709 intptr_t oprsz, bool after)
2711 uint32_t flags = PREDTEST_INIT;
2712 bool brk = false;
2713 intptr_t i;
2715 for (i = 0; i < oprsz / 8; ++i) {
2716 uint64_t this_b, this_d = d[i], this_g = g[i];
2718 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2719 d[i] = this_d = (this_b & this_g) | (this_d & ~this_g);
2720 flags = iter_predtest_fwd(this_d, this_g, flags);
2722 return flags;
2725 static uint32_t do_zero(ARMPredicateReg *d, intptr_t oprsz)
2727 /* It is quicker to zero the whole predicate than loop on OPRSZ.
2728 * The compiler should turn this into 4 64-bit integer stores.
2730 memset(d, 0, sizeof(ARMPredicateReg));
2731 return PREDTEST_INIT;
2734 void HELPER(sve_brkpa)(void *vd, void *vn, void *vm, void *vg,
2735 uint32_t pred_desc)
2737 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2738 if (last_active_pred(vn, vg, oprsz)) {
2739 compute_brk_z(vd, vm, vg, oprsz, true);
2740 } else {
2741 do_zero(vd, oprsz);
2745 uint32_t HELPER(sve_brkpas)(void *vd, void *vn, void *vm, void *vg,
2746 uint32_t pred_desc)
2748 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2749 if (last_active_pred(vn, vg, oprsz)) {
2750 return compute_brks_z(vd, vm, vg, oprsz, true);
2751 } else {
2752 return do_zero(vd, oprsz);
2756 void HELPER(sve_brkpb)(void *vd, void *vn, void *vm, void *vg,
2757 uint32_t pred_desc)
2759 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2760 if (last_active_pred(vn, vg, oprsz)) {
2761 compute_brk_z(vd, vm, vg, oprsz, false);
2762 } else {
2763 do_zero(vd, oprsz);
2767 uint32_t HELPER(sve_brkpbs)(void *vd, void *vn, void *vm, void *vg,
2768 uint32_t pred_desc)
2770 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2771 if (last_active_pred(vn, vg, oprsz)) {
2772 return compute_brks_z(vd, vm, vg, oprsz, false);
2773 } else {
2774 return do_zero(vd, oprsz);
2778 void HELPER(sve_brka_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2780 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2781 compute_brk_z(vd, vn, vg, oprsz, true);
2784 uint32_t HELPER(sve_brkas_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2786 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2787 return compute_brks_z(vd, vn, vg, oprsz, true);
2790 void HELPER(sve_brkb_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2792 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2793 compute_brk_z(vd, vn, vg, oprsz, false);
2796 uint32_t HELPER(sve_brkbs_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2798 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2799 return compute_brks_z(vd, vn, vg, oprsz, false);
2802 void HELPER(sve_brka_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2804 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2805 compute_brk_m(vd, vn, vg, oprsz, true);
2808 uint32_t HELPER(sve_brkas_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2810 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2811 return compute_brks_m(vd, vn, vg, oprsz, true);
2814 void HELPER(sve_brkb_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2816 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2817 compute_brk_m(vd, vn, vg, oprsz, false);
2820 uint32_t HELPER(sve_brkbs_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2822 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2823 return compute_brks_m(vd, vn, vg, oprsz, false);
2826 void HELPER(sve_brkn)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2828 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2830 if (!last_active_pred(vn, vg, oprsz)) {
2831 do_zero(vd, oprsz);
2835 /* As if PredTest(Ones(PL), D, esz). */
2836 static uint32_t predtest_ones(ARMPredicateReg *d, intptr_t oprsz,
2837 uint64_t esz_mask)
2839 uint32_t flags = PREDTEST_INIT;
2840 intptr_t i;
2842 for (i = 0; i < oprsz / 8; i++) {
2843 flags = iter_predtest_fwd(d->p[i], esz_mask, flags);
2845 if (oprsz & 7) {
2846 uint64_t mask = ~(-1ULL << (8 * (oprsz & 7)));
2847 flags = iter_predtest_fwd(d->p[i], esz_mask & mask, flags);
2849 return flags;
2852 uint32_t HELPER(sve_brkns)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2854 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2856 if (last_active_pred(vn, vg, oprsz)) {
2857 return predtest_ones(vd, oprsz, -1);
2858 } else {
2859 return do_zero(vd, oprsz);
2863 uint64_t HELPER(sve_cntp)(void *vn, void *vg, uint32_t pred_desc)
2865 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2866 intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
2867 uint64_t *n = vn, *g = vg, sum = 0, mask = pred_esz_masks[esz];
2868 intptr_t i;
2870 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
2871 uint64_t t = n[i] & g[i] & mask;
2872 sum += ctpop64(t);
2874 return sum;
2877 uint32_t HELPER(sve_while)(void *vd, uint32_t count, uint32_t pred_desc)
2879 uintptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2880 intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
2881 uint64_t esz_mask = pred_esz_masks[esz];
2882 ARMPredicateReg *d = vd;
2883 uint32_t flags;
2884 intptr_t i;
2886 /* Begin with a zero predicate register. */
2887 flags = do_zero(d, oprsz);
2888 if (count == 0) {
2889 return flags;
2892 /* Set all of the requested bits. */
2893 for (i = 0; i < count / 64; ++i) {
2894 d->p[i] = esz_mask;
2896 if (count & 63) {
2897 d->p[i] = MAKE_64BIT_MASK(0, count & 63) & esz_mask;
2900 return predtest_ones(d, oprsz, esz_mask);
2903 /* Recursive reduction on a function;
2904 * C.f. the ARM ARM function ReducePredicated.
2906 * While it would be possible to write this without the DATA temporary,
2907 * it is much simpler to process the predicate register this way.
2908 * The recursion is bounded to depth 7 (128 fp16 elements), so there's
2909 * little to gain with a more complex non-recursive form.
2911 #define DO_REDUCE(NAME, TYPE, H, FUNC, IDENT) \
2912 static TYPE NAME##_reduce(TYPE *data, float_status *status, uintptr_t n) \
2914 if (n == 1) { \
2915 return *data; \
2916 } else { \
2917 uintptr_t half = n / 2; \
2918 TYPE lo = NAME##_reduce(data, status, half); \
2919 TYPE hi = NAME##_reduce(data + half, status, half); \
2920 return TYPE##_##FUNC(lo, hi, status); \
2923 uint64_t HELPER(NAME)(void *vn, void *vg, void *vs, uint32_t desc) \
2925 uintptr_t i, oprsz = simd_oprsz(desc), maxsz = simd_maxsz(desc); \
2926 TYPE data[sizeof(ARMVectorReg) / sizeof(TYPE)]; \
2927 for (i = 0; i < oprsz; ) { \
2928 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
2929 do { \
2930 TYPE nn = *(TYPE *)(vn + H(i)); \
2931 *(TYPE *)((void *)data + i) = (pg & 1 ? nn : IDENT); \
2932 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
2933 } while (i & 15); \
2935 for (; i < maxsz; i += sizeof(TYPE)) { \
2936 *(TYPE *)((void *)data + i) = IDENT; \
2938 return NAME##_reduce(data, vs, maxsz / sizeof(TYPE)); \
2941 DO_REDUCE(sve_faddv_h, float16, H1_2, add, float16_zero)
2942 DO_REDUCE(sve_faddv_s, float32, H1_4, add, float32_zero)
2943 DO_REDUCE(sve_faddv_d, float64, , add, float64_zero)
2945 /* Identity is floatN_default_nan, without the function call. */
2946 DO_REDUCE(sve_fminnmv_h, float16, H1_2, minnum, 0x7E00)
2947 DO_REDUCE(sve_fminnmv_s, float32, H1_4, minnum, 0x7FC00000)
2948 DO_REDUCE(sve_fminnmv_d, float64, , minnum, 0x7FF8000000000000ULL)
2950 DO_REDUCE(sve_fmaxnmv_h, float16, H1_2, maxnum, 0x7E00)
2951 DO_REDUCE(sve_fmaxnmv_s, float32, H1_4, maxnum, 0x7FC00000)
2952 DO_REDUCE(sve_fmaxnmv_d, float64, , maxnum, 0x7FF8000000000000ULL)
2954 DO_REDUCE(sve_fminv_h, float16, H1_2, min, float16_infinity)
2955 DO_REDUCE(sve_fminv_s, float32, H1_4, min, float32_infinity)
2956 DO_REDUCE(sve_fminv_d, float64, , min, float64_infinity)
2958 DO_REDUCE(sve_fmaxv_h, float16, H1_2, max, float16_chs(float16_infinity))
2959 DO_REDUCE(sve_fmaxv_s, float32, H1_4, max, float32_chs(float32_infinity))
2960 DO_REDUCE(sve_fmaxv_d, float64, , max, float64_chs(float64_infinity))
2962 #undef DO_REDUCE
2964 uint64_t HELPER(sve_fadda_h)(uint64_t nn, void *vm, void *vg,
2965 void *status, uint32_t desc)
2967 intptr_t i = 0, opr_sz = simd_oprsz(desc);
2968 float16 result = nn;
2970 do {
2971 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
2972 do {
2973 if (pg & 1) {
2974 float16 mm = *(float16 *)(vm + H1_2(i));
2975 result = float16_add(result, mm, status);
2977 i += sizeof(float16), pg >>= sizeof(float16);
2978 } while (i & 15);
2979 } while (i < opr_sz);
2981 return result;
2984 uint64_t HELPER(sve_fadda_s)(uint64_t nn, void *vm, void *vg,
2985 void *status, uint32_t desc)
2987 intptr_t i = 0, opr_sz = simd_oprsz(desc);
2988 float32 result = nn;
2990 do {
2991 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
2992 do {
2993 if (pg & 1) {
2994 float32 mm = *(float32 *)(vm + H1_2(i));
2995 result = float32_add(result, mm, status);
2997 i += sizeof(float32), pg >>= sizeof(float32);
2998 } while (i & 15);
2999 } while (i < opr_sz);
3001 return result;
3004 uint64_t HELPER(sve_fadda_d)(uint64_t nn, void *vm, void *vg,
3005 void *status, uint32_t desc)
3007 intptr_t i = 0, opr_sz = simd_oprsz(desc) / 8;
3008 uint64_t *m = vm;
3009 uint8_t *pg = vg;
3011 for (i = 0; i < opr_sz; i++) {
3012 if (pg[H1(i)] & 1) {
3013 nn = float64_add(nn, m[i], status);
3017 return nn;
3020 /* Fully general three-operand expander, controlled by a predicate,
3021 * With the extra float_status parameter.
3023 #define DO_ZPZZ_FP(NAME, TYPE, H, OP) \
3024 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \
3025 void *status, uint32_t desc) \
3027 intptr_t i = simd_oprsz(desc); \
3028 uint64_t *g = vg; \
3029 do { \
3030 uint64_t pg = g[(i - 1) >> 6]; \
3031 do { \
3032 i -= sizeof(TYPE); \
3033 if (likely((pg >> (i & 63)) & 1)) { \
3034 TYPE nn = *(TYPE *)(vn + H(i)); \
3035 TYPE mm = *(TYPE *)(vm + H(i)); \
3036 *(TYPE *)(vd + H(i)) = OP(nn, mm, status); \
3038 } while (i & 63); \
3039 } while (i != 0); \
3042 DO_ZPZZ_FP(sve_fadd_h, uint16_t, H1_2, float16_add)
3043 DO_ZPZZ_FP(sve_fadd_s, uint32_t, H1_4, float32_add)
3044 DO_ZPZZ_FP(sve_fadd_d, uint64_t, , float64_add)
3046 DO_ZPZZ_FP(sve_fsub_h, uint16_t, H1_2, float16_sub)
3047 DO_ZPZZ_FP(sve_fsub_s, uint32_t, H1_4, float32_sub)
3048 DO_ZPZZ_FP(sve_fsub_d, uint64_t, , float64_sub)
3050 DO_ZPZZ_FP(sve_fmul_h, uint16_t, H1_2, float16_mul)
3051 DO_ZPZZ_FP(sve_fmul_s, uint32_t, H1_4, float32_mul)
3052 DO_ZPZZ_FP(sve_fmul_d, uint64_t, , float64_mul)
3054 DO_ZPZZ_FP(sve_fdiv_h, uint16_t, H1_2, float16_div)
3055 DO_ZPZZ_FP(sve_fdiv_s, uint32_t, H1_4, float32_div)
3056 DO_ZPZZ_FP(sve_fdiv_d, uint64_t, , float64_div)
3058 DO_ZPZZ_FP(sve_fmin_h, uint16_t, H1_2, float16_min)
3059 DO_ZPZZ_FP(sve_fmin_s, uint32_t, H1_4, float32_min)
3060 DO_ZPZZ_FP(sve_fmin_d, uint64_t, , float64_min)
3062 DO_ZPZZ_FP(sve_fmax_h, uint16_t, H1_2, float16_max)
3063 DO_ZPZZ_FP(sve_fmax_s, uint32_t, H1_4, float32_max)
3064 DO_ZPZZ_FP(sve_fmax_d, uint64_t, , float64_max)
3066 DO_ZPZZ_FP(sve_fminnum_h, uint16_t, H1_2, float16_minnum)
3067 DO_ZPZZ_FP(sve_fminnum_s, uint32_t, H1_4, float32_minnum)
3068 DO_ZPZZ_FP(sve_fminnum_d, uint64_t, , float64_minnum)
3070 DO_ZPZZ_FP(sve_fmaxnum_h, uint16_t, H1_2, float16_maxnum)
3071 DO_ZPZZ_FP(sve_fmaxnum_s, uint32_t, H1_4, float32_maxnum)
3072 DO_ZPZZ_FP(sve_fmaxnum_d, uint64_t, , float64_maxnum)
3074 static inline float16 abd_h(float16 a, float16 b, float_status *s)
3076 return float16_abs(float16_sub(a, b, s));
3079 static inline float32 abd_s(float32 a, float32 b, float_status *s)
3081 return float32_abs(float32_sub(a, b, s));
3084 static inline float64 abd_d(float64 a, float64 b, float_status *s)
3086 return float64_abs(float64_sub(a, b, s));
3089 DO_ZPZZ_FP(sve_fabd_h, uint16_t, H1_2, abd_h)
3090 DO_ZPZZ_FP(sve_fabd_s, uint32_t, H1_4, abd_s)
3091 DO_ZPZZ_FP(sve_fabd_d, uint64_t, , abd_d)
3093 static inline float64 scalbn_d(float64 a, int64_t b, float_status *s)
3095 int b_int = MIN(MAX(b, INT_MIN), INT_MAX);
3096 return float64_scalbn(a, b_int, s);
3099 DO_ZPZZ_FP(sve_fscalbn_h, int16_t, H1_2, float16_scalbn)
3100 DO_ZPZZ_FP(sve_fscalbn_s, int32_t, H1_4, float32_scalbn)
3101 DO_ZPZZ_FP(sve_fscalbn_d, int64_t, , scalbn_d)
3103 DO_ZPZZ_FP(sve_fmulx_h, uint16_t, H1_2, helper_advsimd_mulxh)
3104 DO_ZPZZ_FP(sve_fmulx_s, uint32_t, H1_4, helper_vfp_mulxs)
3105 DO_ZPZZ_FP(sve_fmulx_d, uint64_t, , helper_vfp_mulxd)
3107 #undef DO_ZPZZ_FP
3109 /* Three-operand expander, with one scalar operand, controlled by
3110 * a predicate, with the extra float_status parameter.
3112 #define DO_ZPZS_FP(NAME, TYPE, H, OP) \
3113 void HELPER(NAME)(void *vd, void *vn, void *vg, uint64_t scalar, \
3114 void *status, uint32_t desc) \
3116 intptr_t i = simd_oprsz(desc); \
3117 uint64_t *g = vg; \
3118 TYPE mm = scalar; \
3119 do { \
3120 uint64_t pg = g[(i - 1) >> 6]; \
3121 do { \
3122 i -= sizeof(TYPE); \
3123 if (likely((pg >> (i & 63)) & 1)) { \
3124 TYPE nn = *(TYPE *)(vn + H(i)); \
3125 *(TYPE *)(vd + H(i)) = OP(nn, mm, status); \
3127 } while (i & 63); \
3128 } while (i != 0); \
3131 DO_ZPZS_FP(sve_fadds_h, float16, H1_2, float16_add)
3132 DO_ZPZS_FP(sve_fadds_s, float32, H1_4, float32_add)
3133 DO_ZPZS_FP(sve_fadds_d, float64, , float64_add)
3135 DO_ZPZS_FP(sve_fsubs_h, float16, H1_2, float16_sub)
3136 DO_ZPZS_FP(sve_fsubs_s, float32, H1_4, float32_sub)
3137 DO_ZPZS_FP(sve_fsubs_d, float64, , float64_sub)
3139 DO_ZPZS_FP(sve_fmuls_h, float16, H1_2, float16_mul)
3140 DO_ZPZS_FP(sve_fmuls_s, float32, H1_4, float32_mul)
3141 DO_ZPZS_FP(sve_fmuls_d, float64, , float64_mul)
3143 static inline float16 subr_h(float16 a, float16 b, float_status *s)
3145 return float16_sub(b, a, s);
3148 static inline float32 subr_s(float32 a, float32 b, float_status *s)
3150 return float32_sub(b, a, s);
3153 static inline float64 subr_d(float64 a, float64 b, float_status *s)
3155 return float64_sub(b, a, s);
3158 DO_ZPZS_FP(sve_fsubrs_h, float16, H1_2, subr_h)
3159 DO_ZPZS_FP(sve_fsubrs_s, float32, H1_4, subr_s)
3160 DO_ZPZS_FP(sve_fsubrs_d, float64, , subr_d)
3162 DO_ZPZS_FP(sve_fmaxnms_h, float16, H1_2, float16_maxnum)
3163 DO_ZPZS_FP(sve_fmaxnms_s, float32, H1_4, float32_maxnum)
3164 DO_ZPZS_FP(sve_fmaxnms_d, float64, , float64_maxnum)
3166 DO_ZPZS_FP(sve_fminnms_h, float16, H1_2, float16_minnum)
3167 DO_ZPZS_FP(sve_fminnms_s, float32, H1_4, float32_minnum)
3168 DO_ZPZS_FP(sve_fminnms_d, float64, , float64_minnum)
3170 DO_ZPZS_FP(sve_fmaxs_h, float16, H1_2, float16_max)
3171 DO_ZPZS_FP(sve_fmaxs_s, float32, H1_4, float32_max)
3172 DO_ZPZS_FP(sve_fmaxs_d, float64, , float64_max)
3174 DO_ZPZS_FP(sve_fmins_h, float16, H1_2, float16_min)
3175 DO_ZPZS_FP(sve_fmins_s, float32, H1_4, float32_min)
3176 DO_ZPZS_FP(sve_fmins_d, float64, , float64_min)
3178 /* Fully general two-operand expander, controlled by a predicate,
3179 * With the extra float_status parameter.
3181 #define DO_ZPZ_FP(NAME, TYPE, H, OP) \
3182 void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \
3184 intptr_t i = simd_oprsz(desc); \
3185 uint64_t *g = vg; \
3186 do { \
3187 uint64_t pg = g[(i - 1) >> 6]; \
3188 do { \
3189 i -= sizeof(TYPE); \
3190 if (likely((pg >> (i & 63)) & 1)) { \
3191 TYPE nn = *(TYPE *)(vn + H(i)); \
3192 *(TYPE *)(vd + H(i)) = OP(nn, status); \
3194 } while (i & 63); \
3195 } while (i != 0); \
3198 /* SVE fp16 conversions always use IEEE mode. Like AdvSIMD, they ignore
3199 * FZ16. When converting from fp16, this affects flushing input denormals;
3200 * when converting to fp16, this affects flushing output denormals.
3202 static inline float32 sve_f16_to_f32(float16 f, float_status *fpst)
3204 bool save = get_flush_inputs_to_zero(fpst);
3205 float32 ret;
3207 set_flush_inputs_to_zero(false, fpst);
3208 ret = float16_to_float32(f, true, fpst);
3209 set_flush_inputs_to_zero(save, fpst);
3210 return ret;
3213 static inline float64 sve_f16_to_f64(float16 f, float_status *fpst)
3215 bool save = get_flush_inputs_to_zero(fpst);
3216 float64 ret;
3218 set_flush_inputs_to_zero(false, fpst);
3219 ret = float16_to_float64(f, true, fpst);
3220 set_flush_inputs_to_zero(save, fpst);
3221 return ret;
3224 static inline float16 sve_f32_to_f16(float32 f, float_status *fpst)
3226 bool save = get_flush_to_zero(fpst);
3227 float16 ret;
3229 set_flush_to_zero(false, fpst);
3230 ret = float32_to_float16(f, true, fpst);
3231 set_flush_to_zero(save, fpst);
3232 return ret;
3235 static inline float16 sve_f64_to_f16(float64 f, float_status *fpst)
3237 bool save = get_flush_to_zero(fpst);
3238 float16 ret;
3240 set_flush_to_zero(false, fpst);
3241 ret = float64_to_float16(f, true, fpst);
3242 set_flush_to_zero(save, fpst);
3243 return ret;
3246 static inline int16_t vfp_float16_to_int16_rtz(float16 f, float_status *s)
3248 if (float16_is_any_nan(f)) {
3249 float_raise(float_flag_invalid, s);
3250 return 0;
3252 return float16_to_int16_round_to_zero(f, s);
3255 static inline int64_t vfp_float16_to_int64_rtz(float16 f, float_status *s)
3257 if (float16_is_any_nan(f)) {
3258 float_raise(float_flag_invalid, s);
3259 return 0;
3261 return float16_to_int64_round_to_zero(f, s);
3264 static inline int64_t vfp_float32_to_int64_rtz(float32 f, float_status *s)
3266 if (float32_is_any_nan(f)) {
3267 float_raise(float_flag_invalid, s);
3268 return 0;
3270 return float32_to_int64_round_to_zero(f, s);
3273 static inline int64_t vfp_float64_to_int64_rtz(float64 f, float_status *s)
3275 if (float64_is_any_nan(f)) {
3276 float_raise(float_flag_invalid, s);
3277 return 0;
3279 return float64_to_int64_round_to_zero(f, s);
3282 static inline uint16_t vfp_float16_to_uint16_rtz(float16 f, float_status *s)
3284 if (float16_is_any_nan(f)) {
3285 float_raise(float_flag_invalid, s);
3286 return 0;
3288 return float16_to_uint16_round_to_zero(f, s);
3291 static inline uint64_t vfp_float16_to_uint64_rtz(float16 f, float_status *s)
3293 if (float16_is_any_nan(f)) {
3294 float_raise(float_flag_invalid, s);
3295 return 0;
3297 return float16_to_uint64_round_to_zero(f, s);
3300 static inline uint64_t vfp_float32_to_uint64_rtz(float32 f, float_status *s)
3302 if (float32_is_any_nan(f)) {
3303 float_raise(float_flag_invalid, s);
3304 return 0;
3306 return float32_to_uint64_round_to_zero(f, s);
3309 static inline uint64_t vfp_float64_to_uint64_rtz(float64 f, float_status *s)
3311 if (float64_is_any_nan(f)) {
3312 float_raise(float_flag_invalid, s);
3313 return 0;
3315 return float64_to_uint64_round_to_zero(f, s);
3318 DO_ZPZ_FP(sve_fcvt_sh, uint32_t, H1_4, sve_f32_to_f16)
3319 DO_ZPZ_FP(sve_fcvt_hs, uint32_t, H1_4, sve_f16_to_f32)
3320 DO_ZPZ_FP(sve_fcvt_dh, uint64_t, , sve_f64_to_f16)
3321 DO_ZPZ_FP(sve_fcvt_hd, uint64_t, , sve_f16_to_f64)
3322 DO_ZPZ_FP(sve_fcvt_ds, uint64_t, , float64_to_float32)
3323 DO_ZPZ_FP(sve_fcvt_sd, uint64_t, , float32_to_float64)
3325 DO_ZPZ_FP(sve_fcvtzs_hh, uint16_t, H1_2, vfp_float16_to_int16_rtz)
3326 DO_ZPZ_FP(sve_fcvtzs_hs, uint32_t, H1_4, helper_vfp_tosizh)
3327 DO_ZPZ_FP(sve_fcvtzs_ss, uint32_t, H1_4, helper_vfp_tosizs)
3328 DO_ZPZ_FP(sve_fcvtzs_hd, uint64_t, , vfp_float16_to_int64_rtz)
3329 DO_ZPZ_FP(sve_fcvtzs_sd, uint64_t, , vfp_float32_to_int64_rtz)
3330 DO_ZPZ_FP(sve_fcvtzs_ds, uint64_t, , helper_vfp_tosizd)
3331 DO_ZPZ_FP(sve_fcvtzs_dd, uint64_t, , vfp_float64_to_int64_rtz)
3333 DO_ZPZ_FP(sve_fcvtzu_hh, uint16_t, H1_2, vfp_float16_to_uint16_rtz)
3334 DO_ZPZ_FP(sve_fcvtzu_hs, uint32_t, H1_4, helper_vfp_touizh)
3335 DO_ZPZ_FP(sve_fcvtzu_ss, uint32_t, H1_4, helper_vfp_touizs)
3336 DO_ZPZ_FP(sve_fcvtzu_hd, uint64_t, , vfp_float16_to_uint64_rtz)
3337 DO_ZPZ_FP(sve_fcvtzu_sd, uint64_t, , vfp_float32_to_uint64_rtz)
3338 DO_ZPZ_FP(sve_fcvtzu_ds, uint64_t, , helper_vfp_touizd)
3339 DO_ZPZ_FP(sve_fcvtzu_dd, uint64_t, , vfp_float64_to_uint64_rtz)
3341 DO_ZPZ_FP(sve_frint_h, uint16_t, H1_2, helper_advsimd_rinth)
3342 DO_ZPZ_FP(sve_frint_s, uint32_t, H1_4, helper_rints)
3343 DO_ZPZ_FP(sve_frint_d, uint64_t, , helper_rintd)
3345 DO_ZPZ_FP(sve_frintx_h, uint16_t, H1_2, float16_round_to_int)
3346 DO_ZPZ_FP(sve_frintx_s, uint32_t, H1_4, float32_round_to_int)
3347 DO_ZPZ_FP(sve_frintx_d, uint64_t, , float64_round_to_int)
3349 DO_ZPZ_FP(sve_frecpx_h, uint16_t, H1_2, helper_frecpx_f16)
3350 DO_ZPZ_FP(sve_frecpx_s, uint32_t, H1_4, helper_frecpx_f32)
3351 DO_ZPZ_FP(sve_frecpx_d, uint64_t, , helper_frecpx_f64)
3353 DO_ZPZ_FP(sve_fsqrt_h, uint16_t, H1_2, float16_sqrt)
3354 DO_ZPZ_FP(sve_fsqrt_s, uint32_t, H1_4, float32_sqrt)
3355 DO_ZPZ_FP(sve_fsqrt_d, uint64_t, , float64_sqrt)
3357 DO_ZPZ_FP(sve_scvt_hh, uint16_t, H1_2, int16_to_float16)
3358 DO_ZPZ_FP(sve_scvt_sh, uint32_t, H1_4, int32_to_float16)
3359 DO_ZPZ_FP(sve_scvt_ss, uint32_t, H1_4, int32_to_float32)
3360 DO_ZPZ_FP(sve_scvt_sd, uint64_t, , int32_to_float64)
3361 DO_ZPZ_FP(sve_scvt_dh, uint64_t, , int64_to_float16)
3362 DO_ZPZ_FP(sve_scvt_ds, uint64_t, , int64_to_float32)
3363 DO_ZPZ_FP(sve_scvt_dd, uint64_t, , int64_to_float64)
3365 DO_ZPZ_FP(sve_ucvt_hh, uint16_t, H1_2, uint16_to_float16)
3366 DO_ZPZ_FP(sve_ucvt_sh, uint32_t, H1_4, uint32_to_float16)
3367 DO_ZPZ_FP(sve_ucvt_ss, uint32_t, H1_4, uint32_to_float32)
3368 DO_ZPZ_FP(sve_ucvt_sd, uint64_t, , uint32_to_float64)
3369 DO_ZPZ_FP(sve_ucvt_dh, uint64_t, , uint64_to_float16)
3370 DO_ZPZ_FP(sve_ucvt_ds, uint64_t, , uint64_to_float32)
3371 DO_ZPZ_FP(sve_ucvt_dd, uint64_t, , uint64_to_float64)
3373 #undef DO_ZPZ_FP
3375 static void do_fmla_zpzzz_h(void *vd, void *vn, void *vm, void *va, void *vg,
3376 float_status *status, uint32_t desc,
3377 uint16_t neg1, uint16_t neg3)
3379 intptr_t i = simd_oprsz(desc);
3380 uint64_t *g = vg;
3382 do {
3383 uint64_t pg = g[(i - 1) >> 6];
3384 do {
3385 i -= 2;
3386 if (likely((pg >> (i & 63)) & 1)) {
3387 float16 e1, e2, e3, r;
3389 e1 = *(uint16_t *)(vn + H1_2(i)) ^ neg1;
3390 e2 = *(uint16_t *)(vm + H1_2(i));
3391 e3 = *(uint16_t *)(va + H1_2(i)) ^ neg3;
3392 r = float16_muladd(e1, e2, e3, 0, status);
3393 *(uint16_t *)(vd + H1_2(i)) = r;
3395 } while (i & 63);
3396 } while (i != 0);
3399 void HELPER(sve_fmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
3400 void *vg, void *status, uint32_t desc)
3402 do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0, 0);
3405 void HELPER(sve_fmls_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
3406 void *vg, void *status, uint32_t desc)
3408 do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0x8000, 0);
3411 void HELPER(sve_fnmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
3412 void *vg, void *status, uint32_t desc)
3414 do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0x8000, 0x8000);
3417 void HELPER(sve_fnmls_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
3418 void *vg, void *status, uint32_t desc)
3420 do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0, 0x8000);
3423 static void do_fmla_zpzzz_s(void *vd, void *vn, void *vm, void *va, void *vg,
3424 float_status *status, uint32_t desc,
3425 uint32_t neg1, uint32_t neg3)
3427 intptr_t i = simd_oprsz(desc);
3428 uint64_t *g = vg;
3430 do {
3431 uint64_t pg = g[(i - 1) >> 6];
3432 do {
3433 i -= 4;
3434 if (likely((pg >> (i & 63)) & 1)) {
3435 float32 e1, e2, e3, r;
3437 e1 = *(uint32_t *)(vn + H1_4(i)) ^ neg1;
3438 e2 = *(uint32_t *)(vm + H1_4(i));
3439 e3 = *(uint32_t *)(va + H1_4(i)) ^ neg3;
3440 r = float32_muladd(e1, e2, e3, 0, status);
3441 *(uint32_t *)(vd + H1_4(i)) = r;
3443 } while (i & 63);
3444 } while (i != 0);
3447 void HELPER(sve_fmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
3448 void *vg, void *status, uint32_t desc)
3450 do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0, 0);
3453 void HELPER(sve_fmls_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
3454 void *vg, void *status, uint32_t desc)
3456 do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0x80000000, 0);
3459 void HELPER(sve_fnmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
3460 void *vg, void *status, uint32_t desc)
3462 do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0x80000000, 0x80000000);
3465 void HELPER(sve_fnmls_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
3466 void *vg, void *status, uint32_t desc)
3468 do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0, 0x80000000);
3471 static void do_fmla_zpzzz_d(void *vd, void *vn, void *vm, void *va, void *vg,
3472 float_status *status, uint32_t desc,
3473 uint64_t neg1, uint64_t neg3)
3475 intptr_t i = simd_oprsz(desc);
3476 uint64_t *g = vg;
3478 do {
3479 uint64_t pg = g[(i - 1) >> 6];
3480 do {
3481 i -= 8;
3482 if (likely((pg >> (i & 63)) & 1)) {
3483 float64 e1, e2, e3, r;
3485 e1 = *(uint64_t *)(vn + i) ^ neg1;
3486 e2 = *(uint64_t *)(vm + i);
3487 e3 = *(uint64_t *)(va + i) ^ neg3;
3488 r = float64_muladd(e1, e2, e3, 0, status);
3489 *(uint64_t *)(vd + i) = r;
3491 } while (i & 63);
3492 } while (i != 0);
3495 void HELPER(sve_fmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
3496 void *vg, void *status, uint32_t desc)
3498 do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, 0, 0);
3501 void HELPER(sve_fmls_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
3502 void *vg, void *status, uint32_t desc)
3504 do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, INT64_MIN, 0);
3507 void HELPER(sve_fnmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
3508 void *vg, void *status, uint32_t desc)
3510 do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, INT64_MIN, INT64_MIN);
3513 void HELPER(sve_fnmls_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
3514 void *vg, void *status, uint32_t desc)
3516 do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, 0, INT64_MIN);
3519 /* Two operand floating-point comparison controlled by a predicate.
3520 * Unlike the integer version, we are not allowed to optimistically
3521 * compare operands, since the comparison may have side effects wrt
3522 * the FPSR.
3524 #define DO_FPCMP_PPZZ(NAME, TYPE, H, OP) \
3525 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \
3526 void *status, uint32_t desc) \
3528 intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \
3529 uint64_t *d = vd, *g = vg; \
3530 do { \
3531 uint64_t out = 0, pg = g[j]; \
3532 do { \
3533 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
3534 if (likely((pg >> (i & 63)) & 1)) { \
3535 TYPE nn = *(TYPE *)(vn + H(i)); \
3536 TYPE mm = *(TYPE *)(vm + H(i)); \
3537 out |= OP(TYPE, nn, mm, status); \
3539 } while (i & 63); \
3540 d[j--] = out; \
3541 } while (i > 0); \
3544 #define DO_FPCMP_PPZZ_H(NAME, OP) \
3545 DO_FPCMP_PPZZ(NAME##_h, float16, H1_2, OP)
3546 #define DO_FPCMP_PPZZ_S(NAME, OP) \
3547 DO_FPCMP_PPZZ(NAME##_s, float32, H1_4, OP)
3548 #define DO_FPCMP_PPZZ_D(NAME, OP) \
3549 DO_FPCMP_PPZZ(NAME##_d, float64, , OP)
3551 #define DO_FPCMP_PPZZ_ALL(NAME, OP) \
3552 DO_FPCMP_PPZZ_H(NAME, OP) \
3553 DO_FPCMP_PPZZ_S(NAME, OP) \
3554 DO_FPCMP_PPZZ_D(NAME, OP)
3556 #define DO_FCMGE(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) <= 0
3557 #define DO_FCMGT(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) < 0
3558 #define DO_FCMLE(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) <= 0
3559 #define DO_FCMLT(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) < 0
3560 #define DO_FCMEQ(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) == 0
3561 #define DO_FCMNE(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) != 0
3562 #define DO_FCMUO(TYPE, X, Y, ST) \
3563 TYPE##_compare_quiet(X, Y, ST) == float_relation_unordered
3564 #define DO_FACGE(TYPE, X, Y, ST) \
3565 TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) <= 0
3566 #define DO_FACGT(TYPE, X, Y, ST) \
3567 TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) < 0
3569 DO_FPCMP_PPZZ_ALL(sve_fcmge, DO_FCMGE)
3570 DO_FPCMP_PPZZ_ALL(sve_fcmgt, DO_FCMGT)
3571 DO_FPCMP_PPZZ_ALL(sve_fcmeq, DO_FCMEQ)
3572 DO_FPCMP_PPZZ_ALL(sve_fcmne, DO_FCMNE)
3573 DO_FPCMP_PPZZ_ALL(sve_fcmuo, DO_FCMUO)
3574 DO_FPCMP_PPZZ_ALL(sve_facge, DO_FACGE)
3575 DO_FPCMP_PPZZ_ALL(sve_facgt, DO_FACGT)
3577 #undef DO_FPCMP_PPZZ_ALL
3578 #undef DO_FPCMP_PPZZ_D
3579 #undef DO_FPCMP_PPZZ_S
3580 #undef DO_FPCMP_PPZZ_H
3581 #undef DO_FPCMP_PPZZ
3583 /* One operand floating-point comparison against zero, controlled
3584 * by a predicate.
3586 #define DO_FPCMP_PPZ0(NAME, TYPE, H, OP) \
3587 void HELPER(NAME)(void *vd, void *vn, void *vg, \
3588 void *status, uint32_t desc) \
3590 intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \
3591 uint64_t *d = vd, *g = vg; \
3592 do { \
3593 uint64_t out = 0, pg = g[j]; \
3594 do { \
3595 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
3596 if ((pg >> (i & 63)) & 1) { \
3597 TYPE nn = *(TYPE *)(vn + H(i)); \
3598 out |= OP(TYPE, nn, 0, status); \
3600 } while (i & 63); \
3601 d[j--] = out; \
3602 } while (i > 0); \
3605 #define DO_FPCMP_PPZ0_H(NAME, OP) \
3606 DO_FPCMP_PPZ0(NAME##_h, float16, H1_2, OP)
3607 #define DO_FPCMP_PPZ0_S(NAME, OP) \
3608 DO_FPCMP_PPZ0(NAME##_s, float32, H1_4, OP)
3609 #define DO_FPCMP_PPZ0_D(NAME, OP) \
3610 DO_FPCMP_PPZ0(NAME##_d, float64, , OP)
3612 #define DO_FPCMP_PPZ0_ALL(NAME, OP) \
3613 DO_FPCMP_PPZ0_H(NAME, OP) \
3614 DO_FPCMP_PPZ0_S(NAME, OP) \
3615 DO_FPCMP_PPZ0_D(NAME, OP)
3617 DO_FPCMP_PPZ0_ALL(sve_fcmge0, DO_FCMGE)
3618 DO_FPCMP_PPZ0_ALL(sve_fcmgt0, DO_FCMGT)
3619 DO_FPCMP_PPZ0_ALL(sve_fcmle0, DO_FCMLE)
3620 DO_FPCMP_PPZ0_ALL(sve_fcmlt0, DO_FCMLT)
3621 DO_FPCMP_PPZ0_ALL(sve_fcmeq0, DO_FCMEQ)
3622 DO_FPCMP_PPZ0_ALL(sve_fcmne0, DO_FCMNE)
3624 /* FP Trig Multiply-Add. */
3626 void HELPER(sve_ftmad_h)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
3628 static const float16 coeff[16] = {
3629 0x3c00, 0xb155, 0x2030, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
3630 0x3c00, 0xb800, 0x293a, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
3632 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float16);
3633 intptr_t x = simd_data(desc);
3634 float16 *d = vd, *n = vn, *m = vm;
3635 for (i = 0; i < opr_sz; i++) {
3636 float16 mm = m[i];
3637 intptr_t xx = x;
3638 if (float16_is_neg(mm)) {
3639 mm = float16_abs(mm);
3640 xx += 8;
3642 d[i] = float16_muladd(n[i], mm, coeff[xx], 0, vs);
3646 void HELPER(sve_ftmad_s)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
3648 static const float32 coeff[16] = {
3649 0x3f800000, 0xbe2aaaab, 0x3c088886, 0xb95008b9,
3650 0x36369d6d, 0x00000000, 0x00000000, 0x00000000,
3651 0x3f800000, 0xbf000000, 0x3d2aaaa6, 0xbab60705,
3652 0x37cd37cc, 0x00000000, 0x00000000, 0x00000000,
3654 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float32);
3655 intptr_t x = simd_data(desc);
3656 float32 *d = vd, *n = vn, *m = vm;
3657 for (i = 0; i < opr_sz; i++) {
3658 float32 mm = m[i];
3659 intptr_t xx = x;
3660 if (float32_is_neg(mm)) {
3661 mm = float32_abs(mm);
3662 xx += 8;
3664 d[i] = float32_muladd(n[i], mm, coeff[xx], 0, vs);
3668 void HELPER(sve_ftmad_d)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
3670 static const float64 coeff[16] = {
3671 0x3ff0000000000000ull, 0xbfc5555555555543ull,
3672 0x3f8111111110f30cull, 0xbf2a01a019b92fc6ull,
3673 0x3ec71de351f3d22bull, 0xbe5ae5e2b60f7b91ull,
3674 0x3de5d8408868552full, 0x0000000000000000ull,
3675 0x3ff0000000000000ull, 0xbfe0000000000000ull,
3676 0x3fa5555555555536ull, 0xbf56c16c16c13a0bull,
3677 0x3efa01a019b1e8d8ull, 0xbe927e4f7282f468ull,
3678 0x3e21ee96d2641b13ull, 0xbda8f76380fbb401ull,
3680 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float64);
3681 intptr_t x = simd_data(desc);
3682 float64 *d = vd, *n = vn, *m = vm;
3683 for (i = 0; i < opr_sz; i++) {
3684 float64 mm = m[i];
3685 intptr_t xx = x;
3686 if (float64_is_neg(mm)) {
3687 mm = float64_abs(mm);
3688 xx += 8;
3690 d[i] = float64_muladd(n[i], mm, coeff[xx], 0, vs);
3695 * FP Complex Add
3698 void HELPER(sve_fcadd_h)(void *vd, void *vn, void *vm, void *vg,
3699 void *vs, uint32_t desc)
3701 intptr_t j, i = simd_oprsz(desc);
3702 uint64_t *g = vg;
3703 float16 neg_imag = float16_set_sign(0, simd_data(desc));
3704 float16 neg_real = float16_chs(neg_imag);
3706 do {
3707 uint64_t pg = g[(i - 1) >> 6];
3708 do {
3709 float16 e0, e1, e2, e3;
3711 /* I holds the real index; J holds the imag index. */
3712 j = i - sizeof(float16);
3713 i -= 2 * sizeof(float16);
3715 e0 = *(float16 *)(vn + H1_2(i));
3716 e1 = *(float16 *)(vm + H1_2(j)) ^ neg_real;
3717 e2 = *(float16 *)(vn + H1_2(j));
3718 e3 = *(float16 *)(vm + H1_2(i)) ^ neg_imag;
3720 if (likely((pg >> (i & 63)) & 1)) {
3721 *(float16 *)(vd + H1_2(i)) = float16_add(e0, e1, vs);
3723 if (likely((pg >> (j & 63)) & 1)) {
3724 *(float16 *)(vd + H1_2(j)) = float16_add(e2, e3, vs);
3726 } while (i & 63);
3727 } while (i != 0);
3730 void HELPER(sve_fcadd_s)(void *vd, void *vn, void *vm, void *vg,
3731 void *vs, uint32_t desc)
3733 intptr_t j, i = simd_oprsz(desc);
3734 uint64_t *g = vg;
3735 float32 neg_imag = float32_set_sign(0, simd_data(desc));
3736 float32 neg_real = float32_chs(neg_imag);
3738 do {
3739 uint64_t pg = g[(i - 1) >> 6];
3740 do {
3741 float32 e0, e1, e2, e3;
3743 /* I holds the real index; J holds the imag index. */
3744 j = i - sizeof(float32);
3745 i -= 2 * sizeof(float32);
3747 e0 = *(float32 *)(vn + H1_2(i));
3748 e1 = *(float32 *)(vm + H1_2(j)) ^ neg_real;
3749 e2 = *(float32 *)(vn + H1_2(j));
3750 e3 = *(float32 *)(vm + H1_2(i)) ^ neg_imag;
3752 if (likely((pg >> (i & 63)) & 1)) {
3753 *(float32 *)(vd + H1_2(i)) = float32_add(e0, e1, vs);
3755 if (likely((pg >> (j & 63)) & 1)) {
3756 *(float32 *)(vd + H1_2(j)) = float32_add(e2, e3, vs);
3758 } while (i & 63);
3759 } while (i != 0);
3762 void HELPER(sve_fcadd_d)(void *vd, void *vn, void *vm, void *vg,
3763 void *vs, uint32_t desc)
3765 intptr_t j, i = simd_oprsz(desc);
3766 uint64_t *g = vg;
3767 float64 neg_imag = float64_set_sign(0, simd_data(desc));
3768 float64 neg_real = float64_chs(neg_imag);
3770 do {
3771 uint64_t pg = g[(i - 1) >> 6];
3772 do {
3773 float64 e0, e1, e2, e3;
3775 /* I holds the real index; J holds the imag index. */
3776 j = i - sizeof(float64);
3777 i -= 2 * sizeof(float64);
3779 e0 = *(float64 *)(vn + H1_2(i));
3780 e1 = *(float64 *)(vm + H1_2(j)) ^ neg_real;
3781 e2 = *(float64 *)(vn + H1_2(j));
3782 e3 = *(float64 *)(vm + H1_2(i)) ^ neg_imag;
3784 if (likely((pg >> (i & 63)) & 1)) {
3785 *(float64 *)(vd + H1_2(i)) = float64_add(e0, e1, vs);
3787 if (likely((pg >> (j & 63)) & 1)) {
3788 *(float64 *)(vd + H1_2(j)) = float64_add(e2, e3, vs);
3790 } while (i & 63);
3791 } while (i != 0);
3795 * FP Complex Multiply
3798 void HELPER(sve_fcmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
3799 void *vg, void *status, uint32_t desc)
3801 intptr_t j, i = simd_oprsz(desc);
3802 unsigned rot = simd_data(desc);
3803 bool flip = rot & 1;
3804 float16 neg_imag, neg_real;
3805 uint64_t *g = vg;
3807 neg_imag = float16_set_sign(0, (rot & 2) != 0);
3808 neg_real = float16_set_sign(0, rot == 1 || rot == 2);
3810 do {
3811 uint64_t pg = g[(i - 1) >> 6];
3812 do {
3813 float16 e1, e2, e3, e4, nr, ni, mr, mi, d;
3815 /* I holds the real index; J holds the imag index. */
3816 j = i - sizeof(float16);
3817 i -= 2 * sizeof(float16);
3819 nr = *(float16 *)(vn + H1_2(i));
3820 ni = *(float16 *)(vn + H1_2(j));
3821 mr = *(float16 *)(vm + H1_2(i));
3822 mi = *(float16 *)(vm + H1_2(j));
3824 e2 = (flip ? ni : nr);
3825 e1 = (flip ? mi : mr) ^ neg_real;
3826 e4 = e2;
3827 e3 = (flip ? mr : mi) ^ neg_imag;
3829 if (likely((pg >> (i & 63)) & 1)) {
3830 d = *(float16 *)(va + H1_2(i));
3831 d = float16_muladd(e2, e1, d, 0, status);
3832 *(float16 *)(vd + H1_2(i)) = d;
3834 if (likely((pg >> (j & 63)) & 1)) {
3835 d = *(float16 *)(va + H1_2(j));
3836 d = float16_muladd(e4, e3, d, 0, status);
3837 *(float16 *)(vd + H1_2(j)) = d;
3839 } while (i & 63);
3840 } while (i != 0);
3843 void HELPER(sve_fcmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
3844 void *vg, void *status, uint32_t desc)
3846 intptr_t j, i = simd_oprsz(desc);
3847 unsigned rot = simd_data(desc);
3848 bool flip = rot & 1;
3849 float32 neg_imag, neg_real;
3850 uint64_t *g = vg;
3852 neg_imag = float32_set_sign(0, (rot & 2) != 0);
3853 neg_real = float32_set_sign(0, rot == 1 || rot == 2);
3855 do {
3856 uint64_t pg = g[(i - 1) >> 6];
3857 do {
3858 float32 e1, e2, e3, e4, nr, ni, mr, mi, d;
3860 /* I holds the real index; J holds the imag index. */
3861 j = i - sizeof(float32);
3862 i -= 2 * sizeof(float32);
3864 nr = *(float32 *)(vn + H1_2(i));
3865 ni = *(float32 *)(vn + H1_2(j));
3866 mr = *(float32 *)(vm + H1_2(i));
3867 mi = *(float32 *)(vm + H1_2(j));
3869 e2 = (flip ? ni : nr);
3870 e1 = (flip ? mi : mr) ^ neg_real;
3871 e4 = e2;
3872 e3 = (flip ? mr : mi) ^ neg_imag;
3874 if (likely((pg >> (i & 63)) & 1)) {
3875 d = *(float32 *)(va + H1_2(i));
3876 d = float32_muladd(e2, e1, d, 0, status);
3877 *(float32 *)(vd + H1_2(i)) = d;
3879 if (likely((pg >> (j & 63)) & 1)) {
3880 d = *(float32 *)(va + H1_2(j));
3881 d = float32_muladd(e4, e3, d, 0, status);
3882 *(float32 *)(vd + H1_2(j)) = d;
3884 } while (i & 63);
3885 } while (i != 0);
3888 void HELPER(sve_fcmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
3889 void *vg, void *status, uint32_t desc)
3891 intptr_t j, i = simd_oprsz(desc);
3892 unsigned rot = simd_data(desc);
3893 bool flip = rot & 1;
3894 float64 neg_imag, neg_real;
3895 uint64_t *g = vg;
3897 neg_imag = float64_set_sign(0, (rot & 2) != 0);
3898 neg_real = float64_set_sign(0, rot == 1 || rot == 2);
3900 do {
3901 uint64_t pg = g[(i - 1) >> 6];
3902 do {
3903 float64 e1, e2, e3, e4, nr, ni, mr, mi, d;
3905 /* I holds the real index; J holds the imag index. */
3906 j = i - sizeof(float64);
3907 i -= 2 * sizeof(float64);
3909 nr = *(float64 *)(vn + H1_2(i));
3910 ni = *(float64 *)(vn + H1_2(j));
3911 mr = *(float64 *)(vm + H1_2(i));
3912 mi = *(float64 *)(vm + H1_2(j));
3914 e2 = (flip ? ni : nr);
3915 e1 = (flip ? mi : mr) ^ neg_real;
3916 e4 = e2;
3917 e3 = (flip ? mr : mi) ^ neg_imag;
3919 if (likely((pg >> (i & 63)) & 1)) {
3920 d = *(float64 *)(va + H1_2(i));
3921 d = float64_muladd(e2, e1, d, 0, status);
3922 *(float64 *)(vd + H1_2(i)) = d;
3924 if (likely((pg >> (j & 63)) & 1)) {
3925 d = *(float64 *)(va + H1_2(j));
3926 d = float64_muladd(e4, e3, d, 0, status);
3927 *(float64 *)(vd + H1_2(j)) = d;
3929 } while (i & 63);
3930 } while (i != 0);
3934 * Load contiguous data, protected by a governing predicate.
3938 * Load one element into @vd + @reg_off from @host.
3939 * The controlling predicate is known to be true.
3941 typedef void sve_ldst1_host_fn(void *vd, intptr_t reg_off, void *host);
3944 * Load one element into @vd + @reg_off from (@env, @vaddr, @ra).
3945 * The controlling predicate is known to be true.
3947 typedef void sve_ldst1_tlb_fn(CPUARMState *env, void *vd, intptr_t reg_off,
3948 target_ulong vaddr, uintptr_t retaddr);
3951 * Generate the above primitives.
3954 #define DO_LD_HOST(NAME, H, TYPEE, TYPEM, HOST) \
3955 static void sve_##NAME##_host(void *vd, intptr_t reg_off, void *host) \
3957 TYPEM val = HOST(host); \
3958 *(TYPEE *)(vd + H(reg_off)) = val; \
3961 #define DO_ST_HOST(NAME, H, TYPEE, TYPEM, HOST) \
3962 static void sve_##NAME##_host(void *vd, intptr_t reg_off, void *host) \
3963 { HOST(host, (TYPEM)*(TYPEE *)(vd + H(reg_off))); }
3965 #define DO_LD_TLB(NAME, H, TYPEE, TYPEM, TLB) \
3966 static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \
3967 target_ulong addr, uintptr_t ra) \
3969 *(TYPEE *)(vd + H(reg_off)) = (TYPEM)TLB(env, addr, ra); \
3972 #define DO_ST_TLB(NAME, H, TYPEE, TYPEM, TLB) \
3973 static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \
3974 target_ulong addr, uintptr_t ra) \
3976 TLB(env, addr, (TYPEM)*(TYPEE *)(vd + H(reg_off)), ra); \
3979 #define DO_LD_PRIM_1(NAME, H, TE, TM) \
3980 DO_LD_HOST(NAME, H, TE, TM, ldub_p) \
3981 DO_LD_TLB(NAME, H, TE, TM, cpu_ldub_data_ra)
3983 DO_LD_PRIM_1(ld1bb, H1, uint8_t, uint8_t)
3984 DO_LD_PRIM_1(ld1bhu, H1_2, uint16_t, uint8_t)
3985 DO_LD_PRIM_1(ld1bhs, H1_2, uint16_t, int8_t)
3986 DO_LD_PRIM_1(ld1bsu, H1_4, uint32_t, uint8_t)
3987 DO_LD_PRIM_1(ld1bss, H1_4, uint32_t, int8_t)
3988 DO_LD_PRIM_1(ld1bdu, , uint64_t, uint8_t)
3989 DO_LD_PRIM_1(ld1bds, , uint64_t, int8_t)
3991 #define DO_ST_PRIM_1(NAME, H, TE, TM) \
3992 DO_ST_HOST(st1##NAME, H, TE, TM, stb_p) \
3993 DO_ST_TLB(st1##NAME, H, TE, TM, cpu_stb_data_ra)
3995 DO_ST_PRIM_1(bb, H1, uint8_t, uint8_t)
3996 DO_ST_PRIM_1(bh, H1_2, uint16_t, uint8_t)
3997 DO_ST_PRIM_1(bs, H1_4, uint32_t, uint8_t)
3998 DO_ST_PRIM_1(bd, , uint64_t, uint8_t)
4000 #define DO_LD_PRIM_2(NAME, H, TE, TM, LD) \
4001 DO_LD_HOST(ld1##NAME##_be, H, TE, TM, LD##_be_p) \
4002 DO_LD_HOST(ld1##NAME##_le, H, TE, TM, LD##_le_p) \
4003 DO_LD_TLB(ld1##NAME##_be, H, TE, TM, cpu_##LD##_be_data_ra) \
4004 DO_LD_TLB(ld1##NAME##_le, H, TE, TM, cpu_##LD##_le_data_ra)
4006 #define DO_ST_PRIM_2(NAME, H, TE, TM, ST) \
4007 DO_ST_HOST(st1##NAME##_be, H, TE, TM, ST##_be_p) \
4008 DO_ST_HOST(st1##NAME##_le, H, TE, TM, ST##_le_p) \
4009 DO_ST_TLB(st1##NAME##_be, H, TE, TM, cpu_##ST##_be_data_ra) \
4010 DO_ST_TLB(st1##NAME##_le, H, TE, TM, cpu_##ST##_le_data_ra)
4012 DO_LD_PRIM_2(hh, H1_2, uint16_t, uint16_t, lduw)
4013 DO_LD_PRIM_2(hsu, H1_4, uint32_t, uint16_t, lduw)
4014 DO_LD_PRIM_2(hss, H1_4, uint32_t, int16_t, lduw)
4015 DO_LD_PRIM_2(hdu, , uint64_t, uint16_t, lduw)
4016 DO_LD_PRIM_2(hds, , uint64_t, int16_t, lduw)
4018 DO_ST_PRIM_2(hh, H1_2, uint16_t, uint16_t, stw)
4019 DO_ST_PRIM_2(hs, H1_4, uint32_t, uint16_t, stw)
4020 DO_ST_PRIM_2(hd, , uint64_t, uint16_t, stw)
4022 DO_LD_PRIM_2(ss, H1_4, uint32_t, uint32_t, ldl)
4023 DO_LD_PRIM_2(sdu, , uint64_t, uint32_t, ldl)
4024 DO_LD_PRIM_2(sds, , uint64_t, int32_t, ldl)
4026 DO_ST_PRIM_2(ss, H1_4, uint32_t, uint32_t, stl)
4027 DO_ST_PRIM_2(sd, , uint64_t, uint32_t, stl)
4029 DO_LD_PRIM_2(dd, , uint64_t, uint64_t, ldq)
4030 DO_ST_PRIM_2(dd, , uint64_t, uint64_t, stq)
4032 #undef DO_LD_TLB
4033 #undef DO_ST_TLB
4034 #undef DO_LD_HOST
4035 #undef DO_LD_PRIM_1
4036 #undef DO_ST_PRIM_1
4037 #undef DO_LD_PRIM_2
4038 #undef DO_ST_PRIM_2
4041 * Skip through a sequence of inactive elements in the guarding predicate @vg,
4042 * beginning at @reg_off bounded by @reg_max. Return the offset of the active
4043 * element >= @reg_off, or @reg_max if there were no active elements at all.
4045 static intptr_t find_next_active(uint64_t *vg, intptr_t reg_off,
4046 intptr_t reg_max, int esz)
4048 uint64_t pg_mask = pred_esz_masks[esz];
4049 uint64_t pg = (vg[reg_off >> 6] & pg_mask) >> (reg_off & 63);
4051 /* In normal usage, the first element is active. */
4052 if (likely(pg & 1)) {
4053 return reg_off;
4056 if (pg == 0) {
4057 reg_off &= -64;
4058 do {
4059 reg_off += 64;
4060 if (unlikely(reg_off >= reg_max)) {
4061 /* The entire predicate was false. */
4062 return reg_max;
4064 pg = vg[reg_off >> 6] & pg_mask;
4065 } while (pg == 0);
4067 reg_off += ctz64(pg);
4069 /* We should never see an out of range predicate bit set. */
4070 tcg_debug_assert(reg_off < reg_max);
4071 return reg_off;
4075 * Resolve the guest virtual address to info->host and info->flags.
4076 * If @nofault, return false if the page is invalid, otherwise
4077 * exit via page fault exception.
4080 typedef struct {
4081 void *host;
4082 int flags;
4083 MemTxAttrs attrs;
4084 } SVEHostPage;
4086 static bool sve_probe_page(SVEHostPage *info, bool nofault,
4087 CPUARMState *env, target_ulong addr,
4088 int mem_off, MMUAccessType access_type,
4089 int mmu_idx, uintptr_t retaddr)
4091 int flags;
4093 addr += mem_off;
4094 flags = probe_access_flags(env, addr, access_type, mmu_idx, nofault,
4095 &info->host, retaddr);
4096 info->flags = flags;
4098 if (flags & TLB_INVALID_MASK) {
4099 g_assert(nofault);
4100 return false;
4103 /* Ensure that info->host[] is relative to addr, not addr + mem_off. */
4104 info->host -= mem_off;
4106 #ifdef CONFIG_USER_ONLY
4107 memset(&info->attrs, 0, sizeof(info->attrs));
4108 #else
4110 * Find the iotlbentry for addr and return the transaction attributes.
4111 * This *must* be present in the TLB because we just found the mapping.
4114 uintptr_t index = tlb_index(env, mmu_idx, addr);
4116 # ifdef CONFIG_DEBUG_TCG
4117 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
4118 target_ulong comparator = (access_type == MMU_DATA_LOAD
4119 ? entry->addr_read
4120 : tlb_addr_write(entry));
4121 g_assert(tlb_hit(comparator, addr));
4122 # endif
4124 CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
4125 info->attrs = iotlbentry->attrs;
4127 #endif
4129 return true;
4134 * Analyse contiguous data, protected by a governing predicate.
4137 typedef enum {
4138 FAULT_NO,
4139 FAULT_FIRST,
4140 FAULT_ALL,
4141 } SVEContFault;
4143 typedef struct {
4145 * First and last element wholly contained within the two pages.
4146 * mem_off_first[0] and reg_off_first[0] are always set >= 0.
4147 * reg_off_last[0] may be < 0 if the first element crosses pages.
4148 * All of mem_off_first[1], reg_off_first[1] and reg_off_last[1]
4149 * are set >= 0 only if there are complete elements on a second page.
4151 * The reg_off_* offsets are relative to the internal vector register.
4152 * The mem_off_first offset is relative to the memory address; the
4153 * two offsets are different when a load operation extends, a store
4154 * operation truncates, or for multi-register operations.
4156 int16_t mem_off_first[2];
4157 int16_t reg_off_first[2];
4158 int16_t reg_off_last[2];
4161 * One element that is misaligned and spans both pages,
4162 * or -1 if there is no such active element.
4164 int16_t mem_off_split;
4165 int16_t reg_off_split;
4168 * The byte offset at which the entire operation crosses a page boundary.
4169 * Set >= 0 if and only if the entire operation spans two pages.
4171 int16_t page_split;
4173 /* TLB data for the two pages. */
4174 SVEHostPage page[2];
4175 } SVEContLdSt;
4178 * Find first active element on each page, and a loose bound for the
4179 * final element on each page. Identify any single element that spans
4180 * the page boundary. Return true if there are any active elements.
4182 static bool sve_cont_ldst_elements(SVEContLdSt *info, target_ulong addr,
4183 uint64_t *vg, intptr_t reg_max,
4184 int esz, int msize)
4186 const int esize = 1 << esz;
4187 const uint64_t pg_mask = pred_esz_masks[esz];
4188 intptr_t reg_off_first = -1, reg_off_last = -1, reg_off_split;
4189 intptr_t mem_off_last, mem_off_split;
4190 intptr_t page_split, elt_split;
4191 intptr_t i;
4193 /* Set all of the element indices to -1, and the TLB data to 0. */
4194 memset(info, -1, offsetof(SVEContLdSt, page));
4195 memset(info->page, 0, sizeof(info->page));
4197 /* Gross scan over the entire predicate to find bounds. */
4198 i = 0;
4199 do {
4200 uint64_t pg = vg[i] & pg_mask;
4201 if (pg) {
4202 reg_off_last = i * 64 + 63 - clz64(pg);
4203 if (reg_off_first < 0) {
4204 reg_off_first = i * 64 + ctz64(pg);
4207 } while (++i * 64 < reg_max);
4209 if (unlikely(reg_off_first < 0)) {
4210 /* No active elements, no pages touched. */
4211 return false;
4213 tcg_debug_assert(reg_off_last >= 0 && reg_off_last < reg_max);
4215 info->reg_off_first[0] = reg_off_first;
4216 info->mem_off_first[0] = (reg_off_first >> esz) * msize;
4217 mem_off_last = (reg_off_last >> esz) * msize;
4219 page_split = -(addr | TARGET_PAGE_MASK);
4220 if (likely(mem_off_last + msize <= page_split)) {
4221 /* The entire operation fits within a single page. */
4222 info->reg_off_last[0] = reg_off_last;
4223 return true;
4226 info->page_split = page_split;
4227 elt_split = page_split / msize;
4228 reg_off_split = elt_split << esz;
4229 mem_off_split = elt_split * msize;
4232 * This is the last full element on the first page, but it is not
4233 * necessarily active. If there is no full element, i.e. the first
4234 * active element is the one that's split, this value remains -1.
4235 * It is useful as iteration bounds.
4237 if (elt_split != 0) {
4238 info->reg_off_last[0] = reg_off_split - esize;
4241 /* Determine if an unaligned element spans the pages. */
4242 if (page_split % msize != 0) {
4243 /* It is helpful to know if the split element is active. */
4244 if ((vg[reg_off_split >> 6] >> (reg_off_split & 63)) & 1) {
4245 info->reg_off_split = reg_off_split;
4246 info->mem_off_split = mem_off_split;
4248 if (reg_off_split == reg_off_last) {
4249 /* The page crossing element is last. */
4250 return true;
4253 reg_off_split += esize;
4254 mem_off_split += msize;
4258 * We do want the first active element on the second page, because
4259 * this may affect the address reported in an exception.
4261 reg_off_split = find_next_active(vg, reg_off_split, reg_max, esz);
4262 tcg_debug_assert(reg_off_split <= reg_off_last);
4263 info->reg_off_first[1] = reg_off_split;
4264 info->mem_off_first[1] = (reg_off_split >> esz) * msize;
4265 info->reg_off_last[1] = reg_off_last;
4266 return true;
4270 * Resolve the guest virtual addresses to info->page[].
4271 * Control the generation of page faults with @fault. Return false if
4272 * there is no work to do, which can only happen with @fault == FAULT_NO.
4274 static bool sve_cont_ldst_pages(SVEContLdSt *info, SVEContFault fault,
4275 CPUARMState *env, target_ulong addr,
4276 MMUAccessType access_type, uintptr_t retaddr)
4278 int mmu_idx = cpu_mmu_index(env, false);
4279 int mem_off = info->mem_off_first[0];
4280 bool nofault = fault == FAULT_NO;
4281 bool have_work = true;
4283 if (!sve_probe_page(&info->page[0], nofault, env, addr, mem_off,
4284 access_type, mmu_idx, retaddr)) {
4285 /* No work to be done. */
4286 return false;
4289 if (likely(info->page_split < 0)) {
4290 /* The entire operation was on the one page. */
4291 return true;
4295 * If the second page is invalid, then we want the fault address to be
4296 * the first byte on that page which is accessed.
4298 if (info->mem_off_split >= 0) {
4300 * There is an element split across the pages. The fault address
4301 * should be the first byte of the second page.
4303 mem_off = info->page_split;
4305 * If the split element is also the first active element
4306 * of the vector, then: For first-fault we should continue
4307 * to generate faults for the second page. For no-fault,
4308 * we have work only if the second page is valid.
4310 if (info->mem_off_first[0] < info->mem_off_split) {
4311 nofault = FAULT_FIRST;
4312 have_work = false;
4314 } else {
4316 * There is no element split across the pages. The fault address
4317 * should be the first active element on the second page.
4319 mem_off = info->mem_off_first[1];
4321 * There must have been one active element on the first page,
4322 * so we're out of first-fault territory.
4324 nofault = fault != FAULT_ALL;
4327 have_work |= sve_probe_page(&info->page[1], nofault, env, addr, mem_off,
4328 access_type, mmu_idx, retaddr);
4329 return have_work;
4332 static void sve_cont_ldst_watchpoints(SVEContLdSt *info, CPUARMState *env,
4333 uint64_t *vg, target_ulong addr,
4334 int esize, int msize, int wp_access,
4335 uintptr_t retaddr)
4337 #ifndef CONFIG_USER_ONLY
4338 intptr_t mem_off, reg_off, reg_last;
4339 int flags0 = info->page[0].flags;
4340 int flags1 = info->page[1].flags;
4342 if (likely(!((flags0 | flags1) & TLB_WATCHPOINT))) {
4343 return;
4346 /* Indicate that watchpoints are handled. */
4347 info->page[0].flags = flags0 & ~TLB_WATCHPOINT;
4348 info->page[1].flags = flags1 & ~TLB_WATCHPOINT;
4350 if (flags0 & TLB_WATCHPOINT) {
4351 mem_off = info->mem_off_first[0];
4352 reg_off = info->reg_off_first[0];
4353 reg_last = info->reg_off_last[0];
4355 while (reg_off <= reg_last) {
4356 uint64_t pg = vg[reg_off >> 6];
4357 do {
4358 if ((pg >> (reg_off & 63)) & 1) {
4359 cpu_check_watchpoint(env_cpu(env), addr + mem_off,
4360 msize, info->page[0].attrs,
4361 wp_access, retaddr);
4363 reg_off += esize;
4364 mem_off += msize;
4365 } while (reg_off <= reg_last && (reg_off & 63));
4369 mem_off = info->mem_off_split;
4370 if (mem_off >= 0) {
4371 cpu_check_watchpoint(env_cpu(env), addr + mem_off, msize,
4372 info->page[0].attrs, wp_access, retaddr);
4375 mem_off = info->mem_off_first[1];
4376 if ((flags1 & TLB_WATCHPOINT) && mem_off >= 0) {
4377 reg_off = info->reg_off_first[1];
4378 reg_last = info->reg_off_last[1];
4380 do {
4381 uint64_t pg = vg[reg_off >> 6];
4382 do {
4383 if ((pg >> (reg_off & 63)) & 1) {
4384 cpu_check_watchpoint(env_cpu(env), addr + mem_off,
4385 msize, info->page[1].attrs,
4386 wp_access, retaddr);
4388 reg_off += esize;
4389 mem_off += msize;
4390 } while (reg_off & 63);
4391 } while (reg_off <= reg_last);
4393 #endif
4397 * Common helper for all contiguous 1,2,3,4-register predicated stores.
4399 static inline QEMU_ALWAYS_INLINE
4400 void sve_ldN_r(CPUARMState *env, uint64_t *vg, const target_ulong addr,
4401 uint32_t desc, const uintptr_t retaddr,
4402 const int esz, const int msz, const int N,
4403 sve_ldst1_host_fn *host_fn,
4404 sve_ldst1_tlb_fn *tlb_fn)
4406 const unsigned rd = simd_data(desc);
4407 const intptr_t reg_max = simd_oprsz(desc);
4408 intptr_t reg_off, reg_last, mem_off;
4409 SVEContLdSt info;
4410 void *host;
4411 int flags, i;
4413 /* Find the active elements. */
4414 if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, N << msz)) {
4415 /* The entire predicate was false; no load occurs. */
4416 for (i = 0; i < N; ++i) {
4417 memset(&env->vfp.zregs[(rd + i) & 31], 0, reg_max);
4419 return;
4422 /* Probe the page(s). Exit with exception for any invalid page. */
4423 sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_LOAD, retaddr);
4425 /* Handle watchpoints for all active elements. */
4426 sve_cont_ldst_watchpoints(&info, env, vg, addr, 1 << esz, N << msz,
4427 BP_MEM_READ, retaddr);
4429 /* TODO: MTE check. */
4431 flags = info.page[0].flags | info.page[1].flags;
4432 if (unlikely(flags != 0)) {
4433 #ifdef CONFIG_USER_ONLY
4434 g_assert_not_reached();
4435 #else
4437 * At least one page includes MMIO.
4438 * Any bus operation can fail with cpu_transaction_failed,
4439 * which for ARM will raise SyncExternal. Perform the load
4440 * into scratch memory to preserve register state until the end.
4442 ARMVectorReg scratch[4] = { };
4444 mem_off = info.mem_off_first[0];
4445 reg_off = info.reg_off_first[0];
4446 reg_last = info.reg_off_last[1];
4447 if (reg_last < 0) {
4448 reg_last = info.reg_off_split;
4449 if (reg_last < 0) {
4450 reg_last = info.reg_off_last[0];
4454 do {
4455 uint64_t pg = vg[reg_off >> 6];
4456 do {
4457 if ((pg >> (reg_off & 63)) & 1) {
4458 for (i = 0; i < N; ++i) {
4459 tlb_fn(env, &scratch[i], reg_off,
4460 addr + mem_off + (i << msz), retaddr);
4463 reg_off += 1 << esz;
4464 mem_off += N << msz;
4465 } while (reg_off & 63);
4466 } while (reg_off <= reg_last);
4468 for (i = 0; i < N; ++i) {
4469 memcpy(&env->vfp.zregs[(rd + i) & 31], &scratch[i], reg_max);
4471 return;
4472 #endif
4475 /* The entire operation is in RAM, on valid pages. */
4477 for (i = 0; i < N; ++i) {
4478 memset(&env->vfp.zregs[(rd + i) & 31], 0, reg_max);
4481 mem_off = info.mem_off_first[0];
4482 reg_off = info.reg_off_first[0];
4483 reg_last = info.reg_off_last[0];
4484 host = info.page[0].host;
4486 while (reg_off <= reg_last) {
4487 uint64_t pg = vg[reg_off >> 6];
4488 do {
4489 if ((pg >> (reg_off & 63)) & 1) {
4490 for (i = 0; i < N; ++i) {
4491 host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
4492 host + mem_off + (i << msz));
4495 reg_off += 1 << esz;
4496 mem_off += N << msz;
4497 } while (reg_off <= reg_last && (reg_off & 63));
4501 * Use the slow path to manage the cross-page misalignment.
4502 * But we know this is RAM and cannot trap.
4504 mem_off = info.mem_off_split;
4505 if (unlikely(mem_off >= 0)) {
4506 reg_off = info.reg_off_split;
4507 for (i = 0; i < N; ++i) {
4508 tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off,
4509 addr + mem_off + (i << msz), retaddr);
4513 mem_off = info.mem_off_first[1];
4514 if (unlikely(mem_off >= 0)) {
4515 reg_off = info.reg_off_first[1];
4516 reg_last = info.reg_off_last[1];
4517 host = info.page[1].host;
4519 do {
4520 uint64_t pg = vg[reg_off >> 6];
4521 do {
4522 if ((pg >> (reg_off & 63)) & 1) {
4523 for (i = 0; i < N; ++i) {
4524 host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
4525 host + mem_off + (i << msz));
4528 reg_off += 1 << esz;
4529 mem_off += N << msz;
4530 } while (reg_off & 63);
4531 } while (reg_off <= reg_last);
4535 #define DO_LD1_1(NAME, ESZ) \
4536 void HELPER(sve_##NAME##_r)(CPUARMState *env, void *vg, \
4537 target_ulong addr, uint32_t desc) \
4539 sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MO_8, 1, \
4540 sve_##NAME##_host, sve_##NAME##_tlb); \
4543 #define DO_LD1_2(NAME, ESZ, MSZ) \
4544 void HELPER(sve_##NAME##_le_r)(CPUARMState *env, void *vg, \
4545 target_ulong addr, uint32_t desc) \
4547 sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, \
4548 sve_##NAME##_le_host, sve_##NAME##_le_tlb); \
4550 void HELPER(sve_##NAME##_be_r)(CPUARMState *env, void *vg, \
4551 target_ulong addr, uint32_t desc) \
4553 sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, \
4554 sve_##NAME##_be_host, sve_##NAME##_be_tlb); \
4557 DO_LD1_1(ld1bb, MO_8)
4558 DO_LD1_1(ld1bhu, MO_16)
4559 DO_LD1_1(ld1bhs, MO_16)
4560 DO_LD1_1(ld1bsu, MO_32)
4561 DO_LD1_1(ld1bss, MO_32)
4562 DO_LD1_1(ld1bdu, MO_64)
4563 DO_LD1_1(ld1bds, MO_64)
4565 DO_LD1_2(ld1hh, MO_16, MO_16)
4566 DO_LD1_2(ld1hsu, MO_32, MO_16)
4567 DO_LD1_2(ld1hss, MO_32, MO_16)
4568 DO_LD1_2(ld1hdu, MO_64, MO_16)
4569 DO_LD1_2(ld1hds, MO_64, MO_16)
4571 DO_LD1_2(ld1ss, MO_32, MO_32)
4572 DO_LD1_2(ld1sdu, MO_64, MO_32)
4573 DO_LD1_2(ld1sds, MO_64, MO_32)
4575 DO_LD1_2(ld1dd, MO_64, MO_64)
4577 #undef DO_LD1_1
4578 #undef DO_LD1_2
4580 #define DO_LDN_1(N) \
4581 void HELPER(sve_ld##N##bb_r)(CPUARMState *env, void *vg, \
4582 target_ulong addr, uint32_t desc) \
4584 sve_ldN_r(env, vg, addr, desc, GETPC(), MO_8, MO_8, N, \
4585 sve_ld1bb_host, sve_ld1bb_tlb); \
4588 #define DO_LDN_2(N, SUFF, ESZ) \
4589 void HELPER(sve_ld##N##SUFF##_le_r)(CPUARMState *env, void *vg, \
4590 target_ulong addr, uint32_t desc) \
4592 sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, \
4593 sve_ld1##SUFF##_le_host, sve_ld1##SUFF##_le_tlb); \
4595 void HELPER(sve_ld##N##SUFF##_be_r)(CPUARMState *env, void *vg, \
4596 target_ulong addr, uint32_t desc) \
4598 sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, \
4599 sve_ld1##SUFF##_be_host, sve_ld1##SUFF##_be_tlb); \
4602 DO_LDN_1(2)
4603 DO_LDN_1(3)
4604 DO_LDN_1(4)
4606 DO_LDN_2(2, hh, MO_16)
4607 DO_LDN_2(3, hh, MO_16)
4608 DO_LDN_2(4, hh, MO_16)
4610 DO_LDN_2(2, ss, MO_32)
4611 DO_LDN_2(3, ss, MO_32)
4612 DO_LDN_2(4, ss, MO_32)
4614 DO_LDN_2(2, dd, MO_64)
4615 DO_LDN_2(3, dd, MO_64)
4616 DO_LDN_2(4, dd, MO_64)
4618 #undef DO_LDN_1
4619 #undef DO_LDN_2
4622 * Load contiguous data, first-fault and no-fault.
4624 * For user-only, one could argue that we should hold the mmap_lock during
4625 * the operation so that there is no race between page_check_range and the
4626 * load operation. However, unmapping pages out from under a running thread
4627 * is extraordinarily unlikely. This theoretical race condition also affects
4628 * linux-user/ in its get_user/put_user macros.
4630 * TODO: Construct some helpers, written in assembly, that interact with
4631 * handle_cpu_signal to produce memory ops which can properly report errors
4632 * without racing.
4635 /* Fault on byte I. All bits in FFR from I are cleared. The vector
4636 * result from I is CONSTRAINED UNPREDICTABLE; we choose the MERGE
4637 * option, which leaves subsequent data unchanged.
4639 static void record_fault(CPUARMState *env, uintptr_t i, uintptr_t oprsz)
4641 uint64_t *ffr = env->vfp.pregs[FFR_PRED_NUM].p;
4643 if (i & 63) {
4644 ffr[i / 64] &= MAKE_64BIT_MASK(0, i & 63);
4645 i = ROUND_UP(i, 64);
4647 for (; i < oprsz; i += 64) {
4648 ffr[i / 64] = 0;
4653 * Common helper for all contiguous no-fault and first-fault loads.
4655 static inline QEMU_ALWAYS_INLINE
4656 void sve_ldnfff1_r(CPUARMState *env, void *vg, const target_ulong addr,
4657 uint32_t desc, const uintptr_t retaddr,
4658 const int esz, const int msz, const SVEContFault fault,
4659 sve_ldst1_host_fn *host_fn,
4660 sve_ldst1_tlb_fn *tlb_fn)
4662 const unsigned rd = simd_data(desc);
4663 void *vd = &env->vfp.zregs[rd];
4664 const intptr_t reg_max = simd_oprsz(desc);
4665 intptr_t reg_off, mem_off, reg_last;
4666 SVEContLdSt info;
4667 int flags;
4668 void *host;
4670 /* Find the active elements. */
4671 if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, 1 << msz)) {
4672 /* The entire predicate was false; no load occurs. */
4673 memset(vd, 0, reg_max);
4674 return;
4676 reg_off = info.reg_off_first[0];
4678 /* Probe the page(s). */
4679 if (!sve_cont_ldst_pages(&info, fault, env, addr, MMU_DATA_LOAD, retaddr)) {
4680 /* Fault on first element. */
4681 tcg_debug_assert(fault == FAULT_NO);
4682 memset(vd, 0, reg_max);
4683 goto do_fault;
4686 mem_off = info.mem_off_first[0];
4687 flags = info.page[0].flags;
4689 if (fault == FAULT_FIRST) {
4691 * Special handling of the first active element,
4692 * if it crosses a page boundary or is MMIO.
4694 bool is_split = mem_off == info.mem_off_split;
4695 /* TODO: MTE check. */
4696 if (unlikely(flags != 0) || unlikely(is_split)) {
4698 * Use the slow path for cross-page handling.
4699 * Might trap for MMIO or watchpoints.
4701 tlb_fn(env, vd, reg_off, addr + mem_off, retaddr);
4703 /* After any fault, zero the other elements. */
4704 swap_memzero(vd, reg_off);
4705 reg_off += 1 << esz;
4706 mem_off += 1 << msz;
4707 swap_memzero(vd + reg_off, reg_max - reg_off);
4709 if (is_split) {
4710 goto second_page;
4712 } else {
4713 memset(vd, 0, reg_max);
4715 } else {
4716 memset(vd, 0, reg_max);
4717 if (unlikely(mem_off == info.mem_off_split)) {
4718 /* The first active element crosses a page boundary. */
4719 flags |= info.page[1].flags;
4720 if (unlikely(flags & TLB_MMIO)) {
4721 /* Some page is MMIO, see below. */
4722 goto do_fault;
4724 if (unlikely(flags & TLB_WATCHPOINT) &&
4725 (cpu_watchpoint_address_matches
4726 (env_cpu(env), addr + mem_off, 1 << msz)
4727 & BP_MEM_READ)) {
4728 /* Watchpoint hit, see below. */
4729 goto do_fault;
4731 /* TODO: MTE check. */
4733 * Use the slow path for cross-page handling.
4734 * This is RAM, without a watchpoint, and will not trap.
4736 tlb_fn(env, vd, reg_off, addr + mem_off, retaddr);
4737 goto second_page;
4742 * From this point on, all memory operations are MemSingleNF.
4744 * Per the MemSingleNF pseudocode, a no-fault load from Device memory
4745 * must not actually hit the bus -- it returns (UNKNOWN, FAULT) instead.
4747 * Unfortuately we do not have access to the memory attributes from the
4748 * PTE to tell Device memory from Normal memory. So we make a mostly
4749 * correct check, and indicate (UNKNOWN, FAULT) for any MMIO.
4750 * This gives the right answer for the common cases of "Normal memory,
4751 * backed by host RAM" and "Device memory, backed by MMIO".
4752 * The architecture allows us to suppress an NF load and return
4753 * (UNKNOWN, FAULT) for any reason, so our behaviour for the corner
4754 * case of "Normal memory, backed by MMIO" is permitted. The case we
4755 * get wrong is "Device memory, backed by host RAM", for which we
4756 * should return (UNKNOWN, FAULT) for but do not.
4758 * Similarly, CPU_BP breakpoints would raise exceptions, and so
4759 * return (UNKNOWN, FAULT). For simplicity, we consider gdb and
4760 * architectural breakpoints the same.
4762 if (unlikely(flags & TLB_MMIO)) {
4763 goto do_fault;
4766 reg_last = info.reg_off_last[0];
4767 host = info.page[0].host;
4769 do {
4770 uint64_t pg = *(uint64_t *)(vg + (reg_off >> 3));
4771 do {
4772 if ((pg >> (reg_off & 63)) & 1) {
4773 if (unlikely(flags & TLB_WATCHPOINT) &&
4774 (cpu_watchpoint_address_matches
4775 (env_cpu(env), addr + mem_off, 1 << msz)
4776 & BP_MEM_READ)) {
4777 goto do_fault;
4779 /* TODO: MTE check. */
4780 host_fn(vd, reg_off, host + mem_off);
4782 reg_off += 1 << esz;
4783 mem_off += 1 << msz;
4784 } while (reg_off <= reg_last && (reg_off & 63));
4785 } while (reg_off <= reg_last);
4788 * MemSingleNF is allowed to fail for any reason. We have special
4789 * code above to handle the first element crossing a page boundary.
4790 * As an implementation choice, decline to handle a cross-page element
4791 * in any other position.
4793 reg_off = info.reg_off_split;
4794 if (reg_off >= 0) {
4795 goto do_fault;
4798 second_page:
4799 reg_off = info.reg_off_first[1];
4800 if (likely(reg_off < 0)) {
4801 /* No active elements on the second page. All done. */
4802 return;
4806 * MemSingleNF is allowed to fail for any reason. As an implementation
4807 * choice, decline to handle elements on the second page. This should
4808 * be low frequency as the guest walks through memory -- the next
4809 * iteration of the guest's loop should be aligned on the page boundary,
4810 * and then all following iterations will stay aligned.
4813 do_fault:
4814 record_fault(env, reg_off, reg_max);
4817 #define DO_LDFF1_LDNF1_1(PART, ESZ) \
4818 void HELPER(sve_ldff1##PART##_r)(CPUARMState *env, void *vg, \
4819 target_ulong addr, uint32_t desc) \
4821 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), ESZ, MO_8, FAULT_FIRST, \
4822 sve_ld1##PART##_host, sve_ld1##PART##_tlb); \
4824 void HELPER(sve_ldnf1##PART##_r)(CPUARMState *env, void *vg, \
4825 target_ulong addr, uint32_t desc) \
4827 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), ESZ, MO_8, FAULT_NO, \
4828 sve_ld1##PART##_host, sve_ld1##PART##_tlb); \
4831 #define DO_LDFF1_LDNF1_2(PART, ESZ, MSZ) \
4832 void HELPER(sve_ldff1##PART##_le_r)(CPUARMState *env, void *vg, \
4833 target_ulong addr, uint32_t desc) \
4835 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_FIRST, \
4836 sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \
4838 void HELPER(sve_ldnf1##PART##_le_r)(CPUARMState *env, void *vg, \
4839 target_ulong addr, uint32_t desc) \
4841 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_NO, \
4842 sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \
4844 void HELPER(sve_ldff1##PART##_be_r)(CPUARMState *env, void *vg, \
4845 target_ulong addr, uint32_t desc) \
4847 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_FIRST, \
4848 sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \
4850 void HELPER(sve_ldnf1##PART##_be_r)(CPUARMState *env, void *vg, \
4851 target_ulong addr, uint32_t desc) \
4853 sve_ldnfff1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_NO, \
4854 sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \
4857 DO_LDFF1_LDNF1_1(bb, MO_8)
4858 DO_LDFF1_LDNF1_1(bhu, MO_16)
4859 DO_LDFF1_LDNF1_1(bhs, MO_16)
4860 DO_LDFF1_LDNF1_1(bsu, MO_32)
4861 DO_LDFF1_LDNF1_1(bss, MO_32)
4862 DO_LDFF1_LDNF1_1(bdu, MO_64)
4863 DO_LDFF1_LDNF1_1(bds, MO_64)
4865 DO_LDFF1_LDNF1_2(hh, MO_16, MO_16)
4866 DO_LDFF1_LDNF1_2(hsu, MO_32, MO_16)
4867 DO_LDFF1_LDNF1_2(hss, MO_32, MO_16)
4868 DO_LDFF1_LDNF1_2(hdu, MO_64, MO_16)
4869 DO_LDFF1_LDNF1_2(hds, MO_64, MO_16)
4871 DO_LDFF1_LDNF1_2(ss, MO_32, MO_32)
4872 DO_LDFF1_LDNF1_2(sdu, MO_64, MO_32)
4873 DO_LDFF1_LDNF1_2(sds, MO_64, MO_32)
4875 DO_LDFF1_LDNF1_2(dd, MO_64, MO_64)
4877 #undef DO_LDFF1_LDNF1_1
4878 #undef DO_LDFF1_LDNF1_2
4881 * Common helper for all contiguous 1,2,3,4-register predicated stores.
4884 static inline QEMU_ALWAYS_INLINE
4885 void sve_stN_r(CPUARMState *env, uint64_t *vg, target_ulong addr, uint32_t desc,
4886 const uintptr_t retaddr, const int esz,
4887 const int msz, const int N,
4888 sve_ldst1_host_fn *host_fn,
4889 sve_ldst1_tlb_fn *tlb_fn)
4891 const unsigned rd = simd_data(desc);
4892 const intptr_t reg_max = simd_oprsz(desc);
4893 intptr_t reg_off, reg_last, mem_off;
4894 SVEContLdSt info;
4895 void *host;
4896 int i, flags;
4898 /* Find the active elements. */
4899 if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, N << msz)) {
4900 /* The entire predicate was false; no store occurs. */
4901 return;
4904 /* Probe the page(s). Exit with exception for any invalid page. */
4905 sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_STORE, retaddr);
4907 /* Handle watchpoints for all active elements. */
4908 sve_cont_ldst_watchpoints(&info, env, vg, addr, 1 << esz, N << msz,
4909 BP_MEM_WRITE, retaddr);
4911 /* TODO: MTE check. */
4913 flags = info.page[0].flags | info.page[1].flags;
4914 if (unlikely(flags != 0)) {
4915 #ifdef CONFIG_USER_ONLY
4916 g_assert_not_reached();
4917 #else
4919 * At least one page includes MMIO.
4920 * Any bus operation can fail with cpu_transaction_failed,
4921 * which for ARM will raise SyncExternal. We cannot avoid
4922 * this fault and will leave with the store incomplete.
4924 mem_off = info.mem_off_first[0];
4925 reg_off = info.reg_off_first[0];
4926 reg_last = info.reg_off_last[1];
4927 if (reg_last < 0) {
4928 reg_last = info.reg_off_split;
4929 if (reg_last < 0) {
4930 reg_last = info.reg_off_last[0];
4934 do {
4935 uint64_t pg = vg[reg_off >> 6];
4936 do {
4937 if ((pg >> (reg_off & 63)) & 1) {
4938 for (i = 0; i < N; ++i) {
4939 tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off,
4940 addr + mem_off + (i << msz), retaddr);
4943 reg_off += 1 << esz;
4944 mem_off += N << msz;
4945 } while (reg_off & 63);
4946 } while (reg_off <= reg_last);
4947 return;
4948 #endif
4951 mem_off = info.mem_off_first[0];
4952 reg_off = info.reg_off_first[0];
4953 reg_last = info.reg_off_last[0];
4954 host = info.page[0].host;
4956 while (reg_off <= reg_last) {
4957 uint64_t pg = vg[reg_off >> 6];
4958 do {
4959 if ((pg >> (reg_off & 63)) & 1) {
4960 for (i = 0; i < N; ++i) {
4961 host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
4962 host + mem_off + (i << msz));
4965 reg_off += 1 << esz;
4966 mem_off += N << msz;
4967 } while (reg_off <= reg_last && (reg_off & 63));
4971 * Use the slow path to manage the cross-page misalignment.
4972 * But we know this is RAM and cannot trap.
4974 mem_off = info.mem_off_split;
4975 if (unlikely(mem_off >= 0)) {
4976 reg_off = info.reg_off_split;
4977 for (i = 0; i < N; ++i) {
4978 tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off,
4979 addr + mem_off + (i << msz), retaddr);
4983 mem_off = info.mem_off_first[1];
4984 if (unlikely(mem_off >= 0)) {
4985 reg_off = info.reg_off_first[1];
4986 reg_last = info.reg_off_last[1];
4987 host = info.page[1].host;
4989 do {
4990 uint64_t pg = vg[reg_off >> 6];
4991 do {
4992 if ((pg >> (reg_off & 63)) & 1) {
4993 for (i = 0; i < N; ++i) {
4994 host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
4995 host + mem_off + (i << msz));
4998 reg_off += 1 << esz;
4999 mem_off += N << msz;
5000 } while (reg_off & 63);
5001 } while (reg_off <= reg_last);
5005 #define DO_STN_1(N, NAME, ESZ) \
5006 void HELPER(sve_st##N##NAME##_r)(CPUARMState *env, void *vg, \
5007 target_ulong addr, uint32_t desc) \
5009 sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MO_8, N, \
5010 sve_st1##NAME##_host, sve_st1##NAME##_tlb); \
5013 #define DO_STN_2(N, NAME, ESZ, MSZ) \
5014 void HELPER(sve_st##N##NAME##_le_r)(CPUARMState *env, void *vg, \
5015 target_ulong addr, uint32_t desc) \
5017 sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, \
5018 sve_st1##NAME##_le_host, sve_st1##NAME##_le_tlb); \
5020 void HELPER(sve_st##N##NAME##_be_r)(CPUARMState *env, void *vg, \
5021 target_ulong addr, uint32_t desc) \
5023 sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, \
5024 sve_st1##NAME##_be_host, sve_st1##NAME##_be_tlb); \
5027 DO_STN_1(1, bb, MO_8)
5028 DO_STN_1(1, bh, MO_16)
5029 DO_STN_1(1, bs, MO_32)
5030 DO_STN_1(1, bd, MO_64)
5031 DO_STN_1(2, bb, MO_8)
5032 DO_STN_1(3, bb, MO_8)
5033 DO_STN_1(4, bb, MO_8)
5035 DO_STN_2(1, hh, MO_16, MO_16)
5036 DO_STN_2(1, hs, MO_32, MO_16)
5037 DO_STN_2(1, hd, MO_64, MO_16)
5038 DO_STN_2(2, hh, MO_16, MO_16)
5039 DO_STN_2(3, hh, MO_16, MO_16)
5040 DO_STN_2(4, hh, MO_16, MO_16)
5042 DO_STN_2(1, ss, MO_32, MO_32)
5043 DO_STN_2(1, sd, MO_64, MO_32)
5044 DO_STN_2(2, ss, MO_32, MO_32)
5045 DO_STN_2(3, ss, MO_32, MO_32)
5046 DO_STN_2(4, ss, MO_32, MO_32)
5048 DO_STN_2(1, dd, MO_64, MO_64)
5049 DO_STN_2(2, dd, MO_64, MO_64)
5050 DO_STN_2(3, dd, MO_64, MO_64)
5051 DO_STN_2(4, dd, MO_64, MO_64)
5053 #undef DO_STN_1
5054 #undef DO_STN_2
5057 * Loads with a vector index.
5061 * Load the element at @reg + @reg_ofs, sign or zero-extend as needed.
5063 typedef target_ulong zreg_off_fn(void *reg, intptr_t reg_ofs);
5065 static target_ulong off_zsu_s(void *reg, intptr_t reg_ofs)
5067 return *(uint32_t *)(reg + H1_4(reg_ofs));
5070 static target_ulong off_zss_s(void *reg, intptr_t reg_ofs)
5072 return *(int32_t *)(reg + H1_4(reg_ofs));
5075 static target_ulong off_zsu_d(void *reg, intptr_t reg_ofs)
5077 return (uint32_t)*(uint64_t *)(reg + reg_ofs);
5080 static target_ulong off_zss_d(void *reg, intptr_t reg_ofs)
5082 return (int32_t)*(uint64_t *)(reg + reg_ofs);
5085 static target_ulong off_zd_d(void *reg, intptr_t reg_ofs)
5087 return *(uint64_t *)(reg + reg_ofs);
5090 static inline QEMU_ALWAYS_INLINE
5091 void sve_ld1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
5092 target_ulong base, uint32_t desc, uintptr_t retaddr,
5093 int esize, int msize, zreg_off_fn *off_fn,
5094 sve_ldst1_host_fn *host_fn,
5095 sve_ldst1_tlb_fn *tlb_fn)
5097 const int mmu_idx = cpu_mmu_index(env, false);
5098 const intptr_t reg_max = simd_oprsz(desc);
5099 const int scale = simd_data(desc);
5100 ARMVectorReg scratch;
5101 intptr_t reg_off;
5102 SVEHostPage info, info2;
5104 memset(&scratch, 0, reg_max);
5105 reg_off = 0;
5106 do {
5107 uint64_t pg = vg[reg_off >> 6];
5108 do {
5109 if (likely(pg & 1)) {
5110 target_ulong addr = base + (off_fn(vm, reg_off) << scale);
5111 target_ulong in_page = -(addr | TARGET_PAGE_MASK);
5113 sve_probe_page(&info, false, env, addr, 0, MMU_DATA_LOAD,
5114 mmu_idx, retaddr);
5116 if (likely(in_page >= msize)) {
5117 if (unlikely(info.flags & TLB_WATCHPOINT)) {
5118 cpu_check_watchpoint(env_cpu(env), addr, msize,
5119 info.attrs, BP_MEM_READ, retaddr);
5121 /* TODO: MTE check */
5122 host_fn(&scratch, reg_off, info.host);
5123 } else {
5124 /* Element crosses the page boundary. */
5125 sve_probe_page(&info2, false, env, addr + in_page, 0,
5126 MMU_DATA_LOAD, mmu_idx, retaddr);
5127 if (unlikely((info.flags | info2.flags) & TLB_WATCHPOINT)) {
5128 cpu_check_watchpoint(env_cpu(env), addr,
5129 msize, info.attrs,
5130 BP_MEM_READ, retaddr);
5132 /* TODO: MTE check */
5133 tlb_fn(env, &scratch, reg_off, addr, retaddr);
5136 reg_off += esize;
5137 pg >>= esize;
5138 } while (reg_off & 63);
5139 } while (reg_off < reg_max);
5141 /* Wait until all exceptions have been raised to write back. */
5142 memcpy(vd, &scratch, reg_max);
5145 #define DO_LD1_ZPZ_S(MEM, OFS, MSZ) \
5146 void HELPER(sve_ld##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \
5147 void *vm, target_ulong base, uint32_t desc) \
5149 sve_ld1_z(env, vd, vg, vm, base, desc, GETPC(), 4, 1 << MSZ, \
5150 off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
5153 #define DO_LD1_ZPZ_D(MEM, OFS, MSZ) \
5154 void HELPER(sve_ld##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \
5155 void *vm, target_ulong base, uint32_t desc) \
5157 sve_ld1_z(env, vd, vg, vm, base, desc, GETPC(), 8, 1 << MSZ, \
5158 off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
5161 DO_LD1_ZPZ_S(bsu, zsu, MO_8)
5162 DO_LD1_ZPZ_S(bsu, zss, MO_8)
5163 DO_LD1_ZPZ_D(bdu, zsu, MO_8)
5164 DO_LD1_ZPZ_D(bdu, zss, MO_8)
5165 DO_LD1_ZPZ_D(bdu, zd, MO_8)
5167 DO_LD1_ZPZ_S(bss, zsu, MO_8)
5168 DO_LD1_ZPZ_S(bss, zss, MO_8)
5169 DO_LD1_ZPZ_D(bds, zsu, MO_8)
5170 DO_LD1_ZPZ_D(bds, zss, MO_8)
5171 DO_LD1_ZPZ_D(bds, zd, MO_8)
5173 DO_LD1_ZPZ_S(hsu_le, zsu, MO_16)
5174 DO_LD1_ZPZ_S(hsu_le, zss, MO_16)
5175 DO_LD1_ZPZ_D(hdu_le, zsu, MO_16)
5176 DO_LD1_ZPZ_D(hdu_le, zss, MO_16)
5177 DO_LD1_ZPZ_D(hdu_le, zd, MO_16)
5179 DO_LD1_ZPZ_S(hsu_be, zsu, MO_16)
5180 DO_LD1_ZPZ_S(hsu_be, zss, MO_16)
5181 DO_LD1_ZPZ_D(hdu_be, zsu, MO_16)
5182 DO_LD1_ZPZ_D(hdu_be, zss, MO_16)
5183 DO_LD1_ZPZ_D(hdu_be, zd, MO_16)
5185 DO_LD1_ZPZ_S(hss_le, zsu, MO_16)
5186 DO_LD1_ZPZ_S(hss_le, zss, MO_16)
5187 DO_LD1_ZPZ_D(hds_le, zsu, MO_16)
5188 DO_LD1_ZPZ_D(hds_le, zss, MO_16)
5189 DO_LD1_ZPZ_D(hds_le, zd, MO_16)
5191 DO_LD1_ZPZ_S(hss_be, zsu, MO_16)
5192 DO_LD1_ZPZ_S(hss_be, zss, MO_16)
5193 DO_LD1_ZPZ_D(hds_be, zsu, MO_16)
5194 DO_LD1_ZPZ_D(hds_be, zss, MO_16)
5195 DO_LD1_ZPZ_D(hds_be, zd, MO_16)
5197 DO_LD1_ZPZ_S(ss_le, zsu, MO_32)
5198 DO_LD1_ZPZ_S(ss_le, zss, MO_32)
5199 DO_LD1_ZPZ_D(sdu_le, zsu, MO_32)
5200 DO_LD1_ZPZ_D(sdu_le, zss, MO_32)
5201 DO_LD1_ZPZ_D(sdu_le, zd, MO_32)
5203 DO_LD1_ZPZ_S(ss_be, zsu, MO_32)
5204 DO_LD1_ZPZ_S(ss_be, zss, MO_32)
5205 DO_LD1_ZPZ_D(sdu_be, zsu, MO_32)
5206 DO_LD1_ZPZ_D(sdu_be, zss, MO_32)
5207 DO_LD1_ZPZ_D(sdu_be, zd, MO_32)
5209 DO_LD1_ZPZ_D(sds_le, zsu, MO_32)
5210 DO_LD1_ZPZ_D(sds_le, zss, MO_32)
5211 DO_LD1_ZPZ_D(sds_le, zd, MO_32)
5213 DO_LD1_ZPZ_D(sds_be, zsu, MO_32)
5214 DO_LD1_ZPZ_D(sds_be, zss, MO_32)
5215 DO_LD1_ZPZ_D(sds_be, zd, MO_32)
5217 DO_LD1_ZPZ_D(dd_le, zsu, MO_64)
5218 DO_LD1_ZPZ_D(dd_le, zss, MO_64)
5219 DO_LD1_ZPZ_D(dd_le, zd, MO_64)
5221 DO_LD1_ZPZ_D(dd_be, zsu, MO_64)
5222 DO_LD1_ZPZ_D(dd_be, zss, MO_64)
5223 DO_LD1_ZPZ_D(dd_be, zd, MO_64)
5225 #undef DO_LD1_ZPZ_S
5226 #undef DO_LD1_ZPZ_D
5228 /* First fault loads with a vector index. */
5231 * Common helpers for all gather first-faulting loads.
5234 static inline QEMU_ALWAYS_INLINE
5235 void sve_ldff1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
5236 target_ulong base, uint32_t desc, uintptr_t retaddr,
5237 const int esz, const int msz, zreg_off_fn *off_fn,
5238 sve_ldst1_host_fn *host_fn,
5239 sve_ldst1_tlb_fn *tlb_fn)
5241 const int mmu_idx = cpu_mmu_index(env, false);
5242 const intptr_t reg_max = simd_oprsz(desc);
5243 const int scale = simd_data(desc);
5244 const int esize = 1 << esz;
5245 const int msize = 1 << msz;
5246 intptr_t reg_off;
5247 SVEHostPage info;
5248 target_ulong addr, in_page;
5250 /* Skip to the first true predicate. */
5251 reg_off = find_next_active(vg, 0, reg_max, esz);
5252 if (unlikely(reg_off >= reg_max)) {
5253 /* The entire predicate was false; no load occurs. */
5254 memset(vd, 0, reg_max);
5255 return;
5259 * Probe the first element, allowing faults.
5261 addr = base + (off_fn(vm, reg_off) << scale);
5262 tlb_fn(env, vd, reg_off, addr, retaddr);
5264 /* After any fault, zero the other elements. */
5265 swap_memzero(vd, reg_off);
5266 reg_off += esize;
5267 swap_memzero(vd + reg_off, reg_max - reg_off);
5270 * Probe the remaining elements, not allowing faults.
5272 while (reg_off < reg_max) {
5273 uint64_t pg = vg[reg_off >> 6];
5274 do {
5275 if (likely((pg >> (reg_off & 63)) & 1)) {
5276 addr = base + (off_fn(vm, reg_off) << scale);
5277 in_page = -(addr | TARGET_PAGE_MASK);
5279 if (unlikely(in_page < msize)) {
5280 /* Stop if the element crosses a page boundary. */
5281 goto fault;
5284 sve_probe_page(&info, true, env, addr, 0, MMU_DATA_LOAD,
5285 mmu_idx, retaddr);
5286 if (unlikely(info.flags & (TLB_INVALID_MASK | TLB_MMIO))) {
5287 goto fault;
5289 if (unlikely(info.flags & TLB_WATCHPOINT) &&
5290 (cpu_watchpoint_address_matches
5291 (env_cpu(env), addr, msize) & BP_MEM_READ)) {
5292 goto fault;
5294 /* TODO: MTE check. */
5296 host_fn(vd, reg_off, info.host);
5298 reg_off += esize;
5299 } while (reg_off & 63);
5301 return;
5303 fault:
5304 record_fault(env, reg_off, reg_max);
5307 #define DO_LDFF1_ZPZ_S(MEM, OFS, MSZ) \
5308 void HELPER(sve_ldff##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \
5309 void *vm, target_ulong base, uint32_t desc) \
5311 sve_ldff1_z(env, vd, vg, vm, base, desc, GETPC(), MO_32, MSZ, \
5312 off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
5315 #define DO_LDFF1_ZPZ_D(MEM, OFS, MSZ) \
5316 void HELPER(sve_ldff##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \
5317 void *vm, target_ulong base, uint32_t desc) \
5319 sve_ldff1_z(env, vd, vg, vm, base, desc, GETPC(), MO_64, MSZ, \
5320 off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
5323 DO_LDFF1_ZPZ_S(bsu, zsu, MO_8)
5324 DO_LDFF1_ZPZ_S(bsu, zss, MO_8)
5325 DO_LDFF1_ZPZ_D(bdu, zsu, MO_8)
5326 DO_LDFF1_ZPZ_D(bdu, zss, MO_8)
5327 DO_LDFF1_ZPZ_D(bdu, zd, MO_8)
5329 DO_LDFF1_ZPZ_S(bss, zsu, MO_8)
5330 DO_LDFF1_ZPZ_S(bss, zss, MO_8)
5331 DO_LDFF1_ZPZ_D(bds, zsu, MO_8)
5332 DO_LDFF1_ZPZ_D(bds, zss, MO_8)
5333 DO_LDFF1_ZPZ_D(bds, zd, MO_8)
5335 DO_LDFF1_ZPZ_S(hsu_le, zsu, MO_16)
5336 DO_LDFF1_ZPZ_S(hsu_le, zss, MO_16)
5337 DO_LDFF1_ZPZ_D(hdu_le, zsu, MO_16)
5338 DO_LDFF1_ZPZ_D(hdu_le, zss, MO_16)
5339 DO_LDFF1_ZPZ_D(hdu_le, zd, MO_16)
5341 DO_LDFF1_ZPZ_S(hsu_be, zsu, MO_16)
5342 DO_LDFF1_ZPZ_S(hsu_be, zss, MO_16)
5343 DO_LDFF1_ZPZ_D(hdu_be, zsu, MO_16)
5344 DO_LDFF1_ZPZ_D(hdu_be, zss, MO_16)
5345 DO_LDFF1_ZPZ_D(hdu_be, zd, MO_16)
5347 DO_LDFF1_ZPZ_S(hss_le, zsu, MO_16)
5348 DO_LDFF1_ZPZ_S(hss_le, zss, MO_16)
5349 DO_LDFF1_ZPZ_D(hds_le, zsu, MO_16)
5350 DO_LDFF1_ZPZ_D(hds_le, zss, MO_16)
5351 DO_LDFF1_ZPZ_D(hds_le, zd, MO_16)
5353 DO_LDFF1_ZPZ_S(hss_be, zsu, MO_16)
5354 DO_LDFF1_ZPZ_S(hss_be, zss, MO_16)
5355 DO_LDFF1_ZPZ_D(hds_be, zsu, MO_16)
5356 DO_LDFF1_ZPZ_D(hds_be, zss, MO_16)
5357 DO_LDFF1_ZPZ_D(hds_be, zd, MO_16)
5359 DO_LDFF1_ZPZ_S(ss_le, zsu, MO_32)
5360 DO_LDFF1_ZPZ_S(ss_le, zss, MO_32)
5361 DO_LDFF1_ZPZ_D(sdu_le, zsu, MO_32)
5362 DO_LDFF1_ZPZ_D(sdu_le, zss, MO_32)
5363 DO_LDFF1_ZPZ_D(sdu_le, zd, MO_32)
5365 DO_LDFF1_ZPZ_S(ss_be, zsu, MO_32)
5366 DO_LDFF1_ZPZ_S(ss_be, zss, MO_32)
5367 DO_LDFF1_ZPZ_D(sdu_be, zsu, MO_32)
5368 DO_LDFF1_ZPZ_D(sdu_be, zss, MO_32)
5369 DO_LDFF1_ZPZ_D(sdu_be, zd, MO_32)
5371 DO_LDFF1_ZPZ_D(sds_le, zsu, MO_32)
5372 DO_LDFF1_ZPZ_D(sds_le, zss, MO_32)
5373 DO_LDFF1_ZPZ_D(sds_le, zd, MO_32)
5375 DO_LDFF1_ZPZ_D(sds_be, zsu, MO_32)
5376 DO_LDFF1_ZPZ_D(sds_be, zss, MO_32)
5377 DO_LDFF1_ZPZ_D(sds_be, zd, MO_32)
5379 DO_LDFF1_ZPZ_D(dd_le, zsu, MO_64)
5380 DO_LDFF1_ZPZ_D(dd_le, zss, MO_64)
5381 DO_LDFF1_ZPZ_D(dd_le, zd, MO_64)
5383 DO_LDFF1_ZPZ_D(dd_be, zsu, MO_64)
5384 DO_LDFF1_ZPZ_D(dd_be, zss, MO_64)
5385 DO_LDFF1_ZPZ_D(dd_be, zd, MO_64)
5387 /* Stores with a vector index. */
5389 static inline QEMU_ALWAYS_INLINE
5390 void sve_st1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
5391 target_ulong base, uint32_t desc, uintptr_t retaddr,
5392 int esize, int msize, zreg_off_fn *off_fn,
5393 sve_ldst1_host_fn *host_fn,
5394 sve_ldst1_tlb_fn *tlb_fn)
5396 const int mmu_idx = cpu_mmu_index(env, false);
5397 const intptr_t reg_max = simd_oprsz(desc);
5398 const int scale = simd_data(desc);
5399 void *host[ARM_MAX_VQ * 4];
5400 intptr_t reg_off, i;
5401 SVEHostPage info, info2;
5404 * Probe all of the elements for host addresses and flags.
5406 i = reg_off = 0;
5407 do {
5408 uint64_t pg = vg[reg_off >> 6];
5409 do {
5410 target_ulong addr = base + (off_fn(vm, reg_off) << scale);
5411 target_ulong in_page = -(addr | TARGET_PAGE_MASK);
5413 host[i] = NULL;
5414 if (likely((pg >> (reg_off & 63)) & 1)) {
5415 if (likely(in_page >= msize)) {
5416 sve_probe_page(&info, false, env, addr, 0, MMU_DATA_STORE,
5417 mmu_idx, retaddr);
5418 host[i] = info.host;
5419 } else {
5421 * Element crosses the page boundary.
5422 * Probe both pages, but do not record the host address,
5423 * so that we use the slow path.
5425 sve_probe_page(&info, false, env, addr, 0,
5426 MMU_DATA_STORE, mmu_idx, retaddr);
5427 sve_probe_page(&info2, false, env, addr + in_page, 0,
5428 MMU_DATA_STORE, mmu_idx, retaddr);
5429 info.flags |= info2.flags;
5432 if (unlikely(info.flags & TLB_WATCHPOINT)) {
5433 cpu_check_watchpoint(env_cpu(env), addr, msize,
5434 info.attrs, BP_MEM_WRITE, retaddr);
5436 /* TODO: MTE check. */
5438 i += 1;
5439 reg_off += esize;
5440 } while (reg_off & 63);
5441 } while (reg_off < reg_max);
5444 * Now that we have recognized all exceptions except SyncExternal
5445 * (from TLB_MMIO), which we cannot avoid, perform all of the stores.
5447 * Note for the common case of an element in RAM, not crossing a page
5448 * boundary, we have stored the host address in host[]. This doubles
5449 * as a first-level check against the predicate, since only enabled
5450 * elements have non-null host addresses.
5452 i = reg_off = 0;
5453 do {
5454 void *h = host[i];
5455 if (likely(h != NULL)) {
5456 host_fn(vd, reg_off, h);
5457 } else if ((vg[reg_off >> 6] >> (reg_off & 63)) & 1) {
5458 target_ulong addr = base + (off_fn(vm, reg_off) << scale);
5459 tlb_fn(env, vd, reg_off, addr, retaddr);
5461 i += 1;
5462 reg_off += esize;
5463 } while (reg_off < reg_max);
5466 #define DO_ST1_ZPZ_S(MEM, OFS, MSZ) \
5467 void HELPER(sve_st##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \
5468 void *vm, target_ulong base, uint32_t desc) \
5470 sve_st1_z(env, vd, vg, vm, base, desc, GETPC(), 4, 1 << MSZ, \
5471 off_##OFS##_s, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \
5474 #define DO_ST1_ZPZ_D(MEM, OFS, MSZ) \
5475 void HELPER(sve_st##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg, \
5476 void *vm, target_ulong base, uint32_t desc) \
5478 sve_st1_z(env, vd, vg, vm, base, desc, GETPC(), 8, 1 << MSZ, \
5479 off_##OFS##_d, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \
5482 DO_ST1_ZPZ_S(bs, zsu, MO_8)
5483 DO_ST1_ZPZ_S(hs_le, zsu, MO_16)
5484 DO_ST1_ZPZ_S(hs_be, zsu, MO_16)
5485 DO_ST1_ZPZ_S(ss_le, zsu, MO_32)
5486 DO_ST1_ZPZ_S(ss_be, zsu, MO_32)
5488 DO_ST1_ZPZ_S(bs, zss, MO_8)
5489 DO_ST1_ZPZ_S(hs_le, zss, MO_16)
5490 DO_ST1_ZPZ_S(hs_be, zss, MO_16)
5491 DO_ST1_ZPZ_S(ss_le, zss, MO_32)
5492 DO_ST1_ZPZ_S(ss_be, zss, MO_32)
5494 DO_ST1_ZPZ_D(bd, zsu, MO_8)
5495 DO_ST1_ZPZ_D(hd_le, zsu, MO_16)
5496 DO_ST1_ZPZ_D(hd_be, zsu, MO_16)
5497 DO_ST1_ZPZ_D(sd_le, zsu, MO_32)
5498 DO_ST1_ZPZ_D(sd_be, zsu, MO_32)
5499 DO_ST1_ZPZ_D(dd_le, zsu, MO_64)
5500 DO_ST1_ZPZ_D(dd_be, zsu, MO_64)
5502 DO_ST1_ZPZ_D(bd, zss, MO_8)
5503 DO_ST1_ZPZ_D(hd_le, zss, MO_16)
5504 DO_ST1_ZPZ_D(hd_be, zss, MO_16)
5505 DO_ST1_ZPZ_D(sd_le, zss, MO_32)
5506 DO_ST1_ZPZ_D(sd_be, zss, MO_32)
5507 DO_ST1_ZPZ_D(dd_le, zss, MO_64)
5508 DO_ST1_ZPZ_D(dd_be, zss, MO_64)
5510 DO_ST1_ZPZ_D(bd, zd, MO_8)
5511 DO_ST1_ZPZ_D(hd_le, zd, MO_16)
5512 DO_ST1_ZPZ_D(hd_be, zd, MO_16)
5513 DO_ST1_ZPZ_D(sd_le, zd, MO_32)
5514 DO_ST1_ZPZ_D(sd_be, zd, MO_32)
5515 DO_ST1_ZPZ_D(dd_le, zd, MO_64)
5516 DO_ST1_ZPZ_D(dd_be, zd, MO_64)
5518 #undef DO_ST1_ZPZ_S
5519 #undef DO_ST1_ZPZ_D