hw/s390/css: avoid taking address members in packed structs
[qemu/ar7.git] / target / arm / neon_helper.c
blobed1c6fc41ce7a14e4d97cbbe3548a9d733439d10
1 /*
2 * ARM NEON vector operations.
4 * Copyright (c) 2007, 2008 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GNU GPL v2.
8 */
9 #include "qemu/osdep.h"
11 #include "cpu.h"
12 #include "exec/helper-proto.h"
13 #include "fpu/softfloat.h"
15 #define SIGNBIT (uint32_t)0x80000000
16 #define SIGNBIT64 ((uint64_t)1 << 63)
18 #define SET_QC() env->vfp.qc[0] = 1
20 #define NEON_TYPE1(name, type) \
21 typedef struct \
22 { \
23 type v1; \
24 } neon_##name;
25 #ifdef HOST_WORDS_BIGENDIAN
26 #define NEON_TYPE2(name, type) \
27 typedef struct \
28 { \
29 type v2; \
30 type v1; \
31 } neon_##name;
32 #define NEON_TYPE4(name, type) \
33 typedef struct \
34 { \
35 type v4; \
36 type v3; \
37 type v2; \
38 type v1; \
39 } neon_##name;
40 #else
41 #define NEON_TYPE2(name, type) \
42 typedef struct \
43 { \
44 type v1; \
45 type v2; \
46 } neon_##name;
47 #define NEON_TYPE4(name, type) \
48 typedef struct \
49 { \
50 type v1; \
51 type v2; \
52 type v3; \
53 type v4; \
54 } neon_##name;
55 #endif
57 NEON_TYPE4(s8, int8_t)
58 NEON_TYPE4(u8, uint8_t)
59 NEON_TYPE2(s16, int16_t)
60 NEON_TYPE2(u16, uint16_t)
61 NEON_TYPE1(s32, int32_t)
62 NEON_TYPE1(u32, uint32_t)
63 #undef NEON_TYPE4
64 #undef NEON_TYPE2
65 #undef NEON_TYPE1
67 /* Copy from a uint32_t to a vector structure type. */
68 #define NEON_UNPACK(vtype, dest, val) do { \
69 union { \
70 vtype v; \
71 uint32_t i; \
72 } conv_u; \
73 conv_u.i = (val); \
74 dest = conv_u.v; \
75 } while(0)
77 /* Copy from a vector structure type to a uint32_t. */
78 #define NEON_PACK(vtype, dest, val) do { \
79 union { \
80 vtype v; \
81 uint32_t i; \
82 } conv_u; \
83 conv_u.v = (val); \
84 dest = conv_u.i; \
85 } while(0)
87 #define NEON_DO1 \
88 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
89 #define NEON_DO2 \
90 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
91 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
92 #define NEON_DO4 \
93 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
94 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
95 NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
96 NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
98 #define NEON_VOP_BODY(vtype, n) \
99 { \
100 uint32_t res; \
101 vtype vsrc1; \
102 vtype vsrc2; \
103 vtype vdest; \
104 NEON_UNPACK(vtype, vsrc1, arg1); \
105 NEON_UNPACK(vtype, vsrc2, arg2); \
106 NEON_DO##n; \
107 NEON_PACK(vtype, res, vdest); \
108 return res; \
111 #define NEON_VOP(name, vtype, n) \
112 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
113 NEON_VOP_BODY(vtype, n)
115 #define NEON_VOP_ENV(name, vtype, n) \
116 uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \
117 NEON_VOP_BODY(vtype, n)
119 /* Pairwise operations. */
120 /* For 32-bit elements each segment only contains a single element, so
121 the elementwise and pairwise operations are the same. */
122 #define NEON_PDO2 \
123 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
124 NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
125 #define NEON_PDO4 \
126 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
127 NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
128 NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
129 NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
131 #define NEON_POP(name, vtype, n) \
132 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
134 uint32_t res; \
135 vtype vsrc1; \
136 vtype vsrc2; \
137 vtype vdest; \
138 NEON_UNPACK(vtype, vsrc1, arg1); \
139 NEON_UNPACK(vtype, vsrc2, arg2); \
140 NEON_PDO##n; \
141 NEON_PACK(vtype, res, vdest); \
142 return res; \
145 /* Unary operators. */
146 #define NEON_VOP1(name, vtype, n) \
147 uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
149 vtype vsrc1; \
150 vtype vdest; \
151 NEON_UNPACK(vtype, vsrc1, arg); \
152 NEON_DO##n; \
153 NEON_PACK(vtype, arg, vdest); \
154 return arg; \
158 #define NEON_USAT(dest, src1, src2, type) do { \
159 uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
160 if (tmp != (type)tmp) { \
161 SET_QC(); \
162 dest = ~0; \
163 } else { \
164 dest = tmp; \
165 }} while(0)
166 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
167 NEON_VOP_ENV(qadd_u8, neon_u8, 4)
168 #undef NEON_FN
169 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
170 NEON_VOP_ENV(qadd_u16, neon_u16, 2)
171 #undef NEON_FN
172 #undef NEON_USAT
174 uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
176 uint32_t res = a + b;
177 if (res < a) {
178 SET_QC();
179 res = ~0;
181 return res;
184 uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
186 uint64_t res;
188 res = src1 + src2;
189 if (res < src1) {
190 SET_QC();
191 res = ~(uint64_t)0;
193 return res;
196 #define NEON_SSAT(dest, src1, src2, type) do { \
197 int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
198 if (tmp != (type)tmp) { \
199 SET_QC(); \
200 if (src2 > 0) { \
201 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
202 } else { \
203 tmp = 1 << (sizeof(type) * 8 - 1); \
206 dest = tmp; \
207 } while(0)
208 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
209 NEON_VOP_ENV(qadd_s8, neon_s8, 4)
210 #undef NEON_FN
211 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
212 NEON_VOP_ENV(qadd_s16, neon_s16, 2)
213 #undef NEON_FN
214 #undef NEON_SSAT
216 uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
218 uint32_t res = a + b;
219 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
220 SET_QC();
221 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
223 return res;
226 uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
228 uint64_t res;
230 res = src1 + src2;
231 if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
232 SET_QC();
233 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
235 return res;
238 /* Unsigned saturating accumulate of signed value
240 * Op1/Rn is treated as signed
241 * Op2/Rd is treated as unsigned
243 * Explicit casting is used to ensure the correct sign extension of
244 * inputs. The result is treated as a unsigned value and saturated as such.
246 * We use a macro for the 8/16 bit cases which expects signed integers of va,
247 * vb, and vr for interim calculation and an unsigned 32 bit result value r.
250 #define USATACC(bits, shift) \
251 do { \
252 va = sextract32(a, shift, bits); \
253 vb = extract32(b, shift, bits); \
254 vr = va + vb; \
255 if (vr > UINT##bits##_MAX) { \
256 SET_QC(); \
257 vr = UINT##bits##_MAX; \
258 } else if (vr < 0) { \
259 SET_QC(); \
260 vr = 0; \
262 r = deposit32(r, shift, bits, vr); \
263 } while (0)
265 uint32_t HELPER(neon_uqadd_s8)(CPUARMState *env, uint32_t a, uint32_t b)
267 int16_t va, vb, vr;
268 uint32_t r = 0;
270 USATACC(8, 0);
271 USATACC(8, 8);
272 USATACC(8, 16);
273 USATACC(8, 24);
274 return r;
277 uint32_t HELPER(neon_uqadd_s16)(CPUARMState *env, uint32_t a, uint32_t b)
279 int32_t va, vb, vr;
280 uint64_t r = 0;
282 USATACC(16, 0);
283 USATACC(16, 16);
284 return r;
287 #undef USATACC
289 uint32_t HELPER(neon_uqadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
291 int64_t va = (int32_t)a;
292 int64_t vb = (uint32_t)b;
293 int64_t vr = va + vb;
294 if (vr > UINT32_MAX) {
295 SET_QC();
296 vr = UINT32_MAX;
297 } else if (vr < 0) {
298 SET_QC();
299 vr = 0;
301 return vr;
304 uint64_t HELPER(neon_uqadd_s64)(CPUARMState *env, uint64_t a, uint64_t b)
306 uint64_t res;
307 res = a + b;
308 /* We only need to look at the pattern of SIGN bits to detect
309 * +ve/-ve saturation
311 if (~a & b & ~res & SIGNBIT64) {
312 SET_QC();
313 res = UINT64_MAX;
314 } else if (a & ~b & res & SIGNBIT64) {
315 SET_QC();
316 res = 0;
318 return res;
321 /* Signed saturating accumulate of unsigned value
323 * Op1/Rn is treated as unsigned
324 * Op2/Rd is treated as signed
326 * The result is treated as a signed value and saturated as such
328 * We use a macro for the 8/16 bit cases which expects signed integers of va,
329 * vb, and vr for interim calculation and an unsigned 32 bit result value r.
332 #define SSATACC(bits, shift) \
333 do { \
334 va = extract32(a, shift, bits); \
335 vb = sextract32(b, shift, bits); \
336 vr = va + vb; \
337 if (vr > INT##bits##_MAX) { \
338 SET_QC(); \
339 vr = INT##bits##_MAX; \
340 } else if (vr < INT##bits##_MIN) { \
341 SET_QC(); \
342 vr = INT##bits##_MIN; \
344 r = deposit32(r, shift, bits, vr); \
345 } while (0)
347 uint32_t HELPER(neon_sqadd_u8)(CPUARMState *env, uint32_t a, uint32_t b)
349 int16_t va, vb, vr;
350 uint32_t r = 0;
352 SSATACC(8, 0);
353 SSATACC(8, 8);
354 SSATACC(8, 16);
355 SSATACC(8, 24);
356 return r;
359 uint32_t HELPER(neon_sqadd_u16)(CPUARMState *env, uint32_t a, uint32_t b)
361 int32_t va, vb, vr;
362 uint32_t r = 0;
364 SSATACC(16, 0);
365 SSATACC(16, 16);
367 return r;
370 #undef SSATACC
372 uint32_t HELPER(neon_sqadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
374 int64_t res;
375 int64_t op1 = (uint32_t)a;
376 int64_t op2 = (int32_t)b;
377 res = op1 + op2;
378 if (res > INT32_MAX) {
379 SET_QC();
380 res = INT32_MAX;
381 } else if (res < INT32_MIN) {
382 SET_QC();
383 res = INT32_MIN;
385 return res;
388 uint64_t HELPER(neon_sqadd_u64)(CPUARMState *env, uint64_t a, uint64_t b)
390 uint64_t res;
391 res = a + b;
392 /* We only need to look at the pattern of SIGN bits to detect an overflow */
393 if (((a & res)
394 | (~b & res)
395 | (a & ~b)) & SIGNBIT64) {
396 SET_QC();
397 res = INT64_MAX;
399 return res;
403 #define NEON_USAT(dest, src1, src2, type) do { \
404 uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
405 if (tmp != (type)tmp) { \
406 SET_QC(); \
407 dest = 0; \
408 } else { \
409 dest = tmp; \
410 }} while(0)
411 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
412 NEON_VOP_ENV(qsub_u8, neon_u8, 4)
413 #undef NEON_FN
414 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
415 NEON_VOP_ENV(qsub_u16, neon_u16, 2)
416 #undef NEON_FN
417 #undef NEON_USAT
419 uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b)
421 uint32_t res = a - b;
422 if (res > a) {
423 SET_QC();
424 res = 0;
426 return res;
429 uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
431 uint64_t res;
433 if (src1 < src2) {
434 SET_QC();
435 res = 0;
436 } else {
437 res = src1 - src2;
439 return res;
442 #define NEON_SSAT(dest, src1, src2, type) do { \
443 int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
444 if (tmp != (type)tmp) { \
445 SET_QC(); \
446 if (src2 < 0) { \
447 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
448 } else { \
449 tmp = 1 << (sizeof(type) * 8 - 1); \
452 dest = tmp; \
453 } while(0)
454 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
455 NEON_VOP_ENV(qsub_s8, neon_s8, 4)
456 #undef NEON_FN
457 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
458 NEON_VOP_ENV(qsub_s16, neon_s16, 2)
459 #undef NEON_FN
460 #undef NEON_SSAT
462 uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b)
464 uint32_t res = a - b;
465 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
466 SET_QC();
467 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
469 return res;
472 uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
474 uint64_t res;
476 res = src1 - src2;
477 if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
478 SET_QC();
479 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
481 return res;
484 #define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
485 NEON_VOP(hadd_s8, neon_s8, 4)
486 NEON_VOP(hadd_u8, neon_u8, 4)
487 NEON_VOP(hadd_s16, neon_s16, 2)
488 NEON_VOP(hadd_u16, neon_u16, 2)
489 #undef NEON_FN
491 int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
493 int32_t dest;
495 dest = (src1 >> 1) + (src2 >> 1);
496 if (src1 & src2 & 1)
497 dest++;
498 return dest;
501 uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
503 uint32_t dest;
505 dest = (src1 >> 1) + (src2 >> 1);
506 if (src1 & src2 & 1)
507 dest++;
508 return dest;
511 #define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
512 NEON_VOP(rhadd_s8, neon_s8, 4)
513 NEON_VOP(rhadd_u8, neon_u8, 4)
514 NEON_VOP(rhadd_s16, neon_s16, 2)
515 NEON_VOP(rhadd_u16, neon_u16, 2)
516 #undef NEON_FN
518 int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
520 int32_t dest;
522 dest = (src1 >> 1) + (src2 >> 1);
523 if ((src1 | src2) & 1)
524 dest++;
525 return dest;
528 uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
530 uint32_t dest;
532 dest = (src1 >> 1) + (src2 >> 1);
533 if ((src1 | src2) & 1)
534 dest++;
535 return dest;
538 #define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
539 NEON_VOP(hsub_s8, neon_s8, 4)
540 NEON_VOP(hsub_u8, neon_u8, 4)
541 NEON_VOP(hsub_s16, neon_s16, 2)
542 NEON_VOP(hsub_u16, neon_u16, 2)
543 #undef NEON_FN
545 int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
547 int32_t dest;
549 dest = (src1 >> 1) - (src2 >> 1);
550 if ((~src1) & src2 & 1)
551 dest--;
552 return dest;
555 uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
557 uint32_t dest;
559 dest = (src1 >> 1) - (src2 >> 1);
560 if ((~src1) & src2 & 1)
561 dest--;
562 return dest;
565 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
566 NEON_VOP(cgt_s8, neon_s8, 4)
567 NEON_VOP(cgt_u8, neon_u8, 4)
568 NEON_VOP(cgt_s16, neon_s16, 2)
569 NEON_VOP(cgt_u16, neon_u16, 2)
570 NEON_VOP(cgt_s32, neon_s32, 1)
571 NEON_VOP(cgt_u32, neon_u32, 1)
572 #undef NEON_FN
574 #define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
575 NEON_VOP(cge_s8, neon_s8, 4)
576 NEON_VOP(cge_u8, neon_u8, 4)
577 NEON_VOP(cge_s16, neon_s16, 2)
578 NEON_VOP(cge_u16, neon_u16, 2)
579 NEON_VOP(cge_s32, neon_s32, 1)
580 NEON_VOP(cge_u32, neon_u32, 1)
581 #undef NEON_FN
583 #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
584 NEON_POP(pmin_s8, neon_s8, 4)
585 NEON_POP(pmin_u8, neon_u8, 4)
586 NEON_POP(pmin_s16, neon_s16, 2)
587 NEON_POP(pmin_u16, neon_u16, 2)
588 #undef NEON_FN
590 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
591 NEON_POP(pmax_s8, neon_s8, 4)
592 NEON_POP(pmax_u8, neon_u8, 4)
593 NEON_POP(pmax_s16, neon_s16, 2)
594 NEON_POP(pmax_u16, neon_u16, 2)
595 #undef NEON_FN
597 #define NEON_FN(dest, src1, src2) \
598 dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
599 NEON_VOP(abd_s8, neon_s8, 4)
600 NEON_VOP(abd_u8, neon_u8, 4)
601 NEON_VOP(abd_s16, neon_s16, 2)
602 NEON_VOP(abd_u16, neon_u16, 2)
603 NEON_VOP(abd_s32, neon_s32, 1)
604 NEON_VOP(abd_u32, neon_u32, 1)
605 #undef NEON_FN
607 #define NEON_FN(dest, src1, src2) do { \
608 int8_t tmp; \
609 tmp = (int8_t)src2; \
610 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
611 tmp <= -(ssize_t)sizeof(src1) * 8) { \
612 dest = 0; \
613 } else if (tmp < 0) { \
614 dest = src1 >> -tmp; \
615 } else { \
616 dest = src1 << tmp; \
617 }} while (0)
618 NEON_VOP(shl_u8, neon_u8, 4)
619 NEON_VOP(shl_u16, neon_u16, 2)
620 NEON_VOP(shl_u32, neon_u32, 1)
621 #undef NEON_FN
623 uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
625 int8_t shift = (int8_t)shiftop;
626 if (shift >= 64 || shift <= -64) {
627 val = 0;
628 } else if (shift < 0) {
629 val >>= -shift;
630 } else {
631 val <<= shift;
633 return val;
636 #define NEON_FN(dest, src1, src2) do { \
637 int8_t tmp; \
638 tmp = (int8_t)src2; \
639 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
640 dest = 0; \
641 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
642 dest = src1 >> (sizeof(src1) * 8 - 1); \
643 } else if (tmp < 0) { \
644 dest = src1 >> -tmp; \
645 } else { \
646 dest = src1 << tmp; \
647 }} while (0)
648 NEON_VOP(shl_s8, neon_s8, 4)
649 NEON_VOP(shl_s16, neon_s16, 2)
650 NEON_VOP(shl_s32, neon_s32, 1)
651 #undef NEON_FN
653 uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
655 int8_t shift = (int8_t)shiftop;
656 int64_t val = valop;
657 if (shift >= 64) {
658 val = 0;
659 } else if (shift <= -64) {
660 val >>= 63;
661 } else if (shift < 0) {
662 val >>= -shift;
663 } else {
664 val <<= shift;
666 return val;
669 #define NEON_FN(dest, src1, src2) do { \
670 int8_t tmp; \
671 tmp = (int8_t)src2; \
672 if ((tmp >= (ssize_t)sizeof(src1) * 8) \
673 || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
674 dest = 0; \
675 } else if (tmp < 0) { \
676 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
677 } else { \
678 dest = src1 << tmp; \
679 }} while (0)
680 NEON_VOP(rshl_s8, neon_s8, 4)
681 NEON_VOP(rshl_s16, neon_s16, 2)
682 #undef NEON_FN
684 /* The addition of the rounding constant may overflow, so we use an
685 * intermediate 64 bit accumulator. */
686 uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
688 int32_t dest;
689 int32_t val = (int32_t)valop;
690 int8_t shift = (int8_t)shiftop;
691 if ((shift >= 32) || (shift <= -32)) {
692 dest = 0;
693 } else if (shift < 0) {
694 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
695 dest = big_dest >> -shift;
696 } else {
697 dest = val << shift;
699 return dest;
702 /* Handling addition overflow with 64 bit input values is more
703 * tricky than with 32 bit values. */
704 uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
706 int8_t shift = (int8_t)shiftop;
707 int64_t val = valop;
708 if ((shift >= 64) || (shift <= -64)) {
709 val = 0;
710 } else if (shift < 0) {
711 val >>= (-shift - 1);
712 if (val == INT64_MAX) {
713 /* In this case, it means that the rounding constant is 1,
714 * and the addition would overflow. Return the actual
715 * result directly. */
716 val = 0x4000000000000000LL;
717 } else {
718 val++;
719 val >>= 1;
721 } else {
722 val <<= shift;
724 return val;
727 #define NEON_FN(dest, src1, src2) do { \
728 int8_t tmp; \
729 tmp = (int8_t)src2; \
730 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
731 tmp < -(ssize_t)sizeof(src1) * 8) { \
732 dest = 0; \
733 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
734 dest = src1 >> (-tmp - 1); \
735 } else if (tmp < 0) { \
736 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
737 } else { \
738 dest = src1 << tmp; \
739 }} while (0)
740 NEON_VOP(rshl_u8, neon_u8, 4)
741 NEON_VOP(rshl_u16, neon_u16, 2)
742 #undef NEON_FN
744 /* The addition of the rounding constant may overflow, so we use an
745 * intermediate 64 bit accumulator. */
746 uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
748 uint32_t dest;
749 int8_t shift = (int8_t)shiftop;
750 if (shift >= 32 || shift < -32) {
751 dest = 0;
752 } else if (shift == -32) {
753 dest = val >> 31;
754 } else if (shift < 0) {
755 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
756 dest = big_dest >> -shift;
757 } else {
758 dest = val << shift;
760 return dest;
763 /* Handling addition overflow with 64 bit input values is more
764 * tricky than with 32 bit values. */
765 uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
767 int8_t shift = (uint8_t)shiftop;
768 if (shift >= 64 || shift < -64) {
769 val = 0;
770 } else if (shift == -64) {
771 /* Rounding a 1-bit result just preserves that bit. */
772 val >>= 63;
773 } else if (shift < 0) {
774 val >>= (-shift - 1);
775 if (val == UINT64_MAX) {
776 /* In this case, it means that the rounding constant is 1,
777 * and the addition would overflow. Return the actual
778 * result directly. */
779 val = 0x8000000000000000ULL;
780 } else {
781 val++;
782 val >>= 1;
784 } else {
785 val <<= shift;
787 return val;
790 #define NEON_FN(dest, src1, src2) do { \
791 int8_t tmp; \
792 tmp = (int8_t)src2; \
793 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
794 if (src1) { \
795 SET_QC(); \
796 dest = ~0; \
797 } else { \
798 dest = 0; \
800 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
801 dest = 0; \
802 } else if (tmp < 0) { \
803 dest = src1 >> -tmp; \
804 } else { \
805 dest = src1 << tmp; \
806 if ((dest >> tmp) != src1) { \
807 SET_QC(); \
808 dest = ~0; \
810 }} while (0)
811 NEON_VOP_ENV(qshl_u8, neon_u8, 4)
812 NEON_VOP_ENV(qshl_u16, neon_u16, 2)
813 NEON_VOP_ENV(qshl_u32, neon_u32, 1)
814 #undef NEON_FN
816 uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
818 int8_t shift = (int8_t)shiftop;
819 if (shift >= 64) {
820 if (val) {
821 val = ~(uint64_t)0;
822 SET_QC();
824 } else if (shift <= -64) {
825 val = 0;
826 } else if (shift < 0) {
827 val >>= -shift;
828 } else {
829 uint64_t tmp = val;
830 val <<= shift;
831 if ((val >> shift) != tmp) {
832 SET_QC();
833 val = ~(uint64_t)0;
836 return val;
839 #define NEON_FN(dest, src1, src2) do { \
840 int8_t tmp; \
841 tmp = (int8_t)src2; \
842 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
843 if (src1) { \
844 SET_QC(); \
845 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
846 if (src1 > 0) { \
847 dest--; \
849 } else { \
850 dest = src1; \
852 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
853 dest = src1 >> 31; \
854 } else if (tmp < 0) { \
855 dest = src1 >> -tmp; \
856 } else { \
857 dest = src1 << tmp; \
858 if ((dest >> tmp) != src1) { \
859 SET_QC(); \
860 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
861 if (src1 > 0) { \
862 dest--; \
865 }} while (0)
866 NEON_VOP_ENV(qshl_s8, neon_s8, 4)
867 NEON_VOP_ENV(qshl_s16, neon_s16, 2)
868 NEON_VOP_ENV(qshl_s32, neon_s32, 1)
869 #undef NEON_FN
871 uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
873 int8_t shift = (uint8_t)shiftop;
874 int64_t val = valop;
875 if (shift >= 64) {
876 if (val) {
877 SET_QC();
878 val = (val >> 63) ^ ~SIGNBIT64;
880 } else if (shift <= -64) {
881 val >>= 63;
882 } else if (shift < 0) {
883 val >>= -shift;
884 } else {
885 int64_t tmp = val;
886 val <<= shift;
887 if ((val >> shift) != tmp) {
888 SET_QC();
889 val = (tmp >> 63) ^ ~SIGNBIT64;
892 return val;
895 #define NEON_FN(dest, src1, src2) do { \
896 if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
897 SET_QC(); \
898 dest = 0; \
899 } else { \
900 int8_t tmp; \
901 tmp = (int8_t)src2; \
902 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
903 if (src1) { \
904 SET_QC(); \
905 dest = ~0; \
906 } else { \
907 dest = 0; \
909 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
910 dest = 0; \
911 } else if (tmp < 0) { \
912 dest = src1 >> -tmp; \
913 } else { \
914 dest = src1 << tmp; \
915 if ((dest >> tmp) != src1) { \
916 SET_QC(); \
917 dest = ~0; \
920 }} while (0)
921 NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
922 NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
923 #undef NEON_FN
925 uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
927 if ((int32_t)valop < 0) {
928 SET_QC();
929 return 0;
931 return helper_neon_qshl_u32(env, valop, shiftop);
934 uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
936 if ((int64_t)valop < 0) {
937 SET_QC();
938 return 0;
940 return helper_neon_qshl_u64(env, valop, shiftop);
943 #define NEON_FN(dest, src1, src2) do { \
944 int8_t tmp; \
945 tmp = (int8_t)src2; \
946 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
947 if (src1) { \
948 SET_QC(); \
949 dest = ~0; \
950 } else { \
951 dest = 0; \
953 } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
954 dest = 0; \
955 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
956 dest = src1 >> (sizeof(src1) * 8 - 1); \
957 } else if (tmp < 0) { \
958 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
959 } else { \
960 dest = src1 << tmp; \
961 if ((dest >> tmp) != src1) { \
962 SET_QC(); \
963 dest = ~0; \
965 }} while (0)
966 NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
967 NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
968 #undef NEON_FN
970 /* The addition of the rounding constant may overflow, so we use an
971 * intermediate 64 bit accumulator. */
972 uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop)
974 uint32_t dest;
975 int8_t shift = (int8_t)shiftop;
976 if (shift >= 32) {
977 if (val) {
978 SET_QC();
979 dest = ~0;
980 } else {
981 dest = 0;
983 } else if (shift < -32) {
984 dest = 0;
985 } else if (shift == -32) {
986 dest = val >> 31;
987 } else if (shift < 0) {
988 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
989 dest = big_dest >> -shift;
990 } else {
991 dest = val << shift;
992 if ((dest >> shift) != val) {
993 SET_QC();
994 dest = ~0;
997 return dest;
1000 /* Handling addition overflow with 64 bit input values is more
1001 * tricky than with 32 bit values. */
1002 uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
1004 int8_t shift = (int8_t)shiftop;
1005 if (shift >= 64) {
1006 if (val) {
1007 SET_QC();
1008 val = ~0;
1010 } else if (shift < -64) {
1011 val = 0;
1012 } else if (shift == -64) {
1013 val >>= 63;
1014 } else if (shift < 0) {
1015 val >>= (-shift - 1);
1016 if (val == UINT64_MAX) {
1017 /* In this case, it means that the rounding constant is 1,
1018 * and the addition would overflow. Return the actual
1019 * result directly. */
1020 val = 0x8000000000000000ULL;
1021 } else {
1022 val++;
1023 val >>= 1;
1025 } else { \
1026 uint64_t tmp = val;
1027 val <<= shift;
1028 if ((val >> shift) != tmp) {
1029 SET_QC();
1030 val = ~0;
1033 return val;
1036 #define NEON_FN(dest, src1, src2) do { \
1037 int8_t tmp; \
1038 tmp = (int8_t)src2; \
1039 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
1040 if (src1) { \
1041 SET_QC(); \
1042 dest = (typeof(dest))(1 << (sizeof(src1) * 8 - 1)); \
1043 if (src1 > 0) { \
1044 dest--; \
1046 } else { \
1047 dest = 0; \
1049 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
1050 dest = 0; \
1051 } else if (tmp < 0) { \
1052 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
1053 } else { \
1054 dest = src1 << tmp; \
1055 if ((dest >> tmp) != src1) { \
1056 SET_QC(); \
1057 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
1058 if (src1 > 0) { \
1059 dest--; \
1062 }} while (0)
1063 NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
1064 NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
1065 #undef NEON_FN
1067 /* The addition of the rounding constant may overflow, so we use an
1068 * intermediate 64 bit accumulator. */
1069 uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
1071 int32_t dest;
1072 int32_t val = (int32_t)valop;
1073 int8_t shift = (int8_t)shiftop;
1074 if (shift >= 32) {
1075 if (val) {
1076 SET_QC();
1077 dest = (val >> 31) ^ ~SIGNBIT;
1078 } else {
1079 dest = 0;
1081 } else if (shift <= -32) {
1082 dest = 0;
1083 } else if (shift < 0) {
1084 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
1085 dest = big_dest >> -shift;
1086 } else {
1087 dest = val << shift;
1088 if ((dest >> shift) != val) {
1089 SET_QC();
1090 dest = (val >> 31) ^ ~SIGNBIT;
1093 return dest;
1096 /* Handling addition overflow with 64 bit input values is more
1097 * tricky than with 32 bit values. */
1098 uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
1100 int8_t shift = (uint8_t)shiftop;
1101 int64_t val = valop;
1103 if (shift >= 64) {
1104 if (val) {
1105 SET_QC();
1106 val = (val >> 63) ^ ~SIGNBIT64;
1108 } else if (shift <= -64) {
1109 val = 0;
1110 } else if (shift < 0) {
1111 val >>= (-shift - 1);
1112 if (val == INT64_MAX) {
1113 /* In this case, it means that the rounding constant is 1,
1114 * and the addition would overflow. Return the actual
1115 * result directly. */
1116 val = 0x4000000000000000ULL;
1117 } else {
1118 val++;
1119 val >>= 1;
1121 } else {
1122 int64_t tmp = val;
1123 val <<= shift;
1124 if ((val >> shift) != tmp) {
1125 SET_QC();
1126 val = (tmp >> 63) ^ ~SIGNBIT64;
1129 return val;
1132 uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
1134 uint32_t mask;
1135 mask = (a ^ b) & 0x80808080u;
1136 a &= ~0x80808080u;
1137 b &= ~0x80808080u;
1138 return (a + b) ^ mask;
1141 uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
1143 uint32_t mask;
1144 mask = (a ^ b) & 0x80008000u;
1145 a &= ~0x80008000u;
1146 b &= ~0x80008000u;
1147 return (a + b) ^ mask;
1150 #define NEON_FN(dest, src1, src2) dest = src1 + src2
1151 NEON_POP(padd_u8, neon_u8, 4)
1152 NEON_POP(padd_u16, neon_u16, 2)
1153 #undef NEON_FN
1155 #define NEON_FN(dest, src1, src2) dest = src1 - src2
1156 NEON_VOP(sub_u8, neon_u8, 4)
1157 NEON_VOP(sub_u16, neon_u16, 2)
1158 #undef NEON_FN
1160 #define NEON_FN(dest, src1, src2) dest = src1 * src2
1161 NEON_VOP(mul_u8, neon_u8, 4)
1162 NEON_VOP(mul_u16, neon_u16, 2)
1163 #undef NEON_FN
1165 /* Polynomial multiplication is like integer multiplication except the
1166 partial products are XORed, not added. */
1167 uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
1169 uint32_t mask;
1170 uint32_t result;
1171 result = 0;
1172 while (op1) {
1173 mask = 0;
1174 if (op1 & 1)
1175 mask |= 0xff;
1176 if (op1 & (1 << 8))
1177 mask |= (0xff << 8);
1178 if (op1 & (1 << 16))
1179 mask |= (0xff << 16);
1180 if (op1 & (1 << 24))
1181 mask |= (0xff << 24);
1182 result ^= op2 & mask;
1183 op1 = (op1 >> 1) & 0x7f7f7f7f;
1184 op2 = (op2 << 1) & 0xfefefefe;
1186 return result;
1189 uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
1191 uint64_t result = 0;
1192 uint64_t mask;
1193 uint64_t op2ex = op2;
1194 op2ex = (op2ex & 0xff) |
1195 ((op2ex & 0xff00) << 8) |
1196 ((op2ex & 0xff0000) << 16) |
1197 ((op2ex & 0xff000000) << 24);
1198 while (op1) {
1199 mask = 0;
1200 if (op1 & 1) {
1201 mask |= 0xffff;
1203 if (op1 & (1 << 8)) {
1204 mask |= (0xffffU << 16);
1206 if (op1 & (1 << 16)) {
1207 mask |= (0xffffULL << 32);
1209 if (op1 & (1 << 24)) {
1210 mask |= (0xffffULL << 48);
1212 result ^= op2ex & mask;
1213 op1 = (op1 >> 1) & 0x7f7f7f7f;
1214 op2ex <<= 1;
1216 return result;
1219 #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1220 NEON_VOP(tst_u8, neon_u8, 4)
1221 NEON_VOP(tst_u16, neon_u16, 2)
1222 NEON_VOP(tst_u32, neon_u32, 1)
1223 #undef NEON_FN
1225 #define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
1226 NEON_VOP(ceq_u8, neon_u8, 4)
1227 NEON_VOP(ceq_u16, neon_u16, 2)
1228 NEON_VOP(ceq_u32, neon_u32, 1)
1229 #undef NEON_FN
1231 #define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
1232 NEON_VOP1(abs_s8, neon_s8, 4)
1233 NEON_VOP1(abs_s16, neon_s16, 2)
1234 #undef NEON_FN
1236 /* Count Leading Sign/Zero Bits. */
1237 static inline int do_clz8(uint8_t x)
1239 int n;
1240 for (n = 8; x; n--)
1241 x >>= 1;
1242 return n;
1245 static inline int do_clz16(uint16_t x)
1247 int n;
1248 for (n = 16; x; n--)
1249 x >>= 1;
1250 return n;
1253 #define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1254 NEON_VOP1(clz_u8, neon_u8, 4)
1255 #undef NEON_FN
1257 #define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1258 NEON_VOP1(clz_u16, neon_u16, 2)
1259 #undef NEON_FN
1261 #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1262 NEON_VOP1(cls_s8, neon_s8, 4)
1263 #undef NEON_FN
1265 #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1266 NEON_VOP1(cls_s16, neon_s16, 2)
1267 #undef NEON_FN
1269 uint32_t HELPER(neon_cls_s32)(uint32_t x)
1271 int count;
1272 if ((int32_t)x < 0)
1273 x = ~x;
1274 for (count = 32; x; count--)
1275 x = x >> 1;
1276 return count - 1;
1279 /* Bit count. */
1280 uint32_t HELPER(neon_cnt_u8)(uint32_t x)
1282 x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
1283 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
1284 x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f);
1285 return x;
1288 /* Reverse bits in each 8 bit word */
1289 uint32_t HELPER(neon_rbit_u8)(uint32_t x)
1291 x = ((x & 0xf0f0f0f0) >> 4)
1292 | ((x & 0x0f0f0f0f) << 4);
1293 x = ((x & 0x88888888) >> 3)
1294 | ((x & 0x44444444) >> 1)
1295 | ((x & 0x22222222) << 1)
1296 | ((x & 0x11111111) << 3);
1297 return x;
1300 #define NEON_QDMULH16(dest, src1, src2, round) do { \
1301 uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1302 if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1303 SET_QC(); \
1304 tmp = (tmp >> 31) ^ ~SIGNBIT; \
1305 } else { \
1306 tmp <<= 1; \
1308 if (round) { \
1309 int32_t old = tmp; \
1310 tmp += 1 << 15; \
1311 if ((int32_t)tmp < old) { \
1312 SET_QC(); \
1313 tmp = SIGNBIT - 1; \
1316 dest = tmp >> 16; \
1317 } while(0)
1318 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
1319 NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
1320 #undef NEON_FN
1321 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
1322 NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
1323 #undef NEON_FN
1324 #undef NEON_QDMULH16
1326 #define NEON_QDMULH32(dest, src1, src2, round) do { \
1327 uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1328 if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1329 SET_QC(); \
1330 tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1331 } else { \
1332 tmp <<= 1; \
1334 if (round) { \
1335 int64_t old = tmp; \
1336 tmp += (int64_t)1 << 31; \
1337 if ((int64_t)tmp < old) { \
1338 SET_QC(); \
1339 tmp = SIGNBIT64 - 1; \
1342 dest = tmp >> 32; \
1343 } while(0)
1344 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
1345 NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
1346 #undef NEON_FN
1347 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
1348 NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
1349 #undef NEON_FN
1350 #undef NEON_QDMULH32
1352 uint32_t HELPER(neon_narrow_u8)(uint64_t x)
1354 return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
1355 | ((x >> 24) & 0xff000000u);
1358 uint32_t HELPER(neon_narrow_u16)(uint64_t x)
1360 return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
1363 uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
1365 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1366 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1369 uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
1371 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1374 uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
1376 x &= 0xff80ff80ff80ff80ull;
1377 x += 0x0080008000800080ull;
1378 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1379 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1382 uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
1384 x &= 0xffff8000ffff8000ull;
1385 x += 0x0000800000008000ull;
1386 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1389 uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x)
1391 uint16_t s;
1392 uint8_t d;
1393 uint32_t res = 0;
1394 #define SAT8(n) \
1395 s = x >> n; \
1396 if (s & 0x8000) { \
1397 SET_QC(); \
1398 } else { \
1399 if (s > 0xff) { \
1400 d = 0xff; \
1401 SET_QC(); \
1402 } else { \
1403 d = s; \
1405 res |= (uint32_t)d << (n / 2); \
1408 SAT8(0);
1409 SAT8(16);
1410 SAT8(32);
1411 SAT8(48);
1412 #undef SAT8
1413 return res;
1416 uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x)
1418 uint16_t s;
1419 uint8_t d;
1420 uint32_t res = 0;
1421 #define SAT8(n) \
1422 s = x >> n; \
1423 if (s > 0xff) { \
1424 d = 0xff; \
1425 SET_QC(); \
1426 } else { \
1427 d = s; \
1429 res |= (uint32_t)d << (n / 2);
1431 SAT8(0);
1432 SAT8(16);
1433 SAT8(32);
1434 SAT8(48);
1435 #undef SAT8
1436 return res;
1439 uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x)
1441 int16_t s;
1442 uint8_t d;
1443 uint32_t res = 0;
1444 #define SAT8(n) \
1445 s = x >> n; \
1446 if (s != (int8_t)s) { \
1447 d = (s >> 15) ^ 0x7f; \
1448 SET_QC(); \
1449 } else { \
1450 d = s; \
1452 res |= (uint32_t)d << (n / 2);
1454 SAT8(0);
1455 SAT8(16);
1456 SAT8(32);
1457 SAT8(48);
1458 #undef SAT8
1459 return res;
1462 uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x)
1464 uint32_t high;
1465 uint32_t low;
1466 low = x;
1467 if (low & 0x80000000) {
1468 low = 0;
1469 SET_QC();
1470 } else if (low > 0xffff) {
1471 low = 0xffff;
1472 SET_QC();
1474 high = x >> 32;
1475 if (high & 0x80000000) {
1476 high = 0;
1477 SET_QC();
1478 } else if (high > 0xffff) {
1479 high = 0xffff;
1480 SET_QC();
1482 return low | (high << 16);
1485 uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x)
1487 uint32_t high;
1488 uint32_t low;
1489 low = x;
1490 if (low > 0xffff) {
1491 low = 0xffff;
1492 SET_QC();
1494 high = x >> 32;
1495 if (high > 0xffff) {
1496 high = 0xffff;
1497 SET_QC();
1499 return low | (high << 16);
1502 uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x)
1504 int32_t low;
1505 int32_t high;
1506 low = x;
1507 if (low != (int16_t)low) {
1508 low = (low >> 31) ^ 0x7fff;
1509 SET_QC();
1511 high = x >> 32;
1512 if (high != (int16_t)high) {
1513 high = (high >> 31) ^ 0x7fff;
1514 SET_QC();
1516 return (uint16_t)low | (high << 16);
1519 uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x)
1521 if (x & 0x8000000000000000ull) {
1522 SET_QC();
1523 return 0;
1525 if (x > 0xffffffffu) {
1526 SET_QC();
1527 return 0xffffffffu;
1529 return x;
1532 uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x)
1534 if (x > 0xffffffffu) {
1535 SET_QC();
1536 return 0xffffffffu;
1538 return x;
1541 uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x)
1543 if ((int64_t)x != (int32_t)x) {
1544 SET_QC();
1545 return ((int64_t)x >> 63) ^ 0x7fffffff;
1547 return x;
1550 uint64_t HELPER(neon_widen_u8)(uint32_t x)
1552 uint64_t tmp;
1553 uint64_t ret;
1554 ret = (uint8_t)x;
1555 tmp = (uint8_t)(x >> 8);
1556 ret |= tmp << 16;
1557 tmp = (uint8_t)(x >> 16);
1558 ret |= tmp << 32;
1559 tmp = (uint8_t)(x >> 24);
1560 ret |= tmp << 48;
1561 return ret;
1564 uint64_t HELPER(neon_widen_s8)(uint32_t x)
1566 uint64_t tmp;
1567 uint64_t ret;
1568 ret = (uint16_t)(int8_t)x;
1569 tmp = (uint16_t)(int8_t)(x >> 8);
1570 ret |= tmp << 16;
1571 tmp = (uint16_t)(int8_t)(x >> 16);
1572 ret |= tmp << 32;
1573 tmp = (uint16_t)(int8_t)(x >> 24);
1574 ret |= tmp << 48;
1575 return ret;
1578 uint64_t HELPER(neon_widen_u16)(uint32_t x)
1580 uint64_t high = (uint16_t)(x >> 16);
1581 return ((uint16_t)x) | (high << 32);
1584 uint64_t HELPER(neon_widen_s16)(uint32_t x)
1586 uint64_t high = (int16_t)(x >> 16);
1587 return ((uint32_t)(int16_t)x) | (high << 32);
1590 uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
1592 uint64_t mask;
1593 mask = (a ^ b) & 0x8000800080008000ull;
1594 a &= ~0x8000800080008000ull;
1595 b &= ~0x8000800080008000ull;
1596 return (a + b) ^ mask;
1599 uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
1601 uint64_t mask;
1602 mask = (a ^ b) & 0x8000000080000000ull;
1603 a &= ~0x8000000080000000ull;
1604 b &= ~0x8000000080000000ull;
1605 return (a + b) ^ mask;
1608 uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
1610 uint64_t tmp;
1611 uint64_t tmp2;
1613 tmp = a & 0x0000ffff0000ffffull;
1614 tmp += (a >> 16) & 0x0000ffff0000ffffull;
1615 tmp2 = b & 0xffff0000ffff0000ull;
1616 tmp2 += (b << 16) & 0xffff0000ffff0000ull;
1617 return ( tmp & 0xffff)
1618 | ((tmp >> 16) & 0xffff0000ull)
1619 | ((tmp2 << 16) & 0xffff00000000ull)
1620 | ( tmp2 & 0xffff000000000000ull);
1623 uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
1625 uint32_t low = a + (a >> 32);
1626 uint32_t high = b + (b >> 32);
1627 return low + ((uint64_t)high << 32);
1630 uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
1632 uint64_t mask;
1633 mask = (a ^ ~b) & 0x8000800080008000ull;
1634 a |= 0x8000800080008000ull;
1635 b &= ~0x8000800080008000ull;
1636 return (a - b) ^ mask;
1639 uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
1641 uint64_t mask;
1642 mask = (a ^ ~b) & 0x8000000080000000ull;
1643 a |= 0x8000000080000000ull;
1644 b &= ~0x8000000080000000ull;
1645 return (a - b) ^ mask;
1648 uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b)
1650 uint32_t x, y;
1651 uint32_t low, high;
1653 x = a;
1654 y = b;
1655 low = x + y;
1656 if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1657 SET_QC();
1658 low = ((int32_t)x >> 31) ^ ~SIGNBIT;
1660 x = a >> 32;
1661 y = b >> 32;
1662 high = x + y;
1663 if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1664 SET_QC();
1665 high = ((int32_t)x >> 31) ^ ~SIGNBIT;
1667 return low | ((uint64_t)high << 32);
1670 uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b)
1672 uint64_t result;
1674 result = a + b;
1675 if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
1676 SET_QC();
1677 result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
1679 return result;
1682 /* We have to do the arithmetic in a larger type than
1683 * the input type, because for example with a signed 32 bit
1684 * op the absolute difference can overflow a signed 32 bit value.
1686 #define DO_ABD(dest, x, y, intype, arithtype) do { \
1687 arithtype tmp_x = (intype)(x); \
1688 arithtype tmp_y = (intype)(y); \
1689 dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1690 } while(0)
1692 uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
1694 uint64_t tmp;
1695 uint64_t result;
1696 DO_ABD(result, a, b, uint8_t, uint32_t);
1697 DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
1698 result |= tmp << 16;
1699 DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
1700 result |= tmp << 32;
1701 DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
1702 result |= tmp << 48;
1703 return result;
1706 uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
1708 uint64_t tmp;
1709 uint64_t result;
1710 DO_ABD(result, a, b, int8_t, int32_t);
1711 DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
1712 result |= tmp << 16;
1713 DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
1714 result |= tmp << 32;
1715 DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
1716 result |= tmp << 48;
1717 return result;
1720 uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
1722 uint64_t tmp;
1723 uint64_t result;
1724 DO_ABD(result, a, b, uint16_t, uint32_t);
1725 DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1726 return result | (tmp << 32);
1729 uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
1731 uint64_t tmp;
1732 uint64_t result;
1733 DO_ABD(result, a, b, int16_t, int32_t);
1734 DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
1735 return result | (tmp << 32);
1738 uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
1740 uint64_t result;
1741 DO_ABD(result, a, b, uint32_t, uint64_t);
1742 return result;
1745 uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
1747 uint64_t result;
1748 DO_ABD(result, a, b, int32_t, int64_t);
1749 return result;
1751 #undef DO_ABD
1753 /* Widening multiply. Named type is the source type. */
1754 #define DO_MULL(dest, x, y, type1, type2) do { \
1755 type1 tmp_x = x; \
1756 type1 tmp_y = y; \
1757 dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1758 } while(0)
1760 uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
1762 uint64_t tmp;
1763 uint64_t result;
1765 DO_MULL(result, a, b, uint8_t, uint16_t);
1766 DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
1767 result |= tmp << 16;
1768 DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
1769 result |= tmp << 32;
1770 DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
1771 result |= tmp << 48;
1772 return result;
1775 uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
1777 uint64_t tmp;
1778 uint64_t result;
1780 DO_MULL(result, a, b, int8_t, uint16_t);
1781 DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
1782 result |= tmp << 16;
1783 DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
1784 result |= tmp << 32;
1785 DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
1786 result |= tmp << 48;
1787 return result;
1790 uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
1792 uint64_t tmp;
1793 uint64_t result;
1795 DO_MULL(result, a, b, uint16_t, uint32_t);
1796 DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1797 return result | (tmp << 32);
1800 uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
1802 uint64_t tmp;
1803 uint64_t result;
1805 DO_MULL(result, a, b, int16_t, uint32_t);
1806 DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
1807 return result | (tmp << 32);
1810 uint64_t HELPER(neon_negl_u16)(uint64_t x)
1812 uint16_t tmp;
1813 uint64_t result;
1814 result = (uint16_t)-x;
1815 tmp = -(x >> 16);
1816 result |= (uint64_t)tmp << 16;
1817 tmp = -(x >> 32);
1818 result |= (uint64_t)tmp << 32;
1819 tmp = -(x >> 48);
1820 result |= (uint64_t)tmp << 48;
1821 return result;
1824 uint64_t HELPER(neon_negl_u32)(uint64_t x)
1826 uint32_t low = -x;
1827 uint32_t high = -(x >> 32);
1828 return low | ((uint64_t)high << 32);
1831 /* Saturating sign manipulation. */
1832 /* ??? Make these use NEON_VOP1 */
1833 #define DO_QABS8(x) do { \
1834 if (x == (int8_t)0x80) { \
1835 x = 0x7f; \
1836 SET_QC(); \
1837 } else if (x < 0) { \
1838 x = -x; \
1839 }} while (0)
1840 uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x)
1842 neon_s8 vec;
1843 NEON_UNPACK(neon_s8, vec, x);
1844 DO_QABS8(vec.v1);
1845 DO_QABS8(vec.v2);
1846 DO_QABS8(vec.v3);
1847 DO_QABS8(vec.v4);
1848 NEON_PACK(neon_s8, x, vec);
1849 return x;
1851 #undef DO_QABS8
1853 #define DO_QNEG8(x) do { \
1854 if (x == (int8_t)0x80) { \
1855 x = 0x7f; \
1856 SET_QC(); \
1857 } else { \
1858 x = -x; \
1859 }} while (0)
1860 uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x)
1862 neon_s8 vec;
1863 NEON_UNPACK(neon_s8, vec, x);
1864 DO_QNEG8(vec.v1);
1865 DO_QNEG8(vec.v2);
1866 DO_QNEG8(vec.v3);
1867 DO_QNEG8(vec.v4);
1868 NEON_PACK(neon_s8, x, vec);
1869 return x;
1871 #undef DO_QNEG8
1873 #define DO_QABS16(x) do { \
1874 if (x == (int16_t)0x8000) { \
1875 x = 0x7fff; \
1876 SET_QC(); \
1877 } else if (x < 0) { \
1878 x = -x; \
1879 }} while (0)
1880 uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x)
1882 neon_s16 vec;
1883 NEON_UNPACK(neon_s16, vec, x);
1884 DO_QABS16(vec.v1);
1885 DO_QABS16(vec.v2);
1886 NEON_PACK(neon_s16, x, vec);
1887 return x;
1889 #undef DO_QABS16
1891 #define DO_QNEG16(x) do { \
1892 if (x == (int16_t)0x8000) { \
1893 x = 0x7fff; \
1894 SET_QC(); \
1895 } else { \
1896 x = -x; \
1897 }} while (0)
1898 uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x)
1900 neon_s16 vec;
1901 NEON_UNPACK(neon_s16, vec, x);
1902 DO_QNEG16(vec.v1);
1903 DO_QNEG16(vec.v2);
1904 NEON_PACK(neon_s16, x, vec);
1905 return x;
1907 #undef DO_QNEG16
1909 uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x)
1911 if (x == SIGNBIT) {
1912 SET_QC();
1913 x = ~SIGNBIT;
1914 } else if ((int32_t)x < 0) {
1915 x = -x;
1917 return x;
1920 uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x)
1922 if (x == SIGNBIT) {
1923 SET_QC();
1924 x = ~SIGNBIT;
1925 } else {
1926 x = -x;
1928 return x;
1931 uint64_t HELPER(neon_qabs_s64)(CPUARMState *env, uint64_t x)
1933 if (x == SIGNBIT64) {
1934 SET_QC();
1935 x = ~SIGNBIT64;
1936 } else if ((int64_t)x < 0) {
1937 x = -x;
1939 return x;
1942 uint64_t HELPER(neon_qneg_s64)(CPUARMState *env, uint64_t x)
1944 if (x == SIGNBIT64) {
1945 SET_QC();
1946 x = ~SIGNBIT64;
1947 } else {
1948 x = -x;
1950 return x;
1953 /* NEON Float helpers. */
1954 uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp)
1956 float_status *fpst = fpstp;
1957 float32 f0 = make_float32(a);
1958 float32 f1 = make_float32(b);
1959 return float32_val(float32_abs(float32_sub(f0, f1, fpst)));
1962 /* Floating point comparisons produce an integer result.
1963 * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
1964 * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
1966 uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp)
1968 float_status *fpst = fpstp;
1969 return -float32_eq_quiet(make_float32(a), make_float32(b), fpst);
1972 uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp)
1974 float_status *fpst = fpstp;
1975 return -float32_le(make_float32(b), make_float32(a), fpst);
1978 uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1980 float_status *fpst = fpstp;
1981 return -float32_lt(make_float32(b), make_float32(a), fpst);
1984 uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp)
1986 float_status *fpst = fpstp;
1987 float32 f0 = float32_abs(make_float32(a));
1988 float32 f1 = float32_abs(make_float32(b));
1989 return -float32_le(f1, f0, fpst);
1992 uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp)
1994 float_status *fpst = fpstp;
1995 float32 f0 = float32_abs(make_float32(a));
1996 float32 f1 = float32_abs(make_float32(b));
1997 return -float32_lt(f1, f0, fpst);
2000 uint64_t HELPER(neon_acge_f64)(uint64_t a, uint64_t b, void *fpstp)
2002 float_status *fpst = fpstp;
2003 float64 f0 = float64_abs(make_float64(a));
2004 float64 f1 = float64_abs(make_float64(b));
2005 return -float64_le(f1, f0, fpst);
2008 uint64_t HELPER(neon_acgt_f64)(uint64_t a, uint64_t b, void *fpstp)
2010 float_status *fpst = fpstp;
2011 float64 f0 = float64_abs(make_float64(a));
2012 float64 f1 = float64_abs(make_float64(b));
2013 return -float64_lt(f1, f0, fpst);
2016 #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
2018 void HELPER(neon_qunzip8)(void *vd, void *vm)
2020 uint64_t *rd = vd, *rm = vm;
2021 uint64_t zd0 = rd[0], zd1 = rd[1];
2022 uint64_t zm0 = rm[0], zm1 = rm[1];
2024 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
2025 | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
2026 | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
2027 | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
2028 uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
2029 | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
2030 | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
2031 | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
2032 uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
2033 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
2034 | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
2035 | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
2036 uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
2037 | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
2038 | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
2039 | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
2041 rm[0] = m0;
2042 rm[1] = m1;
2043 rd[0] = d0;
2044 rd[1] = d1;
2047 void HELPER(neon_qunzip16)(void *vd, void *vm)
2049 uint64_t *rd = vd, *rm = vm;
2050 uint64_t zd0 = rd[0], zd1 = rd[1];
2051 uint64_t zm0 = rm[0], zm1 = rm[1];
2053 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
2054 | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
2055 uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
2056 | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
2057 uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
2058 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
2059 uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
2060 | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
2062 rm[0] = m0;
2063 rm[1] = m1;
2064 rd[0] = d0;
2065 rd[1] = d1;
2068 void HELPER(neon_qunzip32)(void *vd, void *vm)
2070 uint64_t *rd = vd, *rm = vm;
2071 uint64_t zd0 = rd[0], zd1 = rd[1];
2072 uint64_t zm0 = rm[0], zm1 = rm[1];
2074 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
2075 uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
2076 uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
2077 uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
2079 rm[0] = m0;
2080 rm[1] = m1;
2081 rd[0] = d0;
2082 rd[1] = d1;
2085 void HELPER(neon_unzip8)(void *vd, void *vm)
2087 uint64_t *rd = vd, *rm = vm;
2088 uint64_t zd = rd[0], zm = rm[0];
2090 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
2091 | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
2092 | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
2093 | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
2094 uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
2095 | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
2096 | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
2097 | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2099 rm[0] = m0;
2100 rd[0] = d0;
2103 void HELPER(neon_unzip16)(void *vd, void *vm)
2105 uint64_t *rd = vd, *rm = vm;
2106 uint64_t zd = rd[0], zm = rm[0];
2108 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
2109 | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
2110 uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
2111 | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2113 rm[0] = m0;
2114 rd[0] = d0;
2117 void HELPER(neon_qzip8)(void *vd, void *vm)
2119 uint64_t *rd = vd, *rm = vm;
2120 uint64_t zd0 = rd[0], zd1 = rd[1];
2121 uint64_t zm0 = rm[0], zm1 = rm[1];
2123 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
2124 | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
2125 | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
2126 | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
2127 uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
2128 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
2129 | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
2130 | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
2131 uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
2132 | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
2133 | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
2134 | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
2135 uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
2136 | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
2137 | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
2138 | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
2140 rm[0] = m0;
2141 rm[1] = m1;
2142 rd[0] = d0;
2143 rd[1] = d1;
2146 void HELPER(neon_qzip16)(void *vd, void *vm)
2148 uint64_t *rd = vd, *rm = vm;
2149 uint64_t zd0 = rd[0], zd1 = rd[1];
2150 uint64_t zm0 = rm[0], zm1 = rm[1];
2152 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
2153 | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
2154 uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
2155 | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
2156 uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
2157 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
2158 uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
2159 | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
2161 rm[0] = m0;
2162 rm[1] = m1;
2163 rd[0] = d0;
2164 rd[1] = d1;
2167 void HELPER(neon_qzip32)(void *vd, void *vm)
2169 uint64_t *rd = vd, *rm = vm;
2170 uint64_t zd0 = rd[0], zd1 = rd[1];
2171 uint64_t zm0 = rm[0], zm1 = rm[1];
2173 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
2174 uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
2175 uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
2176 uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
2178 rm[0] = m0;
2179 rm[1] = m1;
2180 rd[0] = d0;
2181 rd[1] = d1;
2184 void HELPER(neon_zip8)(void *vd, void *vm)
2186 uint64_t *rd = vd, *rm = vm;
2187 uint64_t zd = rd[0], zm = rm[0];
2189 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
2190 | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
2191 | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
2192 | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
2193 uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
2194 | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
2195 | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
2196 | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2198 rm[0] = m0;
2199 rd[0] = d0;
2202 void HELPER(neon_zip16)(void *vd, void *vm)
2204 uint64_t *rd = vd, *rm = vm;
2205 uint64_t zd = rd[0], zm = rm[0];
2207 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
2208 | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
2209 uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
2210 | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2212 rm[0] = m0;
2213 rd[0] = d0;
2216 /* Helper function for 64 bit polynomial multiply case:
2217 * perform PolynomialMult(op1, op2) and return either the top or
2218 * bottom half of the 128 bit result.
2220 uint64_t HELPER(neon_pmull_64_lo)(uint64_t op1, uint64_t op2)
2222 int bitnum;
2223 uint64_t res = 0;
2225 for (bitnum = 0; bitnum < 64; bitnum++) {
2226 if (op1 & (1ULL << bitnum)) {
2227 res ^= op2 << bitnum;
2230 return res;
2232 uint64_t HELPER(neon_pmull_64_hi)(uint64_t op1, uint64_t op2)
2234 int bitnum;
2235 uint64_t res = 0;
2237 /* bit 0 of op1 can't influence the high 64 bits at all */
2238 for (bitnum = 1; bitnum < 64; bitnum++) {
2239 if (op1 & (1ULL << bitnum)) {
2240 res ^= op2 >> (64 - bitnum);
2243 return res;