target/arm: Don't clear supported PMU events when initializing PMCEID1
[qemu/ar7.git] / target / arm / cpu.c
blobd6da3f4fed398e277c3175c496001276d016baad
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
42 ARMCPU *cpu = ARM_CPU(cs);
44 cpu->env.regs[15] = value;
47 static bool arm_cpu_has_work(CPUState *cs)
49 ARMCPU *cpu = ARM_CPU(cs);
51 return (cpu->power_state != PSCI_OFF)
52 && cs->interrupt_request &
53 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
54 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
55 | CPU_INTERRUPT_EXITTB);
58 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
59 void *opaque)
61 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
63 entry->hook = hook;
64 entry->opaque = opaque;
66 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
69 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
70 void *opaque)
72 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
74 entry->hook = hook;
75 entry->opaque = opaque;
77 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
80 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
82 /* Reset a single ARMCPRegInfo register */
83 ARMCPRegInfo *ri = value;
84 ARMCPU *cpu = opaque;
86 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
87 return;
90 if (ri->resetfn) {
91 ri->resetfn(&cpu->env, ri);
92 return;
95 /* A zero offset is never possible as it would be regs[0]
96 * so we use it to indicate that reset is being handled elsewhere.
97 * This is basically only used for fields in non-core coprocessors
98 * (like the pxa2xx ones).
100 if (!ri->fieldoffset) {
101 return;
104 if (cpreg_field_is_64bit(ri)) {
105 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
106 } else {
107 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
111 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
113 /* Purely an assertion check: we've already done reset once,
114 * so now check that running the reset for the cpreg doesn't
115 * change its value. This traps bugs where two different cpregs
116 * both try to reset the same state field but to different values.
118 ARMCPRegInfo *ri = value;
119 ARMCPU *cpu = opaque;
120 uint64_t oldvalue, newvalue;
122 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
123 return;
126 oldvalue = read_raw_cp_reg(&cpu->env, ri);
127 cp_reg_reset(key, value, opaque);
128 newvalue = read_raw_cp_reg(&cpu->env, ri);
129 assert(oldvalue == newvalue);
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState *s)
135 ARMCPU *cpu = ARM_CPU(s);
136 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
137 CPUARMState *env = &cpu->env;
139 acc->parent_reset(s);
141 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
143 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
144 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
146 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
147 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
148 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
149 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
151 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
152 s->halted = cpu->start_powered_off;
154 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
155 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
158 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
159 /* 64 bit CPUs always start in 64 bit mode */
160 env->aarch64 = 1;
161 #if defined(CONFIG_USER_ONLY)
162 env->pstate = PSTATE_MODE_EL0t;
163 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
165 /* Enable all PAC instructions */
166 env->cp15.hcr_el2 |= HCR_API;
167 env->cp15.scr_el3 |= SCR_API;
168 /* and to the FP/Neon instructions */
169 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
170 /* and to the SVE instructions */
171 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
172 env->cp15.cptr_el[3] |= CPTR_EZ;
173 /* with maximum vector length */
174 env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
175 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
176 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
177 #else
178 /* Reset into the highest available EL */
179 if (arm_feature(env, ARM_FEATURE_EL3)) {
180 env->pstate = PSTATE_MODE_EL3h;
181 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
182 env->pstate = PSTATE_MODE_EL2h;
183 } else {
184 env->pstate = PSTATE_MODE_EL1h;
186 env->pc = cpu->rvbar;
187 #endif
188 } else {
189 #if defined(CONFIG_USER_ONLY)
190 /* Userspace expects access to cp10 and cp11 for FP/Neon */
191 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
192 #endif
195 #if defined(CONFIG_USER_ONLY)
196 env->uncached_cpsr = ARM_CPU_MODE_USR;
197 /* For user mode we must enable access to coprocessors */
198 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
199 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
200 env->cp15.c15_cpar = 3;
201 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
202 env->cp15.c15_cpar = 1;
204 #else
207 * If the highest available EL is EL2, AArch32 will start in Hyp
208 * mode; otherwise it starts in SVC. Note that if we start in
209 * AArch64 then these values in the uncached_cpsr will be ignored.
211 if (arm_feature(env, ARM_FEATURE_EL2) &&
212 !arm_feature(env, ARM_FEATURE_EL3)) {
213 env->uncached_cpsr = ARM_CPU_MODE_HYP;
214 } else {
215 env->uncached_cpsr = ARM_CPU_MODE_SVC;
217 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
219 if (arm_feature(env, ARM_FEATURE_M)) {
220 uint32_t initial_msp; /* Loaded from 0x0 */
221 uint32_t initial_pc; /* Loaded from 0x4 */
222 uint8_t *rom;
223 uint32_t vecbase;
225 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
226 env->v7m.secure = true;
227 } else {
228 /* This bit resets to 0 if security is supported, but 1 if
229 * it is not. The bit is not present in v7M, but we set it
230 * here so we can avoid having to make checks on it conditional
231 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
233 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
236 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
237 * that it resets to 1, so QEMU always does that rather than making
238 * it dependent on CPU model. In v8M it is RES1.
240 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
241 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
242 if (arm_feature(env, ARM_FEATURE_V8)) {
243 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
244 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
245 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
247 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
248 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
249 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
252 /* Unlike A/R profile, M profile defines the reset LR value */
253 env->regs[14] = 0xffffffff;
255 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
257 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
258 vecbase = env->v7m.vecbase[env->v7m.secure];
259 rom = rom_ptr(vecbase, 8);
260 if (rom) {
261 /* Address zero is covered by ROM which hasn't yet been
262 * copied into physical memory.
264 initial_msp = ldl_p(rom);
265 initial_pc = ldl_p(rom + 4);
266 } else {
267 /* Address zero not covered by a ROM blob, or the ROM blob
268 * is in non-modifiable memory and this is a second reset after
269 * it got copied into memory. In the latter case, rom_ptr
270 * will return a NULL pointer and we should use ldl_phys instead.
272 initial_msp = ldl_phys(s->as, vecbase);
273 initial_pc = ldl_phys(s->as, vecbase + 4);
276 env->regs[13] = initial_msp & 0xFFFFFFFC;
277 env->regs[15] = initial_pc & ~1;
278 env->thumb = initial_pc & 1;
281 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
282 * executing as AArch32 then check if highvecs are enabled and
283 * adjust the PC accordingly.
285 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
286 env->regs[15] = 0xFFFF0000;
289 /* M profile requires that reset clears the exclusive monitor;
290 * A profile does not, but clearing it makes more sense than having it
291 * set with an exclusive access on address zero.
293 arm_clear_exclusive(env);
295 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
296 #endif
298 if (arm_feature(env, ARM_FEATURE_PMSA)) {
299 if (cpu->pmsav7_dregion > 0) {
300 if (arm_feature(env, ARM_FEATURE_V8)) {
301 memset(env->pmsav8.rbar[M_REG_NS], 0,
302 sizeof(*env->pmsav8.rbar[M_REG_NS])
303 * cpu->pmsav7_dregion);
304 memset(env->pmsav8.rlar[M_REG_NS], 0,
305 sizeof(*env->pmsav8.rlar[M_REG_NS])
306 * cpu->pmsav7_dregion);
307 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
308 memset(env->pmsav8.rbar[M_REG_S], 0,
309 sizeof(*env->pmsav8.rbar[M_REG_S])
310 * cpu->pmsav7_dregion);
311 memset(env->pmsav8.rlar[M_REG_S], 0,
312 sizeof(*env->pmsav8.rlar[M_REG_S])
313 * cpu->pmsav7_dregion);
315 } else if (arm_feature(env, ARM_FEATURE_V7)) {
316 memset(env->pmsav7.drbar, 0,
317 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
318 memset(env->pmsav7.drsr, 0,
319 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
320 memset(env->pmsav7.dracr, 0,
321 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
324 env->pmsav7.rnr[M_REG_NS] = 0;
325 env->pmsav7.rnr[M_REG_S] = 0;
326 env->pmsav8.mair0[M_REG_NS] = 0;
327 env->pmsav8.mair0[M_REG_S] = 0;
328 env->pmsav8.mair1[M_REG_NS] = 0;
329 env->pmsav8.mair1[M_REG_S] = 0;
332 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
333 if (cpu->sau_sregion > 0) {
334 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
335 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
337 env->sau.rnr = 0;
338 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
339 * the Cortex-M33 does.
341 env->sau.ctrl = 0;
344 set_flush_to_zero(1, &env->vfp.standard_fp_status);
345 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
346 set_default_nan_mode(1, &env->vfp.standard_fp_status);
347 set_float_detect_tininess(float_tininess_before_rounding,
348 &env->vfp.fp_status);
349 set_float_detect_tininess(float_tininess_before_rounding,
350 &env->vfp.standard_fp_status);
351 set_float_detect_tininess(float_tininess_before_rounding,
352 &env->vfp.fp_status_f16);
353 #ifndef CONFIG_USER_ONLY
354 if (kvm_enabled()) {
355 kvm_arm_reset_vcpu(cpu);
357 #endif
359 hw_breakpoint_update_all(cpu);
360 hw_watchpoint_update_all(cpu);
363 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
365 CPUClass *cc = CPU_GET_CLASS(cs);
366 CPUARMState *env = cs->env_ptr;
367 uint32_t cur_el = arm_current_el(env);
368 bool secure = arm_is_secure(env);
369 uint32_t target_el;
370 uint32_t excp_idx;
371 bool ret = false;
373 if (interrupt_request & CPU_INTERRUPT_FIQ) {
374 excp_idx = EXCP_FIQ;
375 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
376 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
377 cs->exception_index = excp_idx;
378 env->exception.target_el = target_el;
379 cc->do_interrupt(cs);
380 ret = true;
383 if (interrupt_request & CPU_INTERRUPT_HARD) {
384 excp_idx = EXCP_IRQ;
385 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
386 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
387 cs->exception_index = excp_idx;
388 env->exception.target_el = target_el;
389 cc->do_interrupt(cs);
390 ret = true;
393 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
394 excp_idx = EXCP_VIRQ;
395 target_el = 1;
396 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
397 cs->exception_index = excp_idx;
398 env->exception.target_el = target_el;
399 cc->do_interrupt(cs);
400 ret = true;
403 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
404 excp_idx = EXCP_VFIQ;
405 target_el = 1;
406 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
407 cs->exception_index = excp_idx;
408 env->exception.target_el = target_el;
409 cc->do_interrupt(cs);
410 ret = true;
414 return ret;
417 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
418 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
420 CPUClass *cc = CPU_GET_CLASS(cs);
421 ARMCPU *cpu = ARM_CPU(cs);
422 CPUARMState *env = &cpu->env;
423 bool ret = false;
425 /* ARMv7-M interrupt masking works differently than -A or -R.
426 * There is no FIQ/IRQ distinction. Instead of I and F bits
427 * masking FIQ and IRQ interrupts, an exception is taken only
428 * if it is higher priority than the current execution priority
429 * (which depends on state like BASEPRI, FAULTMASK and the
430 * currently active exception).
432 if (interrupt_request & CPU_INTERRUPT_HARD
433 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
434 cs->exception_index = EXCP_IRQ;
435 cc->do_interrupt(cs);
436 ret = true;
438 return ret;
440 #endif
442 void arm_cpu_update_virq(ARMCPU *cpu)
445 * Update the interrupt level for VIRQ, which is the logical OR of
446 * the HCR_EL2.VI bit and the input line level from the GIC.
448 CPUARMState *env = &cpu->env;
449 CPUState *cs = CPU(cpu);
451 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
452 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
454 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
455 if (new_state) {
456 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
457 } else {
458 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
463 void arm_cpu_update_vfiq(ARMCPU *cpu)
466 * Update the interrupt level for VFIQ, which is the logical OR of
467 * the HCR_EL2.VF bit and the input line level from the GIC.
469 CPUARMState *env = &cpu->env;
470 CPUState *cs = CPU(cpu);
472 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
473 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
475 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
476 if (new_state) {
477 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
478 } else {
479 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
484 #ifndef CONFIG_USER_ONLY
485 static void arm_cpu_set_irq(void *opaque, int irq, int level)
487 ARMCPU *cpu = opaque;
488 CPUARMState *env = &cpu->env;
489 CPUState *cs = CPU(cpu);
490 static const int mask[] = {
491 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
492 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
493 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
494 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
497 if (level) {
498 env->irq_line_state |= mask[irq];
499 } else {
500 env->irq_line_state &= ~mask[irq];
503 switch (irq) {
504 case ARM_CPU_VIRQ:
505 assert(arm_feature(env, ARM_FEATURE_EL2));
506 arm_cpu_update_virq(cpu);
507 break;
508 case ARM_CPU_VFIQ:
509 assert(arm_feature(env, ARM_FEATURE_EL2));
510 arm_cpu_update_vfiq(cpu);
511 break;
512 case ARM_CPU_IRQ:
513 case ARM_CPU_FIQ:
514 if (level) {
515 cpu_interrupt(cs, mask[irq]);
516 } else {
517 cpu_reset_interrupt(cs, mask[irq]);
519 break;
520 default:
521 g_assert_not_reached();
525 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
527 #ifdef CONFIG_KVM
528 ARMCPU *cpu = opaque;
529 CPUARMState *env = &cpu->env;
530 CPUState *cs = CPU(cpu);
531 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
532 uint32_t linestate_bit;
534 switch (irq) {
535 case ARM_CPU_IRQ:
536 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
537 linestate_bit = CPU_INTERRUPT_HARD;
538 break;
539 case ARM_CPU_FIQ:
540 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
541 linestate_bit = CPU_INTERRUPT_FIQ;
542 break;
543 default:
544 g_assert_not_reached();
547 if (level) {
548 env->irq_line_state |= linestate_bit;
549 } else {
550 env->irq_line_state &= ~linestate_bit;
553 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
554 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
555 #endif
558 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
560 ARMCPU *cpu = ARM_CPU(cs);
561 CPUARMState *env = &cpu->env;
563 cpu_synchronize_state(cs);
564 return arm_cpu_data_is_big_endian(env);
567 #endif
569 static inline void set_feature(CPUARMState *env, int feature)
571 env->features |= 1ULL << feature;
574 static inline void unset_feature(CPUARMState *env, int feature)
576 env->features &= ~(1ULL << feature);
579 static int
580 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
582 return print_insn_arm(pc | 1, info);
585 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
587 ARMCPU *ac = ARM_CPU(cpu);
588 CPUARMState *env = &ac->env;
589 bool sctlr_b;
591 if (is_a64(env)) {
592 /* We might not be compiled with the A64 disassembler
593 * because it needs a C++ compiler. Leave print_insn
594 * unset in this case to use the caller default behaviour.
596 #if defined(CONFIG_ARM_A64_DIS)
597 info->print_insn = print_insn_arm_a64;
598 #endif
599 info->cap_arch = CS_ARCH_ARM64;
600 info->cap_insn_unit = 4;
601 info->cap_insn_split = 4;
602 } else {
603 int cap_mode;
604 if (env->thumb) {
605 info->print_insn = print_insn_thumb1;
606 info->cap_insn_unit = 2;
607 info->cap_insn_split = 4;
608 cap_mode = CS_MODE_THUMB;
609 } else {
610 info->print_insn = print_insn_arm;
611 info->cap_insn_unit = 4;
612 info->cap_insn_split = 4;
613 cap_mode = CS_MODE_ARM;
615 if (arm_feature(env, ARM_FEATURE_V8)) {
616 cap_mode |= CS_MODE_V8;
618 if (arm_feature(env, ARM_FEATURE_M)) {
619 cap_mode |= CS_MODE_MCLASS;
621 info->cap_arch = CS_ARCH_ARM;
622 info->cap_mode = cap_mode;
625 sctlr_b = arm_sctlr_b(env);
626 if (bswap_code(sctlr_b)) {
627 #ifdef TARGET_WORDS_BIGENDIAN
628 info->endian = BFD_ENDIAN_LITTLE;
629 #else
630 info->endian = BFD_ENDIAN_BIG;
631 #endif
633 info->flags &= ~INSN_ARM_BE32;
634 #ifndef CONFIG_USER_ONLY
635 if (sctlr_b) {
636 info->flags |= INSN_ARM_BE32;
638 #endif
641 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
643 uint32_t Aff1 = idx / clustersz;
644 uint32_t Aff0 = idx % clustersz;
645 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
648 static void cpreg_hashtable_data_destroy(gpointer data)
651 * Destroy function for cpu->cp_regs hashtable data entries.
652 * We must free the name string because it was g_strdup()ed in
653 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
654 * from r->name because we know we definitely allocated it.
656 ARMCPRegInfo *r = data;
658 g_free((void *)r->name);
659 g_free(r);
662 static void arm_cpu_initfn(Object *obj)
664 CPUState *cs = CPU(obj);
665 ARMCPU *cpu = ARM_CPU(obj);
667 cs->env_ptr = &cpu->env;
668 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
669 g_free, cpreg_hashtable_data_destroy);
671 QLIST_INIT(&cpu->pre_el_change_hooks);
672 QLIST_INIT(&cpu->el_change_hooks);
674 #ifndef CONFIG_USER_ONLY
675 /* Our inbound IRQ and FIQ lines */
676 if (kvm_enabled()) {
677 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
678 * the same interface as non-KVM CPUs.
680 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
681 } else {
682 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
685 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
686 ARRAY_SIZE(cpu->gt_timer_outputs));
688 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
689 "gicv3-maintenance-interrupt", 1);
690 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
691 "pmu-interrupt", 1);
692 #endif
694 /* DTB consumers generally don't in fact care what the 'compatible'
695 * string is, so always provide some string and trust that a hypothetical
696 * picky DTB consumer will also provide a helpful error message.
698 cpu->dtb_compatible = "qemu,unknown";
699 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
700 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
702 if (tcg_enabled()) {
703 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
707 static Property arm_cpu_reset_cbar_property =
708 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
710 static Property arm_cpu_reset_hivecs_property =
711 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
713 static Property arm_cpu_rvbar_property =
714 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
716 static Property arm_cpu_has_el2_property =
717 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
719 static Property arm_cpu_has_el3_property =
720 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
722 static Property arm_cpu_cfgend_property =
723 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
725 /* use property name "pmu" to match other archs and virt tools */
726 static Property arm_cpu_has_pmu_property =
727 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
729 static Property arm_cpu_has_mpu_property =
730 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
732 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
733 * because the CPU initfn will have already set cpu->pmsav7_dregion to
734 * the right value for that particular CPU type, and we don't want
735 * to override that with an incorrect constant value.
737 static Property arm_cpu_pmsav7_dregion_property =
738 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
739 pmsav7_dregion,
740 qdev_prop_uint32, uint32_t);
742 /* M profile: initial value of the Secure VTOR */
743 static Property arm_cpu_initsvtor_property =
744 DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
746 void arm_cpu_post_init(Object *obj)
748 ARMCPU *cpu = ARM_CPU(obj);
750 /* M profile implies PMSA. We have to do this here rather than
751 * in realize with the other feature-implication checks because
752 * we look at the PMSA bit to see if we should add some properties.
754 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
755 set_feature(&cpu->env, ARM_FEATURE_PMSA);
758 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
759 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
760 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
761 &error_abort);
764 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
765 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
766 &error_abort);
769 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
770 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
771 &error_abort);
774 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
775 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
776 * prevent "has_el3" from existing on CPUs which cannot support EL3.
778 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
779 &error_abort);
781 #ifndef CONFIG_USER_ONLY
782 object_property_add_link(obj, "secure-memory",
783 TYPE_MEMORY_REGION,
784 (Object **)&cpu->secure_memory,
785 qdev_prop_allow_set_link_before_realize,
786 OBJ_PROP_LINK_STRONG,
787 &error_abort);
788 #endif
791 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
792 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
793 &error_abort);
796 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
797 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
798 &error_abort);
801 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
802 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
803 &error_abort);
804 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
805 qdev_property_add_static(DEVICE(obj),
806 &arm_cpu_pmsav7_dregion_property,
807 &error_abort);
811 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
812 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
813 qdev_prop_allow_set_link_before_realize,
814 OBJ_PROP_LINK_STRONG,
815 &error_abort);
816 qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
817 &error_abort);
820 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
821 &error_abort);
824 static void arm_cpu_finalizefn(Object *obj)
826 ARMCPU *cpu = ARM_CPU(obj);
827 ARMELChangeHook *hook, *next;
829 g_hash_table_destroy(cpu->cp_regs);
831 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
832 QLIST_REMOVE(hook, node);
833 g_free(hook);
835 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
836 QLIST_REMOVE(hook, node);
837 g_free(hook);
841 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
843 CPUState *cs = CPU(dev);
844 ARMCPU *cpu = ARM_CPU(dev);
845 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
846 CPUARMState *env = &cpu->env;
847 int pagebits;
848 Error *local_err = NULL;
849 bool no_aa32 = false;
851 /* If we needed to query the host kernel for the CPU features
852 * then it's possible that might have failed in the initfn, but
853 * this is the first point where we can report it.
855 if (cpu->host_cpu_probe_failed) {
856 if (!kvm_enabled()) {
857 error_setg(errp, "The 'host' CPU type can only be used with KVM");
858 } else {
859 error_setg(errp, "Failed to retrieve host CPU features");
861 return;
864 #ifndef CONFIG_USER_ONLY
865 /* The NVIC and M-profile CPU are two halves of a single piece of
866 * hardware; trying to use one without the other is a command line
867 * error and will result in segfaults if not caught here.
869 if (arm_feature(env, ARM_FEATURE_M)) {
870 if (!env->nvic) {
871 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
872 return;
874 } else {
875 if (env->nvic) {
876 error_setg(errp, "This board can only be used with Cortex-M CPUs");
877 return;
881 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
882 arm_gt_ptimer_cb, cpu);
883 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
884 arm_gt_vtimer_cb, cpu);
885 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
886 arm_gt_htimer_cb, cpu);
887 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
888 arm_gt_stimer_cb, cpu);
889 #endif
891 cpu_exec_realizefn(cs, &local_err);
892 if (local_err != NULL) {
893 error_propagate(errp, local_err);
894 return;
897 /* Some features automatically imply others: */
898 if (arm_feature(env, ARM_FEATURE_V8)) {
899 if (arm_feature(env, ARM_FEATURE_M)) {
900 set_feature(env, ARM_FEATURE_V7);
901 } else {
902 set_feature(env, ARM_FEATURE_V7VE);
907 * There exist AArch64 cpus without AArch32 support. When KVM
908 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
909 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
911 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
912 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
915 if (arm_feature(env, ARM_FEATURE_V7VE)) {
916 /* v7 Virtualization Extensions. In real hardware this implies
917 * EL2 and also the presence of the Security Extensions.
918 * For QEMU, for backwards-compatibility we implement some
919 * CPUs or CPU configs which have no actual EL2 or EL3 but do
920 * include the various other features that V7VE implies.
921 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
922 * Security Extensions is ARM_FEATURE_EL3.
924 assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
925 set_feature(env, ARM_FEATURE_LPAE);
926 set_feature(env, ARM_FEATURE_V7);
928 if (arm_feature(env, ARM_FEATURE_V7)) {
929 set_feature(env, ARM_FEATURE_VAPA);
930 set_feature(env, ARM_FEATURE_THUMB2);
931 set_feature(env, ARM_FEATURE_MPIDR);
932 if (!arm_feature(env, ARM_FEATURE_M)) {
933 set_feature(env, ARM_FEATURE_V6K);
934 } else {
935 set_feature(env, ARM_FEATURE_V6);
938 /* Always define VBAR for V7 CPUs even if it doesn't exist in
939 * non-EL3 configs. This is needed by some legacy boards.
941 set_feature(env, ARM_FEATURE_VBAR);
943 if (arm_feature(env, ARM_FEATURE_V6K)) {
944 set_feature(env, ARM_FEATURE_V6);
945 set_feature(env, ARM_FEATURE_MVFR);
947 if (arm_feature(env, ARM_FEATURE_V6)) {
948 set_feature(env, ARM_FEATURE_V5);
949 if (!arm_feature(env, ARM_FEATURE_M)) {
950 assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
951 set_feature(env, ARM_FEATURE_AUXCR);
954 if (arm_feature(env, ARM_FEATURE_V5)) {
955 set_feature(env, ARM_FEATURE_V4T);
957 if (arm_feature(env, ARM_FEATURE_VFP4)) {
958 set_feature(env, ARM_FEATURE_VFP3);
959 set_feature(env, ARM_FEATURE_VFP_FP16);
961 if (arm_feature(env, ARM_FEATURE_VFP3)) {
962 set_feature(env, ARM_FEATURE_VFP);
964 if (arm_feature(env, ARM_FEATURE_LPAE)) {
965 set_feature(env, ARM_FEATURE_V7MP);
966 set_feature(env, ARM_FEATURE_PXN);
968 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
969 set_feature(env, ARM_FEATURE_CBAR);
971 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
972 !arm_feature(env, ARM_FEATURE_M)) {
973 set_feature(env, ARM_FEATURE_THUMB_DSP);
976 if (arm_feature(env, ARM_FEATURE_V7) &&
977 !arm_feature(env, ARM_FEATURE_M) &&
978 !arm_feature(env, ARM_FEATURE_PMSA)) {
979 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
980 * can use 4K pages.
982 pagebits = 12;
983 } else {
984 /* For CPUs which might have tiny 1K pages, or which have an
985 * MPU and might have small region sizes, stick with 1K pages.
987 pagebits = 10;
989 if (!set_preferred_target_page_bits(pagebits)) {
990 /* This can only ever happen for hotplugging a CPU, or if
991 * the board code incorrectly creates a CPU which it has
992 * promised via minimum_page_size that it will not.
994 error_setg(errp, "This CPU requires a smaller page size than the "
995 "system is using");
996 return;
999 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1000 * We don't support setting cluster ID ([16..23]) (known as Aff2
1001 * in later ARM ARM versions), or any of the higher affinity level fields,
1002 * so these bits always RAZ.
1004 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1005 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1006 ARM_DEFAULT_CPUS_PER_CLUSTER);
1009 if (cpu->reset_hivecs) {
1010 cpu->reset_sctlr |= (1 << 13);
1013 if (cpu->cfgend) {
1014 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1015 cpu->reset_sctlr |= SCTLR_EE;
1016 } else {
1017 cpu->reset_sctlr |= SCTLR_B;
1021 if (!cpu->has_el3) {
1022 /* If the has_el3 CPU property is disabled then we need to disable the
1023 * feature.
1025 unset_feature(env, ARM_FEATURE_EL3);
1027 /* Disable the security extension feature bits in the processor feature
1028 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1030 cpu->id_pfr1 &= ~0xf0;
1031 cpu->isar.id_aa64pfr0 &= ~0xf000;
1034 if (!cpu->has_el2) {
1035 unset_feature(env, ARM_FEATURE_EL2);
1038 if (!cpu->has_pmu) {
1039 unset_feature(env, ARM_FEATURE_PMU);
1041 if (arm_feature(env, ARM_FEATURE_PMU)) {
1042 pmu_init(cpu);
1044 if (!kvm_enabled()) {
1045 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1046 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1048 } else {
1049 cpu->id_aa64dfr0 &= ~0xf00;
1050 cpu->pmceid0 = 0;
1051 cpu->pmceid1 = 0;
1054 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1055 /* Disable the hypervisor feature bits in the processor feature
1056 * registers if we don't have EL2. These are id_pfr1[15:12] and
1057 * id_aa64pfr0_el1[11:8].
1059 cpu->isar.id_aa64pfr0 &= ~0xf00;
1060 cpu->id_pfr1 &= ~0xf000;
1063 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1064 * to false or by setting pmsav7-dregion to 0.
1066 if (!cpu->has_mpu) {
1067 cpu->pmsav7_dregion = 0;
1069 if (cpu->pmsav7_dregion == 0) {
1070 cpu->has_mpu = false;
1073 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1074 arm_feature(env, ARM_FEATURE_V7)) {
1075 uint32_t nr = cpu->pmsav7_dregion;
1077 if (nr > 0xff) {
1078 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1079 return;
1082 if (nr) {
1083 if (arm_feature(env, ARM_FEATURE_V8)) {
1084 /* PMSAv8 */
1085 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1086 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1087 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1088 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1089 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1091 } else {
1092 env->pmsav7.drbar = g_new0(uint32_t, nr);
1093 env->pmsav7.drsr = g_new0(uint32_t, nr);
1094 env->pmsav7.dracr = g_new0(uint32_t, nr);
1099 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1100 uint32_t nr = cpu->sau_sregion;
1102 if (nr > 0xff) {
1103 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1104 return;
1107 if (nr) {
1108 env->sau.rbar = g_new0(uint32_t, nr);
1109 env->sau.rlar = g_new0(uint32_t, nr);
1113 if (arm_feature(env, ARM_FEATURE_EL3)) {
1114 set_feature(env, ARM_FEATURE_VBAR);
1117 register_cp_regs_for_features(cpu);
1118 arm_cpu_register_gdb_regs_for_features(cpu);
1120 init_cpreg_list(cpu);
1122 #ifndef CONFIG_USER_ONLY
1123 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1124 cs->num_ases = 2;
1126 if (!cpu->secure_memory) {
1127 cpu->secure_memory = cs->memory;
1129 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1130 cpu->secure_memory);
1131 } else {
1132 cs->num_ases = 1;
1134 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1136 /* No core_count specified, default to smp_cpus. */
1137 if (cpu->core_count == -1) {
1138 cpu->core_count = smp_cpus;
1140 #endif
1142 qemu_init_vcpu(cs);
1143 cpu_reset(cs);
1145 acc->parent_realize(dev, errp);
1148 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1150 ObjectClass *oc;
1151 char *typename;
1152 char **cpuname;
1153 const char *cpunamestr;
1155 cpuname = g_strsplit(cpu_model, ",", 1);
1156 cpunamestr = cpuname[0];
1157 #ifdef CONFIG_USER_ONLY
1158 /* For backwards compatibility usermode emulation allows "-cpu any",
1159 * which has the same semantics as "-cpu max".
1161 if (!strcmp(cpunamestr, "any")) {
1162 cpunamestr = "max";
1164 #endif
1165 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1166 oc = object_class_by_name(typename);
1167 g_strfreev(cpuname);
1168 g_free(typename);
1169 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1170 object_class_is_abstract(oc)) {
1171 return NULL;
1173 return oc;
1176 /* CPU models. These are not needed for the AArch64 linux-user build. */
1177 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1179 static void arm926_initfn(Object *obj)
1181 ARMCPU *cpu = ARM_CPU(obj);
1183 cpu->dtb_compatible = "arm,arm926";
1184 set_feature(&cpu->env, ARM_FEATURE_V5);
1185 set_feature(&cpu->env, ARM_FEATURE_VFP);
1186 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1187 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1188 cpu->midr = 0x41069265;
1189 cpu->reset_fpsid = 0x41011090;
1190 cpu->ctr = 0x1dd20d2;
1191 cpu->reset_sctlr = 0x00090078;
1194 * ARMv5 does not have the ID_ISAR registers, but we can still
1195 * set the field to indicate Jazelle support within QEMU.
1197 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1200 static void arm946_initfn(Object *obj)
1202 ARMCPU *cpu = ARM_CPU(obj);
1204 cpu->dtb_compatible = "arm,arm946";
1205 set_feature(&cpu->env, ARM_FEATURE_V5);
1206 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1207 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1208 cpu->midr = 0x41059461;
1209 cpu->ctr = 0x0f004006;
1210 cpu->reset_sctlr = 0x00000078;
1213 static void arm1026_initfn(Object *obj)
1215 ARMCPU *cpu = ARM_CPU(obj);
1217 cpu->dtb_compatible = "arm,arm1026";
1218 set_feature(&cpu->env, ARM_FEATURE_V5);
1219 set_feature(&cpu->env, ARM_FEATURE_VFP);
1220 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1221 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1222 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1223 cpu->midr = 0x4106a262;
1224 cpu->reset_fpsid = 0x410110a0;
1225 cpu->ctr = 0x1dd20d2;
1226 cpu->reset_sctlr = 0x00090078;
1227 cpu->reset_auxcr = 1;
1230 * ARMv5 does not have the ID_ISAR registers, but we can still
1231 * set the field to indicate Jazelle support within QEMU.
1233 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1236 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1237 ARMCPRegInfo ifar = {
1238 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1239 .access = PL1_RW,
1240 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1241 .resetvalue = 0
1243 define_one_arm_cp_reg(cpu, &ifar);
1247 static void arm1136_r2_initfn(Object *obj)
1249 ARMCPU *cpu = ARM_CPU(obj);
1250 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1251 * older core than plain "arm1136". In particular this does not
1252 * have the v6K features.
1253 * These ID register values are correct for 1136 but may be wrong
1254 * for 1136_r2 (in particular r0p2 does not actually implement most
1255 * of the ID registers).
1258 cpu->dtb_compatible = "arm,arm1136";
1259 set_feature(&cpu->env, ARM_FEATURE_V6);
1260 set_feature(&cpu->env, ARM_FEATURE_VFP);
1261 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1262 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1263 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1264 cpu->midr = 0x4107b362;
1265 cpu->reset_fpsid = 0x410120b4;
1266 cpu->isar.mvfr0 = 0x11111111;
1267 cpu->isar.mvfr1 = 0x00000000;
1268 cpu->ctr = 0x1dd20d2;
1269 cpu->reset_sctlr = 0x00050078;
1270 cpu->id_pfr0 = 0x111;
1271 cpu->id_pfr1 = 0x1;
1272 cpu->id_dfr0 = 0x2;
1273 cpu->id_afr0 = 0x3;
1274 cpu->id_mmfr0 = 0x01130003;
1275 cpu->id_mmfr1 = 0x10030302;
1276 cpu->id_mmfr2 = 0x01222110;
1277 cpu->isar.id_isar0 = 0x00140011;
1278 cpu->isar.id_isar1 = 0x12002111;
1279 cpu->isar.id_isar2 = 0x11231111;
1280 cpu->isar.id_isar3 = 0x01102131;
1281 cpu->isar.id_isar4 = 0x141;
1282 cpu->reset_auxcr = 7;
1285 static void arm1136_initfn(Object *obj)
1287 ARMCPU *cpu = ARM_CPU(obj);
1289 cpu->dtb_compatible = "arm,arm1136";
1290 set_feature(&cpu->env, ARM_FEATURE_V6K);
1291 set_feature(&cpu->env, ARM_FEATURE_V6);
1292 set_feature(&cpu->env, ARM_FEATURE_VFP);
1293 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1294 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1295 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1296 cpu->midr = 0x4117b363;
1297 cpu->reset_fpsid = 0x410120b4;
1298 cpu->isar.mvfr0 = 0x11111111;
1299 cpu->isar.mvfr1 = 0x00000000;
1300 cpu->ctr = 0x1dd20d2;
1301 cpu->reset_sctlr = 0x00050078;
1302 cpu->id_pfr0 = 0x111;
1303 cpu->id_pfr1 = 0x1;
1304 cpu->id_dfr0 = 0x2;
1305 cpu->id_afr0 = 0x3;
1306 cpu->id_mmfr0 = 0x01130003;
1307 cpu->id_mmfr1 = 0x10030302;
1308 cpu->id_mmfr2 = 0x01222110;
1309 cpu->isar.id_isar0 = 0x00140011;
1310 cpu->isar.id_isar1 = 0x12002111;
1311 cpu->isar.id_isar2 = 0x11231111;
1312 cpu->isar.id_isar3 = 0x01102131;
1313 cpu->isar.id_isar4 = 0x141;
1314 cpu->reset_auxcr = 7;
1317 static void arm1176_initfn(Object *obj)
1319 ARMCPU *cpu = ARM_CPU(obj);
1321 cpu->dtb_compatible = "arm,arm1176";
1322 set_feature(&cpu->env, ARM_FEATURE_V6K);
1323 set_feature(&cpu->env, ARM_FEATURE_VFP);
1324 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1325 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1326 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1327 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1328 set_feature(&cpu->env, ARM_FEATURE_EL3);
1329 cpu->midr = 0x410fb767;
1330 cpu->reset_fpsid = 0x410120b5;
1331 cpu->isar.mvfr0 = 0x11111111;
1332 cpu->isar.mvfr1 = 0x00000000;
1333 cpu->ctr = 0x1dd20d2;
1334 cpu->reset_sctlr = 0x00050078;
1335 cpu->id_pfr0 = 0x111;
1336 cpu->id_pfr1 = 0x11;
1337 cpu->id_dfr0 = 0x33;
1338 cpu->id_afr0 = 0;
1339 cpu->id_mmfr0 = 0x01130003;
1340 cpu->id_mmfr1 = 0x10030302;
1341 cpu->id_mmfr2 = 0x01222100;
1342 cpu->isar.id_isar0 = 0x0140011;
1343 cpu->isar.id_isar1 = 0x12002111;
1344 cpu->isar.id_isar2 = 0x11231121;
1345 cpu->isar.id_isar3 = 0x01102131;
1346 cpu->isar.id_isar4 = 0x01141;
1347 cpu->reset_auxcr = 7;
1350 static void arm11mpcore_initfn(Object *obj)
1352 ARMCPU *cpu = ARM_CPU(obj);
1354 cpu->dtb_compatible = "arm,arm11mpcore";
1355 set_feature(&cpu->env, ARM_FEATURE_V6K);
1356 set_feature(&cpu->env, ARM_FEATURE_VFP);
1357 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1358 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1359 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1360 cpu->midr = 0x410fb022;
1361 cpu->reset_fpsid = 0x410120b4;
1362 cpu->isar.mvfr0 = 0x11111111;
1363 cpu->isar.mvfr1 = 0x00000000;
1364 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1365 cpu->id_pfr0 = 0x111;
1366 cpu->id_pfr1 = 0x1;
1367 cpu->id_dfr0 = 0;
1368 cpu->id_afr0 = 0x2;
1369 cpu->id_mmfr0 = 0x01100103;
1370 cpu->id_mmfr1 = 0x10020302;
1371 cpu->id_mmfr2 = 0x01222000;
1372 cpu->isar.id_isar0 = 0x00100011;
1373 cpu->isar.id_isar1 = 0x12002111;
1374 cpu->isar.id_isar2 = 0x11221011;
1375 cpu->isar.id_isar3 = 0x01102131;
1376 cpu->isar.id_isar4 = 0x141;
1377 cpu->reset_auxcr = 1;
1380 static void cortex_m0_initfn(Object *obj)
1382 ARMCPU *cpu = ARM_CPU(obj);
1383 set_feature(&cpu->env, ARM_FEATURE_V6);
1384 set_feature(&cpu->env, ARM_FEATURE_M);
1386 cpu->midr = 0x410cc200;
1389 static void cortex_m3_initfn(Object *obj)
1391 ARMCPU *cpu = ARM_CPU(obj);
1392 set_feature(&cpu->env, ARM_FEATURE_V7);
1393 set_feature(&cpu->env, ARM_FEATURE_M);
1394 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1395 cpu->midr = 0x410fc231;
1396 cpu->pmsav7_dregion = 8;
1397 cpu->id_pfr0 = 0x00000030;
1398 cpu->id_pfr1 = 0x00000200;
1399 cpu->id_dfr0 = 0x00100000;
1400 cpu->id_afr0 = 0x00000000;
1401 cpu->id_mmfr0 = 0x00000030;
1402 cpu->id_mmfr1 = 0x00000000;
1403 cpu->id_mmfr2 = 0x00000000;
1404 cpu->id_mmfr3 = 0x00000000;
1405 cpu->isar.id_isar0 = 0x01141110;
1406 cpu->isar.id_isar1 = 0x02111000;
1407 cpu->isar.id_isar2 = 0x21112231;
1408 cpu->isar.id_isar3 = 0x01111110;
1409 cpu->isar.id_isar4 = 0x01310102;
1410 cpu->isar.id_isar5 = 0x00000000;
1411 cpu->isar.id_isar6 = 0x00000000;
1414 static void cortex_m4_initfn(Object *obj)
1416 ARMCPU *cpu = ARM_CPU(obj);
1418 set_feature(&cpu->env, ARM_FEATURE_V7);
1419 set_feature(&cpu->env, ARM_FEATURE_M);
1420 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1421 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1422 cpu->midr = 0x410fc240; /* r0p0 */
1423 cpu->pmsav7_dregion = 8;
1424 cpu->id_pfr0 = 0x00000030;
1425 cpu->id_pfr1 = 0x00000200;
1426 cpu->id_dfr0 = 0x00100000;
1427 cpu->id_afr0 = 0x00000000;
1428 cpu->id_mmfr0 = 0x00000030;
1429 cpu->id_mmfr1 = 0x00000000;
1430 cpu->id_mmfr2 = 0x00000000;
1431 cpu->id_mmfr3 = 0x00000000;
1432 cpu->isar.id_isar0 = 0x01141110;
1433 cpu->isar.id_isar1 = 0x02111000;
1434 cpu->isar.id_isar2 = 0x21112231;
1435 cpu->isar.id_isar3 = 0x01111110;
1436 cpu->isar.id_isar4 = 0x01310102;
1437 cpu->isar.id_isar5 = 0x00000000;
1438 cpu->isar.id_isar6 = 0x00000000;
1441 static void cortex_m33_initfn(Object *obj)
1443 ARMCPU *cpu = ARM_CPU(obj);
1445 set_feature(&cpu->env, ARM_FEATURE_V8);
1446 set_feature(&cpu->env, ARM_FEATURE_M);
1447 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1448 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1449 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1450 cpu->midr = 0x410fd213; /* r0p3 */
1451 cpu->pmsav7_dregion = 16;
1452 cpu->sau_sregion = 8;
1453 cpu->id_pfr0 = 0x00000030;
1454 cpu->id_pfr1 = 0x00000210;
1455 cpu->id_dfr0 = 0x00200000;
1456 cpu->id_afr0 = 0x00000000;
1457 cpu->id_mmfr0 = 0x00101F40;
1458 cpu->id_mmfr1 = 0x00000000;
1459 cpu->id_mmfr2 = 0x01000000;
1460 cpu->id_mmfr3 = 0x00000000;
1461 cpu->isar.id_isar0 = 0x01101110;
1462 cpu->isar.id_isar1 = 0x02212000;
1463 cpu->isar.id_isar2 = 0x20232232;
1464 cpu->isar.id_isar3 = 0x01111131;
1465 cpu->isar.id_isar4 = 0x01310132;
1466 cpu->isar.id_isar5 = 0x00000000;
1467 cpu->isar.id_isar6 = 0x00000000;
1468 cpu->clidr = 0x00000000;
1469 cpu->ctr = 0x8000c000;
1472 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1474 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1475 CPUClass *cc = CPU_CLASS(oc);
1477 acc->info = data;
1478 #ifndef CONFIG_USER_ONLY
1479 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1480 #endif
1482 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1485 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1486 /* Dummy the TCM region regs for the moment */
1487 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1488 .access = PL1_RW, .type = ARM_CP_CONST },
1489 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1490 .access = PL1_RW, .type = ARM_CP_CONST },
1491 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1492 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1493 REGINFO_SENTINEL
1496 static void cortex_r5_initfn(Object *obj)
1498 ARMCPU *cpu = ARM_CPU(obj);
1500 set_feature(&cpu->env, ARM_FEATURE_V7);
1501 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1502 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1503 cpu->midr = 0x411fc153; /* r1p3 */
1504 cpu->id_pfr0 = 0x0131;
1505 cpu->id_pfr1 = 0x001;
1506 cpu->id_dfr0 = 0x010400;
1507 cpu->id_afr0 = 0x0;
1508 cpu->id_mmfr0 = 0x0210030;
1509 cpu->id_mmfr1 = 0x00000000;
1510 cpu->id_mmfr2 = 0x01200000;
1511 cpu->id_mmfr3 = 0x0211;
1512 cpu->isar.id_isar0 = 0x02101111;
1513 cpu->isar.id_isar1 = 0x13112111;
1514 cpu->isar.id_isar2 = 0x21232141;
1515 cpu->isar.id_isar3 = 0x01112131;
1516 cpu->isar.id_isar4 = 0x0010142;
1517 cpu->isar.id_isar5 = 0x0;
1518 cpu->isar.id_isar6 = 0x0;
1519 cpu->mp_is_up = true;
1520 cpu->pmsav7_dregion = 16;
1521 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1524 static void cortex_r5f_initfn(Object *obj)
1526 ARMCPU *cpu = ARM_CPU(obj);
1528 cortex_r5_initfn(obj);
1529 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1532 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1533 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1534 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1535 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1536 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1537 REGINFO_SENTINEL
1540 static void cortex_a8_initfn(Object *obj)
1542 ARMCPU *cpu = ARM_CPU(obj);
1544 cpu->dtb_compatible = "arm,cortex-a8";
1545 set_feature(&cpu->env, ARM_FEATURE_V7);
1546 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1547 set_feature(&cpu->env, ARM_FEATURE_NEON);
1548 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1549 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1550 set_feature(&cpu->env, ARM_FEATURE_EL3);
1551 cpu->midr = 0x410fc080;
1552 cpu->reset_fpsid = 0x410330c0;
1553 cpu->isar.mvfr0 = 0x11110222;
1554 cpu->isar.mvfr1 = 0x00011111;
1555 cpu->ctr = 0x82048004;
1556 cpu->reset_sctlr = 0x00c50078;
1557 cpu->id_pfr0 = 0x1031;
1558 cpu->id_pfr1 = 0x11;
1559 cpu->id_dfr0 = 0x400;
1560 cpu->id_afr0 = 0;
1561 cpu->id_mmfr0 = 0x31100003;
1562 cpu->id_mmfr1 = 0x20000000;
1563 cpu->id_mmfr2 = 0x01202000;
1564 cpu->id_mmfr3 = 0x11;
1565 cpu->isar.id_isar0 = 0x00101111;
1566 cpu->isar.id_isar1 = 0x12112111;
1567 cpu->isar.id_isar2 = 0x21232031;
1568 cpu->isar.id_isar3 = 0x11112131;
1569 cpu->isar.id_isar4 = 0x00111142;
1570 cpu->dbgdidr = 0x15141000;
1571 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1572 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1573 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1574 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1575 cpu->reset_auxcr = 2;
1576 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1579 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1580 /* power_control should be set to maximum latency. Again,
1581 * default to 0 and set by private hook
1583 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1584 .access = PL1_RW, .resetvalue = 0,
1585 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1586 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1587 .access = PL1_RW, .resetvalue = 0,
1588 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1589 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1590 .access = PL1_RW, .resetvalue = 0,
1591 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1592 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1593 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1594 /* TLB lockdown control */
1595 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1596 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1597 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1598 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1599 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1600 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1601 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1602 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1603 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1604 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1605 REGINFO_SENTINEL
1608 static void cortex_a9_initfn(Object *obj)
1610 ARMCPU *cpu = ARM_CPU(obj);
1612 cpu->dtb_compatible = "arm,cortex-a9";
1613 set_feature(&cpu->env, ARM_FEATURE_V7);
1614 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1615 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1616 set_feature(&cpu->env, ARM_FEATURE_NEON);
1617 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1618 set_feature(&cpu->env, ARM_FEATURE_EL3);
1619 /* Note that A9 supports the MP extensions even for
1620 * A9UP and single-core A9MP (which are both different
1621 * and valid configurations; we don't model A9UP).
1623 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1624 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1625 cpu->midr = 0x410fc090;
1626 cpu->reset_fpsid = 0x41033090;
1627 cpu->isar.mvfr0 = 0x11110222;
1628 cpu->isar.mvfr1 = 0x01111111;
1629 cpu->ctr = 0x80038003;
1630 cpu->reset_sctlr = 0x00c50078;
1631 cpu->id_pfr0 = 0x1031;
1632 cpu->id_pfr1 = 0x11;
1633 cpu->id_dfr0 = 0x000;
1634 cpu->id_afr0 = 0;
1635 cpu->id_mmfr0 = 0x00100103;
1636 cpu->id_mmfr1 = 0x20000000;
1637 cpu->id_mmfr2 = 0x01230000;
1638 cpu->id_mmfr3 = 0x00002111;
1639 cpu->isar.id_isar0 = 0x00101111;
1640 cpu->isar.id_isar1 = 0x13112111;
1641 cpu->isar.id_isar2 = 0x21232041;
1642 cpu->isar.id_isar3 = 0x11112131;
1643 cpu->isar.id_isar4 = 0x00111142;
1644 cpu->dbgdidr = 0x35141000;
1645 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1646 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1647 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1648 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1651 #ifndef CONFIG_USER_ONLY
1652 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1654 /* Linux wants the number of processors from here.
1655 * Might as well set the interrupt-controller bit too.
1657 return ((smp_cpus - 1) << 24) | (1 << 23);
1659 #endif
1661 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1662 #ifndef CONFIG_USER_ONLY
1663 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1664 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1665 .writefn = arm_cp_write_ignore, },
1666 #endif
1667 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1668 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1669 REGINFO_SENTINEL
1672 static void cortex_a7_initfn(Object *obj)
1674 ARMCPU *cpu = ARM_CPU(obj);
1676 cpu->dtb_compatible = "arm,cortex-a7";
1677 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1678 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1679 set_feature(&cpu->env, ARM_FEATURE_NEON);
1680 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1681 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1682 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1683 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1684 set_feature(&cpu->env, ARM_FEATURE_EL2);
1685 set_feature(&cpu->env, ARM_FEATURE_EL3);
1686 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1687 cpu->midr = 0x410fc075;
1688 cpu->reset_fpsid = 0x41023075;
1689 cpu->isar.mvfr0 = 0x10110222;
1690 cpu->isar.mvfr1 = 0x11111111;
1691 cpu->ctr = 0x84448003;
1692 cpu->reset_sctlr = 0x00c50078;
1693 cpu->id_pfr0 = 0x00001131;
1694 cpu->id_pfr1 = 0x00011011;
1695 cpu->id_dfr0 = 0x02010555;
1696 cpu->id_afr0 = 0x00000000;
1697 cpu->id_mmfr0 = 0x10101105;
1698 cpu->id_mmfr1 = 0x40000000;
1699 cpu->id_mmfr2 = 0x01240000;
1700 cpu->id_mmfr3 = 0x02102211;
1701 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1702 * table 4-41 gives 0x02101110, which includes the arm div insns.
1704 cpu->isar.id_isar0 = 0x02101110;
1705 cpu->isar.id_isar1 = 0x13112111;
1706 cpu->isar.id_isar2 = 0x21232041;
1707 cpu->isar.id_isar3 = 0x11112131;
1708 cpu->isar.id_isar4 = 0x10011142;
1709 cpu->dbgdidr = 0x3515f005;
1710 cpu->clidr = 0x0a200023;
1711 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1712 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1713 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1714 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1717 static void cortex_a15_initfn(Object *obj)
1719 ARMCPU *cpu = ARM_CPU(obj);
1721 cpu->dtb_compatible = "arm,cortex-a15";
1722 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1723 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1724 set_feature(&cpu->env, ARM_FEATURE_NEON);
1725 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1726 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1727 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1728 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1729 set_feature(&cpu->env, ARM_FEATURE_EL2);
1730 set_feature(&cpu->env, ARM_FEATURE_EL3);
1731 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1732 cpu->midr = 0x412fc0f1;
1733 cpu->reset_fpsid = 0x410430f0;
1734 cpu->isar.mvfr0 = 0x10110222;
1735 cpu->isar.mvfr1 = 0x11111111;
1736 cpu->ctr = 0x8444c004;
1737 cpu->reset_sctlr = 0x00c50078;
1738 cpu->id_pfr0 = 0x00001131;
1739 cpu->id_pfr1 = 0x00011011;
1740 cpu->id_dfr0 = 0x02010555;
1741 cpu->id_afr0 = 0x00000000;
1742 cpu->id_mmfr0 = 0x10201105;
1743 cpu->id_mmfr1 = 0x20000000;
1744 cpu->id_mmfr2 = 0x01240000;
1745 cpu->id_mmfr3 = 0x02102211;
1746 cpu->isar.id_isar0 = 0x02101110;
1747 cpu->isar.id_isar1 = 0x13112111;
1748 cpu->isar.id_isar2 = 0x21232041;
1749 cpu->isar.id_isar3 = 0x11112131;
1750 cpu->isar.id_isar4 = 0x10011142;
1751 cpu->dbgdidr = 0x3515f021;
1752 cpu->clidr = 0x0a200023;
1753 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1754 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1755 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1756 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1759 static void ti925t_initfn(Object *obj)
1761 ARMCPU *cpu = ARM_CPU(obj);
1762 set_feature(&cpu->env, ARM_FEATURE_V4T);
1763 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1764 cpu->midr = ARM_CPUID_TI925T;
1765 cpu->ctr = 0x5109149;
1766 cpu->reset_sctlr = 0x00000070;
1769 static void sa1100_initfn(Object *obj)
1771 ARMCPU *cpu = ARM_CPU(obj);
1773 cpu->dtb_compatible = "intel,sa1100";
1774 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1775 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1776 cpu->midr = 0x4401A11B;
1777 cpu->reset_sctlr = 0x00000070;
1780 static void sa1110_initfn(Object *obj)
1782 ARMCPU *cpu = ARM_CPU(obj);
1783 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1784 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1785 cpu->midr = 0x6901B119;
1786 cpu->reset_sctlr = 0x00000070;
1789 static void pxa250_initfn(Object *obj)
1791 ARMCPU *cpu = ARM_CPU(obj);
1793 cpu->dtb_compatible = "marvell,xscale";
1794 set_feature(&cpu->env, ARM_FEATURE_V5);
1795 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1796 cpu->midr = 0x69052100;
1797 cpu->ctr = 0xd172172;
1798 cpu->reset_sctlr = 0x00000078;
1801 static void pxa255_initfn(Object *obj)
1803 ARMCPU *cpu = ARM_CPU(obj);
1805 cpu->dtb_compatible = "marvell,xscale";
1806 set_feature(&cpu->env, ARM_FEATURE_V5);
1807 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1808 cpu->midr = 0x69052d00;
1809 cpu->ctr = 0xd172172;
1810 cpu->reset_sctlr = 0x00000078;
1813 static void pxa260_initfn(Object *obj)
1815 ARMCPU *cpu = ARM_CPU(obj);
1817 cpu->dtb_compatible = "marvell,xscale";
1818 set_feature(&cpu->env, ARM_FEATURE_V5);
1819 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1820 cpu->midr = 0x69052903;
1821 cpu->ctr = 0xd172172;
1822 cpu->reset_sctlr = 0x00000078;
1825 static void pxa261_initfn(Object *obj)
1827 ARMCPU *cpu = ARM_CPU(obj);
1829 cpu->dtb_compatible = "marvell,xscale";
1830 set_feature(&cpu->env, ARM_FEATURE_V5);
1831 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1832 cpu->midr = 0x69052d05;
1833 cpu->ctr = 0xd172172;
1834 cpu->reset_sctlr = 0x00000078;
1837 static void pxa262_initfn(Object *obj)
1839 ARMCPU *cpu = ARM_CPU(obj);
1841 cpu->dtb_compatible = "marvell,xscale";
1842 set_feature(&cpu->env, ARM_FEATURE_V5);
1843 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1844 cpu->midr = 0x69052d06;
1845 cpu->ctr = 0xd172172;
1846 cpu->reset_sctlr = 0x00000078;
1849 static void pxa270a0_initfn(Object *obj)
1851 ARMCPU *cpu = ARM_CPU(obj);
1853 cpu->dtb_compatible = "marvell,xscale";
1854 set_feature(&cpu->env, ARM_FEATURE_V5);
1855 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1856 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1857 cpu->midr = 0x69054110;
1858 cpu->ctr = 0xd172172;
1859 cpu->reset_sctlr = 0x00000078;
1862 static void pxa270a1_initfn(Object *obj)
1864 ARMCPU *cpu = ARM_CPU(obj);
1866 cpu->dtb_compatible = "marvell,xscale";
1867 set_feature(&cpu->env, ARM_FEATURE_V5);
1868 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1869 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1870 cpu->midr = 0x69054111;
1871 cpu->ctr = 0xd172172;
1872 cpu->reset_sctlr = 0x00000078;
1875 static void pxa270b0_initfn(Object *obj)
1877 ARMCPU *cpu = ARM_CPU(obj);
1879 cpu->dtb_compatible = "marvell,xscale";
1880 set_feature(&cpu->env, ARM_FEATURE_V5);
1881 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1882 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1883 cpu->midr = 0x69054112;
1884 cpu->ctr = 0xd172172;
1885 cpu->reset_sctlr = 0x00000078;
1888 static void pxa270b1_initfn(Object *obj)
1890 ARMCPU *cpu = ARM_CPU(obj);
1892 cpu->dtb_compatible = "marvell,xscale";
1893 set_feature(&cpu->env, ARM_FEATURE_V5);
1894 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1895 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1896 cpu->midr = 0x69054113;
1897 cpu->ctr = 0xd172172;
1898 cpu->reset_sctlr = 0x00000078;
1901 static void pxa270c0_initfn(Object *obj)
1903 ARMCPU *cpu = ARM_CPU(obj);
1905 cpu->dtb_compatible = "marvell,xscale";
1906 set_feature(&cpu->env, ARM_FEATURE_V5);
1907 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1908 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1909 cpu->midr = 0x69054114;
1910 cpu->ctr = 0xd172172;
1911 cpu->reset_sctlr = 0x00000078;
1914 static void pxa270c5_initfn(Object *obj)
1916 ARMCPU *cpu = ARM_CPU(obj);
1918 cpu->dtb_compatible = "marvell,xscale";
1919 set_feature(&cpu->env, ARM_FEATURE_V5);
1920 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1921 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1922 cpu->midr = 0x69054117;
1923 cpu->ctr = 0xd172172;
1924 cpu->reset_sctlr = 0x00000078;
1927 #ifndef TARGET_AARCH64
1928 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1929 * otherwise, a CPU with as many features enabled as our emulation supports.
1930 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1931 * this only needs to handle 32 bits.
1933 static void arm_max_initfn(Object *obj)
1935 ARMCPU *cpu = ARM_CPU(obj);
1937 if (kvm_enabled()) {
1938 kvm_arm_set_cpu_features_from_host(cpu);
1939 } else {
1940 cortex_a15_initfn(obj);
1941 #ifdef CONFIG_USER_ONLY
1942 /* We don't set these in system emulation mode for the moment,
1943 * since we don't correctly set (all of) the ID registers to
1944 * advertise them.
1946 set_feature(&cpu->env, ARM_FEATURE_V8);
1948 uint32_t t;
1950 t = cpu->isar.id_isar5;
1951 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
1952 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
1953 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
1954 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
1955 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
1956 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
1957 cpu->isar.id_isar5 = t;
1959 t = cpu->isar.id_isar6;
1960 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
1961 cpu->isar.id_isar6 = t;
1963 t = cpu->id_mmfr4;
1964 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
1965 cpu->id_mmfr4 = t;
1967 #endif
1970 #endif
1972 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1974 struct ARMCPUInfo {
1975 const char *name;
1976 void (*initfn)(Object *obj);
1977 void (*class_init)(ObjectClass *oc, void *data);
1980 static const ARMCPUInfo arm_cpus[] = {
1981 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1982 { .name = "arm926", .initfn = arm926_initfn },
1983 { .name = "arm946", .initfn = arm946_initfn },
1984 { .name = "arm1026", .initfn = arm1026_initfn },
1985 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1986 * older core than plain "arm1136". In particular this does not
1987 * have the v6K features.
1989 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
1990 { .name = "arm1136", .initfn = arm1136_initfn },
1991 { .name = "arm1176", .initfn = arm1176_initfn },
1992 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1993 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
1994 .class_init = arm_v7m_class_init },
1995 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
1996 .class_init = arm_v7m_class_init },
1997 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
1998 .class_init = arm_v7m_class_init },
1999 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
2000 .class_init = arm_v7m_class_init },
2001 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
2002 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
2003 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2004 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2005 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2006 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2007 { .name = "ti925t", .initfn = ti925t_initfn },
2008 { .name = "sa1100", .initfn = sa1100_initfn },
2009 { .name = "sa1110", .initfn = sa1110_initfn },
2010 { .name = "pxa250", .initfn = pxa250_initfn },
2011 { .name = "pxa255", .initfn = pxa255_initfn },
2012 { .name = "pxa260", .initfn = pxa260_initfn },
2013 { .name = "pxa261", .initfn = pxa261_initfn },
2014 { .name = "pxa262", .initfn = pxa262_initfn },
2015 /* "pxa270" is an alias for "pxa270-a0" */
2016 { .name = "pxa270", .initfn = pxa270a0_initfn },
2017 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
2018 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
2019 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
2020 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
2021 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
2022 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
2023 #ifndef TARGET_AARCH64
2024 { .name = "max", .initfn = arm_max_initfn },
2025 #endif
2026 #ifdef CONFIG_USER_ONLY
2027 { .name = "any", .initfn = arm_max_initfn },
2028 #endif
2029 #endif
2030 { .name = NULL }
2033 static Property arm_cpu_properties[] = {
2034 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2035 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2036 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2037 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2038 mp_affinity, ARM64_AFFINITY_INVALID),
2039 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2040 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2041 DEFINE_PROP_END_OF_LIST()
2044 #ifdef CONFIG_USER_ONLY
2045 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
2046 int rw, int mmu_idx)
2048 ARMCPU *cpu = ARM_CPU(cs);
2049 CPUARMState *env = &cpu->env;
2051 env->exception.vaddress = address;
2052 if (rw == 2) {
2053 cs->exception_index = EXCP_PREFETCH_ABORT;
2054 } else {
2055 cs->exception_index = EXCP_DATA_ABORT;
2057 return 1;
2059 #endif
2061 static gchar *arm_gdb_arch_name(CPUState *cs)
2063 ARMCPU *cpu = ARM_CPU(cs);
2064 CPUARMState *env = &cpu->env;
2066 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2067 return g_strdup("iwmmxt");
2069 return g_strdup("arm");
2072 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2074 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2075 CPUClass *cc = CPU_CLASS(acc);
2076 DeviceClass *dc = DEVICE_CLASS(oc);
2078 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2079 &acc->parent_realize);
2080 dc->props = arm_cpu_properties;
2082 acc->parent_reset = cc->reset;
2083 cc->reset = arm_cpu_reset;
2085 cc->class_by_name = arm_cpu_class_by_name;
2086 cc->has_work = arm_cpu_has_work;
2087 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2088 cc->dump_state = arm_cpu_dump_state;
2089 cc->set_pc = arm_cpu_set_pc;
2090 cc->gdb_read_register = arm_cpu_gdb_read_register;
2091 cc->gdb_write_register = arm_cpu_gdb_write_register;
2092 #ifdef CONFIG_USER_ONLY
2093 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
2094 #else
2095 cc->do_interrupt = arm_cpu_do_interrupt;
2096 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2097 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2098 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2099 cc->asidx_from_attrs = arm_asidx_from_attrs;
2100 cc->vmsd = &vmstate_arm_cpu;
2101 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2102 cc->write_elf64_note = arm_cpu_write_elf64_note;
2103 cc->write_elf32_note = arm_cpu_write_elf32_note;
2104 #endif
2105 cc->gdb_num_core_regs = 26;
2106 cc->gdb_core_xml_file = "arm-core.xml";
2107 cc->gdb_arch_name = arm_gdb_arch_name;
2108 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2109 cc->gdb_stop_before_watchpoint = true;
2110 cc->debug_excp_handler = arm_debug_excp_handler;
2111 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2112 #if !defined(CONFIG_USER_ONLY)
2113 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2114 #endif
2116 cc->disas_set_info = arm_disas_set_info;
2117 #ifdef CONFIG_TCG
2118 cc->tcg_initialize = arm_translate_init;
2119 #endif
2122 #ifdef CONFIG_KVM
2123 static void arm_host_initfn(Object *obj)
2125 ARMCPU *cpu = ARM_CPU(obj);
2127 kvm_arm_set_cpu_features_from_host(cpu);
2128 arm_cpu_post_init(obj);
2131 static const TypeInfo host_arm_cpu_type_info = {
2132 .name = TYPE_ARM_HOST_CPU,
2133 #ifdef TARGET_AARCH64
2134 .parent = TYPE_AARCH64_CPU,
2135 #else
2136 .parent = TYPE_ARM_CPU,
2137 #endif
2138 .instance_init = arm_host_initfn,
2141 #endif
2143 static void arm_cpu_instance_init(Object *obj)
2145 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2147 acc->info->initfn(obj);
2148 arm_cpu_post_init(obj);
2151 static void cpu_register_class_init(ObjectClass *oc, void *data)
2153 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2155 acc->info = data;
2158 static void cpu_register(const ARMCPUInfo *info)
2160 TypeInfo type_info = {
2161 .parent = TYPE_ARM_CPU,
2162 .instance_size = sizeof(ARMCPU),
2163 .instance_init = arm_cpu_instance_init,
2164 .class_size = sizeof(ARMCPUClass),
2165 .class_init = info->class_init ?: cpu_register_class_init,
2166 .class_data = (void *)info,
2169 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2170 type_register(&type_info);
2171 g_free((void *)type_info.name);
2174 static const TypeInfo arm_cpu_type_info = {
2175 .name = TYPE_ARM_CPU,
2176 .parent = TYPE_CPU,
2177 .instance_size = sizeof(ARMCPU),
2178 .instance_init = arm_cpu_initfn,
2179 .instance_finalize = arm_cpu_finalizefn,
2180 .abstract = true,
2181 .class_size = sizeof(ARMCPUClass),
2182 .class_init = arm_cpu_class_init,
2185 static const TypeInfo idau_interface_type_info = {
2186 .name = TYPE_IDAU_INTERFACE,
2187 .parent = TYPE_INTERFACE,
2188 .class_size = sizeof(IDAUInterfaceClass),
2191 static void arm_cpu_register_types(void)
2193 const ARMCPUInfo *info = arm_cpus;
2195 type_register_static(&arm_cpu_type_info);
2196 type_register_static(&idau_interface_type_info);
2198 while (info->name) {
2199 cpu_register(info);
2200 info++;
2203 #ifdef CONFIG_KVM
2204 type_register_static(&host_arm_cpu_type_info);
2205 #endif
2208 type_init(arm_cpu_register_types)