migration/colo.c: Remove redundant input parameter
[qemu/ar7.git] / tcg / tcg-op-gvec.c
blob338ddd9d9e02220895a5f59a7908aa926d0322ef
1 /*
2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "tcg.h"
23 #include "tcg-op.h"
24 #include "tcg-op-gvec.h"
25 #include "tcg-gvec-desc.h"
27 #define MAX_UNROLL 4
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty[1] = { 0 };
31 #else
32 #define vecop_list_empty NULL
33 #endif
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
40 uint32_t opr_align = oprsz >= 16 ? 15 : 7;
41 uint32_t max_align = maxsz >= 16 || oprsz >= 16 ? 15 : 7;
42 tcg_debug_assert(oprsz > 0);
43 tcg_debug_assert(oprsz <= maxsz);
44 tcg_debug_assert((oprsz & opr_align) == 0);
45 tcg_debug_assert((maxsz & max_align) == 0);
46 tcg_debug_assert((ofs & max_align) == 0);
49 /* Verify vector overlap rules for two operands. */
50 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
52 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
55 /* Verify vector overlap rules for three operands. */
56 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
58 check_overlap_2(d, a, s);
59 check_overlap_2(d, b, s);
60 check_overlap_2(a, b, s);
63 /* Verify vector overlap rules for four operands. */
64 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
65 uint32_t c, uint32_t s)
67 check_overlap_2(d, a, s);
68 check_overlap_2(d, b, s);
69 check_overlap_2(d, c, s);
70 check_overlap_2(a, b, s);
71 check_overlap_2(a, c, s);
72 check_overlap_2(b, c, s);
75 /* Create a descriptor from components. */
76 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
78 uint32_t desc = 0;
80 assert(oprsz % 8 == 0 && oprsz <= (8 << SIMD_OPRSZ_BITS));
81 assert(maxsz % 8 == 0 && maxsz <= (8 << SIMD_MAXSZ_BITS));
82 assert(data == sextract32(data, 0, SIMD_DATA_BITS));
84 oprsz = (oprsz / 8) - 1;
85 maxsz = (maxsz / 8) - 1;
86 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
87 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
88 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
90 return desc;
93 /* Generate a call to a gvec-style helper with two vector operands. */
94 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
95 uint32_t oprsz, uint32_t maxsz, int32_t data,
96 gen_helper_gvec_2 *fn)
98 TCGv_ptr a0, a1;
99 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
101 a0 = tcg_temp_new_ptr();
102 a1 = tcg_temp_new_ptr();
104 tcg_gen_addi_ptr(a0, cpu_env, dofs);
105 tcg_gen_addi_ptr(a1, cpu_env, aofs);
107 fn(a0, a1, desc);
109 tcg_temp_free_ptr(a0);
110 tcg_temp_free_ptr(a1);
111 tcg_temp_free_i32(desc);
114 /* Generate a call to a gvec-style helper with two vector operands
115 and one scalar operand. */
116 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
117 uint32_t oprsz, uint32_t maxsz, int32_t data,
118 gen_helper_gvec_2i *fn)
120 TCGv_ptr a0, a1;
121 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
123 a0 = tcg_temp_new_ptr();
124 a1 = tcg_temp_new_ptr();
126 tcg_gen_addi_ptr(a0, cpu_env, dofs);
127 tcg_gen_addi_ptr(a1, cpu_env, aofs);
129 fn(a0, a1, c, desc);
131 tcg_temp_free_ptr(a0);
132 tcg_temp_free_ptr(a1);
133 tcg_temp_free_i32(desc);
136 /* Generate a call to a gvec-style helper with three vector operands. */
137 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
138 uint32_t oprsz, uint32_t maxsz, int32_t data,
139 gen_helper_gvec_3 *fn)
141 TCGv_ptr a0, a1, a2;
142 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
144 a0 = tcg_temp_new_ptr();
145 a1 = tcg_temp_new_ptr();
146 a2 = tcg_temp_new_ptr();
148 tcg_gen_addi_ptr(a0, cpu_env, dofs);
149 tcg_gen_addi_ptr(a1, cpu_env, aofs);
150 tcg_gen_addi_ptr(a2, cpu_env, bofs);
152 fn(a0, a1, a2, desc);
154 tcg_temp_free_ptr(a0);
155 tcg_temp_free_ptr(a1);
156 tcg_temp_free_ptr(a2);
157 tcg_temp_free_i32(desc);
160 /* Generate a call to a gvec-style helper with four vector operands. */
161 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
162 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
163 int32_t data, gen_helper_gvec_4 *fn)
165 TCGv_ptr a0, a1, a2, a3;
166 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
168 a0 = tcg_temp_new_ptr();
169 a1 = tcg_temp_new_ptr();
170 a2 = tcg_temp_new_ptr();
171 a3 = tcg_temp_new_ptr();
173 tcg_gen_addi_ptr(a0, cpu_env, dofs);
174 tcg_gen_addi_ptr(a1, cpu_env, aofs);
175 tcg_gen_addi_ptr(a2, cpu_env, bofs);
176 tcg_gen_addi_ptr(a3, cpu_env, cofs);
178 fn(a0, a1, a2, a3, desc);
180 tcg_temp_free_ptr(a0);
181 tcg_temp_free_ptr(a1);
182 tcg_temp_free_ptr(a2);
183 tcg_temp_free_ptr(a3);
184 tcg_temp_free_i32(desc);
187 /* Generate a call to a gvec-style helper with five vector operands. */
188 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
189 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
190 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
192 TCGv_ptr a0, a1, a2, a3, a4;
193 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
195 a0 = tcg_temp_new_ptr();
196 a1 = tcg_temp_new_ptr();
197 a2 = tcg_temp_new_ptr();
198 a3 = tcg_temp_new_ptr();
199 a4 = tcg_temp_new_ptr();
201 tcg_gen_addi_ptr(a0, cpu_env, dofs);
202 tcg_gen_addi_ptr(a1, cpu_env, aofs);
203 tcg_gen_addi_ptr(a2, cpu_env, bofs);
204 tcg_gen_addi_ptr(a3, cpu_env, cofs);
205 tcg_gen_addi_ptr(a4, cpu_env, xofs);
207 fn(a0, a1, a2, a3, a4, desc);
209 tcg_temp_free_ptr(a0);
210 tcg_temp_free_ptr(a1);
211 tcg_temp_free_ptr(a2);
212 tcg_temp_free_ptr(a3);
213 tcg_temp_free_ptr(a4);
214 tcg_temp_free_i32(desc);
217 /* Generate a call to a gvec-style helper with three vector operands
218 and an extra pointer operand. */
219 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
220 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
221 int32_t data, gen_helper_gvec_2_ptr *fn)
223 TCGv_ptr a0, a1;
224 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
226 a0 = tcg_temp_new_ptr();
227 a1 = tcg_temp_new_ptr();
229 tcg_gen_addi_ptr(a0, cpu_env, dofs);
230 tcg_gen_addi_ptr(a1, cpu_env, aofs);
232 fn(a0, a1, ptr, desc);
234 tcg_temp_free_ptr(a0);
235 tcg_temp_free_ptr(a1);
236 tcg_temp_free_i32(desc);
239 /* Generate a call to a gvec-style helper with three vector operands
240 and an extra pointer operand. */
241 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
242 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
243 int32_t data, gen_helper_gvec_3_ptr *fn)
245 TCGv_ptr a0, a1, a2;
246 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
248 a0 = tcg_temp_new_ptr();
249 a1 = tcg_temp_new_ptr();
250 a2 = tcg_temp_new_ptr();
252 tcg_gen_addi_ptr(a0, cpu_env, dofs);
253 tcg_gen_addi_ptr(a1, cpu_env, aofs);
254 tcg_gen_addi_ptr(a2, cpu_env, bofs);
256 fn(a0, a1, a2, ptr, desc);
258 tcg_temp_free_ptr(a0);
259 tcg_temp_free_ptr(a1);
260 tcg_temp_free_ptr(a2);
261 tcg_temp_free_i32(desc);
264 /* Generate a call to a gvec-style helper with four vector operands
265 and an extra pointer operand. */
266 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
267 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
268 uint32_t maxsz, int32_t data,
269 gen_helper_gvec_4_ptr *fn)
271 TCGv_ptr a0, a1, a2, a3;
272 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
274 a0 = tcg_temp_new_ptr();
275 a1 = tcg_temp_new_ptr();
276 a2 = tcg_temp_new_ptr();
277 a3 = tcg_temp_new_ptr();
279 tcg_gen_addi_ptr(a0, cpu_env, dofs);
280 tcg_gen_addi_ptr(a1, cpu_env, aofs);
281 tcg_gen_addi_ptr(a2, cpu_env, bofs);
282 tcg_gen_addi_ptr(a3, cpu_env, cofs);
284 fn(a0, a1, a2, a3, ptr, desc);
286 tcg_temp_free_ptr(a0);
287 tcg_temp_free_ptr(a1);
288 tcg_temp_free_ptr(a2);
289 tcg_temp_free_ptr(a3);
290 tcg_temp_free_i32(desc);
293 /* Return true if we want to implement something of OPRSZ bytes
294 in units of LNSZ. This limits the expansion of inline code. */
295 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
297 if (oprsz % lnsz == 0) {
298 uint32_t lnct = oprsz / lnsz;
299 return lnct >= 1 && lnct <= MAX_UNROLL;
301 return false;
304 static void expand_clr(uint32_t dofs, uint32_t maxsz);
306 /* Duplicate C as per VECE. */
307 uint64_t (dup_const)(unsigned vece, uint64_t c)
309 switch (vece) {
310 case MO_8:
311 return 0x0101010101010101ull * (uint8_t)c;
312 case MO_16:
313 return 0x0001000100010001ull * (uint16_t)c;
314 case MO_32:
315 return 0x0000000100000001ull * (uint32_t)c;
316 case MO_64:
317 return c;
318 default:
319 g_assert_not_reached();
323 /* Duplicate IN into OUT as per VECE. */
324 static void gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
326 switch (vece) {
327 case MO_8:
328 tcg_gen_ext8u_i32(out, in);
329 tcg_gen_muli_i32(out, out, 0x01010101);
330 break;
331 case MO_16:
332 tcg_gen_deposit_i32(out, in, in, 16, 16);
333 break;
334 case MO_32:
335 tcg_gen_mov_i32(out, in);
336 break;
337 default:
338 g_assert_not_reached();
342 static void gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
344 switch (vece) {
345 case MO_8:
346 tcg_gen_ext8u_i64(out, in);
347 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
348 break;
349 case MO_16:
350 tcg_gen_ext16u_i64(out, in);
351 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
352 break;
353 case MO_32:
354 tcg_gen_deposit_i64(out, in, in, 32, 32);
355 break;
356 case MO_64:
357 tcg_gen_mov_i64(out, in);
358 break;
359 default:
360 g_assert_not_reached();
364 /* Select a supported vector type for implementing an operation on SIZE
365 * bytes. If OP is 0, assume that the real operation to be performed is
366 * required by all backends. Otherwise, make sure than OP can be performed
367 * on elements of size VECE in the selected type. Do not select V64 if
368 * PREFER_I64 is true. Return 0 if no vector type is selected.
370 static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece,
371 uint32_t size, bool prefer_i64)
373 if (TCG_TARGET_HAS_v256 && check_size_impl(size, 32)) {
375 * Recall that ARM SVE allows vector sizes that are not a
376 * power of 2, but always a multiple of 16. The intent is
377 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
378 * It is hard to imagine a case in which v256 is supported
379 * but v128 is not, but check anyway.
381 if (tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece)
382 && (size % 32 == 0
383 || tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) {
384 return TCG_TYPE_V256;
387 if (TCG_TARGET_HAS_v128 && check_size_impl(size, 16)
388 && tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece)) {
389 return TCG_TYPE_V128;
391 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
392 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) {
393 return TCG_TYPE_V64;
395 return 0;
398 static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz,
399 uint32_t maxsz, TCGv_vec t_vec)
401 uint32_t i = 0;
403 switch (type) {
404 case TCG_TYPE_V256:
406 * Recall that ARM SVE allows vector sizes that are not a
407 * power of 2, but always a multiple of 16. The intent is
408 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
410 for (; i + 32 <= oprsz; i += 32) {
411 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256);
413 /* fallthru */
414 case TCG_TYPE_V128:
415 for (; i + 16 <= oprsz; i += 16) {
416 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128);
418 break;
419 case TCG_TYPE_V64:
420 for (; i < oprsz; i += 8) {
421 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
423 break;
424 default:
425 g_assert_not_reached();
428 if (oprsz < maxsz) {
429 expand_clr(dofs + oprsz, maxsz - oprsz);
433 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
434 * Only one of IN_32 or IN_64 may be set;
435 * IN_C is used if IN_32 and IN_64 are unset.
437 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
438 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
439 uint64_t in_c)
441 TCGType type;
442 TCGv_i64 t_64;
443 TCGv_i32 t_32, t_desc;
444 TCGv_ptr t_ptr;
445 uint32_t i;
447 assert(vece <= (in_32 ? MO_32 : MO_64));
448 assert(in_32 == NULL || in_64 == NULL);
450 /* If we're storing 0, expand oprsz to maxsz. */
451 if (in_32 == NULL && in_64 == NULL) {
452 in_c = dup_const(vece, in_c);
453 if (in_c == 0) {
454 oprsz = maxsz;
458 /* Implement inline with a vector type, if possible.
459 * Prefer integer when 64-bit host and no variable dup.
461 type = choose_vector_type(NULL, vece, oprsz,
462 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL
463 && (in_64 == NULL || vece == MO_64)));
464 if (type != 0) {
465 TCGv_vec t_vec = tcg_temp_new_vec(type);
467 if (in_32) {
468 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
469 } else if (in_64) {
470 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
471 } else {
472 tcg_gen_dupi_vec(vece, t_vec, in_c);
474 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
475 tcg_temp_free_vec(t_vec);
476 return;
479 /* Otherwise, inline with an integer type, unless "large". */
480 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
481 t_64 = NULL;
482 t_32 = NULL;
484 if (in_32) {
485 /* We are given a 32-bit variable input. For a 64-bit host,
486 use a 64-bit operation unless the 32-bit operation would
487 be simple enough. */
488 if (TCG_TARGET_REG_BITS == 64
489 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
490 t_64 = tcg_temp_new_i64();
491 tcg_gen_extu_i32_i64(t_64, in_32);
492 gen_dup_i64(vece, t_64, t_64);
493 } else {
494 t_32 = tcg_temp_new_i32();
495 gen_dup_i32(vece, t_32, in_32);
497 } else if (in_64) {
498 /* We are given a 64-bit variable input. */
499 t_64 = tcg_temp_new_i64();
500 gen_dup_i64(vece, t_64, in_64);
501 } else {
502 /* We are given a constant input. */
503 /* For 64-bit hosts, use 64-bit constants for "simple" constants
504 or when we'd need too many 32-bit stores, or when a 64-bit
505 constant is really required. */
506 if (vece == MO_64
507 || (TCG_TARGET_REG_BITS == 64
508 && (in_c == 0 || in_c == -1
509 || !check_size_impl(oprsz, 4)))) {
510 t_64 = tcg_const_i64(in_c);
511 } else {
512 t_32 = tcg_const_i32(in_c);
516 /* Implement inline if we picked an implementation size above. */
517 if (t_32) {
518 for (i = 0; i < oprsz; i += 4) {
519 tcg_gen_st_i32(t_32, cpu_env, dofs + i);
521 tcg_temp_free_i32(t_32);
522 goto done;
524 if (t_64) {
525 for (i = 0; i < oprsz; i += 8) {
526 tcg_gen_st_i64(t_64, cpu_env, dofs + i);
528 tcg_temp_free_i64(t_64);
529 goto done;
533 /* Otherwise implement out of line. */
534 t_ptr = tcg_temp_new_ptr();
535 tcg_gen_addi_ptr(t_ptr, cpu_env, dofs);
536 t_desc = tcg_const_i32(simd_desc(oprsz, maxsz, 0));
538 if (vece == MO_64) {
539 if (in_64) {
540 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
541 } else {
542 t_64 = tcg_const_i64(in_c);
543 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
544 tcg_temp_free_i64(t_64);
546 } else {
547 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
548 static dup_fn * const fns[3] = {
549 gen_helper_gvec_dup8,
550 gen_helper_gvec_dup16,
551 gen_helper_gvec_dup32
554 if (in_32) {
555 fns[vece](t_ptr, t_desc, in_32);
556 } else {
557 t_32 = tcg_temp_new_i32();
558 if (in_64) {
559 tcg_gen_extrl_i64_i32(t_32, in_64);
560 } else if (vece == MO_8) {
561 tcg_gen_movi_i32(t_32, in_c & 0xff);
562 } else if (vece == MO_16) {
563 tcg_gen_movi_i32(t_32, in_c & 0xffff);
564 } else {
565 tcg_gen_movi_i32(t_32, in_c);
567 fns[vece](t_ptr, t_desc, t_32);
568 tcg_temp_free_i32(t_32);
572 tcg_temp_free_ptr(t_ptr);
573 tcg_temp_free_i32(t_desc);
574 return;
576 done:
577 if (oprsz < maxsz) {
578 expand_clr(dofs + oprsz, maxsz - oprsz);
582 /* Likewise, but with zero. */
583 static void expand_clr(uint32_t dofs, uint32_t maxsz)
585 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
588 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
589 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
590 void (*fni)(TCGv_i32, TCGv_i32))
592 TCGv_i32 t0 = tcg_temp_new_i32();
593 uint32_t i;
595 for (i = 0; i < oprsz; i += 4) {
596 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
597 fni(t0, t0);
598 tcg_gen_st_i32(t0, cpu_env, dofs + i);
600 tcg_temp_free_i32(t0);
603 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
604 int32_t c, bool load_dest,
605 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
607 TCGv_i32 t0 = tcg_temp_new_i32();
608 TCGv_i32 t1 = tcg_temp_new_i32();
609 uint32_t i;
611 for (i = 0; i < oprsz; i += 4) {
612 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
613 if (load_dest) {
614 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
616 fni(t1, t0, c);
617 tcg_gen_st_i32(t1, cpu_env, dofs + i);
619 tcg_temp_free_i32(t0);
620 tcg_temp_free_i32(t1);
623 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
624 TCGv_i32 c, bool scalar_first,
625 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
627 TCGv_i32 t0 = tcg_temp_new_i32();
628 TCGv_i32 t1 = tcg_temp_new_i32();
629 uint32_t i;
631 for (i = 0; i < oprsz; i += 4) {
632 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
633 if (scalar_first) {
634 fni(t1, c, t0);
635 } else {
636 fni(t1, t0, c);
638 tcg_gen_st_i32(t1, cpu_env, dofs + i);
640 tcg_temp_free_i32(t0);
641 tcg_temp_free_i32(t1);
644 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
645 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
646 uint32_t bofs, uint32_t oprsz, bool load_dest,
647 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
649 TCGv_i32 t0 = tcg_temp_new_i32();
650 TCGv_i32 t1 = tcg_temp_new_i32();
651 TCGv_i32 t2 = tcg_temp_new_i32();
652 uint32_t i;
654 for (i = 0; i < oprsz; i += 4) {
655 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
656 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
657 if (load_dest) {
658 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
660 fni(t2, t0, t1);
661 tcg_gen_st_i32(t2, cpu_env, dofs + i);
663 tcg_temp_free_i32(t2);
664 tcg_temp_free_i32(t1);
665 tcg_temp_free_i32(t0);
668 static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
669 uint32_t oprsz, int32_t c, bool load_dest,
670 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t))
672 TCGv_i32 t0 = tcg_temp_new_i32();
673 TCGv_i32 t1 = tcg_temp_new_i32();
674 TCGv_i32 t2 = tcg_temp_new_i32();
675 uint32_t i;
677 for (i = 0; i < oprsz; i += 4) {
678 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
679 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
680 if (load_dest) {
681 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
683 fni(t2, t0, t1, c);
684 tcg_gen_st_i32(t2, cpu_env, dofs + i);
686 tcg_temp_free_i32(t0);
687 tcg_temp_free_i32(t1);
688 tcg_temp_free_i32(t2);
691 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
692 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
693 uint32_t cofs, uint32_t oprsz, bool write_aofs,
694 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
696 TCGv_i32 t0 = tcg_temp_new_i32();
697 TCGv_i32 t1 = tcg_temp_new_i32();
698 TCGv_i32 t2 = tcg_temp_new_i32();
699 TCGv_i32 t3 = tcg_temp_new_i32();
700 uint32_t i;
702 for (i = 0; i < oprsz; i += 4) {
703 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
704 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
705 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
706 fni(t0, t1, t2, t3);
707 tcg_gen_st_i32(t0, cpu_env, dofs + i);
708 if (write_aofs) {
709 tcg_gen_st_i32(t1, cpu_env, aofs + i);
712 tcg_temp_free_i32(t3);
713 tcg_temp_free_i32(t2);
714 tcg_temp_free_i32(t1);
715 tcg_temp_free_i32(t0);
718 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
719 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
720 void (*fni)(TCGv_i64, TCGv_i64))
722 TCGv_i64 t0 = tcg_temp_new_i64();
723 uint32_t i;
725 for (i = 0; i < oprsz; i += 8) {
726 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
727 fni(t0, t0);
728 tcg_gen_st_i64(t0, cpu_env, dofs + i);
730 tcg_temp_free_i64(t0);
733 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
734 int64_t c, bool load_dest,
735 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
737 TCGv_i64 t0 = tcg_temp_new_i64();
738 TCGv_i64 t1 = tcg_temp_new_i64();
739 uint32_t i;
741 for (i = 0; i < oprsz; i += 8) {
742 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
743 if (load_dest) {
744 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
746 fni(t1, t0, c);
747 tcg_gen_st_i64(t1, cpu_env, dofs + i);
749 tcg_temp_free_i64(t0);
750 tcg_temp_free_i64(t1);
753 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
754 TCGv_i64 c, bool scalar_first,
755 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
757 TCGv_i64 t0 = tcg_temp_new_i64();
758 TCGv_i64 t1 = tcg_temp_new_i64();
759 uint32_t i;
761 for (i = 0; i < oprsz; i += 8) {
762 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
763 if (scalar_first) {
764 fni(t1, c, t0);
765 } else {
766 fni(t1, t0, c);
768 tcg_gen_st_i64(t1, cpu_env, dofs + i);
770 tcg_temp_free_i64(t0);
771 tcg_temp_free_i64(t1);
774 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
775 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
776 uint32_t bofs, uint32_t oprsz, bool load_dest,
777 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
779 TCGv_i64 t0 = tcg_temp_new_i64();
780 TCGv_i64 t1 = tcg_temp_new_i64();
781 TCGv_i64 t2 = tcg_temp_new_i64();
782 uint32_t i;
784 for (i = 0; i < oprsz; i += 8) {
785 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
786 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
787 if (load_dest) {
788 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
790 fni(t2, t0, t1);
791 tcg_gen_st_i64(t2, cpu_env, dofs + i);
793 tcg_temp_free_i64(t2);
794 tcg_temp_free_i64(t1);
795 tcg_temp_free_i64(t0);
798 static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
799 uint32_t oprsz, int64_t c, bool load_dest,
800 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t))
802 TCGv_i64 t0 = tcg_temp_new_i64();
803 TCGv_i64 t1 = tcg_temp_new_i64();
804 TCGv_i64 t2 = tcg_temp_new_i64();
805 uint32_t i;
807 for (i = 0; i < oprsz; i += 8) {
808 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
809 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
810 if (load_dest) {
811 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
813 fni(t2, t0, t1, c);
814 tcg_gen_st_i64(t2, cpu_env, dofs + i);
816 tcg_temp_free_i64(t0);
817 tcg_temp_free_i64(t1);
818 tcg_temp_free_i64(t2);
821 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
822 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
823 uint32_t cofs, uint32_t oprsz, bool write_aofs,
824 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
826 TCGv_i64 t0 = tcg_temp_new_i64();
827 TCGv_i64 t1 = tcg_temp_new_i64();
828 TCGv_i64 t2 = tcg_temp_new_i64();
829 TCGv_i64 t3 = tcg_temp_new_i64();
830 uint32_t i;
832 for (i = 0; i < oprsz; i += 8) {
833 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
834 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
835 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
836 fni(t0, t1, t2, t3);
837 tcg_gen_st_i64(t0, cpu_env, dofs + i);
838 if (write_aofs) {
839 tcg_gen_st_i64(t1, cpu_env, aofs + i);
842 tcg_temp_free_i64(t3);
843 tcg_temp_free_i64(t2);
844 tcg_temp_free_i64(t1);
845 tcg_temp_free_i64(t0);
848 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
849 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
850 uint32_t oprsz, uint32_t tysz, TCGType type,
851 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
853 TCGv_vec t0 = tcg_temp_new_vec(type);
854 uint32_t i;
856 for (i = 0; i < oprsz; i += tysz) {
857 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
858 fni(vece, t0, t0);
859 tcg_gen_st_vec(t0, cpu_env, dofs + i);
861 tcg_temp_free_vec(t0);
864 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
865 using host vectors. */
866 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
867 uint32_t oprsz, uint32_t tysz, TCGType type,
868 int64_t c, bool load_dest,
869 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
871 TCGv_vec t0 = tcg_temp_new_vec(type);
872 TCGv_vec t1 = tcg_temp_new_vec(type);
873 uint32_t i;
875 for (i = 0; i < oprsz; i += tysz) {
876 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
877 if (load_dest) {
878 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
880 fni(vece, t1, t0, c);
881 tcg_gen_st_vec(t1, cpu_env, dofs + i);
883 tcg_temp_free_vec(t0);
884 tcg_temp_free_vec(t1);
887 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
888 uint32_t oprsz, uint32_t tysz, TCGType type,
889 TCGv_vec c, bool scalar_first,
890 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
892 TCGv_vec t0 = tcg_temp_new_vec(type);
893 TCGv_vec t1 = tcg_temp_new_vec(type);
894 uint32_t i;
896 for (i = 0; i < oprsz; i += tysz) {
897 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
898 if (scalar_first) {
899 fni(vece, t1, c, t0);
900 } else {
901 fni(vece, t1, t0, c);
903 tcg_gen_st_vec(t1, cpu_env, dofs + i);
905 tcg_temp_free_vec(t0);
906 tcg_temp_free_vec(t1);
909 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
910 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
911 uint32_t bofs, uint32_t oprsz,
912 uint32_t tysz, TCGType type, bool load_dest,
913 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
915 TCGv_vec t0 = tcg_temp_new_vec(type);
916 TCGv_vec t1 = tcg_temp_new_vec(type);
917 TCGv_vec t2 = tcg_temp_new_vec(type);
918 uint32_t i;
920 for (i = 0; i < oprsz; i += tysz) {
921 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
922 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
923 if (load_dest) {
924 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
926 fni(vece, t2, t0, t1);
927 tcg_gen_st_vec(t2, cpu_env, dofs + i);
929 tcg_temp_free_vec(t2);
930 tcg_temp_free_vec(t1);
931 tcg_temp_free_vec(t0);
935 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
936 * using host vectors.
938 static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
939 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
940 TCGType type, int64_t c, bool load_dest,
941 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec,
942 int64_t))
944 TCGv_vec t0 = tcg_temp_new_vec(type);
945 TCGv_vec t1 = tcg_temp_new_vec(type);
946 TCGv_vec t2 = tcg_temp_new_vec(type);
947 uint32_t i;
949 for (i = 0; i < oprsz; i += tysz) {
950 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
951 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
952 if (load_dest) {
953 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
955 fni(vece, t2, t0, t1, c);
956 tcg_gen_st_vec(t2, cpu_env, dofs + i);
958 tcg_temp_free_vec(t0);
959 tcg_temp_free_vec(t1);
960 tcg_temp_free_vec(t2);
963 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
964 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
965 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
966 uint32_t tysz, TCGType type, bool write_aofs,
967 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
968 TCGv_vec, TCGv_vec))
970 TCGv_vec t0 = tcg_temp_new_vec(type);
971 TCGv_vec t1 = tcg_temp_new_vec(type);
972 TCGv_vec t2 = tcg_temp_new_vec(type);
973 TCGv_vec t3 = tcg_temp_new_vec(type);
974 uint32_t i;
976 for (i = 0; i < oprsz; i += tysz) {
977 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
978 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
979 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
980 fni(vece, t0, t1, t2, t3);
981 tcg_gen_st_vec(t0, cpu_env, dofs + i);
982 if (write_aofs) {
983 tcg_gen_st_vec(t1, cpu_env, aofs + i);
986 tcg_temp_free_vec(t3);
987 tcg_temp_free_vec(t2);
988 tcg_temp_free_vec(t1);
989 tcg_temp_free_vec(t0);
992 /* Expand a vector two-operand operation. */
993 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
994 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
996 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
997 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
998 TCGType type;
999 uint32_t some;
1001 check_size_align(oprsz, maxsz, dofs | aofs);
1002 check_overlap_2(dofs, aofs, maxsz);
1004 type = 0;
1005 if (g->fniv) {
1006 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1008 switch (type) {
1009 case TCG_TYPE_V256:
1010 /* Recall that ARM SVE allows vector sizes that are not a
1011 * power of 2, but always a multiple of 16. The intent is
1012 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1014 some = QEMU_ALIGN_DOWN(oprsz, 32);
1015 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, g->fniv);
1016 if (some == oprsz) {
1017 break;
1019 dofs += some;
1020 aofs += some;
1021 oprsz -= some;
1022 maxsz -= some;
1023 /* fallthru */
1024 case TCG_TYPE_V128:
1025 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, g->fniv);
1026 break;
1027 case TCG_TYPE_V64:
1028 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, g->fniv);
1029 break;
1031 case 0:
1032 if (g->fni8 && check_size_impl(oprsz, 8)) {
1033 expand_2_i64(dofs, aofs, oprsz, g->fni8);
1034 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1035 expand_2_i32(dofs, aofs, oprsz, g->fni4);
1036 } else {
1037 assert(g->fno != NULL);
1038 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
1039 oprsz = maxsz;
1041 break;
1043 default:
1044 g_assert_not_reached();
1046 tcg_swap_vecop_list(hold_list);
1048 if (oprsz < maxsz) {
1049 expand_clr(dofs + oprsz, maxsz - oprsz);
1053 /* Expand a vector operation with two vectors and an immediate. */
1054 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1055 uint32_t maxsz, int64_t c, const GVecGen2i *g)
1057 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1058 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1059 TCGType type;
1060 uint32_t some;
1062 check_size_align(oprsz, maxsz, dofs | aofs);
1063 check_overlap_2(dofs, aofs, maxsz);
1065 type = 0;
1066 if (g->fniv) {
1067 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1069 switch (type) {
1070 case TCG_TYPE_V256:
1071 /* Recall that ARM SVE allows vector sizes that are not a
1072 * power of 2, but always a multiple of 16. The intent is
1073 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1075 some = QEMU_ALIGN_DOWN(oprsz, 32);
1076 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1077 c, g->load_dest, g->fniv);
1078 if (some == oprsz) {
1079 break;
1081 dofs += some;
1082 aofs += some;
1083 oprsz -= some;
1084 maxsz -= some;
1085 /* fallthru */
1086 case TCG_TYPE_V128:
1087 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1088 c, g->load_dest, g->fniv);
1089 break;
1090 case TCG_TYPE_V64:
1091 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1092 c, g->load_dest, g->fniv);
1093 break;
1095 case 0:
1096 if (g->fni8 && check_size_impl(oprsz, 8)) {
1097 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
1098 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1099 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
1100 } else {
1101 if (g->fno) {
1102 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
1103 } else {
1104 TCGv_i64 tcg_c = tcg_const_i64(c);
1105 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
1106 maxsz, c, g->fnoi);
1107 tcg_temp_free_i64(tcg_c);
1109 oprsz = maxsz;
1111 break;
1113 default:
1114 g_assert_not_reached();
1116 tcg_swap_vecop_list(hold_list);
1118 if (oprsz < maxsz) {
1119 expand_clr(dofs + oprsz, maxsz - oprsz);
1123 /* Expand a vector operation with two vectors and a scalar. */
1124 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1125 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
1127 TCGType type;
1129 check_size_align(oprsz, maxsz, dofs | aofs);
1130 check_overlap_2(dofs, aofs, maxsz);
1132 type = 0;
1133 if (g->fniv) {
1134 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1136 if (type != 0) {
1137 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1138 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1139 TCGv_vec t_vec = tcg_temp_new_vec(type);
1140 uint32_t some;
1142 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
1144 switch (type) {
1145 case TCG_TYPE_V256:
1146 /* Recall that ARM SVE allows vector sizes that are not a
1147 * power of 2, but always a multiple of 16. The intent is
1148 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1150 some = QEMU_ALIGN_DOWN(oprsz, 32);
1151 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1152 t_vec, g->scalar_first, g->fniv);
1153 if (some == oprsz) {
1154 break;
1156 dofs += some;
1157 aofs += some;
1158 oprsz -= some;
1159 maxsz -= some;
1160 /* fallthru */
1162 case TCG_TYPE_V128:
1163 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1164 t_vec, g->scalar_first, g->fniv);
1165 break;
1167 case TCG_TYPE_V64:
1168 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1169 t_vec, g->scalar_first, g->fniv);
1170 break;
1172 default:
1173 g_assert_not_reached();
1175 tcg_temp_free_vec(t_vec);
1176 tcg_swap_vecop_list(hold_list);
1177 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1178 TCGv_i64 t64 = tcg_temp_new_i64();
1180 gen_dup_i64(g->vece, t64, c);
1181 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1182 tcg_temp_free_i64(t64);
1183 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1184 TCGv_i32 t32 = tcg_temp_new_i32();
1186 tcg_gen_extrl_i64_i32(t32, c);
1187 gen_dup_i32(g->vece, t32, t32);
1188 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1189 tcg_temp_free_i32(t32);
1190 } else {
1191 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1192 return;
1195 if (oprsz < maxsz) {
1196 expand_clr(dofs + oprsz, maxsz - oprsz);
1200 /* Expand a vector three-operand operation. */
1201 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1202 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1204 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1205 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1206 TCGType type;
1207 uint32_t some;
1209 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1210 check_overlap_3(dofs, aofs, bofs, maxsz);
1212 type = 0;
1213 if (g->fniv) {
1214 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1216 switch (type) {
1217 case TCG_TYPE_V256:
1218 /* Recall that ARM SVE allows vector sizes that are not a
1219 * power of 2, but always a multiple of 16. The intent is
1220 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1222 some = QEMU_ALIGN_DOWN(oprsz, 32);
1223 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1224 g->load_dest, g->fniv);
1225 if (some == oprsz) {
1226 break;
1228 dofs += some;
1229 aofs += some;
1230 bofs += some;
1231 oprsz -= some;
1232 maxsz -= some;
1233 /* fallthru */
1234 case TCG_TYPE_V128:
1235 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1236 g->load_dest, g->fniv);
1237 break;
1238 case TCG_TYPE_V64:
1239 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1240 g->load_dest, g->fniv);
1241 break;
1243 case 0:
1244 if (g->fni8 && check_size_impl(oprsz, 8)) {
1245 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1246 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1247 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1248 } else {
1249 assert(g->fno != NULL);
1250 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
1251 maxsz, g->data, g->fno);
1252 oprsz = maxsz;
1254 break;
1256 default:
1257 g_assert_not_reached();
1259 tcg_swap_vecop_list(hold_list);
1261 if (oprsz < maxsz) {
1262 expand_clr(dofs + oprsz, maxsz - oprsz);
1266 /* Expand a vector operation with three vectors and an immediate. */
1267 void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1268 uint32_t oprsz, uint32_t maxsz, int64_t c,
1269 const GVecGen3i *g)
1271 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1272 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1273 TCGType type;
1274 uint32_t some;
1276 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1277 check_overlap_3(dofs, aofs, bofs, maxsz);
1279 type = 0;
1280 if (g->fniv) {
1281 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1283 switch (type) {
1284 case TCG_TYPE_V256:
1286 * Recall that ARM SVE allows vector sizes that are not a
1287 * power of 2, but always a multiple of 16. The intent is
1288 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1290 some = QEMU_ALIGN_DOWN(oprsz, 32);
1291 expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1292 c, g->load_dest, g->fniv);
1293 if (some == oprsz) {
1294 break;
1296 dofs += some;
1297 aofs += some;
1298 bofs += some;
1299 oprsz -= some;
1300 maxsz -= some;
1301 /* fallthru */
1302 case TCG_TYPE_V128:
1303 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1304 c, g->load_dest, g->fniv);
1305 break;
1306 case TCG_TYPE_V64:
1307 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1308 c, g->load_dest, g->fniv);
1309 break;
1311 case 0:
1312 if (g->fni8 && check_size_impl(oprsz, 8)) {
1313 expand_3i_i64(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni8);
1314 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1315 expand_3i_i32(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni4);
1316 } else {
1317 assert(g->fno != NULL);
1318 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno);
1319 oprsz = maxsz;
1321 break;
1323 default:
1324 g_assert_not_reached();
1326 tcg_swap_vecop_list(hold_list);
1328 if (oprsz < maxsz) {
1329 expand_clr(dofs + oprsz, maxsz - oprsz);
1333 /* Expand a vector four-operand operation. */
1334 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1335 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1337 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1338 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1339 TCGType type;
1340 uint32_t some;
1342 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1343 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1345 type = 0;
1346 if (g->fniv) {
1347 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1349 switch (type) {
1350 case TCG_TYPE_V256:
1351 /* Recall that ARM SVE allows vector sizes that are not a
1352 * power of 2, but always a multiple of 16. The intent is
1353 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1355 some = QEMU_ALIGN_DOWN(oprsz, 32);
1356 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1357 32, TCG_TYPE_V256, g->write_aofs, g->fniv);
1358 if (some == oprsz) {
1359 break;
1361 dofs += some;
1362 aofs += some;
1363 bofs += some;
1364 cofs += some;
1365 oprsz -= some;
1366 maxsz -= some;
1367 /* fallthru */
1368 case TCG_TYPE_V128:
1369 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1370 16, TCG_TYPE_V128, g->write_aofs, g->fniv);
1371 break;
1372 case TCG_TYPE_V64:
1373 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1374 8, TCG_TYPE_V64, g->write_aofs, g->fniv);
1375 break;
1377 case 0:
1378 if (g->fni8 && check_size_impl(oprsz, 8)) {
1379 expand_4_i64(dofs, aofs, bofs, cofs, oprsz,
1380 g->write_aofs, g->fni8);
1381 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1382 expand_4_i32(dofs, aofs, bofs, cofs, oprsz,
1383 g->write_aofs, g->fni4);
1384 } else {
1385 assert(g->fno != NULL);
1386 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1387 oprsz, maxsz, g->data, g->fno);
1388 oprsz = maxsz;
1390 break;
1392 default:
1393 g_assert_not_reached();
1395 tcg_swap_vecop_list(hold_list);
1397 if (oprsz < maxsz) {
1398 expand_clr(dofs + oprsz, maxsz - oprsz);
1403 * Expand specific vector operations.
1406 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1408 tcg_gen_mov_vec(a, b);
1411 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1412 uint32_t oprsz, uint32_t maxsz)
1414 static const GVecGen2 g = {
1415 .fni8 = tcg_gen_mov_i64,
1416 .fniv = vec_mov2,
1417 .fno = gen_helper_gvec_mov,
1418 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1420 if (dofs != aofs) {
1421 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1422 } else {
1423 check_size_align(oprsz, maxsz, dofs);
1424 if (oprsz < maxsz) {
1425 expand_clr(dofs + oprsz, maxsz - oprsz);
1430 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1431 uint32_t maxsz, TCGv_i32 in)
1433 check_size_align(oprsz, maxsz, dofs);
1434 tcg_debug_assert(vece <= MO_32);
1435 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1438 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1439 uint32_t maxsz, TCGv_i64 in)
1441 check_size_align(oprsz, maxsz, dofs);
1442 tcg_debug_assert(vece <= MO_64);
1443 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1446 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1447 uint32_t oprsz, uint32_t maxsz)
1449 if (vece <= MO_64) {
1450 TCGType type = choose_vector_type(0, vece, oprsz, 0);
1451 if (type != 0) {
1452 TCGv_vec t_vec = tcg_temp_new_vec(type);
1453 tcg_gen_dup_mem_vec(vece, t_vec, cpu_env, aofs);
1454 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
1455 tcg_temp_free_vec(t_vec);
1456 return;
1459 if (vece <= MO_32) {
1460 TCGv_i32 in = tcg_temp_new_i32();
1461 switch (vece) {
1462 case MO_8:
1463 tcg_gen_ld8u_i32(in, cpu_env, aofs);
1464 break;
1465 case MO_16:
1466 tcg_gen_ld16u_i32(in, cpu_env, aofs);
1467 break;
1468 case MO_32:
1469 tcg_gen_ld_i32(in, cpu_env, aofs);
1470 break;
1472 tcg_gen_gvec_dup_i32(vece, dofs, oprsz, maxsz, in);
1473 tcg_temp_free_i32(in);
1474 } else if (vece == MO_64) {
1475 TCGv_i64 in = tcg_temp_new_i64();
1476 tcg_gen_ld_i64(in, cpu_env, aofs);
1477 tcg_gen_gvec_dup_i64(MO_64, dofs, oprsz, maxsz, in);
1478 tcg_temp_free_i64(in);
1479 } else {
1480 /* 128-bit duplicate. */
1481 /* ??? Dup to 256-bit vector. */
1482 int i;
1484 tcg_debug_assert(vece == 4);
1485 tcg_debug_assert(oprsz >= 16);
1486 if (TCG_TARGET_HAS_v128) {
1487 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1489 tcg_gen_ld_vec(in, cpu_env, aofs);
1490 for (i = 0; i < oprsz; i += 16) {
1491 tcg_gen_st_vec(in, cpu_env, dofs + i);
1493 tcg_temp_free_vec(in);
1494 } else {
1495 TCGv_i64 in0 = tcg_temp_new_i64();
1496 TCGv_i64 in1 = tcg_temp_new_i64();
1498 tcg_gen_ld_i64(in0, cpu_env, aofs);
1499 tcg_gen_ld_i64(in1, cpu_env, aofs + 8);
1500 for (i = 0; i < oprsz; i += 16) {
1501 tcg_gen_st_i64(in0, cpu_env, dofs + i);
1502 tcg_gen_st_i64(in1, cpu_env, dofs + i + 8);
1504 tcg_temp_free_i64(in0);
1505 tcg_temp_free_i64(in1);
1510 void tcg_gen_gvec_dup64i(uint32_t dofs, uint32_t oprsz,
1511 uint32_t maxsz, uint64_t x)
1513 check_size_align(oprsz, maxsz, dofs);
1514 do_dup(MO_64, dofs, oprsz, maxsz, NULL, NULL, x);
1517 void tcg_gen_gvec_dup32i(uint32_t dofs, uint32_t oprsz,
1518 uint32_t maxsz, uint32_t x)
1520 check_size_align(oprsz, maxsz, dofs);
1521 do_dup(MO_32, dofs, oprsz, maxsz, NULL, NULL, x);
1524 void tcg_gen_gvec_dup16i(uint32_t dofs, uint32_t oprsz,
1525 uint32_t maxsz, uint16_t x)
1527 check_size_align(oprsz, maxsz, dofs);
1528 do_dup(MO_16, dofs, oprsz, maxsz, NULL, NULL, x);
1531 void tcg_gen_gvec_dup8i(uint32_t dofs, uint32_t oprsz,
1532 uint32_t maxsz, uint8_t x)
1534 check_size_align(oprsz, maxsz, dofs);
1535 do_dup(MO_8, dofs, oprsz, maxsz, NULL, NULL, x);
1538 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1539 uint32_t oprsz, uint32_t maxsz)
1541 static const GVecGen2 g = {
1542 .fni8 = tcg_gen_not_i64,
1543 .fniv = tcg_gen_not_vec,
1544 .fno = gen_helper_gvec_not,
1545 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1547 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1550 /* Perform a vector addition using normal addition and a mask. The mask
1551 should be the sign bit of each lane. This 6-operation form is more
1552 efficient than separate additions when there are 4 or more lanes in
1553 the 64-bit operation. */
1554 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1556 TCGv_i64 t1 = tcg_temp_new_i64();
1557 TCGv_i64 t2 = tcg_temp_new_i64();
1558 TCGv_i64 t3 = tcg_temp_new_i64();
1560 tcg_gen_andc_i64(t1, a, m);
1561 tcg_gen_andc_i64(t2, b, m);
1562 tcg_gen_xor_i64(t3, a, b);
1563 tcg_gen_add_i64(d, t1, t2);
1564 tcg_gen_and_i64(t3, t3, m);
1565 tcg_gen_xor_i64(d, d, t3);
1567 tcg_temp_free_i64(t1);
1568 tcg_temp_free_i64(t2);
1569 tcg_temp_free_i64(t3);
1572 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1574 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1575 gen_addv_mask(d, a, b, m);
1576 tcg_temp_free_i64(m);
1579 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1581 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1582 gen_addv_mask(d, a, b, m);
1583 tcg_temp_free_i64(m);
1586 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1588 TCGv_i64 t1 = tcg_temp_new_i64();
1589 TCGv_i64 t2 = tcg_temp_new_i64();
1591 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1592 tcg_gen_add_i64(t2, a, b);
1593 tcg_gen_add_i64(t1, t1, b);
1594 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1596 tcg_temp_free_i64(t1);
1597 tcg_temp_free_i64(t2);
1600 static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 };
1602 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1603 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1605 static const GVecGen3 g[4] = {
1606 { .fni8 = tcg_gen_vec_add8_i64,
1607 .fniv = tcg_gen_add_vec,
1608 .fno = gen_helper_gvec_add8,
1609 .opt_opc = vecop_list_add,
1610 .vece = MO_8 },
1611 { .fni8 = tcg_gen_vec_add16_i64,
1612 .fniv = tcg_gen_add_vec,
1613 .fno = gen_helper_gvec_add16,
1614 .opt_opc = vecop_list_add,
1615 .vece = MO_16 },
1616 { .fni4 = tcg_gen_add_i32,
1617 .fniv = tcg_gen_add_vec,
1618 .fno = gen_helper_gvec_add32,
1619 .opt_opc = vecop_list_add,
1620 .vece = MO_32 },
1621 { .fni8 = tcg_gen_add_i64,
1622 .fniv = tcg_gen_add_vec,
1623 .fno = gen_helper_gvec_add64,
1624 .opt_opc = vecop_list_add,
1625 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1626 .vece = MO_64 },
1629 tcg_debug_assert(vece <= MO_64);
1630 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1633 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1634 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1636 static const GVecGen2s g[4] = {
1637 { .fni8 = tcg_gen_vec_add8_i64,
1638 .fniv = tcg_gen_add_vec,
1639 .fno = gen_helper_gvec_adds8,
1640 .opt_opc = vecop_list_add,
1641 .vece = MO_8 },
1642 { .fni8 = tcg_gen_vec_add16_i64,
1643 .fniv = tcg_gen_add_vec,
1644 .fno = gen_helper_gvec_adds16,
1645 .opt_opc = vecop_list_add,
1646 .vece = MO_16 },
1647 { .fni4 = tcg_gen_add_i32,
1648 .fniv = tcg_gen_add_vec,
1649 .fno = gen_helper_gvec_adds32,
1650 .opt_opc = vecop_list_add,
1651 .vece = MO_32 },
1652 { .fni8 = tcg_gen_add_i64,
1653 .fniv = tcg_gen_add_vec,
1654 .fno = gen_helper_gvec_adds64,
1655 .opt_opc = vecop_list_add,
1656 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1657 .vece = MO_64 },
1660 tcg_debug_assert(vece <= MO_64);
1661 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1664 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
1665 int64_t c, uint32_t oprsz, uint32_t maxsz)
1667 TCGv_i64 tmp = tcg_const_i64(c);
1668 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
1669 tcg_temp_free_i64(tmp);
1672 static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 };
1674 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
1675 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1677 static const GVecGen2s g[4] = {
1678 { .fni8 = tcg_gen_vec_sub8_i64,
1679 .fniv = tcg_gen_sub_vec,
1680 .fno = gen_helper_gvec_subs8,
1681 .opt_opc = vecop_list_sub,
1682 .vece = MO_8 },
1683 { .fni8 = tcg_gen_vec_sub16_i64,
1684 .fniv = tcg_gen_sub_vec,
1685 .fno = gen_helper_gvec_subs16,
1686 .opt_opc = vecop_list_sub,
1687 .vece = MO_16 },
1688 { .fni4 = tcg_gen_sub_i32,
1689 .fniv = tcg_gen_sub_vec,
1690 .fno = gen_helper_gvec_subs32,
1691 .opt_opc = vecop_list_sub,
1692 .vece = MO_32 },
1693 { .fni8 = tcg_gen_sub_i64,
1694 .fniv = tcg_gen_sub_vec,
1695 .fno = gen_helper_gvec_subs64,
1696 .opt_opc = vecop_list_sub,
1697 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1698 .vece = MO_64 },
1701 tcg_debug_assert(vece <= MO_64);
1702 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1705 /* Perform a vector subtraction using normal subtraction and a mask.
1706 Compare gen_addv_mask above. */
1707 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1709 TCGv_i64 t1 = tcg_temp_new_i64();
1710 TCGv_i64 t2 = tcg_temp_new_i64();
1711 TCGv_i64 t3 = tcg_temp_new_i64();
1713 tcg_gen_or_i64(t1, a, m);
1714 tcg_gen_andc_i64(t2, b, m);
1715 tcg_gen_eqv_i64(t3, a, b);
1716 tcg_gen_sub_i64(d, t1, t2);
1717 tcg_gen_and_i64(t3, t3, m);
1718 tcg_gen_xor_i64(d, d, t3);
1720 tcg_temp_free_i64(t1);
1721 tcg_temp_free_i64(t2);
1722 tcg_temp_free_i64(t3);
1725 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1727 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1728 gen_subv_mask(d, a, b, m);
1729 tcg_temp_free_i64(m);
1732 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1734 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1735 gen_subv_mask(d, a, b, m);
1736 tcg_temp_free_i64(m);
1739 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1741 TCGv_i64 t1 = tcg_temp_new_i64();
1742 TCGv_i64 t2 = tcg_temp_new_i64();
1744 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
1745 tcg_gen_sub_i64(t2, a, b);
1746 tcg_gen_sub_i64(t1, a, t1);
1747 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1749 tcg_temp_free_i64(t1);
1750 tcg_temp_free_i64(t2);
1753 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
1754 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1756 static const GVecGen3 g[4] = {
1757 { .fni8 = tcg_gen_vec_sub8_i64,
1758 .fniv = tcg_gen_sub_vec,
1759 .fno = gen_helper_gvec_sub8,
1760 .opt_opc = vecop_list_sub,
1761 .vece = MO_8 },
1762 { .fni8 = tcg_gen_vec_sub16_i64,
1763 .fniv = tcg_gen_sub_vec,
1764 .fno = gen_helper_gvec_sub16,
1765 .opt_opc = vecop_list_sub,
1766 .vece = MO_16 },
1767 { .fni4 = tcg_gen_sub_i32,
1768 .fniv = tcg_gen_sub_vec,
1769 .fno = gen_helper_gvec_sub32,
1770 .opt_opc = vecop_list_sub,
1771 .vece = MO_32 },
1772 { .fni8 = tcg_gen_sub_i64,
1773 .fniv = tcg_gen_sub_vec,
1774 .fno = gen_helper_gvec_sub64,
1775 .opt_opc = vecop_list_sub,
1776 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1777 .vece = MO_64 },
1780 tcg_debug_assert(vece <= MO_64);
1781 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1784 static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 };
1786 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
1787 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1789 static const GVecGen3 g[4] = {
1790 { .fniv = tcg_gen_mul_vec,
1791 .fno = gen_helper_gvec_mul8,
1792 .opt_opc = vecop_list_mul,
1793 .vece = MO_8 },
1794 { .fniv = tcg_gen_mul_vec,
1795 .fno = gen_helper_gvec_mul16,
1796 .opt_opc = vecop_list_mul,
1797 .vece = MO_16 },
1798 { .fni4 = tcg_gen_mul_i32,
1799 .fniv = tcg_gen_mul_vec,
1800 .fno = gen_helper_gvec_mul32,
1801 .opt_opc = vecop_list_mul,
1802 .vece = MO_32 },
1803 { .fni8 = tcg_gen_mul_i64,
1804 .fniv = tcg_gen_mul_vec,
1805 .fno = gen_helper_gvec_mul64,
1806 .opt_opc = vecop_list_mul,
1807 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1808 .vece = MO_64 },
1811 tcg_debug_assert(vece <= MO_64);
1812 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1815 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
1816 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1818 static const GVecGen2s g[4] = {
1819 { .fniv = tcg_gen_mul_vec,
1820 .fno = gen_helper_gvec_muls8,
1821 .opt_opc = vecop_list_mul,
1822 .vece = MO_8 },
1823 { .fniv = tcg_gen_mul_vec,
1824 .fno = gen_helper_gvec_muls16,
1825 .opt_opc = vecop_list_mul,
1826 .vece = MO_16 },
1827 { .fni4 = tcg_gen_mul_i32,
1828 .fniv = tcg_gen_mul_vec,
1829 .fno = gen_helper_gvec_muls32,
1830 .opt_opc = vecop_list_mul,
1831 .vece = MO_32 },
1832 { .fni8 = tcg_gen_mul_i64,
1833 .fniv = tcg_gen_mul_vec,
1834 .fno = gen_helper_gvec_muls64,
1835 .opt_opc = vecop_list_mul,
1836 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1837 .vece = MO_64 },
1840 tcg_debug_assert(vece <= MO_64);
1841 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1844 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
1845 int64_t c, uint32_t oprsz, uint32_t maxsz)
1847 TCGv_i64 tmp = tcg_const_i64(c);
1848 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
1849 tcg_temp_free_i64(tmp);
1852 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1853 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1855 static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 };
1856 static const GVecGen3 g[4] = {
1857 { .fniv = tcg_gen_ssadd_vec,
1858 .fno = gen_helper_gvec_ssadd8,
1859 .opt_opc = vecop_list,
1860 .vece = MO_8 },
1861 { .fniv = tcg_gen_ssadd_vec,
1862 .fno = gen_helper_gvec_ssadd16,
1863 .opt_opc = vecop_list,
1864 .vece = MO_16 },
1865 { .fniv = tcg_gen_ssadd_vec,
1866 .fno = gen_helper_gvec_ssadd32,
1867 .opt_opc = vecop_list,
1868 .vece = MO_32 },
1869 { .fniv = tcg_gen_ssadd_vec,
1870 .fno = gen_helper_gvec_ssadd64,
1871 .opt_opc = vecop_list,
1872 .vece = MO_64 },
1874 tcg_debug_assert(vece <= MO_64);
1875 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1878 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
1879 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1881 static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 };
1882 static const GVecGen3 g[4] = {
1883 { .fniv = tcg_gen_sssub_vec,
1884 .fno = gen_helper_gvec_sssub8,
1885 .opt_opc = vecop_list,
1886 .vece = MO_8 },
1887 { .fniv = tcg_gen_sssub_vec,
1888 .fno = gen_helper_gvec_sssub16,
1889 .opt_opc = vecop_list,
1890 .vece = MO_16 },
1891 { .fniv = tcg_gen_sssub_vec,
1892 .fno = gen_helper_gvec_sssub32,
1893 .opt_opc = vecop_list,
1894 .vece = MO_32 },
1895 { .fniv = tcg_gen_sssub_vec,
1896 .fno = gen_helper_gvec_sssub64,
1897 .opt_opc = vecop_list,
1898 .vece = MO_64 },
1900 tcg_debug_assert(vece <= MO_64);
1901 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1904 static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1906 TCGv_i32 max = tcg_const_i32(-1);
1907 tcg_gen_add_i32(d, a, b);
1908 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
1909 tcg_temp_free_i32(max);
1912 static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1914 TCGv_i64 max = tcg_const_i64(-1);
1915 tcg_gen_add_i64(d, a, b);
1916 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
1917 tcg_temp_free_i64(max);
1920 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1921 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1923 static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 };
1924 static const GVecGen3 g[4] = {
1925 { .fniv = tcg_gen_usadd_vec,
1926 .fno = gen_helper_gvec_usadd8,
1927 .opt_opc = vecop_list,
1928 .vece = MO_8 },
1929 { .fniv = tcg_gen_usadd_vec,
1930 .fno = gen_helper_gvec_usadd16,
1931 .opt_opc = vecop_list,
1932 .vece = MO_16 },
1933 { .fni4 = tcg_gen_usadd_i32,
1934 .fniv = tcg_gen_usadd_vec,
1935 .fno = gen_helper_gvec_usadd32,
1936 .opt_opc = vecop_list,
1937 .vece = MO_32 },
1938 { .fni8 = tcg_gen_usadd_i64,
1939 .fniv = tcg_gen_usadd_vec,
1940 .fno = gen_helper_gvec_usadd64,
1941 .opt_opc = vecop_list,
1942 .vece = MO_64 }
1944 tcg_debug_assert(vece <= MO_64);
1945 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1948 static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1950 TCGv_i32 min = tcg_const_i32(0);
1951 tcg_gen_sub_i32(d, a, b);
1952 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
1953 tcg_temp_free_i32(min);
1956 static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1958 TCGv_i64 min = tcg_const_i64(0);
1959 tcg_gen_sub_i64(d, a, b);
1960 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
1961 tcg_temp_free_i64(min);
1964 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
1965 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1967 static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 };
1968 static const GVecGen3 g[4] = {
1969 { .fniv = tcg_gen_ussub_vec,
1970 .fno = gen_helper_gvec_ussub8,
1971 .opt_opc = vecop_list,
1972 .vece = MO_8 },
1973 { .fniv = tcg_gen_ussub_vec,
1974 .fno = gen_helper_gvec_ussub16,
1975 .opt_opc = vecop_list,
1976 .vece = MO_16 },
1977 { .fni4 = tcg_gen_ussub_i32,
1978 .fniv = tcg_gen_ussub_vec,
1979 .fno = gen_helper_gvec_ussub32,
1980 .opt_opc = vecop_list,
1981 .vece = MO_32 },
1982 { .fni8 = tcg_gen_ussub_i64,
1983 .fniv = tcg_gen_ussub_vec,
1984 .fno = gen_helper_gvec_ussub64,
1985 .opt_opc = vecop_list,
1986 .vece = MO_64 }
1988 tcg_debug_assert(vece <= MO_64);
1989 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1992 void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs,
1993 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1995 static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 };
1996 static const GVecGen3 g[4] = {
1997 { .fniv = tcg_gen_smin_vec,
1998 .fno = gen_helper_gvec_smin8,
1999 .opt_opc = vecop_list,
2000 .vece = MO_8 },
2001 { .fniv = tcg_gen_smin_vec,
2002 .fno = gen_helper_gvec_smin16,
2003 .opt_opc = vecop_list,
2004 .vece = MO_16 },
2005 { .fni4 = tcg_gen_smin_i32,
2006 .fniv = tcg_gen_smin_vec,
2007 .fno = gen_helper_gvec_smin32,
2008 .opt_opc = vecop_list,
2009 .vece = MO_32 },
2010 { .fni8 = tcg_gen_smin_i64,
2011 .fniv = tcg_gen_smin_vec,
2012 .fno = gen_helper_gvec_smin64,
2013 .opt_opc = vecop_list,
2014 .vece = MO_64 }
2016 tcg_debug_assert(vece <= MO_64);
2017 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2020 void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs,
2021 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2023 static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 };
2024 static const GVecGen3 g[4] = {
2025 { .fniv = tcg_gen_umin_vec,
2026 .fno = gen_helper_gvec_umin8,
2027 .opt_opc = vecop_list,
2028 .vece = MO_8 },
2029 { .fniv = tcg_gen_umin_vec,
2030 .fno = gen_helper_gvec_umin16,
2031 .opt_opc = vecop_list,
2032 .vece = MO_16 },
2033 { .fni4 = tcg_gen_umin_i32,
2034 .fniv = tcg_gen_umin_vec,
2035 .fno = gen_helper_gvec_umin32,
2036 .opt_opc = vecop_list,
2037 .vece = MO_32 },
2038 { .fni8 = tcg_gen_umin_i64,
2039 .fniv = tcg_gen_umin_vec,
2040 .fno = gen_helper_gvec_umin64,
2041 .opt_opc = vecop_list,
2042 .vece = MO_64 }
2044 tcg_debug_assert(vece <= MO_64);
2045 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2048 void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs,
2049 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2051 static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 };
2052 static const GVecGen3 g[4] = {
2053 { .fniv = tcg_gen_smax_vec,
2054 .fno = gen_helper_gvec_smax8,
2055 .opt_opc = vecop_list,
2056 .vece = MO_8 },
2057 { .fniv = tcg_gen_smax_vec,
2058 .fno = gen_helper_gvec_smax16,
2059 .opt_opc = vecop_list,
2060 .vece = MO_16 },
2061 { .fni4 = tcg_gen_smax_i32,
2062 .fniv = tcg_gen_smax_vec,
2063 .fno = gen_helper_gvec_smax32,
2064 .opt_opc = vecop_list,
2065 .vece = MO_32 },
2066 { .fni8 = tcg_gen_smax_i64,
2067 .fniv = tcg_gen_smax_vec,
2068 .fno = gen_helper_gvec_smax64,
2069 .opt_opc = vecop_list,
2070 .vece = MO_64 }
2072 tcg_debug_assert(vece <= MO_64);
2073 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2076 void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs,
2077 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2079 static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 };
2080 static const GVecGen3 g[4] = {
2081 { .fniv = tcg_gen_umax_vec,
2082 .fno = gen_helper_gvec_umax8,
2083 .opt_opc = vecop_list,
2084 .vece = MO_8 },
2085 { .fniv = tcg_gen_umax_vec,
2086 .fno = gen_helper_gvec_umax16,
2087 .opt_opc = vecop_list,
2088 .vece = MO_16 },
2089 { .fni4 = tcg_gen_umax_i32,
2090 .fniv = tcg_gen_umax_vec,
2091 .fno = gen_helper_gvec_umax32,
2092 .opt_opc = vecop_list,
2093 .vece = MO_32 },
2094 { .fni8 = tcg_gen_umax_i64,
2095 .fniv = tcg_gen_umax_vec,
2096 .fno = gen_helper_gvec_umax64,
2097 .opt_opc = vecop_list,
2098 .vece = MO_64 }
2100 tcg_debug_assert(vece <= MO_64);
2101 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2104 /* Perform a vector negation using normal negation and a mask.
2105 Compare gen_subv_mask above. */
2106 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
2108 TCGv_i64 t2 = tcg_temp_new_i64();
2109 TCGv_i64 t3 = tcg_temp_new_i64();
2111 tcg_gen_andc_i64(t3, m, b);
2112 tcg_gen_andc_i64(t2, b, m);
2113 tcg_gen_sub_i64(d, m, t2);
2114 tcg_gen_xor_i64(d, d, t3);
2116 tcg_temp_free_i64(t2);
2117 tcg_temp_free_i64(t3);
2120 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
2122 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
2123 gen_negv_mask(d, b, m);
2124 tcg_temp_free_i64(m);
2127 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
2129 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
2130 gen_negv_mask(d, b, m);
2131 tcg_temp_free_i64(m);
2134 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
2136 TCGv_i64 t1 = tcg_temp_new_i64();
2137 TCGv_i64 t2 = tcg_temp_new_i64();
2139 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2140 tcg_gen_neg_i64(t2, b);
2141 tcg_gen_neg_i64(t1, t1);
2142 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2144 tcg_temp_free_i64(t1);
2145 tcg_temp_free_i64(t2);
2148 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
2149 uint32_t oprsz, uint32_t maxsz)
2151 static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 };
2152 static const GVecGen2 g[4] = {
2153 { .fni8 = tcg_gen_vec_neg8_i64,
2154 .fniv = tcg_gen_neg_vec,
2155 .fno = gen_helper_gvec_neg8,
2156 .opt_opc = vecop_list,
2157 .vece = MO_8 },
2158 { .fni8 = tcg_gen_vec_neg16_i64,
2159 .fniv = tcg_gen_neg_vec,
2160 .fno = gen_helper_gvec_neg16,
2161 .opt_opc = vecop_list,
2162 .vece = MO_16 },
2163 { .fni4 = tcg_gen_neg_i32,
2164 .fniv = tcg_gen_neg_vec,
2165 .fno = gen_helper_gvec_neg32,
2166 .opt_opc = vecop_list,
2167 .vece = MO_32 },
2168 { .fni8 = tcg_gen_neg_i64,
2169 .fniv = tcg_gen_neg_vec,
2170 .fno = gen_helper_gvec_neg64,
2171 .opt_opc = vecop_list,
2172 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2173 .vece = MO_64 },
2176 tcg_debug_assert(vece <= MO_64);
2177 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2180 static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece)
2182 TCGv_i64 t = tcg_temp_new_i64();
2183 int nbit = 8 << vece;
2185 /* Create -1 for each negative element. */
2186 tcg_gen_shri_i64(t, b, nbit - 1);
2187 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2188 tcg_gen_muli_i64(t, t, (1 << nbit) - 1);
2191 * Invert (via xor -1) and add one (via sub -1).
2192 * Because of the ordering the msb is cleared,
2193 * so we never have carry into the next element.
2195 tcg_gen_xor_i64(d, b, t);
2196 tcg_gen_sub_i64(d, d, t);
2198 tcg_temp_free_i64(t);
2201 static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b)
2203 gen_absv_mask(d, b, MO_8);
2206 static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b)
2208 gen_absv_mask(d, b, MO_16);
2211 void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs,
2212 uint32_t oprsz, uint32_t maxsz)
2214 static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 };
2215 static const GVecGen2 g[4] = {
2216 { .fni8 = tcg_gen_vec_abs8_i64,
2217 .fniv = tcg_gen_abs_vec,
2218 .fno = gen_helper_gvec_abs8,
2219 .opt_opc = vecop_list,
2220 .vece = MO_8 },
2221 { .fni8 = tcg_gen_vec_abs16_i64,
2222 .fniv = tcg_gen_abs_vec,
2223 .fno = gen_helper_gvec_abs16,
2224 .opt_opc = vecop_list,
2225 .vece = MO_16 },
2226 { .fni4 = tcg_gen_abs_i32,
2227 .fniv = tcg_gen_abs_vec,
2228 .fno = gen_helper_gvec_abs32,
2229 .opt_opc = vecop_list,
2230 .vece = MO_32 },
2231 { .fni8 = tcg_gen_abs_i64,
2232 .fniv = tcg_gen_abs_vec,
2233 .fno = gen_helper_gvec_abs64,
2234 .opt_opc = vecop_list,
2235 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2236 .vece = MO_64 },
2239 tcg_debug_assert(vece <= MO_64);
2240 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2243 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
2244 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2246 static const GVecGen3 g = {
2247 .fni8 = tcg_gen_and_i64,
2248 .fniv = tcg_gen_and_vec,
2249 .fno = gen_helper_gvec_and,
2250 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2253 if (aofs == bofs) {
2254 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2255 } else {
2256 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2260 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
2261 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2263 static const GVecGen3 g = {
2264 .fni8 = tcg_gen_or_i64,
2265 .fniv = tcg_gen_or_vec,
2266 .fno = gen_helper_gvec_or,
2267 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2270 if (aofs == bofs) {
2271 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2272 } else {
2273 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2277 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
2278 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2280 static const GVecGen3 g = {
2281 .fni8 = tcg_gen_xor_i64,
2282 .fniv = tcg_gen_xor_vec,
2283 .fno = gen_helper_gvec_xor,
2284 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2287 if (aofs == bofs) {
2288 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, 0);
2289 } else {
2290 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2294 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
2295 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2297 static const GVecGen3 g = {
2298 .fni8 = tcg_gen_andc_i64,
2299 .fniv = tcg_gen_andc_vec,
2300 .fno = gen_helper_gvec_andc,
2301 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2304 if (aofs == bofs) {
2305 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, 0);
2306 } else {
2307 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2311 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
2312 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2314 static const GVecGen3 g = {
2315 .fni8 = tcg_gen_orc_i64,
2316 .fniv = tcg_gen_orc_vec,
2317 .fno = gen_helper_gvec_orc,
2318 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2321 if (aofs == bofs) {
2322 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, -1);
2323 } else {
2324 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2328 void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs,
2329 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2331 static const GVecGen3 g = {
2332 .fni8 = tcg_gen_nand_i64,
2333 .fniv = tcg_gen_nand_vec,
2334 .fno = gen_helper_gvec_nand,
2335 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2338 if (aofs == bofs) {
2339 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2340 } else {
2341 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2345 void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs,
2346 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2348 static const GVecGen3 g = {
2349 .fni8 = tcg_gen_nor_i64,
2350 .fniv = tcg_gen_nor_vec,
2351 .fno = gen_helper_gvec_nor,
2352 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2355 if (aofs == bofs) {
2356 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2357 } else {
2358 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2362 void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs,
2363 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2365 static const GVecGen3 g = {
2366 .fni8 = tcg_gen_eqv_i64,
2367 .fniv = tcg_gen_eqv_vec,
2368 .fno = gen_helper_gvec_eqv,
2369 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2372 if (aofs == bofs) {
2373 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, -1);
2374 } else {
2375 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2379 static const GVecGen2s gop_ands = {
2380 .fni8 = tcg_gen_and_i64,
2381 .fniv = tcg_gen_and_vec,
2382 .fno = gen_helper_gvec_ands,
2383 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2384 .vece = MO_64
2387 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
2388 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2390 TCGv_i64 tmp = tcg_temp_new_i64();
2391 gen_dup_i64(vece, tmp, c);
2392 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2393 tcg_temp_free_i64(tmp);
2396 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
2397 int64_t c, uint32_t oprsz, uint32_t maxsz)
2399 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2400 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2401 tcg_temp_free_i64(tmp);
2404 static const GVecGen2s gop_xors = {
2405 .fni8 = tcg_gen_xor_i64,
2406 .fniv = tcg_gen_xor_vec,
2407 .fno = gen_helper_gvec_xors,
2408 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2409 .vece = MO_64
2412 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
2413 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2415 TCGv_i64 tmp = tcg_temp_new_i64();
2416 gen_dup_i64(vece, tmp, c);
2417 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2418 tcg_temp_free_i64(tmp);
2421 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
2422 int64_t c, uint32_t oprsz, uint32_t maxsz)
2424 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2425 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2426 tcg_temp_free_i64(tmp);
2429 static const GVecGen2s gop_ors = {
2430 .fni8 = tcg_gen_or_i64,
2431 .fniv = tcg_gen_or_vec,
2432 .fno = gen_helper_gvec_ors,
2433 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2434 .vece = MO_64
2437 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
2438 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2440 TCGv_i64 tmp = tcg_temp_new_i64();
2441 gen_dup_i64(vece, tmp, c);
2442 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2443 tcg_temp_free_i64(tmp);
2446 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
2447 int64_t c, uint32_t oprsz, uint32_t maxsz)
2449 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2450 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2451 tcg_temp_free_i64(tmp);
2454 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2456 uint64_t mask = dup_const(MO_8, 0xff << c);
2457 tcg_gen_shli_i64(d, a, c);
2458 tcg_gen_andi_i64(d, d, mask);
2461 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2463 uint64_t mask = dup_const(MO_16, 0xffff << c);
2464 tcg_gen_shli_i64(d, a, c);
2465 tcg_gen_andi_i64(d, d, mask);
2468 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
2469 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2471 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
2472 static const GVecGen2i g[4] = {
2473 { .fni8 = tcg_gen_vec_shl8i_i64,
2474 .fniv = tcg_gen_shli_vec,
2475 .fno = gen_helper_gvec_shl8i,
2476 .opt_opc = vecop_list,
2477 .vece = MO_8 },
2478 { .fni8 = tcg_gen_vec_shl16i_i64,
2479 .fniv = tcg_gen_shli_vec,
2480 .fno = gen_helper_gvec_shl16i,
2481 .opt_opc = vecop_list,
2482 .vece = MO_16 },
2483 { .fni4 = tcg_gen_shli_i32,
2484 .fniv = tcg_gen_shli_vec,
2485 .fno = gen_helper_gvec_shl32i,
2486 .opt_opc = vecop_list,
2487 .vece = MO_32 },
2488 { .fni8 = tcg_gen_shli_i64,
2489 .fniv = tcg_gen_shli_vec,
2490 .fno = gen_helper_gvec_shl64i,
2491 .opt_opc = vecop_list,
2492 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2493 .vece = MO_64 },
2496 tcg_debug_assert(vece <= MO_64);
2497 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2498 if (shift == 0) {
2499 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2500 } else {
2501 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2505 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2507 uint64_t mask = dup_const(MO_8, 0xff >> c);
2508 tcg_gen_shri_i64(d, a, c);
2509 tcg_gen_andi_i64(d, d, mask);
2512 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2514 uint64_t mask = dup_const(MO_16, 0xffff >> c);
2515 tcg_gen_shri_i64(d, a, c);
2516 tcg_gen_andi_i64(d, d, mask);
2519 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
2520 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2522 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
2523 static const GVecGen2i g[4] = {
2524 { .fni8 = tcg_gen_vec_shr8i_i64,
2525 .fniv = tcg_gen_shri_vec,
2526 .fno = gen_helper_gvec_shr8i,
2527 .opt_opc = vecop_list,
2528 .vece = MO_8 },
2529 { .fni8 = tcg_gen_vec_shr16i_i64,
2530 .fniv = tcg_gen_shri_vec,
2531 .fno = gen_helper_gvec_shr16i,
2532 .opt_opc = vecop_list,
2533 .vece = MO_16 },
2534 { .fni4 = tcg_gen_shri_i32,
2535 .fniv = tcg_gen_shri_vec,
2536 .fno = gen_helper_gvec_shr32i,
2537 .opt_opc = vecop_list,
2538 .vece = MO_32 },
2539 { .fni8 = tcg_gen_shri_i64,
2540 .fniv = tcg_gen_shri_vec,
2541 .fno = gen_helper_gvec_shr64i,
2542 .opt_opc = vecop_list,
2543 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2544 .vece = MO_64 },
2547 tcg_debug_assert(vece <= MO_64);
2548 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2549 if (shift == 0) {
2550 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2551 } else {
2552 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2556 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2558 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2559 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2560 TCGv_i64 s = tcg_temp_new_i64();
2562 tcg_gen_shri_i64(d, a, c);
2563 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2564 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2565 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2566 tcg_gen_or_i64(d, d, s); /* include sign extension */
2567 tcg_temp_free_i64(s);
2570 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2572 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2573 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2574 TCGv_i64 s = tcg_temp_new_i64();
2576 tcg_gen_shri_i64(d, a, c);
2577 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2578 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2579 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2580 tcg_gen_or_i64(d, d, s); /* include sign extension */
2581 tcg_temp_free_i64(s);
2584 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
2585 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2587 static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 };
2588 static const GVecGen2i g[4] = {
2589 { .fni8 = tcg_gen_vec_sar8i_i64,
2590 .fniv = tcg_gen_sari_vec,
2591 .fno = gen_helper_gvec_sar8i,
2592 .opt_opc = vecop_list,
2593 .vece = MO_8 },
2594 { .fni8 = tcg_gen_vec_sar16i_i64,
2595 .fniv = tcg_gen_sari_vec,
2596 .fno = gen_helper_gvec_sar16i,
2597 .opt_opc = vecop_list,
2598 .vece = MO_16 },
2599 { .fni4 = tcg_gen_sari_i32,
2600 .fniv = tcg_gen_sari_vec,
2601 .fno = gen_helper_gvec_sar32i,
2602 .opt_opc = vecop_list,
2603 .vece = MO_32 },
2604 { .fni8 = tcg_gen_sari_i64,
2605 .fniv = tcg_gen_sari_vec,
2606 .fno = gen_helper_gvec_sar64i,
2607 .opt_opc = vecop_list,
2608 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2609 .vece = MO_64 },
2612 tcg_debug_assert(vece <= MO_64);
2613 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2614 if (shift == 0) {
2615 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2616 } else {
2617 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2622 * Specialized generation vector shifts by a non-constant scalar.
2625 typedef struct {
2626 void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32);
2627 void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64);
2628 void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32);
2629 void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec);
2630 gen_helper_gvec_2 *fno[4];
2631 TCGOpcode s_list[2];
2632 TCGOpcode v_list[2];
2633 } GVecGen2sh;
2635 static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
2636 uint32_t oprsz, uint32_t tysz, TCGType type,
2637 TCGv_i32 shift,
2638 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32))
2640 TCGv_vec t0 = tcg_temp_new_vec(type);
2641 uint32_t i;
2643 for (i = 0; i < oprsz; i += tysz) {
2644 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
2645 fni(vece, t0, t0, shift);
2646 tcg_gen_st_vec(t0, cpu_env, dofs + i);
2648 tcg_temp_free_vec(t0);
2651 static void
2652 do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift,
2653 uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g)
2655 TCGType type;
2656 uint32_t some;
2658 check_size_align(oprsz, maxsz, dofs | aofs);
2659 check_overlap_2(dofs, aofs, maxsz);
2661 /* If the backend has a scalar expansion, great. */
2662 type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64);
2663 if (type) {
2664 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
2665 switch (type) {
2666 case TCG_TYPE_V256:
2667 some = QEMU_ALIGN_DOWN(oprsz, 32);
2668 expand_2sh_vec(vece, dofs, aofs, some, 32,
2669 TCG_TYPE_V256, shift, g->fniv_s);
2670 if (some == oprsz) {
2671 break;
2673 dofs += some;
2674 aofs += some;
2675 oprsz -= some;
2676 maxsz -= some;
2677 /* fallthru */
2678 case TCG_TYPE_V128:
2679 expand_2sh_vec(vece, dofs, aofs, oprsz, 16,
2680 TCG_TYPE_V128, shift, g->fniv_s);
2681 break;
2682 case TCG_TYPE_V64:
2683 expand_2sh_vec(vece, dofs, aofs, oprsz, 8,
2684 TCG_TYPE_V64, shift, g->fniv_s);
2685 break;
2686 default:
2687 g_assert_not_reached();
2689 tcg_swap_vecop_list(hold_list);
2690 goto clear_tail;
2693 /* If the backend supports variable vector shifts, also cool. */
2694 type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64);
2695 if (type) {
2696 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
2697 TCGv_vec v_shift = tcg_temp_new_vec(type);
2699 if (vece == MO_64) {
2700 TCGv_i64 sh64 = tcg_temp_new_i64();
2701 tcg_gen_extu_i32_i64(sh64, shift);
2702 tcg_gen_dup_i64_vec(MO_64, v_shift, sh64);
2703 tcg_temp_free_i64(sh64);
2704 } else {
2705 tcg_gen_dup_i32_vec(vece, v_shift, shift);
2708 switch (type) {
2709 case TCG_TYPE_V256:
2710 some = QEMU_ALIGN_DOWN(oprsz, 32);
2711 expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256,
2712 v_shift, false, g->fniv_v);
2713 if (some == oprsz) {
2714 break;
2716 dofs += some;
2717 aofs += some;
2718 oprsz -= some;
2719 maxsz -= some;
2720 /* fallthru */
2721 case TCG_TYPE_V128:
2722 expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
2723 v_shift, false, g->fniv_v);
2724 break;
2725 case TCG_TYPE_V64:
2726 expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
2727 v_shift, false, g->fniv_v);
2728 break;
2729 default:
2730 g_assert_not_reached();
2732 tcg_temp_free_vec(v_shift);
2733 tcg_swap_vecop_list(hold_list);
2734 goto clear_tail;
2737 /* Otherwise fall back to integral... */
2738 if (vece == MO_32 && check_size_impl(oprsz, 4)) {
2739 expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4);
2740 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
2741 TCGv_i64 sh64 = tcg_temp_new_i64();
2742 tcg_gen_extu_i32_i64(sh64, shift);
2743 expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8);
2744 tcg_temp_free_i64(sh64);
2745 } else {
2746 TCGv_ptr a0 = tcg_temp_new_ptr();
2747 TCGv_ptr a1 = tcg_temp_new_ptr();
2748 TCGv_i32 desc = tcg_temp_new_i32();
2750 tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT);
2751 tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0));
2752 tcg_gen_addi_ptr(a0, cpu_env, dofs);
2753 tcg_gen_addi_ptr(a1, cpu_env, aofs);
2755 g->fno[vece](a0, a1, desc);
2757 tcg_temp_free_ptr(a0);
2758 tcg_temp_free_ptr(a1);
2759 tcg_temp_free_i32(desc);
2760 return;
2763 clear_tail:
2764 if (oprsz < maxsz) {
2765 expand_clr(dofs + oprsz, maxsz - oprsz);
2769 void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs,
2770 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2772 static const GVecGen2sh g = {
2773 .fni4 = tcg_gen_shl_i32,
2774 .fni8 = tcg_gen_shl_i64,
2775 .fniv_s = tcg_gen_shls_vec,
2776 .fniv_v = tcg_gen_shlv_vec,
2777 .fno = {
2778 gen_helper_gvec_shl8i,
2779 gen_helper_gvec_shl16i,
2780 gen_helper_gvec_shl32i,
2781 gen_helper_gvec_shl64i,
2783 .s_list = { INDEX_op_shls_vec, 0 },
2784 .v_list = { INDEX_op_shlv_vec, 0 },
2787 tcg_debug_assert(vece <= MO_64);
2788 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2791 void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs,
2792 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2794 static const GVecGen2sh g = {
2795 .fni4 = tcg_gen_shr_i32,
2796 .fni8 = tcg_gen_shr_i64,
2797 .fniv_s = tcg_gen_shrs_vec,
2798 .fniv_v = tcg_gen_shrv_vec,
2799 .fno = {
2800 gen_helper_gvec_shr8i,
2801 gen_helper_gvec_shr16i,
2802 gen_helper_gvec_shr32i,
2803 gen_helper_gvec_shr64i,
2805 .s_list = { INDEX_op_shrs_vec, 0 },
2806 .v_list = { INDEX_op_shrv_vec, 0 },
2809 tcg_debug_assert(vece <= MO_64);
2810 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2813 void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs,
2814 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2816 static const GVecGen2sh g = {
2817 .fni4 = tcg_gen_sar_i32,
2818 .fni8 = tcg_gen_sar_i64,
2819 .fniv_s = tcg_gen_sars_vec,
2820 .fniv_v = tcg_gen_sarv_vec,
2821 .fno = {
2822 gen_helper_gvec_sar8i,
2823 gen_helper_gvec_sar16i,
2824 gen_helper_gvec_sar32i,
2825 gen_helper_gvec_sar64i,
2827 .s_list = { INDEX_op_sars_vec, 0 },
2828 .v_list = { INDEX_op_sarv_vec, 0 },
2831 tcg_debug_assert(vece <= MO_64);
2832 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2836 * Expand D = A << (B % element bits)
2838 * Unlike scalar shifts, where it is easy for the target front end
2839 * to include the modulo as part of the expansion. If the target
2840 * naturally includes the modulo as part of the operation, great!
2841 * If the target has some other behaviour from out-of-range shifts,
2842 * then it could not use this function anyway, and would need to
2843 * do it's own expansion with custom functions.
2845 static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d,
2846 TCGv_vec a, TCGv_vec b)
2848 TCGv_vec t = tcg_temp_new_vec_matching(d);
2850 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
2851 tcg_gen_and_vec(vece, t, t, b);
2852 tcg_gen_shlv_vec(vece, d, a, t);
2853 tcg_temp_free_vec(t);
2856 static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2858 TCGv_i32 t = tcg_temp_new_i32();
2860 tcg_gen_andi_i32(t, b, 31);
2861 tcg_gen_shl_i32(d, a, t);
2862 tcg_temp_free_i32(t);
2865 static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2867 TCGv_i64 t = tcg_temp_new_i64();
2869 tcg_gen_andi_i64(t, b, 63);
2870 tcg_gen_shl_i64(d, a, t);
2871 tcg_temp_free_i64(t);
2874 void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs,
2875 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2877 static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 };
2878 static const GVecGen3 g[4] = {
2879 { .fniv = tcg_gen_shlv_mod_vec,
2880 .fno = gen_helper_gvec_shl8v,
2881 .opt_opc = vecop_list,
2882 .vece = MO_8 },
2883 { .fniv = tcg_gen_shlv_mod_vec,
2884 .fno = gen_helper_gvec_shl16v,
2885 .opt_opc = vecop_list,
2886 .vece = MO_16 },
2887 { .fni4 = tcg_gen_shl_mod_i32,
2888 .fniv = tcg_gen_shlv_mod_vec,
2889 .fno = gen_helper_gvec_shl32v,
2890 .opt_opc = vecop_list,
2891 .vece = MO_32 },
2892 { .fni8 = tcg_gen_shl_mod_i64,
2893 .fniv = tcg_gen_shlv_mod_vec,
2894 .fno = gen_helper_gvec_shl64v,
2895 .opt_opc = vecop_list,
2896 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2897 .vece = MO_64 },
2900 tcg_debug_assert(vece <= MO_64);
2901 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2905 * Similarly for logical right shifts.
2908 static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d,
2909 TCGv_vec a, TCGv_vec b)
2911 TCGv_vec t = tcg_temp_new_vec_matching(d);
2913 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
2914 tcg_gen_and_vec(vece, t, t, b);
2915 tcg_gen_shrv_vec(vece, d, a, t);
2916 tcg_temp_free_vec(t);
2919 static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2921 TCGv_i32 t = tcg_temp_new_i32();
2923 tcg_gen_andi_i32(t, b, 31);
2924 tcg_gen_shr_i32(d, a, t);
2925 tcg_temp_free_i32(t);
2928 static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2930 TCGv_i64 t = tcg_temp_new_i64();
2932 tcg_gen_andi_i64(t, b, 63);
2933 tcg_gen_shr_i64(d, a, t);
2934 tcg_temp_free_i64(t);
2937 void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs,
2938 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2940 static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 };
2941 static const GVecGen3 g[4] = {
2942 { .fniv = tcg_gen_shrv_mod_vec,
2943 .fno = gen_helper_gvec_shr8v,
2944 .opt_opc = vecop_list,
2945 .vece = MO_8 },
2946 { .fniv = tcg_gen_shrv_mod_vec,
2947 .fno = gen_helper_gvec_shr16v,
2948 .opt_opc = vecop_list,
2949 .vece = MO_16 },
2950 { .fni4 = tcg_gen_shr_mod_i32,
2951 .fniv = tcg_gen_shrv_mod_vec,
2952 .fno = gen_helper_gvec_shr32v,
2953 .opt_opc = vecop_list,
2954 .vece = MO_32 },
2955 { .fni8 = tcg_gen_shr_mod_i64,
2956 .fniv = tcg_gen_shrv_mod_vec,
2957 .fno = gen_helper_gvec_shr64v,
2958 .opt_opc = vecop_list,
2959 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2960 .vece = MO_64 },
2963 tcg_debug_assert(vece <= MO_64);
2964 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2968 * Similarly for arithmetic right shifts.
2971 static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d,
2972 TCGv_vec a, TCGv_vec b)
2974 TCGv_vec t = tcg_temp_new_vec_matching(d);
2976 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
2977 tcg_gen_and_vec(vece, t, t, b);
2978 tcg_gen_sarv_vec(vece, d, a, t);
2979 tcg_temp_free_vec(t);
2982 static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2984 TCGv_i32 t = tcg_temp_new_i32();
2986 tcg_gen_andi_i32(t, b, 31);
2987 tcg_gen_sar_i32(d, a, t);
2988 tcg_temp_free_i32(t);
2991 static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2993 TCGv_i64 t = tcg_temp_new_i64();
2995 tcg_gen_andi_i64(t, b, 63);
2996 tcg_gen_sar_i64(d, a, t);
2997 tcg_temp_free_i64(t);
3000 void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs,
3001 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3003 static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 };
3004 static const GVecGen3 g[4] = {
3005 { .fniv = tcg_gen_sarv_mod_vec,
3006 .fno = gen_helper_gvec_sar8v,
3007 .opt_opc = vecop_list,
3008 .vece = MO_8 },
3009 { .fniv = tcg_gen_sarv_mod_vec,
3010 .fno = gen_helper_gvec_sar16v,
3011 .opt_opc = vecop_list,
3012 .vece = MO_16 },
3013 { .fni4 = tcg_gen_sar_mod_i32,
3014 .fniv = tcg_gen_sarv_mod_vec,
3015 .fno = gen_helper_gvec_sar32v,
3016 .opt_opc = vecop_list,
3017 .vece = MO_32 },
3018 { .fni8 = tcg_gen_sar_mod_i64,
3019 .fniv = tcg_gen_sarv_mod_vec,
3020 .fno = gen_helper_gvec_sar64v,
3021 .opt_opc = vecop_list,
3022 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3023 .vece = MO_64 },
3026 tcg_debug_assert(vece <= MO_64);
3027 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3030 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3031 static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3032 uint32_t oprsz, TCGCond cond)
3034 TCGv_i32 t0 = tcg_temp_new_i32();
3035 TCGv_i32 t1 = tcg_temp_new_i32();
3036 uint32_t i;
3038 for (i = 0; i < oprsz; i += 4) {
3039 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
3040 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
3041 tcg_gen_setcond_i32(cond, t0, t0, t1);
3042 tcg_gen_neg_i32(t0, t0);
3043 tcg_gen_st_i32(t0, cpu_env, dofs + i);
3045 tcg_temp_free_i32(t1);
3046 tcg_temp_free_i32(t0);
3049 static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3050 uint32_t oprsz, TCGCond cond)
3052 TCGv_i64 t0 = tcg_temp_new_i64();
3053 TCGv_i64 t1 = tcg_temp_new_i64();
3054 uint32_t i;
3056 for (i = 0; i < oprsz; i += 8) {
3057 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
3058 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
3059 tcg_gen_setcond_i64(cond, t0, t0, t1);
3060 tcg_gen_neg_i64(t0, t0);
3061 tcg_gen_st_i64(t0, cpu_env, dofs + i);
3063 tcg_temp_free_i64(t1);
3064 tcg_temp_free_i64(t0);
3067 static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3068 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
3069 TCGType type, TCGCond cond)
3071 TCGv_vec t0 = tcg_temp_new_vec(type);
3072 TCGv_vec t1 = tcg_temp_new_vec(type);
3073 uint32_t i;
3075 for (i = 0; i < oprsz; i += tysz) {
3076 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
3077 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
3078 tcg_gen_cmp_vec(cond, vece, t0, t0, t1);
3079 tcg_gen_st_vec(t0, cpu_env, dofs + i);
3081 tcg_temp_free_vec(t1);
3082 tcg_temp_free_vec(t0);
3085 void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs,
3086 uint32_t aofs, uint32_t bofs,
3087 uint32_t oprsz, uint32_t maxsz)
3089 static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 };
3090 static gen_helper_gvec_3 * const eq_fn[4] = {
3091 gen_helper_gvec_eq8, gen_helper_gvec_eq16,
3092 gen_helper_gvec_eq32, gen_helper_gvec_eq64
3094 static gen_helper_gvec_3 * const ne_fn[4] = {
3095 gen_helper_gvec_ne8, gen_helper_gvec_ne16,
3096 gen_helper_gvec_ne32, gen_helper_gvec_ne64
3098 static gen_helper_gvec_3 * const lt_fn[4] = {
3099 gen_helper_gvec_lt8, gen_helper_gvec_lt16,
3100 gen_helper_gvec_lt32, gen_helper_gvec_lt64
3102 static gen_helper_gvec_3 * const le_fn[4] = {
3103 gen_helper_gvec_le8, gen_helper_gvec_le16,
3104 gen_helper_gvec_le32, gen_helper_gvec_le64
3106 static gen_helper_gvec_3 * const ltu_fn[4] = {
3107 gen_helper_gvec_ltu8, gen_helper_gvec_ltu16,
3108 gen_helper_gvec_ltu32, gen_helper_gvec_ltu64
3110 static gen_helper_gvec_3 * const leu_fn[4] = {
3111 gen_helper_gvec_leu8, gen_helper_gvec_leu16,
3112 gen_helper_gvec_leu32, gen_helper_gvec_leu64
3114 static gen_helper_gvec_3 * const * const fns[16] = {
3115 [TCG_COND_EQ] = eq_fn,
3116 [TCG_COND_NE] = ne_fn,
3117 [TCG_COND_LT] = lt_fn,
3118 [TCG_COND_LE] = le_fn,
3119 [TCG_COND_LTU] = ltu_fn,
3120 [TCG_COND_LEU] = leu_fn,
3123 const TCGOpcode *hold_list;
3124 TCGType type;
3125 uint32_t some;
3127 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
3128 check_overlap_3(dofs, aofs, bofs, maxsz);
3130 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
3131 do_dup(MO_8, dofs, oprsz, maxsz,
3132 NULL, NULL, -(cond == TCG_COND_ALWAYS));
3133 return;
3137 * Implement inline with a vector type, if possible.
3138 * Prefer integer when 64-bit host and 64-bit comparison.
3140 hold_list = tcg_swap_vecop_list(cmp_list);
3141 type = choose_vector_type(cmp_list, vece, oprsz,
3142 TCG_TARGET_REG_BITS == 64 && vece == MO_64);
3143 switch (type) {
3144 case TCG_TYPE_V256:
3145 /* Recall that ARM SVE allows vector sizes that are not a
3146 * power of 2, but always a multiple of 16. The intent is
3147 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3149 some = QEMU_ALIGN_DOWN(oprsz, 32);
3150 expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond);
3151 if (some == oprsz) {
3152 break;
3154 dofs += some;
3155 aofs += some;
3156 bofs += some;
3157 oprsz -= some;
3158 maxsz -= some;
3159 /* fallthru */
3160 case TCG_TYPE_V128:
3161 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond);
3162 break;
3163 case TCG_TYPE_V64:
3164 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond);
3165 break;
3167 case 0:
3168 if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3169 expand_cmp_i64(dofs, aofs, bofs, oprsz, cond);
3170 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3171 expand_cmp_i32(dofs, aofs, bofs, oprsz, cond);
3172 } else {
3173 gen_helper_gvec_3 * const *fn = fns[cond];
3175 if (fn == NULL) {
3176 uint32_t tmp;
3177 tmp = aofs, aofs = bofs, bofs = tmp;
3178 cond = tcg_swap_cond(cond);
3179 fn = fns[cond];
3180 assert(fn != NULL);
3182 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]);
3183 oprsz = maxsz;
3185 break;
3187 default:
3188 g_assert_not_reached();
3190 tcg_swap_vecop_list(hold_list);
3192 if (oprsz < maxsz) {
3193 expand_clr(dofs + oprsz, maxsz - oprsz);