monitor: new parameter "x-oob"
[qemu/ar7.git] / hw / net / imx_fec.c
blob6e297c5480957fbfcdda16a5a3eadf0dcb3b9b57
1 /*
2 * i.MX Fast Ethernet Controller emulation.
4 * Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
6 * Based on Coldfire Fast Ethernet Controller emulation.
8 * Copyright (c) 2007 CodeSourcery.
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "hw/net/imx_fec.h"
26 #include "sysemu/dma.h"
27 #include "qemu/log.h"
28 #include "net/checksum.h"
29 #include "net/eth.h"
31 /* For crc32 */
32 #include <zlib.h>
34 #ifndef DEBUG_IMX_FEC
35 #define DEBUG_IMX_FEC 0
36 #endif
38 #define FEC_PRINTF(fmt, args...) \
39 do { \
40 if (DEBUG_IMX_FEC) { \
41 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_FEC, \
42 __func__, ##args); \
43 } \
44 } while (0)
46 #ifndef DEBUG_IMX_PHY
47 #define DEBUG_IMX_PHY 0
48 #endif
50 #define PHY_PRINTF(fmt, args...) \
51 do { \
52 if (DEBUG_IMX_PHY) { \
53 fprintf(stderr, "[%s.phy]%s: " fmt , TYPE_IMX_FEC, \
54 __func__, ##args); \
55 } \
56 } while (0)
58 #define IMX_MAX_DESC 1024
60 static const char *imx_default_reg_name(IMXFECState *s, uint32_t index)
62 static char tmp[20];
63 sprintf(tmp, "index %d", index);
64 return tmp;
67 static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index)
69 switch (index) {
70 case ENET_FRBR:
71 return "FRBR";
72 case ENET_FRSR:
73 return "FRSR";
74 case ENET_MIIGSK_CFGR:
75 return "MIIGSK_CFGR";
76 case ENET_MIIGSK_ENR:
77 return "MIIGSK_ENR";
78 default:
79 return imx_default_reg_name(s, index);
83 static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index)
85 switch (index) {
86 case ENET_RSFL:
87 return "RSFL";
88 case ENET_RSEM:
89 return "RSEM";
90 case ENET_RAEM:
91 return "RAEM";
92 case ENET_RAFL:
93 return "RAFL";
94 case ENET_TSEM:
95 return "TSEM";
96 case ENET_TAEM:
97 return "TAEM";
98 case ENET_TAFL:
99 return "TAFL";
100 case ENET_TIPG:
101 return "TIPG";
102 case ENET_FTRL:
103 return "FTRL";
104 case ENET_TACC:
105 return "TACC";
106 case ENET_RACC:
107 return "RACC";
108 case ENET_ATCR:
109 return "ATCR";
110 case ENET_ATVR:
111 return "ATVR";
112 case ENET_ATOFF:
113 return "ATOFF";
114 case ENET_ATPER:
115 return "ATPER";
116 case ENET_ATCOR:
117 return "ATCOR";
118 case ENET_ATINC:
119 return "ATINC";
120 case ENET_ATSTMP:
121 return "ATSTMP";
122 case ENET_TGSR:
123 return "TGSR";
124 case ENET_TCSR0:
125 return "TCSR0";
126 case ENET_TCCR0:
127 return "TCCR0";
128 case ENET_TCSR1:
129 return "TCSR1";
130 case ENET_TCCR1:
131 return "TCCR1";
132 case ENET_TCSR2:
133 return "TCSR2";
134 case ENET_TCCR2:
135 return "TCCR2";
136 case ENET_TCSR3:
137 return "TCSR3";
138 case ENET_TCCR3:
139 return "TCCR3";
140 default:
141 return imx_default_reg_name(s, index);
145 static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index)
147 switch (index) {
148 case ENET_EIR:
149 return "EIR";
150 case ENET_EIMR:
151 return "EIMR";
152 case ENET_RDAR:
153 return "RDAR";
154 case ENET_TDAR:
155 return "TDAR";
156 case ENET_ECR:
157 return "ECR";
158 case ENET_MMFR:
159 return "MMFR";
160 case ENET_MSCR:
161 return "MSCR";
162 case ENET_MIBC:
163 return "MIBC";
164 case ENET_RCR:
165 return "RCR";
166 case ENET_TCR:
167 return "TCR";
168 case ENET_PALR:
169 return "PALR";
170 case ENET_PAUR:
171 return "PAUR";
172 case ENET_OPD:
173 return "OPD";
174 case ENET_IAUR:
175 return "IAUR";
176 case ENET_IALR:
177 return "IALR";
178 case ENET_GAUR:
179 return "GAUR";
180 case ENET_GALR:
181 return "GALR";
182 case ENET_TFWR:
183 return "TFWR";
184 case ENET_RDSR:
185 return "RDSR";
186 case ENET_TDSR:
187 return "TDSR";
188 case ENET_MRBR:
189 return "MRBR";
190 default:
191 if (s->is_fec) {
192 return imx_fec_reg_name(s, index);
193 } else {
194 return imx_enet_reg_name(s, index);
200 * Versions of this device with more than one TX descriptor save the
201 * 2nd and 3rd descriptors in a subsection, to maintain migration
202 * compatibility with previous versions of the device that only
203 * supported a single descriptor.
205 static bool imx_eth_is_multi_tx_ring(void *opaque)
207 IMXFECState *s = IMX_FEC(opaque);
209 return s->tx_ring_num > 1;
212 static const VMStateDescription vmstate_imx_eth_txdescs = {
213 .name = "imx.fec/txdescs",
214 .version_id = 1,
215 .minimum_version_id = 1,
216 .needed = imx_eth_is_multi_tx_ring,
217 .fields = (VMStateField[]) {
218 VMSTATE_UINT32(tx_descriptor[1], IMXFECState),
219 VMSTATE_UINT32(tx_descriptor[2], IMXFECState),
220 VMSTATE_END_OF_LIST()
224 static const VMStateDescription vmstate_imx_eth = {
225 .name = TYPE_IMX_FEC,
226 .version_id = 2,
227 .minimum_version_id = 2,
228 .fields = (VMStateField[]) {
229 VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX),
230 VMSTATE_UINT32(rx_descriptor, IMXFECState),
231 VMSTATE_UINT32(tx_descriptor[0], IMXFECState),
232 VMSTATE_UINT32(phy_status, IMXFECState),
233 VMSTATE_UINT32(phy_control, IMXFECState),
234 VMSTATE_UINT32(phy_advertise, IMXFECState),
235 VMSTATE_UINT32(phy_int, IMXFECState),
236 VMSTATE_UINT32(phy_int_mask, IMXFECState),
237 VMSTATE_END_OF_LIST()
239 .subsections = (const VMStateDescription * []) {
240 &vmstate_imx_eth_txdescs,
241 NULL
245 #define PHY_INT_ENERGYON (1 << 7)
246 #define PHY_INT_AUTONEG_COMPLETE (1 << 6)
247 #define PHY_INT_FAULT (1 << 5)
248 #define PHY_INT_DOWN (1 << 4)
249 #define PHY_INT_AUTONEG_LP (1 << 3)
250 #define PHY_INT_PARFAULT (1 << 2)
251 #define PHY_INT_AUTONEG_PAGE (1 << 1)
253 static void imx_eth_update(IMXFECState *s);
256 * The MII phy could raise a GPIO to the processor which in turn
257 * could be handled as an interrpt by the OS.
258 * For now we don't handle any GPIO/interrupt line, so the OS will
259 * have to poll for the PHY status.
261 static void phy_update_irq(IMXFECState *s)
263 imx_eth_update(s);
266 static void phy_update_link(IMXFECState *s)
268 /* Autonegotiation status mirrors link status. */
269 if (qemu_get_queue(s->nic)->link_down) {
270 PHY_PRINTF("link is down\n");
271 s->phy_status &= ~0x0024;
272 s->phy_int |= PHY_INT_DOWN;
273 } else {
274 PHY_PRINTF("link is up\n");
275 s->phy_status |= 0x0024;
276 s->phy_int |= PHY_INT_ENERGYON;
277 s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
279 phy_update_irq(s);
282 static void imx_eth_set_link(NetClientState *nc)
284 phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc)));
287 static void phy_reset(IMXFECState *s)
289 s->phy_status = 0x7809;
290 s->phy_control = 0x3000;
291 s->phy_advertise = 0x01e1;
292 s->phy_int_mask = 0;
293 s->phy_int = 0;
294 phy_update_link(s);
297 static uint32_t do_phy_read(IMXFECState *s, int reg)
299 uint32_t val;
301 if (reg > 31) {
302 /* we only advertise one phy */
303 return 0;
306 switch (reg) {
307 case 0: /* Basic Control */
308 val = s->phy_control;
309 break;
310 case 1: /* Basic Status */
311 val = s->phy_status;
312 break;
313 case 2: /* ID1 */
314 val = 0x0007;
315 break;
316 case 3: /* ID2 */
317 val = 0xc0d1;
318 break;
319 case 4: /* Auto-neg advertisement */
320 val = s->phy_advertise;
321 break;
322 case 5: /* Auto-neg Link Partner Ability */
323 val = 0x0f71;
324 break;
325 case 6: /* Auto-neg Expansion */
326 val = 1;
327 break;
328 case 29: /* Interrupt source. */
329 val = s->phy_int;
330 s->phy_int = 0;
331 phy_update_irq(s);
332 break;
333 case 30: /* Interrupt mask */
334 val = s->phy_int_mask;
335 break;
336 case 17:
337 case 18:
338 case 27:
339 case 31:
340 qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n",
341 TYPE_IMX_FEC, __func__, reg);
342 val = 0;
343 break;
344 default:
345 qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
346 TYPE_IMX_FEC, __func__, reg);
347 val = 0;
348 break;
351 PHY_PRINTF("read 0x%04x @ %d\n", val, reg);
353 return val;
356 static void do_phy_write(IMXFECState *s, int reg, uint32_t val)
358 PHY_PRINTF("write 0x%04x @ %d\n", val, reg);
360 if (reg > 31) {
361 /* we only advertise one phy */
362 return;
365 switch (reg) {
366 case 0: /* Basic Control */
367 if (val & 0x8000) {
368 phy_reset(s);
369 } else {
370 s->phy_control = val & 0x7980;
371 /* Complete autonegotiation immediately. */
372 if (val & 0x1000) {
373 s->phy_status |= 0x0020;
376 break;
377 case 4: /* Auto-neg advertisement */
378 s->phy_advertise = (val & 0x2d7f) | 0x80;
379 break;
380 case 30: /* Interrupt mask */
381 s->phy_int_mask = val & 0xff;
382 phy_update_irq(s);
383 break;
384 case 17:
385 case 18:
386 case 27:
387 case 31:
388 qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n",
389 TYPE_IMX_FEC, __func__, reg);
390 break;
391 default:
392 qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
393 TYPE_IMX_FEC, __func__, reg);
394 break;
398 static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr)
400 dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
403 static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr)
405 dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
408 static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr)
410 dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd));
413 static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr)
415 dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd));
418 static void imx_eth_update(IMXFECState *s)
421 * Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER
422 * interrupts swapped. This worked with older versions of Linux (4.14
423 * and older) since Linux associated both interrupt lines with Ethernet
424 * MAC interrupts. Specifically,
425 * - Linux 4.15 and later have separate interrupt handlers for the MAC and
426 * timer interrupts. Those versions of Linux fail with versions of QEMU
427 * with swapped interrupt assignments.
428 * - In linux 4.14, both interrupt lines were registered with the Ethernet
429 * MAC interrupt handler. As a result, all versions of qemu happen to
430 * work, though that is accidental.
431 * - In Linux 4.9 and older, the timer interrupt was registered directly
432 * with the Ethernet MAC interrupt handler. The MAC interrupt was
433 * redirected to a GPIO interrupt to work around erratum ERR006687.
434 * This was implemented using the SOC's IOMUX block. In qemu, this GPIO
435 * interrupt never fired since IOMUX is currently not supported in qemu.
436 * Linux instead received MAC interrupts on the timer interrupt.
437 * As a result, qemu versions with the swapped interrupt assignment work,
438 * albeit accidentally, but qemu versions with the correct interrupt
439 * assignment fail.
441 * To ensure that all versions of Linux work, generate ENET_INT_MAC
442 * interrrupts on both interrupt lines. This should be changed if and when
443 * qemu supports IOMUX.
445 if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] &
446 (ENET_INT_MAC | ENET_INT_TS_TIMER)) {
447 qemu_set_irq(s->irq[1], 1);
448 } else {
449 qemu_set_irq(s->irq[1], 0);
452 if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) {
453 qemu_set_irq(s->irq[0], 1);
454 } else {
455 qemu_set_irq(s->irq[0], 0);
459 static void imx_fec_do_tx(IMXFECState *s)
461 int frame_size = 0, descnt = 0;
462 uint8_t *ptr = s->frame;
463 uint32_t addr = s->tx_descriptor[0];
465 while (descnt++ < IMX_MAX_DESC) {
466 IMXFECBufDesc bd;
467 int len;
469 imx_fec_read_bd(&bd, addr);
470 FEC_PRINTF("tx_bd %x flags %04x len %d data %08x\n",
471 addr, bd.flags, bd.length, bd.data);
472 if ((bd.flags & ENET_BD_R) == 0) {
473 /* Run out of descriptors to transmit. */
474 FEC_PRINTF("tx_bd ran out of descriptors to transmit\n");
475 break;
477 len = bd.length;
478 if (frame_size + len > ENET_MAX_FRAME_SIZE) {
479 len = ENET_MAX_FRAME_SIZE - frame_size;
480 s->regs[ENET_EIR] |= ENET_INT_BABT;
482 dma_memory_read(&address_space_memory, bd.data, ptr, len);
483 ptr += len;
484 frame_size += len;
485 if (bd.flags & ENET_BD_L) {
486 /* Last buffer in frame. */
487 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
488 ptr = s->frame;
489 frame_size = 0;
490 s->regs[ENET_EIR] |= ENET_INT_TXF;
492 s->regs[ENET_EIR] |= ENET_INT_TXB;
493 bd.flags &= ~ENET_BD_R;
494 /* Write back the modified descriptor. */
495 imx_fec_write_bd(&bd, addr);
496 /* Advance to the next descriptor. */
497 if ((bd.flags & ENET_BD_W) != 0) {
498 addr = s->regs[ENET_TDSR];
499 } else {
500 addr += sizeof(bd);
504 s->tx_descriptor[0] = addr;
506 imx_eth_update(s);
509 static void imx_enet_do_tx(IMXFECState *s, uint32_t index)
511 int frame_size = 0, descnt = 0;
513 uint8_t *ptr = s->frame;
514 uint32_t addr, int_txb, int_txf, tdsr;
515 size_t ring;
517 switch (index) {
518 case ENET_TDAR:
519 ring = 0;
520 int_txb = ENET_INT_TXB;
521 int_txf = ENET_INT_TXF;
522 tdsr = ENET_TDSR;
523 break;
524 case ENET_TDAR1:
525 ring = 1;
526 int_txb = ENET_INT_TXB1;
527 int_txf = ENET_INT_TXF1;
528 tdsr = ENET_TDSR1;
529 break;
530 case ENET_TDAR2:
531 ring = 2;
532 int_txb = ENET_INT_TXB2;
533 int_txf = ENET_INT_TXF2;
534 tdsr = ENET_TDSR2;
535 break;
536 default:
537 qemu_log_mask(LOG_GUEST_ERROR,
538 "%s: bogus value for index %x\n",
539 __func__, index);
540 abort();
541 break;
544 addr = s->tx_descriptor[ring];
546 while (descnt++ < IMX_MAX_DESC) {
547 IMXENETBufDesc bd;
548 int len;
550 imx_enet_read_bd(&bd, addr);
551 FEC_PRINTF("tx_bd %x flags %04x len %d data %08x option %04x "
552 "status %04x\n", addr, bd.flags, bd.length, bd.data,
553 bd.option, bd.status);
554 if ((bd.flags & ENET_BD_R) == 0) {
555 /* Run out of descriptors to transmit. */
556 break;
558 len = bd.length;
559 if (frame_size + len > ENET_MAX_FRAME_SIZE) {
560 len = ENET_MAX_FRAME_SIZE - frame_size;
561 s->regs[ENET_EIR] |= ENET_INT_BABT;
563 dma_memory_read(&address_space_memory, bd.data, ptr, len);
564 ptr += len;
565 frame_size += len;
566 if (bd.flags & ENET_BD_L) {
567 if (bd.option & ENET_BD_PINS) {
568 struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame);
569 if (IP_HEADER_VERSION(ip_hd) == 4) {
570 net_checksum_calculate(s->frame, frame_size);
573 if (bd.option & ENET_BD_IINS) {
574 struct ip_header *ip_hd = PKT_GET_IP_HDR(s->frame);
575 /* We compute checksum only for IPv4 frames */
576 if (IP_HEADER_VERSION(ip_hd) == 4) {
577 uint16_t csum;
578 ip_hd->ip_sum = 0;
579 csum = net_raw_checksum((uint8_t *)ip_hd, sizeof(*ip_hd));
580 ip_hd->ip_sum = cpu_to_be16(csum);
583 /* Last buffer in frame. */
585 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
586 ptr = s->frame;
588 frame_size = 0;
589 if (bd.option & ENET_BD_TX_INT) {
590 s->regs[ENET_EIR] |= int_txf;
593 if (bd.option & ENET_BD_TX_INT) {
594 s->regs[ENET_EIR] |= int_txb;
596 bd.flags &= ~ENET_BD_R;
597 /* Write back the modified descriptor. */
598 imx_enet_write_bd(&bd, addr);
599 /* Advance to the next descriptor. */
600 if ((bd.flags & ENET_BD_W) != 0) {
601 addr = s->regs[tdsr];
602 } else {
603 addr += sizeof(bd);
607 s->tx_descriptor[ring] = addr;
609 imx_eth_update(s);
612 static void imx_eth_do_tx(IMXFECState *s, uint32_t index)
614 if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
615 imx_enet_do_tx(s, index);
616 } else {
617 imx_fec_do_tx(s);
621 static void imx_eth_enable_rx(IMXFECState *s, bool flush)
623 IMXFECBufDesc bd;
625 imx_fec_read_bd(&bd, s->rx_descriptor);
627 s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0;
629 if (!s->regs[ENET_RDAR]) {
630 FEC_PRINTF("RX buffer full\n");
631 } else if (flush) {
632 qemu_flush_queued_packets(qemu_get_queue(s->nic));
636 static void imx_eth_reset(DeviceState *d)
638 IMXFECState *s = IMX_FEC(d);
640 /* Reset the Device */
641 memset(s->regs, 0, sizeof(s->regs));
642 s->regs[ENET_ECR] = 0xf0000000;
643 s->regs[ENET_MIBC] = 0xc0000000;
644 s->regs[ENET_RCR] = 0x05ee0001;
645 s->regs[ENET_OPD] = 0x00010000;
647 s->regs[ENET_PALR] = (s->conf.macaddr.a[0] << 24)
648 | (s->conf.macaddr.a[1] << 16)
649 | (s->conf.macaddr.a[2] << 8)
650 | s->conf.macaddr.a[3];
651 s->regs[ENET_PAUR] = (s->conf.macaddr.a[4] << 24)
652 | (s->conf.macaddr.a[5] << 16)
653 | 0x8808;
655 if (s->is_fec) {
656 s->regs[ENET_FRBR] = 0x00000600;
657 s->regs[ENET_FRSR] = 0x00000500;
658 s->regs[ENET_MIIGSK_ENR] = 0x00000006;
659 } else {
660 s->regs[ENET_RAEM] = 0x00000004;
661 s->regs[ENET_RAFL] = 0x00000004;
662 s->regs[ENET_TAEM] = 0x00000004;
663 s->regs[ENET_TAFL] = 0x00000008;
664 s->regs[ENET_TIPG] = 0x0000000c;
665 s->regs[ENET_FTRL] = 0x000007ff;
666 s->regs[ENET_ATPER] = 0x3b9aca00;
669 s->rx_descriptor = 0;
670 memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor));
672 /* We also reset the PHY */
673 phy_reset(s);
676 static uint32_t imx_default_read(IMXFECState *s, uint32_t index)
678 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
679 PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
680 return 0;
683 static uint32_t imx_fec_read(IMXFECState *s, uint32_t index)
685 switch (index) {
686 case ENET_FRBR:
687 case ENET_FRSR:
688 case ENET_MIIGSK_CFGR:
689 case ENET_MIIGSK_ENR:
690 return s->regs[index];
691 default:
692 return imx_default_read(s, index);
696 static uint32_t imx_enet_read(IMXFECState *s, uint32_t index)
698 switch (index) {
699 case ENET_RSFL:
700 case ENET_RSEM:
701 case ENET_RAEM:
702 case ENET_RAFL:
703 case ENET_TSEM:
704 case ENET_TAEM:
705 case ENET_TAFL:
706 case ENET_TIPG:
707 case ENET_FTRL:
708 case ENET_TACC:
709 case ENET_RACC:
710 case ENET_ATCR:
711 case ENET_ATVR:
712 case ENET_ATOFF:
713 case ENET_ATPER:
714 case ENET_ATCOR:
715 case ENET_ATINC:
716 case ENET_ATSTMP:
717 case ENET_TGSR:
718 case ENET_TCSR0:
719 case ENET_TCCR0:
720 case ENET_TCSR1:
721 case ENET_TCCR1:
722 case ENET_TCSR2:
723 case ENET_TCCR2:
724 case ENET_TCSR3:
725 case ENET_TCCR3:
726 return s->regs[index];
727 default:
728 return imx_default_read(s, index);
732 static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size)
734 uint32_t value = 0;
735 IMXFECState *s = IMX_FEC(opaque);
736 uint32_t index = offset >> 2;
738 switch (index) {
739 case ENET_EIR:
740 case ENET_EIMR:
741 case ENET_RDAR:
742 case ENET_TDAR:
743 case ENET_ECR:
744 case ENET_MMFR:
745 case ENET_MSCR:
746 case ENET_MIBC:
747 case ENET_RCR:
748 case ENET_TCR:
749 case ENET_PALR:
750 case ENET_PAUR:
751 case ENET_OPD:
752 case ENET_IAUR:
753 case ENET_IALR:
754 case ENET_GAUR:
755 case ENET_GALR:
756 case ENET_TFWR:
757 case ENET_RDSR:
758 case ENET_TDSR:
759 case ENET_MRBR:
760 value = s->regs[index];
761 break;
762 default:
763 if (s->is_fec) {
764 value = imx_fec_read(s, index);
765 } else {
766 value = imx_enet_read(s, index);
768 break;
771 FEC_PRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_eth_reg_name(s, index),
772 value);
774 return value;
777 static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value)
779 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%"
780 PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
781 return;
784 static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value)
786 switch (index) {
787 case ENET_FRBR:
788 /* FRBR is read only */
789 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n",
790 TYPE_IMX_FEC, __func__);
791 break;
792 case ENET_FRSR:
793 s->regs[index] = (value & 0x000003fc) | 0x00000400;
794 break;
795 case ENET_MIIGSK_CFGR:
796 s->regs[index] = value & 0x00000053;
797 break;
798 case ENET_MIIGSK_ENR:
799 s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0;
800 break;
801 default:
802 imx_default_write(s, index, value);
803 break;
807 static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value)
809 switch (index) {
810 case ENET_RSFL:
811 case ENET_RSEM:
812 case ENET_RAEM:
813 case ENET_RAFL:
814 case ENET_TSEM:
815 case ENET_TAEM:
816 case ENET_TAFL:
817 s->regs[index] = value & 0x000001ff;
818 break;
819 case ENET_TIPG:
820 s->regs[index] = value & 0x0000001f;
821 break;
822 case ENET_FTRL:
823 s->regs[index] = value & 0x00003fff;
824 break;
825 case ENET_TACC:
826 s->regs[index] = value & 0x00000019;
827 break;
828 case ENET_RACC:
829 s->regs[index] = value & 0x000000C7;
830 break;
831 case ENET_ATCR:
832 s->regs[index] = value & 0x00002a9d;
833 break;
834 case ENET_ATVR:
835 case ENET_ATOFF:
836 case ENET_ATPER:
837 s->regs[index] = value;
838 break;
839 case ENET_ATSTMP:
840 /* ATSTMP is read only */
841 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n",
842 TYPE_IMX_FEC, __func__);
843 break;
844 case ENET_ATCOR:
845 s->regs[index] = value & 0x7fffffff;
846 break;
847 case ENET_ATINC:
848 s->regs[index] = value & 0x00007f7f;
849 break;
850 case ENET_TGSR:
851 /* implement clear timer flag */
852 value = value & 0x0000000f;
853 break;
854 case ENET_TCSR0:
855 case ENET_TCSR1:
856 case ENET_TCSR2:
857 case ENET_TCSR3:
858 value = value & 0x000000fd;
859 break;
860 case ENET_TCCR0:
861 case ENET_TCCR1:
862 case ENET_TCCR2:
863 case ENET_TCCR3:
864 s->regs[index] = value;
865 break;
866 default:
867 imx_default_write(s, index, value);
868 break;
872 static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value,
873 unsigned size)
875 IMXFECState *s = IMX_FEC(opaque);
876 const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s);
877 uint32_t index = offset >> 2;
879 FEC_PRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_eth_reg_name(s, index),
880 (uint32_t)value);
882 switch (index) {
883 case ENET_EIR:
884 s->regs[index] &= ~value;
885 break;
886 case ENET_EIMR:
887 s->regs[index] = value;
888 break;
889 case ENET_RDAR:
890 if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
891 if (!s->regs[index]) {
892 imx_eth_enable_rx(s, true);
894 } else {
895 s->regs[index] = 0;
897 break;
898 case ENET_TDAR1: /* FALLTHROUGH */
899 case ENET_TDAR2: /* FALLTHROUGH */
900 if (unlikely(single_tx_ring)) {
901 qemu_log_mask(LOG_GUEST_ERROR,
902 "[%s]%s: trying to access TDAR2 or TDAR1\n",
903 TYPE_IMX_FEC, __func__);
904 return;
906 case ENET_TDAR: /* FALLTHROUGH */
907 if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
908 s->regs[index] = ENET_TDAR_TDAR;
909 imx_eth_do_tx(s, index);
911 s->regs[index] = 0;
912 break;
913 case ENET_ECR:
914 if (value & ENET_ECR_RESET) {
915 return imx_eth_reset(DEVICE(s));
917 s->regs[index] = value;
918 if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) {
919 s->regs[ENET_RDAR] = 0;
920 s->rx_descriptor = s->regs[ENET_RDSR];
921 s->regs[ENET_TDAR] = 0;
922 s->regs[ENET_TDAR1] = 0;
923 s->regs[ENET_TDAR2] = 0;
924 s->tx_descriptor[0] = s->regs[ENET_TDSR];
925 s->tx_descriptor[1] = s->regs[ENET_TDSR1];
926 s->tx_descriptor[2] = s->regs[ENET_TDSR2];
928 break;
929 case ENET_MMFR:
930 s->regs[index] = value;
931 if (extract32(value, 29, 1)) {
932 /* This is a read operation */
933 s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16,
934 do_phy_read(s,
935 extract32(value,
936 18, 10)));
937 } else {
938 /* This a write operation */
939 do_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16));
941 /* raise the interrupt as the PHY operation is done */
942 s->regs[ENET_EIR] |= ENET_INT_MII;
943 break;
944 case ENET_MSCR:
945 s->regs[index] = value & 0xfe;
946 break;
947 case ENET_MIBC:
948 /* TODO: Implement MIB. */
949 s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0;
950 break;
951 case ENET_RCR:
952 s->regs[index] = value & 0x07ff003f;
953 /* TODO: Implement LOOP mode. */
954 break;
955 case ENET_TCR:
956 /* We transmit immediately, so raise GRA immediately. */
957 s->regs[index] = value;
958 if (value & 1) {
959 s->regs[ENET_EIR] |= ENET_INT_GRA;
961 break;
962 case ENET_PALR:
963 s->regs[index] = value;
964 s->conf.macaddr.a[0] = value >> 24;
965 s->conf.macaddr.a[1] = value >> 16;
966 s->conf.macaddr.a[2] = value >> 8;
967 s->conf.macaddr.a[3] = value;
968 break;
969 case ENET_PAUR:
970 s->regs[index] = (value | 0x0000ffff) & 0xffff8808;
971 s->conf.macaddr.a[4] = value >> 24;
972 s->conf.macaddr.a[5] = value >> 16;
973 break;
974 case ENET_OPD:
975 s->regs[index] = (value & 0x0000ffff) | 0x00010000;
976 break;
977 case ENET_IAUR:
978 case ENET_IALR:
979 case ENET_GAUR:
980 case ENET_GALR:
981 /* TODO: implement MAC hash filtering. */
982 break;
983 case ENET_TFWR:
984 if (s->is_fec) {
985 s->regs[index] = value & 0x3;
986 } else {
987 s->regs[index] = value & 0x13f;
989 break;
990 case ENET_RDSR:
991 if (s->is_fec) {
992 s->regs[index] = value & ~3;
993 } else {
994 s->regs[index] = value & ~7;
996 s->rx_descriptor = s->regs[index];
997 break;
998 case ENET_TDSR:
999 if (s->is_fec) {
1000 s->regs[index] = value & ~3;
1001 } else {
1002 s->regs[index] = value & ~7;
1004 s->tx_descriptor[0] = s->regs[index];
1005 break;
1006 case ENET_TDSR1:
1007 if (unlikely(single_tx_ring)) {
1008 qemu_log_mask(LOG_GUEST_ERROR,
1009 "[%s]%s: trying to access TDSR1\n",
1010 TYPE_IMX_FEC, __func__);
1011 return;
1014 s->regs[index] = value & ~7;
1015 s->tx_descriptor[1] = s->regs[index];
1016 break;
1017 case ENET_TDSR2:
1018 if (unlikely(single_tx_ring)) {
1019 qemu_log_mask(LOG_GUEST_ERROR,
1020 "[%s]%s: trying to access TDSR2\n",
1021 TYPE_IMX_FEC, __func__);
1022 return;
1025 s->regs[index] = value & ~7;
1026 s->tx_descriptor[2] = s->regs[index];
1027 break;
1028 case ENET_MRBR:
1029 s->regs[index] = value & 0x00003ff0;
1030 break;
1031 default:
1032 if (s->is_fec) {
1033 imx_fec_write(s, index, value);
1034 } else {
1035 imx_enet_write(s, index, value);
1037 return;
1040 imx_eth_update(s);
1043 static int imx_eth_can_receive(NetClientState *nc)
1045 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1047 FEC_PRINTF("\n");
1049 return !!s->regs[ENET_RDAR];
1052 static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
1053 size_t len)
1055 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1056 IMXFECBufDesc bd;
1057 uint32_t flags = 0;
1058 uint32_t addr;
1059 uint32_t crc;
1060 uint32_t buf_addr;
1061 uint8_t *crc_ptr;
1062 unsigned int buf_len;
1063 size_t size = len;
1065 FEC_PRINTF("len %d\n", (int)size);
1067 if (!s->regs[ENET_RDAR]) {
1068 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1069 TYPE_IMX_FEC, __func__);
1070 return 0;
1073 /* 4 bytes for the CRC. */
1074 size += 4;
1075 crc = cpu_to_be32(crc32(~0, buf, size));
1076 crc_ptr = (uint8_t *) &crc;
1078 /* Huge frames are truncated. */
1079 if (size > ENET_MAX_FRAME_SIZE) {
1080 size = ENET_MAX_FRAME_SIZE;
1081 flags |= ENET_BD_TR | ENET_BD_LG;
1084 /* Frames larger than the user limit just set error flags. */
1085 if (size > (s->regs[ENET_RCR] >> 16)) {
1086 flags |= ENET_BD_LG;
1089 addr = s->rx_descriptor;
1090 while (size > 0) {
1091 imx_fec_read_bd(&bd, addr);
1092 if ((bd.flags & ENET_BD_E) == 0) {
1093 /* No descriptors available. Bail out. */
1095 * FIXME: This is wrong. We should probably either
1096 * save the remainder for when more RX buffers are
1097 * available, or flag an error.
1099 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1100 TYPE_IMX_FEC, __func__);
1101 break;
1103 buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR];
1104 bd.length = buf_len;
1105 size -= buf_len;
1107 FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length);
1109 /* The last 4 bytes are the CRC. */
1110 if (size < 4) {
1111 buf_len += size - 4;
1113 buf_addr = bd.data;
1114 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1115 buf += buf_len;
1116 if (size < 4) {
1117 dma_memory_write(&address_space_memory, buf_addr + buf_len,
1118 crc_ptr, 4 - size);
1119 crc_ptr += 4 - size;
1121 bd.flags &= ~ENET_BD_E;
1122 if (size == 0) {
1123 /* Last buffer in frame. */
1124 bd.flags |= flags | ENET_BD_L;
1125 FEC_PRINTF("rx frame flags %04x\n", bd.flags);
1126 s->regs[ENET_EIR] |= ENET_INT_RXF;
1127 } else {
1128 s->regs[ENET_EIR] |= ENET_INT_RXB;
1130 imx_fec_write_bd(&bd, addr);
1131 /* Advance to the next descriptor. */
1132 if ((bd.flags & ENET_BD_W) != 0) {
1133 addr = s->regs[ENET_RDSR];
1134 } else {
1135 addr += sizeof(bd);
1138 s->rx_descriptor = addr;
1139 imx_eth_enable_rx(s, false);
1140 imx_eth_update(s);
1141 return len;
1144 static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf,
1145 size_t len)
1147 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1148 IMXENETBufDesc bd;
1149 uint32_t flags = 0;
1150 uint32_t addr;
1151 uint32_t crc;
1152 uint32_t buf_addr;
1153 uint8_t *crc_ptr;
1154 unsigned int buf_len;
1155 size_t size = len;
1156 bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16;
1158 FEC_PRINTF("len %d\n", (int)size);
1160 if (!s->regs[ENET_RDAR]) {
1161 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
1162 TYPE_IMX_FEC, __func__);
1163 return 0;
1166 /* 4 bytes for the CRC. */
1167 size += 4;
1168 crc = cpu_to_be32(crc32(~0, buf, size));
1169 crc_ptr = (uint8_t *) &crc;
1171 if (shift16) {
1172 size += 2;
1175 /* Huge frames are truncated. */
1176 if (size > s->regs[ENET_FTRL]) {
1177 size = s->regs[ENET_FTRL];
1178 flags |= ENET_BD_TR | ENET_BD_LG;
1181 /* Frames larger than the user limit just set error flags. */
1182 if (size > (s->regs[ENET_RCR] >> 16)) {
1183 flags |= ENET_BD_LG;
1186 addr = s->rx_descriptor;
1187 while (size > 0) {
1188 imx_enet_read_bd(&bd, addr);
1189 if ((bd.flags & ENET_BD_E) == 0) {
1190 /* No descriptors available. Bail out. */
1192 * FIXME: This is wrong. We should probably either
1193 * save the remainder for when more RX buffers are
1194 * available, or flag an error.
1196 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
1197 TYPE_IMX_FEC, __func__);
1198 break;
1200 buf_len = MIN(size, s->regs[ENET_MRBR]);
1201 bd.length = buf_len;
1202 size -= buf_len;
1204 FEC_PRINTF("rx_bd 0x%x length %d\n", addr, bd.length);
1206 /* The last 4 bytes are the CRC. */
1207 if (size < 4) {
1208 buf_len += size - 4;
1210 buf_addr = bd.data;
1212 if (shift16) {
1214 * If SHIFT16 bit of ENETx_RACC register is set we need to
1215 * align the payload to 4-byte boundary.
1217 const uint8_t zeros[2] = { 0 };
1219 dma_memory_write(&address_space_memory, buf_addr,
1220 zeros, sizeof(zeros));
1222 buf_addr += sizeof(zeros);
1223 buf_len -= sizeof(zeros);
1225 /* We only do this once per Ethernet frame */
1226 shift16 = false;
1229 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
1230 buf += buf_len;
1231 if (size < 4) {
1232 dma_memory_write(&address_space_memory, buf_addr + buf_len,
1233 crc_ptr, 4 - size);
1234 crc_ptr += 4 - size;
1236 bd.flags &= ~ENET_BD_E;
1237 if (size == 0) {
1238 /* Last buffer in frame. */
1239 bd.flags |= flags | ENET_BD_L;
1240 FEC_PRINTF("rx frame flags %04x\n", bd.flags);
1241 if (bd.option & ENET_BD_RX_INT) {
1242 s->regs[ENET_EIR] |= ENET_INT_RXF;
1244 } else {
1245 if (bd.option & ENET_BD_RX_INT) {
1246 s->regs[ENET_EIR] |= ENET_INT_RXB;
1249 imx_enet_write_bd(&bd, addr);
1250 /* Advance to the next descriptor. */
1251 if ((bd.flags & ENET_BD_W) != 0) {
1252 addr = s->regs[ENET_RDSR];
1253 } else {
1254 addr += sizeof(bd);
1257 s->rx_descriptor = addr;
1258 imx_eth_enable_rx(s, false);
1259 imx_eth_update(s);
1260 return len;
1263 static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf,
1264 size_t len)
1266 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1268 if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
1269 return imx_enet_receive(nc, buf, len);
1270 } else {
1271 return imx_fec_receive(nc, buf, len);
1275 static const MemoryRegionOps imx_eth_ops = {
1276 .read = imx_eth_read,
1277 .write = imx_eth_write,
1278 .valid.min_access_size = 4,
1279 .valid.max_access_size = 4,
1280 .endianness = DEVICE_NATIVE_ENDIAN,
1283 static void imx_eth_cleanup(NetClientState *nc)
1285 IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
1287 s->nic = NULL;
1290 static NetClientInfo imx_eth_net_info = {
1291 .type = NET_CLIENT_DRIVER_NIC,
1292 .size = sizeof(NICState),
1293 .can_receive = imx_eth_can_receive,
1294 .receive = imx_eth_receive,
1295 .cleanup = imx_eth_cleanup,
1296 .link_status_changed = imx_eth_set_link,
1300 static void imx_eth_realize(DeviceState *dev, Error **errp)
1302 IMXFECState *s = IMX_FEC(dev);
1303 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1305 memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s,
1306 TYPE_IMX_FEC, FSL_IMX25_FEC_SIZE);
1307 sysbus_init_mmio(sbd, &s->iomem);
1308 sysbus_init_irq(sbd, &s->irq[0]);
1309 sysbus_init_irq(sbd, &s->irq[1]);
1311 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1313 s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf,
1314 object_get_typename(OBJECT(dev)),
1315 DEVICE(dev)->id, s);
1317 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1320 static Property imx_eth_properties[] = {
1321 DEFINE_NIC_PROPERTIES(IMXFECState, conf),
1322 DEFINE_PROP_UINT32("tx-ring-num", IMXFECState, tx_ring_num, 1),
1323 DEFINE_PROP_END_OF_LIST(),
1326 static void imx_eth_class_init(ObjectClass *klass, void *data)
1328 DeviceClass *dc = DEVICE_CLASS(klass);
1330 dc->vmsd = &vmstate_imx_eth;
1331 dc->reset = imx_eth_reset;
1332 dc->props = imx_eth_properties;
1333 dc->realize = imx_eth_realize;
1334 dc->desc = "i.MX FEC/ENET Ethernet Controller";
1337 static void imx_fec_init(Object *obj)
1339 IMXFECState *s = IMX_FEC(obj);
1341 s->is_fec = true;
1344 static void imx_enet_init(Object *obj)
1346 IMXFECState *s = IMX_FEC(obj);
1348 s->is_fec = false;
1351 static const TypeInfo imx_fec_info = {
1352 .name = TYPE_IMX_FEC,
1353 .parent = TYPE_SYS_BUS_DEVICE,
1354 .instance_size = sizeof(IMXFECState),
1355 .instance_init = imx_fec_init,
1356 .class_init = imx_eth_class_init,
1359 static const TypeInfo imx_enet_info = {
1360 .name = TYPE_IMX_ENET,
1361 .parent = TYPE_IMX_FEC,
1362 .instance_init = imx_enet_init,
1365 static void imx_eth_register_types(void)
1367 type_register_static(&imx_fec_info);
1368 type_register_static(&imx_enet_info);
1371 type_init(imx_eth_register_types)