Merge remote-tracking branch 'remotes/cohuck/tags/s390x-20190719' into staging
[qemu/ar7.git] / hw / ppc / ppc.c
bloba9e508c496de2320e1964b2406f572f433ade999
1 /*
2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "qemu/osdep.h"
25 #include "cpu.h"
26 #include "hw/hw.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/cpus.h"
32 #include "qemu/log.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "kvm_ppc.h"
36 #include "trace.h"
38 //#define PPC_DEBUG_IRQ
39 //#define PPC_DEBUG_TB
41 #ifdef PPC_DEBUG_IRQ
42 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
43 #else
44 # define LOG_IRQ(...) do { } while (0)
45 #endif
48 #ifdef PPC_DEBUG_TB
49 # define LOG_TB(...) qemu_log(__VA_ARGS__)
50 #else
51 # define LOG_TB(...) do { } while (0)
52 #endif
54 static void cpu_ppc_tb_stop (CPUPPCState *env);
55 static void cpu_ppc_tb_start (CPUPPCState *env);
57 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
59 CPUState *cs = CPU(cpu);
60 CPUPPCState *env = &cpu->env;
61 unsigned int old_pending;
62 bool locked = false;
64 /* We may already have the BQL if coming from the reset path */
65 if (!qemu_mutex_iothread_locked()) {
66 locked = true;
67 qemu_mutex_lock_iothread();
70 old_pending = env->pending_interrupts;
72 if (level) {
73 env->pending_interrupts |= 1 << n_IRQ;
74 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
75 } else {
76 env->pending_interrupts &= ~(1 << n_IRQ);
77 if (env->pending_interrupts == 0) {
78 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
82 if (old_pending != env->pending_interrupts) {
83 kvmppc_set_interrupt(cpu, n_IRQ, level);
87 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
88 "req %08x\n", __func__, env, n_IRQ, level,
89 env->pending_interrupts, CPU(cpu)->interrupt_request);
91 if (locked) {
92 qemu_mutex_unlock_iothread();
96 /* PowerPC 6xx / 7xx internal IRQ controller */
97 static void ppc6xx_set_irq(void *opaque, int pin, int level)
99 PowerPCCPU *cpu = opaque;
100 CPUPPCState *env = &cpu->env;
101 int cur_level;
103 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
104 env, pin, level);
105 cur_level = (env->irq_input_state >> pin) & 1;
106 /* Don't generate spurious events */
107 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
108 CPUState *cs = CPU(cpu);
110 switch (pin) {
111 case PPC6xx_INPUT_TBEN:
112 /* Level sensitive - active high */
113 LOG_IRQ("%s: %s the time base\n",
114 __func__, level ? "start" : "stop");
115 if (level) {
116 cpu_ppc_tb_start(env);
117 } else {
118 cpu_ppc_tb_stop(env);
120 case PPC6xx_INPUT_INT:
121 /* Level sensitive - active high */
122 LOG_IRQ("%s: set the external IRQ state to %d\n",
123 __func__, level);
124 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
125 break;
126 case PPC6xx_INPUT_SMI:
127 /* Level sensitive - active high */
128 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
129 __func__, level);
130 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
131 break;
132 case PPC6xx_INPUT_MCP:
133 /* Negative edge sensitive */
134 /* XXX: TODO: actual reaction may depends on HID0 status
135 * 603/604/740/750: check HID0[EMCP]
137 if (cur_level == 1 && level == 0) {
138 LOG_IRQ("%s: raise machine check state\n",
139 __func__);
140 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
142 break;
143 case PPC6xx_INPUT_CKSTP_IN:
144 /* Level sensitive - active low */
145 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
146 /* XXX: Note that the only way to restart the CPU is to reset it */
147 if (level) {
148 LOG_IRQ("%s: stop the CPU\n", __func__);
149 cs->halted = 1;
151 break;
152 case PPC6xx_INPUT_HRESET:
153 /* Level sensitive - active low */
154 if (level) {
155 LOG_IRQ("%s: reset the CPU\n", __func__);
156 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
158 break;
159 case PPC6xx_INPUT_SRESET:
160 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
161 __func__, level);
162 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
163 break;
164 default:
165 /* Unknown pin - do nothing */
166 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
167 return;
169 if (level)
170 env->irq_input_state |= 1 << pin;
171 else
172 env->irq_input_state &= ~(1 << pin);
176 void ppc6xx_irq_init(PowerPCCPU *cpu)
178 CPUPPCState *env = &cpu->env;
180 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
181 PPC6xx_INPUT_NB);
184 #if defined(TARGET_PPC64)
185 /* PowerPC 970 internal IRQ controller */
186 static void ppc970_set_irq(void *opaque, int pin, int level)
188 PowerPCCPU *cpu = opaque;
189 CPUPPCState *env = &cpu->env;
190 int cur_level;
192 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
193 env, pin, level);
194 cur_level = (env->irq_input_state >> pin) & 1;
195 /* Don't generate spurious events */
196 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
197 CPUState *cs = CPU(cpu);
199 switch (pin) {
200 case PPC970_INPUT_INT:
201 /* Level sensitive - active high */
202 LOG_IRQ("%s: set the external IRQ state to %d\n",
203 __func__, level);
204 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
205 break;
206 case PPC970_INPUT_THINT:
207 /* Level sensitive - active high */
208 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
209 level);
210 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
211 break;
212 case PPC970_INPUT_MCP:
213 /* Negative edge sensitive */
214 /* XXX: TODO: actual reaction may depends on HID0 status
215 * 603/604/740/750: check HID0[EMCP]
217 if (cur_level == 1 && level == 0) {
218 LOG_IRQ("%s: raise machine check state\n",
219 __func__);
220 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
222 break;
223 case PPC970_INPUT_CKSTP:
224 /* Level sensitive - active low */
225 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
226 if (level) {
227 LOG_IRQ("%s: stop the CPU\n", __func__);
228 cs->halted = 1;
229 } else {
230 LOG_IRQ("%s: restart the CPU\n", __func__);
231 cs->halted = 0;
232 qemu_cpu_kick(cs);
234 break;
235 case PPC970_INPUT_HRESET:
236 /* Level sensitive - active low */
237 if (level) {
238 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
240 break;
241 case PPC970_INPUT_SRESET:
242 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
243 __func__, level);
244 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
245 break;
246 case PPC970_INPUT_TBEN:
247 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
248 level);
249 /* XXX: TODO */
250 break;
251 default:
252 /* Unknown pin - do nothing */
253 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
254 return;
256 if (level)
257 env->irq_input_state |= 1 << pin;
258 else
259 env->irq_input_state &= ~(1 << pin);
263 void ppc970_irq_init(PowerPCCPU *cpu)
265 CPUPPCState *env = &cpu->env;
267 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
268 PPC970_INPUT_NB);
271 /* POWER7 internal IRQ controller */
272 static void power7_set_irq(void *opaque, int pin, int level)
274 PowerPCCPU *cpu = opaque;
275 CPUPPCState *env = &cpu->env;
277 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
278 env, pin, level);
280 switch (pin) {
281 case POWER7_INPUT_INT:
282 /* Level sensitive - active high */
283 LOG_IRQ("%s: set the external IRQ state to %d\n",
284 __func__, level);
285 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
286 break;
287 default:
288 /* Unknown pin - do nothing */
289 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
290 return;
292 if (level) {
293 env->irq_input_state |= 1 << pin;
294 } else {
295 env->irq_input_state &= ~(1 << pin);
299 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
301 CPUPPCState *env = &cpu->env;
303 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
304 POWER7_INPUT_NB);
307 /* POWER9 internal IRQ controller */
308 static void power9_set_irq(void *opaque, int pin, int level)
310 PowerPCCPU *cpu = opaque;
311 CPUPPCState *env = &cpu->env;
313 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
314 env, pin, level);
316 switch (pin) {
317 case POWER9_INPUT_INT:
318 /* Level sensitive - active high */
319 LOG_IRQ("%s: set the external IRQ state to %d\n",
320 __func__, level);
321 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
322 break;
323 case POWER9_INPUT_HINT:
324 /* Level sensitive - active high */
325 LOG_IRQ("%s: set the external IRQ state to %d\n",
326 __func__, level);
327 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
328 break;
329 default:
330 /* Unknown pin - do nothing */
331 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
332 return;
334 if (level) {
335 env->irq_input_state |= 1 << pin;
336 } else {
337 env->irq_input_state &= ~(1 << pin);
341 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
343 CPUPPCState *env = &cpu->env;
345 env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
346 POWER9_INPUT_NB);
348 #endif /* defined(TARGET_PPC64) */
350 void ppc40x_core_reset(PowerPCCPU *cpu)
352 CPUPPCState *env = &cpu->env;
353 target_ulong dbsr;
355 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
356 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
357 dbsr = env->spr[SPR_40x_DBSR];
358 dbsr &= ~0x00000300;
359 dbsr |= 0x00000100;
360 env->spr[SPR_40x_DBSR] = dbsr;
363 void ppc40x_chip_reset(PowerPCCPU *cpu)
365 CPUPPCState *env = &cpu->env;
366 target_ulong dbsr;
368 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
369 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
370 /* XXX: TODO reset all internal peripherals */
371 dbsr = env->spr[SPR_40x_DBSR];
372 dbsr &= ~0x00000300;
373 dbsr |= 0x00000200;
374 env->spr[SPR_40x_DBSR] = dbsr;
377 void ppc40x_system_reset(PowerPCCPU *cpu)
379 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
380 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
383 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
385 PowerPCCPU *cpu = env_archcpu(env);
387 switch ((val >> 28) & 0x3) {
388 case 0x0:
389 /* No action */
390 break;
391 case 0x1:
392 /* Core reset */
393 ppc40x_core_reset(cpu);
394 break;
395 case 0x2:
396 /* Chip reset */
397 ppc40x_chip_reset(cpu);
398 break;
399 case 0x3:
400 /* System reset */
401 ppc40x_system_reset(cpu);
402 break;
406 /* PowerPC 40x internal IRQ controller */
407 static void ppc40x_set_irq(void *opaque, int pin, int level)
409 PowerPCCPU *cpu = opaque;
410 CPUPPCState *env = &cpu->env;
411 int cur_level;
413 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
414 env, pin, level);
415 cur_level = (env->irq_input_state >> pin) & 1;
416 /* Don't generate spurious events */
417 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
418 CPUState *cs = CPU(cpu);
420 switch (pin) {
421 case PPC40x_INPUT_RESET_SYS:
422 if (level) {
423 LOG_IRQ("%s: reset the PowerPC system\n",
424 __func__);
425 ppc40x_system_reset(cpu);
427 break;
428 case PPC40x_INPUT_RESET_CHIP:
429 if (level) {
430 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
431 ppc40x_chip_reset(cpu);
433 break;
434 case PPC40x_INPUT_RESET_CORE:
435 /* XXX: TODO: update DBSR[MRR] */
436 if (level) {
437 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
438 ppc40x_core_reset(cpu);
440 break;
441 case PPC40x_INPUT_CINT:
442 /* Level sensitive - active high */
443 LOG_IRQ("%s: set the critical IRQ state to %d\n",
444 __func__, level);
445 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
446 break;
447 case PPC40x_INPUT_INT:
448 /* Level sensitive - active high */
449 LOG_IRQ("%s: set the external IRQ state to %d\n",
450 __func__, level);
451 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
452 break;
453 case PPC40x_INPUT_HALT:
454 /* Level sensitive - active low */
455 if (level) {
456 LOG_IRQ("%s: stop the CPU\n", __func__);
457 cs->halted = 1;
458 } else {
459 LOG_IRQ("%s: restart the CPU\n", __func__);
460 cs->halted = 0;
461 qemu_cpu_kick(cs);
463 break;
464 case PPC40x_INPUT_DEBUG:
465 /* Level sensitive - active high */
466 LOG_IRQ("%s: set the debug pin state to %d\n",
467 __func__, level);
468 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
469 break;
470 default:
471 /* Unknown pin - do nothing */
472 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
473 return;
475 if (level)
476 env->irq_input_state |= 1 << pin;
477 else
478 env->irq_input_state &= ~(1 << pin);
482 void ppc40x_irq_init(PowerPCCPU *cpu)
484 CPUPPCState *env = &cpu->env;
486 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
487 cpu, PPC40x_INPUT_NB);
490 /* PowerPC E500 internal IRQ controller */
491 static void ppce500_set_irq(void *opaque, int pin, int level)
493 PowerPCCPU *cpu = opaque;
494 CPUPPCState *env = &cpu->env;
495 int cur_level;
497 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
498 env, pin, level);
499 cur_level = (env->irq_input_state >> pin) & 1;
500 /* Don't generate spurious events */
501 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
502 switch (pin) {
503 case PPCE500_INPUT_MCK:
504 if (level) {
505 LOG_IRQ("%s: reset the PowerPC system\n",
506 __func__);
507 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
509 break;
510 case PPCE500_INPUT_RESET_CORE:
511 if (level) {
512 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
513 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
515 break;
516 case PPCE500_INPUT_CINT:
517 /* Level sensitive - active high */
518 LOG_IRQ("%s: set the critical IRQ state to %d\n",
519 __func__, level);
520 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
521 break;
522 case PPCE500_INPUT_INT:
523 /* Level sensitive - active high */
524 LOG_IRQ("%s: set the core IRQ state to %d\n",
525 __func__, level);
526 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
527 break;
528 case PPCE500_INPUT_DEBUG:
529 /* Level sensitive - active high */
530 LOG_IRQ("%s: set the debug pin state to %d\n",
531 __func__, level);
532 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
533 break;
534 default:
535 /* Unknown pin - do nothing */
536 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
537 return;
539 if (level)
540 env->irq_input_state |= 1 << pin;
541 else
542 env->irq_input_state &= ~(1 << pin);
546 void ppce500_irq_init(PowerPCCPU *cpu)
548 CPUPPCState *env = &cpu->env;
550 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
551 cpu, PPCE500_INPUT_NB);
554 /* Enable or Disable the E500 EPR capability */
555 void ppce500_set_mpic_proxy(bool enabled)
557 CPUState *cs;
559 CPU_FOREACH(cs) {
560 PowerPCCPU *cpu = POWERPC_CPU(cs);
562 cpu->env.mpic_proxy = enabled;
563 if (kvm_enabled()) {
564 kvmppc_set_mpic_proxy(cpu, enabled);
569 /*****************************************************************************/
570 /* PowerPC time base and decrementer emulation */
572 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
574 /* TB time in tb periods */
575 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
578 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
580 ppc_tb_t *tb_env = env->tb_env;
581 uint64_t tb;
583 if (kvm_enabled()) {
584 return env->spr[SPR_TBL];
587 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
588 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
590 return tb;
593 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
595 ppc_tb_t *tb_env = env->tb_env;
596 uint64_t tb;
598 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
599 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
601 return tb >> 32;
604 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
606 if (kvm_enabled()) {
607 return env->spr[SPR_TBU];
610 return _cpu_ppc_load_tbu(env);
613 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
614 int64_t *tb_offsetp, uint64_t value)
616 *tb_offsetp = value -
617 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
619 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
620 __func__, value, *tb_offsetp);
623 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
625 ppc_tb_t *tb_env = env->tb_env;
626 uint64_t tb;
628 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
629 tb &= 0xFFFFFFFF00000000ULL;
630 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
631 &tb_env->tb_offset, tb | (uint64_t)value);
634 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
636 ppc_tb_t *tb_env = env->tb_env;
637 uint64_t tb;
639 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
640 tb &= 0x00000000FFFFFFFFULL;
641 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
642 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
645 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
647 _cpu_ppc_store_tbu(env, value);
650 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
652 ppc_tb_t *tb_env = env->tb_env;
653 uint64_t tb;
655 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
656 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
658 return tb;
661 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
663 ppc_tb_t *tb_env = env->tb_env;
664 uint64_t tb;
666 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
667 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
669 return tb >> 32;
672 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
674 ppc_tb_t *tb_env = env->tb_env;
675 uint64_t tb;
677 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
678 tb &= 0xFFFFFFFF00000000ULL;
679 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
680 &tb_env->atb_offset, tb | (uint64_t)value);
683 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
685 ppc_tb_t *tb_env = env->tb_env;
686 uint64_t tb;
688 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
689 tb &= 0x00000000FFFFFFFFULL;
690 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
691 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
694 static void cpu_ppc_tb_stop (CPUPPCState *env)
696 ppc_tb_t *tb_env = env->tb_env;
697 uint64_t tb, atb, vmclk;
699 /* If the time base is already frozen, do nothing */
700 if (tb_env->tb_freq != 0) {
701 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
702 /* Get the time base */
703 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
704 /* Get the alternate time base */
705 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
706 /* Store the time base value (ie compute the current offset) */
707 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
708 /* Store the alternate time base value (compute the current offset) */
709 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
710 /* Set the time base frequency to zero */
711 tb_env->tb_freq = 0;
712 /* Now, the time bases are frozen to tb_offset / atb_offset value */
716 static void cpu_ppc_tb_start (CPUPPCState *env)
718 ppc_tb_t *tb_env = env->tb_env;
719 uint64_t tb, atb, vmclk;
721 /* If the time base is not frozen, do nothing */
722 if (tb_env->tb_freq == 0) {
723 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
724 /* Get the time base from tb_offset */
725 tb = tb_env->tb_offset;
726 /* Get the alternate time base from atb_offset */
727 atb = tb_env->atb_offset;
728 /* Restore the tb frequency from the decrementer frequency */
729 tb_env->tb_freq = tb_env->decr_freq;
730 /* Store the time base value */
731 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
732 /* Store the alternate time base value */
733 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
737 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
739 ppc_tb_t *tb_env = env->tb_env;
740 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
741 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
744 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
746 ppc_tb_t *tb_env = env->tb_env;
747 int64_t decr, diff;
749 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
750 if (diff >= 0) {
751 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
752 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
753 decr = 0;
754 } else {
755 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
757 LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
759 return decr;
762 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
764 ppc_tb_t *tb_env = env->tb_env;
765 uint64_t decr;
767 if (kvm_enabled()) {
768 return env->spr[SPR_DECR];
771 decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
774 * If large decrementer is enabled then the decrementer is signed extened
775 * to 64 bits, otherwise it is a 32 bit value.
777 if (env->spr[SPR_LPCR] & LPCR_LD) {
778 return decr;
780 return (uint32_t) decr;
783 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
785 PowerPCCPU *cpu = env_archcpu(env);
786 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
787 ppc_tb_t *tb_env = env->tb_env;
788 uint64_t hdecr;
790 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next);
793 * If we have a large decrementer (POWER9 or later) then hdecr is sign
794 * extended to 64 bits, otherwise it is 32 bits.
796 if (pcc->lrg_decr_bits > 32) {
797 return hdecr;
799 return (uint32_t) hdecr;
802 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
804 ppc_tb_t *tb_env = env->tb_env;
805 uint64_t diff;
807 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
809 return tb_env->purr_load +
810 muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
813 /* When decrementer expires,
814 * all we need to do is generate or queue a CPU exception
816 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
818 /* Raise it */
819 LOG_TB("raise decrementer exception\n");
820 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
823 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
825 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
828 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
830 CPUPPCState *env = &cpu->env;
832 /* Raise it */
833 LOG_TB("raise hv decrementer exception\n");
835 /* The architecture specifies that we don't deliver HDEC
836 * interrupts in a PM state. Not only they don't cause a
837 * wakeup but they also get effectively discarded.
839 if (!env->resume_as_sreset) {
840 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
844 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
846 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
849 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
850 QEMUTimer *timer,
851 void (*raise_excp)(void *),
852 void (*lower_excp)(PowerPCCPU *),
853 target_ulong decr, target_ulong value,
854 int nr_bits)
856 CPUPPCState *env = &cpu->env;
857 ppc_tb_t *tb_env = env->tb_env;
858 uint64_t now, next;
859 bool negative;
861 /* Truncate value to decr_width and sign extend for simplicity */
862 value &= ((1ULL << nr_bits) - 1);
863 negative = !!(value & (1ULL << (nr_bits - 1)));
864 if (negative) {
865 value |= (0xFFFFFFFFULL << nr_bits);
868 LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
869 decr, value);
871 if (kvm_enabled()) {
872 /* KVM handles decrementer exceptions, we don't need our own timer */
873 return;
877 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
878 * interrupt.
880 * If we get a really small DEC value, we can assume that by the time we
881 * handled it we should inject an interrupt already.
883 * On MSB level based DEC implementations the MSB always means the interrupt
884 * is pending, so raise it on those.
886 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
887 * an edge interrupt, so raise it here too.
889 if ((value < 3) ||
890 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
891 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
892 && !(decr & (1ULL << (nr_bits - 1))))) {
893 (*raise_excp)(cpu);
894 return;
897 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
898 if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
899 (*lower_excp)(cpu);
902 /* Calculate the next timer event */
903 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
904 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
905 *nextp = next;
907 /* Adjust timer */
908 timer_mod(timer, next);
911 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
912 target_ulong value, int nr_bits)
914 ppc_tb_t *tb_env = cpu->env.tb_env;
916 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
917 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
918 value, nr_bits);
921 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
923 PowerPCCPU *cpu = env_archcpu(env);
924 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
925 int nr_bits = 32;
927 if (env->spr[SPR_LPCR] & LPCR_LD) {
928 nr_bits = pcc->lrg_decr_bits;
931 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
934 static void cpu_ppc_decr_cb(void *opaque)
936 PowerPCCPU *cpu = opaque;
938 cpu_ppc_decr_excp(cpu);
941 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
942 target_ulong value, int nr_bits)
944 ppc_tb_t *tb_env = cpu->env.tb_env;
946 if (tb_env->hdecr_timer != NULL) {
947 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
948 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
949 hdecr, value, nr_bits);
953 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
955 PowerPCCPU *cpu = env_archcpu(env);
956 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
958 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
959 pcc->lrg_decr_bits);
962 static void cpu_ppc_hdecr_cb(void *opaque)
964 PowerPCCPU *cpu = opaque;
966 cpu_ppc_hdecr_excp(cpu);
969 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
971 ppc_tb_t *tb_env = cpu->env.tb_env;
973 tb_env->purr_load = value;
974 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
977 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
979 CPUPPCState *env = opaque;
980 PowerPCCPU *cpu = env_archcpu(env);
981 ppc_tb_t *tb_env = env->tb_env;
983 tb_env->tb_freq = freq;
984 tb_env->decr_freq = freq;
985 /* There is a bug in Linux 2.4 kernels:
986 * if a decrementer exception is pending when it enables msr_ee at startup,
987 * it's not ready to handle it...
989 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
990 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
991 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
994 static void timebase_save(PPCTimebase *tb)
996 uint64_t ticks = cpu_get_host_ticks();
997 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
999 if (!first_ppc_cpu->env.tb_env) {
1000 error_report("No timebase object");
1001 return;
1004 /* not used anymore, we keep it for compatibility */
1005 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
1007 * tb_offset is only expected to be changed by QEMU so
1008 * there is no need to update it from KVM here
1010 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1013 static void timebase_load(PPCTimebase *tb)
1015 CPUState *cpu;
1016 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1017 int64_t tb_off_adj, tb_off;
1018 unsigned long freq;
1020 if (!first_ppc_cpu->env.tb_env) {
1021 error_report("No timebase object");
1022 return;
1025 freq = first_ppc_cpu->env.tb_env->tb_freq;
1027 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1029 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1030 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1031 (tb_off_adj - tb_off) / freq);
1033 /* Set new offset to all CPUs */
1034 CPU_FOREACH(cpu) {
1035 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1036 pcpu->env.tb_env->tb_offset = tb_off_adj;
1037 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1041 void cpu_ppc_clock_vm_state_change(void *opaque, int running,
1042 RunState state)
1044 PPCTimebase *tb = opaque;
1046 if (running) {
1047 timebase_load(tb);
1048 } else {
1049 timebase_save(tb);
1054 * When migrating, read the clock just before migration,
1055 * so that the guest clock counts during the events
1056 * between:
1058 * * vm_stop()
1060 * * pre_save()
1062 * This reduces clock difference on migration from 5s
1063 * to 0.1s (when max_downtime == 5s), because sending the
1064 * final pages of memory (which happens between vm_stop()
1065 * and pre_save()) takes max_downtime.
1067 static int timebase_pre_save(void *opaque)
1069 PPCTimebase *tb = opaque;
1071 timebase_save(tb);
1073 return 0;
1076 const VMStateDescription vmstate_ppc_timebase = {
1077 .name = "timebase",
1078 .version_id = 1,
1079 .minimum_version_id = 1,
1080 .minimum_version_id_old = 1,
1081 .pre_save = timebase_pre_save,
1082 .fields = (VMStateField []) {
1083 VMSTATE_UINT64(guest_timebase, PPCTimebase),
1084 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1085 VMSTATE_END_OF_LIST()
1089 /* Set up (once) timebase frequency (in Hz) */
1090 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1092 PowerPCCPU *cpu = env_archcpu(env);
1093 ppc_tb_t *tb_env;
1095 tb_env = g_malloc0(sizeof(ppc_tb_t));
1096 env->tb_env = tb_env;
1097 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1098 if (is_book3s_arch2x(env)) {
1099 /* All Book3S 64bit CPUs implement level based DEC logic */
1100 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1102 /* Create new timer */
1103 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1104 if (env->has_hv_mode) {
1105 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1106 cpu);
1107 } else {
1108 tb_env->hdecr_timer = NULL;
1110 cpu_ppc_set_tb_clk(env, freq);
1112 return &cpu_ppc_set_tb_clk;
1115 /* Specific helpers for POWER & PowerPC 601 RTC */
1116 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1118 _cpu_ppc_store_tbu(env, value);
1121 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1123 return _cpu_ppc_load_tbu(env);
1126 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1128 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1131 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1133 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1136 /*****************************************************************************/
1137 /* PowerPC 40x timers */
1139 /* PIT, FIT & WDT */
1140 typedef struct ppc40x_timer_t ppc40x_timer_t;
1141 struct ppc40x_timer_t {
1142 uint64_t pit_reload; /* PIT auto-reload value */
1143 uint64_t fit_next; /* Tick for next FIT interrupt */
1144 QEMUTimer *fit_timer;
1145 uint64_t wdt_next; /* Tick for next WDT interrupt */
1146 QEMUTimer *wdt_timer;
1148 /* 405 have the PIT, 440 have a DECR. */
1149 unsigned int decr_excp;
1152 /* Fixed interval timer */
1153 static void cpu_4xx_fit_cb (void *opaque)
1155 PowerPCCPU *cpu;
1156 CPUPPCState *env;
1157 ppc_tb_t *tb_env;
1158 ppc40x_timer_t *ppc40x_timer;
1159 uint64_t now, next;
1161 env = opaque;
1162 cpu = env_archcpu(env);
1163 tb_env = env->tb_env;
1164 ppc40x_timer = tb_env->opaque;
1165 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1166 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1167 case 0:
1168 next = 1 << 9;
1169 break;
1170 case 1:
1171 next = 1 << 13;
1172 break;
1173 case 2:
1174 next = 1 << 17;
1175 break;
1176 case 3:
1177 next = 1 << 21;
1178 break;
1179 default:
1180 /* Cannot occur, but makes gcc happy */
1181 return;
1183 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1184 if (next == now)
1185 next++;
1186 timer_mod(ppc40x_timer->fit_timer, next);
1187 env->spr[SPR_40x_TSR] |= 1 << 26;
1188 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1189 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1191 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1192 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1193 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1196 /* Programmable interval timer */
1197 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1199 ppc40x_timer_t *ppc40x_timer;
1200 uint64_t now, next;
1202 ppc40x_timer = tb_env->opaque;
1203 if (ppc40x_timer->pit_reload <= 1 ||
1204 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1205 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1206 /* Stop PIT */
1207 LOG_TB("%s: stop PIT\n", __func__);
1208 timer_del(tb_env->decr_timer);
1209 } else {
1210 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1211 __func__, ppc40x_timer->pit_reload);
1212 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1213 next = now + muldiv64(ppc40x_timer->pit_reload,
1214 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1215 if (is_excp)
1216 next += tb_env->decr_next - now;
1217 if (next == now)
1218 next++;
1219 timer_mod(tb_env->decr_timer, next);
1220 tb_env->decr_next = next;
1224 static void cpu_4xx_pit_cb (void *opaque)
1226 PowerPCCPU *cpu;
1227 CPUPPCState *env;
1228 ppc_tb_t *tb_env;
1229 ppc40x_timer_t *ppc40x_timer;
1231 env = opaque;
1232 cpu = env_archcpu(env);
1233 tb_env = env->tb_env;
1234 ppc40x_timer = tb_env->opaque;
1235 env->spr[SPR_40x_TSR] |= 1 << 27;
1236 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1237 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1239 start_stop_pit(env, tb_env, 1);
1240 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1241 "%016" PRIx64 "\n", __func__,
1242 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1243 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1244 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1245 ppc40x_timer->pit_reload);
1248 /* Watchdog timer */
1249 static void cpu_4xx_wdt_cb (void *opaque)
1251 PowerPCCPU *cpu;
1252 CPUPPCState *env;
1253 ppc_tb_t *tb_env;
1254 ppc40x_timer_t *ppc40x_timer;
1255 uint64_t now, next;
1257 env = opaque;
1258 cpu = env_archcpu(env);
1259 tb_env = env->tb_env;
1260 ppc40x_timer = tb_env->opaque;
1261 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1262 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1263 case 0:
1264 next = 1 << 17;
1265 break;
1266 case 1:
1267 next = 1 << 21;
1268 break;
1269 case 2:
1270 next = 1 << 25;
1271 break;
1272 case 3:
1273 next = 1 << 29;
1274 break;
1275 default:
1276 /* Cannot occur, but makes gcc happy */
1277 return;
1279 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1280 if (next == now)
1281 next++;
1282 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1283 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1284 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1285 case 0x0:
1286 case 0x1:
1287 timer_mod(ppc40x_timer->wdt_timer, next);
1288 ppc40x_timer->wdt_next = next;
1289 env->spr[SPR_40x_TSR] |= 1U << 31;
1290 break;
1291 case 0x2:
1292 timer_mod(ppc40x_timer->wdt_timer, next);
1293 ppc40x_timer->wdt_next = next;
1294 env->spr[SPR_40x_TSR] |= 1 << 30;
1295 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1296 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1298 break;
1299 case 0x3:
1300 env->spr[SPR_40x_TSR] &= ~0x30000000;
1301 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1302 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1303 case 0x0:
1304 /* No reset */
1305 break;
1306 case 0x1: /* Core reset */
1307 ppc40x_core_reset(cpu);
1308 break;
1309 case 0x2: /* Chip reset */
1310 ppc40x_chip_reset(cpu);
1311 break;
1312 case 0x3: /* System reset */
1313 ppc40x_system_reset(cpu);
1314 break;
1319 void store_40x_pit (CPUPPCState *env, target_ulong val)
1321 ppc_tb_t *tb_env;
1322 ppc40x_timer_t *ppc40x_timer;
1324 tb_env = env->tb_env;
1325 ppc40x_timer = tb_env->opaque;
1326 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1327 ppc40x_timer->pit_reload = val;
1328 start_stop_pit(env, tb_env, 0);
1331 target_ulong load_40x_pit (CPUPPCState *env)
1333 return cpu_ppc_load_decr(env);
1336 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1338 CPUPPCState *env = opaque;
1339 ppc_tb_t *tb_env = env->tb_env;
1341 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1342 freq);
1343 tb_env->tb_freq = freq;
1344 tb_env->decr_freq = freq;
1345 /* XXX: we should also update all timers */
1348 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1349 unsigned int decr_excp)
1351 ppc_tb_t *tb_env;
1352 ppc40x_timer_t *ppc40x_timer;
1354 tb_env = g_malloc0(sizeof(ppc_tb_t));
1355 env->tb_env = tb_env;
1356 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1357 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1358 tb_env->tb_freq = freq;
1359 tb_env->decr_freq = freq;
1360 tb_env->opaque = ppc40x_timer;
1361 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1362 if (ppc40x_timer != NULL) {
1363 /* We use decr timer for PIT */
1364 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1365 ppc40x_timer->fit_timer =
1366 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1367 ppc40x_timer->wdt_timer =
1368 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1369 ppc40x_timer->decr_excp = decr_excp;
1372 return &ppc_40x_set_tb_clk;
1375 /*****************************************************************************/
1376 /* Embedded PowerPC Device Control Registers */
1377 typedef struct ppc_dcrn_t ppc_dcrn_t;
1378 struct ppc_dcrn_t {
1379 dcr_read_cb dcr_read;
1380 dcr_write_cb dcr_write;
1381 void *opaque;
1384 /* XXX: on 460, DCR addresses are 32 bits wide,
1385 * using DCRIPR to get the 22 upper bits of the DCR address
1387 #define DCRN_NB 1024
1388 struct ppc_dcr_t {
1389 ppc_dcrn_t dcrn[DCRN_NB];
1390 int (*read_error)(int dcrn);
1391 int (*write_error)(int dcrn);
1394 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1396 ppc_dcrn_t *dcr;
1398 if (dcrn < 0 || dcrn >= DCRN_NB)
1399 goto error;
1400 dcr = &dcr_env->dcrn[dcrn];
1401 if (dcr->dcr_read == NULL)
1402 goto error;
1403 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1405 return 0;
1407 error:
1408 if (dcr_env->read_error != NULL)
1409 return (*dcr_env->read_error)(dcrn);
1411 return -1;
1414 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1416 ppc_dcrn_t *dcr;
1418 if (dcrn < 0 || dcrn >= DCRN_NB)
1419 goto error;
1420 dcr = &dcr_env->dcrn[dcrn];
1421 if (dcr->dcr_write == NULL)
1422 goto error;
1423 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1425 return 0;
1427 error:
1428 if (dcr_env->write_error != NULL)
1429 return (*dcr_env->write_error)(dcrn);
1431 return -1;
1434 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1435 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1437 ppc_dcr_t *dcr_env;
1438 ppc_dcrn_t *dcr;
1440 dcr_env = env->dcr_env;
1441 if (dcr_env == NULL)
1442 return -1;
1443 if (dcrn < 0 || dcrn >= DCRN_NB)
1444 return -1;
1445 dcr = &dcr_env->dcrn[dcrn];
1446 if (dcr->opaque != NULL ||
1447 dcr->dcr_read != NULL ||
1448 dcr->dcr_write != NULL)
1449 return -1;
1450 dcr->opaque = opaque;
1451 dcr->dcr_read = dcr_read;
1452 dcr->dcr_write = dcr_write;
1454 return 0;
1457 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1458 int (*write_error)(int dcrn))
1460 ppc_dcr_t *dcr_env;
1462 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1463 dcr_env->read_error = read_error;
1464 dcr_env->write_error = write_error;
1465 env->dcr_env = dcr_env;
1467 return 0;
1470 /*****************************************************************************/
1471 /* Debug port */
1472 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1474 addr &= 0xF;
1475 switch (addr) {
1476 case 0:
1477 printf("%c", val);
1478 break;
1479 case 1:
1480 printf("\n");
1481 fflush(stdout);
1482 break;
1483 case 2:
1484 printf("Set loglevel to %04" PRIx32 "\n", val);
1485 qemu_set_log(val | 0x100);
1486 break;
1490 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1492 CPUState *cs;
1494 CPU_FOREACH(cs) {
1495 PowerPCCPU *cpu = POWERPC_CPU(cs);
1496 CPUPPCState *env = &cpu->env;
1498 if (env->spr_cb[SPR_PIR].default_value == pir) {
1499 return cpu;
1503 return NULL;