docs: add qemu logo to pdf
[qemu/ar7.git] / include / exec / exec-all.h
bloba8c13cee66afe80cc6ddd3ae0094c294601abb96
1 /*
2 * internal execution defines for qemu
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
26 /* allow to see translation results - the slowdown should be negligible, so we leave it */
27 #define DEBUG_DISAS
29 /* Page tracking code uses ram addresses in system mode, and virtual
30 addresses in userspace mode. Define tb_page_addr_t to be an appropriate
31 type. */
32 #if defined(CONFIG_USER_ONLY)
33 typedef abi_ulong tb_page_addr_t;
34 #else
35 typedef ram_addr_t tb_page_addr_t;
36 #endif
38 /* is_jmp field values */
39 #define DISAS_NEXT 0 /* next instruction can be analyzed */
40 #define DISAS_JUMP 1 /* only pc was modified dynamically */
41 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
42 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
44 #include "qemu/log.h"
46 void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb);
47 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
48 target_ulong *data);
50 void cpu_gen_init(void);
51 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
53 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
54 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
55 TranslationBlock *tb_gen_code(CPUState *cpu,
56 target_ulong pc, target_ulong cs_base,
57 uint32_t flags,
58 int cflags);
60 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
61 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
62 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
64 #if !defined(CONFIG_USER_ONLY)
65 void cpu_reloading_memory_map(void);
66 /**
67 * cpu_address_space_init:
68 * @cpu: CPU to add this address space to
69 * @as: address space to add
70 * @asidx: integer index of this address space
72 * Add the specified address space to the CPU's cpu_ases list.
73 * The address space added with @asidx 0 is the one used for the
74 * convenience pointer cpu->as.
75 * The target-specific code which registers ASes is responsible
76 * for defining what semantics address space 0, 1, 2, etc have.
78 * Before the first call to this function, the caller must set
79 * cpu->num_ases to the total number of address spaces it needs
80 * to support.
82 * Note that with KVM only one address space is supported.
84 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx);
85 /* cputlb.c */
86 /**
87 * tlb_flush_page:
88 * @cpu: CPU whose TLB should be flushed
89 * @addr: virtual address of page to be flushed
91 * Flush one page from the TLB of the specified CPU, for all
92 * MMU indexes.
94 void tlb_flush_page(CPUState *cpu, target_ulong addr);
95 /**
96 * tlb_flush:
97 * @cpu: CPU whose TLB should be flushed
98 * @flush_global: ignored
100 * Flush the entire TLB for the specified CPU.
101 * The flush_global flag is in theory an indicator of whether the whole
102 * TLB should be flushed, or only those entries not marked global.
103 * In practice QEMU does not implement any global/not global flag for
104 * TLB entries, and the argument is ignored.
106 void tlb_flush(CPUState *cpu, int flush_global);
108 * tlb_flush_page_by_mmuidx:
109 * @cpu: CPU whose TLB should be flushed
110 * @addr: virtual address of page to be flushed
111 * @...: list of MMU indexes to flush, terminated by a negative value
113 * Flush one page from the TLB of the specified CPU, for the specified
114 * MMU indexes.
116 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...);
118 * tlb_flush_by_mmuidx:
119 * @cpu: CPU whose TLB should be flushed
120 * @...: list of MMU indexes to flush, terminated by a negative value
122 * Flush all entries from the TLB of the specified CPU, for the specified
123 * MMU indexes.
125 void tlb_flush_by_mmuidx(CPUState *cpu, ...);
127 * tlb_set_page_with_attrs:
128 * @cpu: CPU to add this TLB entry for
129 * @vaddr: virtual address of page to add entry for
130 * @paddr: physical address of the page
131 * @attrs: memory transaction attributes
132 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
133 * @mmu_idx: MMU index to insert TLB entry for
134 * @size: size of the page in bytes
136 * Add an entry to this CPU's TLB (a mapping from virtual address
137 * @vaddr to physical address @paddr) with the specified memory
138 * transaction attributes. This is generally called by the target CPU
139 * specific code after it has been called through the tlb_fill()
140 * entry point and performed a successful page table walk to find
141 * the physical address and attributes for the virtual address
142 * which provoked the TLB miss.
144 * At most one entry for a given virtual address is permitted. Only a
145 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
146 * used by tlb_flush_page.
148 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
149 hwaddr paddr, MemTxAttrs attrs,
150 int prot, int mmu_idx, target_ulong size);
151 /* tlb_set_page:
153 * This function is equivalent to calling tlb_set_page_with_attrs()
154 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
155 * as a convenience for CPUs which don't use memory transaction attributes.
157 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
158 hwaddr paddr, int prot,
159 int mmu_idx, target_ulong size);
160 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
161 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
162 uintptr_t retaddr);
163 #else
164 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
168 static inline void tlb_flush(CPUState *cpu, int flush_global)
172 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
173 target_ulong addr, ...)
177 static inline void tlb_flush_by_mmuidx(CPUState *cpu, ...)
180 #endif
182 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
184 /* Estimated block size for TB allocation. */
185 /* ??? The following is based on a 2015 survey of x86_64 host output.
186 Better would seem to be some sort of dynamically sized TB array,
187 adapting to the block sizes actually being produced. */
188 #if defined(CONFIG_SOFTMMU)
189 #define CODE_GEN_AVG_BLOCK_SIZE 400
190 #else
191 #define CODE_GEN_AVG_BLOCK_SIZE 150
192 #endif
194 #if defined(__arm__) || defined(_ARCH_PPC) \
195 || defined(__x86_64__) || defined(__i386__) \
196 || defined(__sparc__) || defined(__aarch64__) \
197 || defined(__s390x__) || defined(__mips__) \
198 || defined(CONFIG_TCG_INTERPRETER)
199 /* NOTE: Direct jump patching must be atomic to be thread-safe. */
200 #define USE_DIRECT_JUMP
201 #endif
203 struct TranslationBlock {
204 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
205 target_ulong cs_base; /* CS base for this block */
206 uint32_t flags; /* flags defining in which context the code was generated */
207 uint16_t size; /* size of target code for this block (1 <=
208 size <= TARGET_PAGE_SIZE) */
209 uint16_t icount;
210 uint32_t cflags; /* compile flags */
211 #define CF_COUNT_MASK 0x7fff
212 #define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */
213 #define CF_NOCACHE 0x10000 /* To be freed after execution */
214 #define CF_USE_ICOUNT 0x20000
215 #define CF_IGNORE_ICOUNT 0x40000 /* Do not generate icount code */
217 uint16_t invalid;
219 void *tc_ptr; /* pointer to the translated code */
220 uint8_t *tc_search; /* pointer to search data */
221 /* original tb when cflags has CF_NOCACHE */
222 struct TranslationBlock *orig_tb;
223 /* first and second physical page containing code. The lower bit
224 of the pointer tells the index in page_next[] */
225 struct TranslationBlock *page_next[2];
226 tb_page_addr_t page_addr[2];
228 /* The following data are used to directly call another TB from
229 * the code of this one. This can be done either by emitting direct or
230 * indirect native jump instructions. These jumps are reset so that the TB
231 * just continue its execution. The TB can be linked to another one by
232 * setting one of the jump targets (or patching the jump instruction). Only
233 * two of such jumps are supported.
235 uint16_t jmp_reset_offset[2]; /* offset of original jump target */
236 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
237 #ifdef USE_DIRECT_JUMP
238 uint16_t jmp_insn_offset[2]; /* offset of native jump instruction */
239 #else
240 uintptr_t jmp_target_addr[2]; /* target address for indirect jump */
241 #endif
242 /* Each TB has an assosiated circular list of TBs jumping to this one.
243 * jmp_list_first points to the first TB jumping to this one.
244 * jmp_list_next is used to point to the next TB in a list.
245 * Since each TB can have two jumps, it can participate in two lists.
246 * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
247 * TranslationBlock structure, but the two least significant bits of
248 * them are used to encode which data field of the pointed TB should
249 * be used to traverse the list further from that TB:
250 * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
251 * In other words, 0/1 tells which jump is used in the pointed TB,
252 * and 2 means that this is a pointer back to the target TB of this list.
254 uintptr_t jmp_list_next[2];
255 uintptr_t jmp_list_first;
258 void tb_free(TranslationBlock *tb);
259 void tb_flush(CPUState *cpu);
260 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
262 #if defined(USE_DIRECT_JUMP)
264 #if defined(CONFIG_TCG_INTERPRETER)
265 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
267 /* patch the branch destination */
268 atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
269 /* no need to flush icache explicitly */
271 #elif defined(_ARCH_PPC)
272 void ppc_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
273 #define tb_set_jmp_target1 ppc_tb_set_jmp_target
274 #elif defined(__i386__) || defined(__x86_64__)
275 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
277 /* patch the branch destination */
278 atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
279 /* no need to flush icache explicitly */
281 #elif defined(__s390x__)
282 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
284 /* patch the branch destination */
285 intptr_t disp = addr - (jmp_addr - 2);
286 atomic_set((int32_t *)jmp_addr, disp / 2);
287 /* no need to flush icache explicitly */
289 #elif defined(__aarch64__)
290 void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
291 #define tb_set_jmp_target1 aarch64_tb_set_jmp_target
292 #elif defined(__arm__)
293 void arm_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
294 #define tb_set_jmp_target1 arm_tb_set_jmp_target
295 #elif defined(__sparc__) || defined(__mips__)
296 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr);
297 #else
298 #error tb_set_jmp_target1 is missing
299 #endif
301 static inline void tb_set_jmp_target(TranslationBlock *tb,
302 int n, uintptr_t addr)
304 uint16_t offset = tb->jmp_insn_offset[n];
305 tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr);
308 #else
310 /* set the jump target */
311 static inline void tb_set_jmp_target(TranslationBlock *tb,
312 int n, uintptr_t addr)
314 tb->jmp_target_addr[n] = addr;
317 #endif
319 /* Called with tb_lock held. */
320 static inline void tb_add_jump(TranslationBlock *tb, int n,
321 TranslationBlock *tb_next)
323 if (tb->jmp_list_next[n]) {
324 /* Another thread has already done this while we were
325 * outside of the lock; nothing to do in this case */
326 return;
328 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
329 "Linking TBs %p [" TARGET_FMT_lx
330 "] index %d -> %p [" TARGET_FMT_lx "]\n",
331 tb->tc_ptr, tb->pc, n,
332 tb_next->tc_ptr, tb_next->pc);
334 /* patch the native jump address */
335 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr);
337 /* add in TB jmp circular list */
338 tb->jmp_list_next[n] = tb_next->jmp_list_first;
339 tb_next->jmp_list_first = (uintptr_t)tb | n;
342 /* GETPC is the true target of the return instruction that we'll execute. */
343 #if defined(CONFIG_TCG_INTERPRETER)
344 extern uintptr_t tci_tb_ptr;
345 # define GETPC() tci_tb_ptr
346 #else
347 # define GETPC() \
348 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
349 #endif
351 /* The true return address will often point to a host insn that is part of
352 the next translated guest insn. Adjust the address backward to point to
353 the middle of the call insn. Subtracting one would do the job except for
354 several compressed mode architectures (arm, mips) which set the low bit
355 to indicate the compressed mode; subtracting two works around that. It
356 is also the case that there are no host isas that contain a call insn
357 smaller than 4 bytes, so we don't worry about special-casing this. */
358 #define GETPC_ADJ 2
360 #if !defined(CONFIG_USER_ONLY)
362 struct MemoryRegion *iotlb_to_region(CPUState *cpu,
363 hwaddr index, MemTxAttrs attrs);
365 void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type,
366 int mmu_idx, uintptr_t retaddr);
368 #endif
370 #if defined(CONFIG_USER_ONLY)
371 void mmap_lock(void);
372 void mmap_unlock(void);
373 bool have_mmap_lock(void);
375 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
377 return addr;
379 #else
380 static inline void mmap_lock(void) {}
381 static inline void mmap_unlock(void) {}
383 /* cputlb.c */
384 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
386 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
387 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
389 /* exec.c */
390 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
392 MemoryRegionSection *
393 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
394 hwaddr *xlat, hwaddr *plen);
395 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
396 MemoryRegionSection *section,
397 target_ulong vaddr,
398 hwaddr paddr, hwaddr xlat,
399 int prot,
400 target_ulong *address);
401 bool memory_region_is_unassigned(MemoryRegion *mr);
403 #endif
405 /* vl.c */
406 extern int singlestep;
408 /* cpu-exec.c, accessed with atomic_mb_read/atomic_mb_set */
409 extern CPUState *tcg_current_cpu;
410 extern bool exit_request;
412 #endif