hw/mem/pc-dimm: Restrict NUMA-specific code to NUMA machines
[qemu/ar7.git] / tcg / optimize.c
blobdbb2d46e88561815c2a8efa304aa97710ee8a9f6
1 /*
2 * Optimizations for Tiny Code Generator for QEMU
4 * Copyright (c) 2010 Samsung Electronics.
5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru>
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 #include "qemu/osdep.h"
27 #include "qemu/int128.h"
28 #include "tcg/tcg-op.h"
29 #include "tcg-internal.h"
31 #define CASE_OP_32_64(x) \
32 glue(glue(case INDEX_op_, x), _i32): \
33 glue(glue(case INDEX_op_, x), _i64)
35 #define CASE_OP_32_64_VEC(x) \
36 glue(glue(case INDEX_op_, x), _i32): \
37 glue(glue(case INDEX_op_, x), _i64): \
38 glue(glue(case INDEX_op_, x), _vec)
40 typedef struct TempOptInfo {
41 bool is_const;
42 TCGTemp *prev_copy;
43 TCGTemp *next_copy;
44 uint64_t val;
45 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */
46 uint64_t s_mask; /* a left-aligned mask of clrsb(value) bits. */
47 } TempOptInfo;
49 typedef struct OptContext {
50 TCGContext *tcg;
51 TCGOp *prev_mb;
52 TCGTempSet temps_used;
54 /* In flight values from optimization. */
55 uint64_t a_mask; /* mask bit is 0 iff value identical to first input */
56 uint64_t z_mask; /* mask bit is 0 iff value bit is 0 */
57 uint64_t s_mask; /* mask of clrsb(value) bits */
58 TCGType type;
59 } OptContext;
61 /* Calculate the smask for a specific value. */
62 static uint64_t smask_from_value(uint64_t value)
64 int rep = clrsb64(value);
65 return ~(~0ull >> rep);
69 * Calculate the smask for a given set of known-zeros.
70 * If there are lots of zeros on the left, we can consider the remainder
71 * an unsigned field, and thus the corresponding signed field is one bit
72 * larger.
74 static uint64_t smask_from_zmask(uint64_t zmask)
77 * Only the 0 bits are significant for zmask, thus the msb itself
78 * must be zero, else we have no sign information.
80 int rep = clz64(zmask);
81 if (rep == 0) {
82 return 0;
84 rep -= 1;
85 return ~(~0ull >> rep);
89 * Recreate a properly left-aligned smask after manipulation.
90 * Some bit-shuffling, particularly shifts and rotates, may
91 * retain sign bits on the left, but may scatter disconnected
92 * sign bits on the right. Retain only what remains to the left.
94 static uint64_t smask_from_smask(int64_t smask)
96 /* Only the 1 bits are significant for smask */
97 return smask_from_zmask(~smask);
100 static inline TempOptInfo *ts_info(TCGTemp *ts)
102 return ts->state_ptr;
105 static inline TempOptInfo *arg_info(TCGArg arg)
107 return ts_info(arg_temp(arg));
110 static inline bool ts_is_const(TCGTemp *ts)
112 return ts_info(ts)->is_const;
115 static inline bool arg_is_const(TCGArg arg)
117 return ts_is_const(arg_temp(arg));
120 static inline bool ts_is_copy(TCGTemp *ts)
122 return ts_info(ts)->next_copy != ts;
125 /* Reset TEMP's state, possibly removing the temp for the list of copies. */
126 static void reset_ts(TCGTemp *ts)
128 TempOptInfo *ti = ts_info(ts);
129 TempOptInfo *pi = ts_info(ti->prev_copy);
130 TempOptInfo *ni = ts_info(ti->next_copy);
132 ni->prev_copy = ti->prev_copy;
133 pi->next_copy = ti->next_copy;
134 ti->next_copy = ts;
135 ti->prev_copy = ts;
136 ti->is_const = false;
137 ti->z_mask = -1;
138 ti->s_mask = 0;
141 static void reset_temp(TCGArg arg)
143 reset_ts(arg_temp(arg));
146 /* Initialize and activate a temporary. */
147 static void init_ts_info(OptContext *ctx, TCGTemp *ts)
149 size_t idx = temp_idx(ts);
150 TempOptInfo *ti;
152 if (test_bit(idx, ctx->temps_used.l)) {
153 return;
155 set_bit(idx, ctx->temps_used.l);
157 ti = ts->state_ptr;
158 if (ti == NULL) {
159 ti = tcg_malloc(sizeof(TempOptInfo));
160 ts->state_ptr = ti;
163 ti->next_copy = ts;
164 ti->prev_copy = ts;
165 if (ts->kind == TEMP_CONST) {
166 ti->is_const = true;
167 ti->val = ts->val;
168 ti->z_mask = ts->val;
169 ti->s_mask = smask_from_value(ts->val);
170 } else {
171 ti->is_const = false;
172 ti->z_mask = -1;
173 ti->s_mask = 0;
177 static TCGTemp *find_better_copy(TCGContext *s, TCGTemp *ts)
179 TCGTemp *i, *g, *l;
181 /* If this is already readonly, we can't do better. */
182 if (temp_readonly(ts)) {
183 return ts;
186 g = l = NULL;
187 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) {
188 if (temp_readonly(i)) {
189 return i;
190 } else if (i->kind > ts->kind) {
191 if (i->kind == TEMP_GLOBAL) {
192 g = i;
193 } else if (i->kind == TEMP_LOCAL) {
194 l = i;
199 /* If we didn't find a better representation, return the same temp. */
200 return g ? g : l ? l : ts;
203 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2)
205 TCGTemp *i;
207 if (ts1 == ts2) {
208 return true;
211 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) {
212 return false;
215 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) {
216 if (i == ts2) {
217 return true;
221 return false;
224 static bool args_are_copies(TCGArg arg1, TCGArg arg2)
226 return ts_are_copies(arg_temp(arg1), arg_temp(arg2));
229 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src)
231 TCGTemp *dst_ts = arg_temp(dst);
232 TCGTemp *src_ts = arg_temp(src);
233 TempOptInfo *di;
234 TempOptInfo *si;
235 TCGOpcode new_op;
237 if (ts_are_copies(dst_ts, src_ts)) {
238 tcg_op_remove(ctx->tcg, op);
239 return true;
242 reset_ts(dst_ts);
243 di = ts_info(dst_ts);
244 si = ts_info(src_ts);
246 switch (ctx->type) {
247 case TCG_TYPE_I32:
248 new_op = INDEX_op_mov_i32;
249 break;
250 case TCG_TYPE_I64:
251 new_op = INDEX_op_mov_i64;
252 break;
253 case TCG_TYPE_V64:
254 case TCG_TYPE_V128:
255 case TCG_TYPE_V256:
256 /* TCGOP_VECL and TCGOP_VECE remain unchanged. */
257 new_op = INDEX_op_mov_vec;
258 break;
259 default:
260 g_assert_not_reached();
262 op->opc = new_op;
263 op->args[0] = dst;
264 op->args[1] = src;
266 di->z_mask = si->z_mask;
267 di->s_mask = si->s_mask;
269 if (src_ts->type == dst_ts->type) {
270 TempOptInfo *ni = ts_info(si->next_copy);
272 di->next_copy = si->next_copy;
273 di->prev_copy = src_ts;
274 ni->prev_copy = dst_ts;
275 si->next_copy = dst_ts;
276 di->is_const = si->is_const;
277 di->val = si->val;
279 return true;
282 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op,
283 TCGArg dst, uint64_t val)
285 TCGTemp *tv;
287 if (ctx->type == TCG_TYPE_I32) {
288 val = (int32_t)val;
291 /* Convert movi to mov with constant temp. */
292 tv = tcg_constant_internal(ctx->type, val);
293 init_ts_info(ctx, tv);
294 return tcg_opt_gen_mov(ctx, op, dst, temp_arg(tv));
297 static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y)
299 uint64_t l64, h64;
301 switch (op) {
302 CASE_OP_32_64(add):
303 return x + y;
305 CASE_OP_32_64(sub):
306 return x - y;
308 CASE_OP_32_64(mul):
309 return x * y;
311 CASE_OP_32_64(and):
312 return x & y;
314 CASE_OP_32_64(or):
315 return x | y;
317 CASE_OP_32_64(xor):
318 return x ^ y;
320 case INDEX_op_shl_i32:
321 return (uint32_t)x << (y & 31);
323 case INDEX_op_shl_i64:
324 return (uint64_t)x << (y & 63);
326 case INDEX_op_shr_i32:
327 return (uint32_t)x >> (y & 31);
329 case INDEX_op_shr_i64:
330 return (uint64_t)x >> (y & 63);
332 case INDEX_op_sar_i32:
333 return (int32_t)x >> (y & 31);
335 case INDEX_op_sar_i64:
336 return (int64_t)x >> (y & 63);
338 case INDEX_op_rotr_i32:
339 return ror32(x, y & 31);
341 case INDEX_op_rotr_i64:
342 return ror64(x, y & 63);
344 case INDEX_op_rotl_i32:
345 return rol32(x, y & 31);
347 case INDEX_op_rotl_i64:
348 return rol64(x, y & 63);
350 CASE_OP_32_64(not):
351 return ~x;
353 CASE_OP_32_64(neg):
354 return -x;
356 CASE_OP_32_64(andc):
357 return x & ~y;
359 CASE_OP_32_64(orc):
360 return x | ~y;
362 CASE_OP_32_64(eqv):
363 return ~(x ^ y);
365 CASE_OP_32_64(nand):
366 return ~(x & y);
368 CASE_OP_32_64(nor):
369 return ~(x | y);
371 case INDEX_op_clz_i32:
372 return (uint32_t)x ? clz32(x) : y;
374 case INDEX_op_clz_i64:
375 return x ? clz64(x) : y;
377 case INDEX_op_ctz_i32:
378 return (uint32_t)x ? ctz32(x) : y;
380 case INDEX_op_ctz_i64:
381 return x ? ctz64(x) : y;
383 case INDEX_op_ctpop_i32:
384 return ctpop32(x);
386 case INDEX_op_ctpop_i64:
387 return ctpop64(x);
389 CASE_OP_32_64(ext8s):
390 return (int8_t)x;
392 CASE_OP_32_64(ext16s):
393 return (int16_t)x;
395 CASE_OP_32_64(ext8u):
396 return (uint8_t)x;
398 CASE_OP_32_64(ext16u):
399 return (uint16_t)x;
401 CASE_OP_32_64(bswap16):
402 x = bswap16(x);
403 return y & TCG_BSWAP_OS ? (int16_t)x : x;
405 CASE_OP_32_64(bswap32):
406 x = bswap32(x);
407 return y & TCG_BSWAP_OS ? (int32_t)x : x;
409 case INDEX_op_bswap64_i64:
410 return bswap64(x);
412 case INDEX_op_ext_i32_i64:
413 case INDEX_op_ext32s_i64:
414 return (int32_t)x;
416 case INDEX_op_extu_i32_i64:
417 case INDEX_op_extrl_i64_i32:
418 case INDEX_op_ext32u_i64:
419 return (uint32_t)x;
421 case INDEX_op_extrh_i64_i32:
422 return (uint64_t)x >> 32;
424 case INDEX_op_muluh_i32:
425 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32;
426 case INDEX_op_mulsh_i32:
427 return ((int64_t)(int32_t)x * (int32_t)y) >> 32;
429 case INDEX_op_muluh_i64:
430 mulu64(&l64, &h64, x, y);
431 return h64;
432 case INDEX_op_mulsh_i64:
433 muls64(&l64, &h64, x, y);
434 return h64;
436 case INDEX_op_div_i32:
437 /* Avoid crashing on divide by zero, otherwise undefined. */
438 return (int32_t)x / ((int32_t)y ? : 1);
439 case INDEX_op_divu_i32:
440 return (uint32_t)x / ((uint32_t)y ? : 1);
441 case INDEX_op_div_i64:
442 return (int64_t)x / ((int64_t)y ? : 1);
443 case INDEX_op_divu_i64:
444 return (uint64_t)x / ((uint64_t)y ? : 1);
446 case INDEX_op_rem_i32:
447 return (int32_t)x % ((int32_t)y ? : 1);
448 case INDEX_op_remu_i32:
449 return (uint32_t)x % ((uint32_t)y ? : 1);
450 case INDEX_op_rem_i64:
451 return (int64_t)x % ((int64_t)y ? : 1);
452 case INDEX_op_remu_i64:
453 return (uint64_t)x % ((uint64_t)y ? : 1);
455 default:
456 fprintf(stderr,
457 "Unrecognized operation %d in do_constant_folding.\n", op);
458 tcg_abort();
462 static uint64_t do_constant_folding(TCGOpcode op, TCGType type,
463 uint64_t x, uint64_t y)
465 uint64_t res = do_constant_folding_2(op, x, y);
466 if (type == TCG_TYPE_I32) {
467 res = (int32_t)res;
469 return res;
472 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c)
474 switch (c) {
475 case TCG_COND_EQ:
476 return x == y;
477 case TCG_COND_NE:
478 return x != y;
479 case TCG_COND_LT:
480 return (int32_t)x < (int32_t)y;
481 case TCG_COND_GE:
482 return (int32_t)x >= (int32_t)y;
483 case TCG_COND_LE:
484 return (int32_t)x <= (int32_t)y;
485 case TCG_COND_GT:
486 return (int32_t)x > (int32_t)y;
487 case TCG_COND_LTU:
488 return x < y;
489 case TCG_COND_GEU:
490 return x >= y;
491 case TCG_COND_LEU:
492 return x <= y;
493 case TCG_COND_GTU:
494 return x > y;
495 default:
496 tcg_abort();
500 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c)
502 switch (c) {
503 case TCG_COND_EQ:
504 return x == y;
505 case TCG_COND_NE:
506 return x != y;
507 case TCG_COND_LT:
508 return (int64_t)x < (int64_t)y;
509 case TCG_COND_GE:
510 return (int64_t)x >= (int64_t)y;
511 case TCG_COND_LE:
512 return (int64_t)x <= (int64_t)y;
513 case TCG_COND_GT:
514 return (int64_t)x > (int64_t)y;
515 case TCG_COND_LTU:
516 return x < y;
517 case TCG_COND_GEU:
518 return x >= y;
519 case TCG_COND_LEU:
520 return x <= y;
521 case TCG_COND_GTU:
522 return x > y;
523 default:
524 tcg_abort();
528 static bool do_constant_folding_cond_eq(TCGCond c)
530 switch (c) {
531 case TCG_COND_GT:
532 case TCG_COND_LTU:
533 case TCG_COND_LT:
534 case TCG_COND_GTU:
535 case TCG_COND_NE:
536 return 0;
537 case TCG_COND_GE:
538 case TCG_COND_GEU:
539 case TCG_COND_LE:
540 case TCG_COND_LEU:
541 case TCG_COND_EQ:
542 return 1;
543 default:
544 tcg_abort();
549 * Return -1 if the condition can't be simplified,
550 * and the result of the condition (0 or 1) if it can.
552 static int do_constant_folding_cond(TCGType type, TCGArg x,
553 TCGArg y, TCGCond c)
555 uint64_t xv = arg_info(x)->val;
556 uint64_t yv = arg_info(y)->val;
558 if (arg_is_const(x) && arg_is_const(y)) {
559 switch (type) {
560 case TCG_TYPE_I32:
561 return do_constant_folding_cond_32(xv, yv, c);
562 case TCG_TYPE_I64:
563 return do_constant_folding_cond_64(xv, yv, c);
564 default:
565 /* Only scalar comparisons are optimizable */
566 return -1;
568 } else if (args_are_copies(x, y)) {
569 return do_constant_folding_cond_eq(c);
570 } else if (arg_is_const(y) && yv == 0) {
571 switch (c) {
572 case TCG_COND_LTU:
573 return 0;
574 case TCG_COND_GEU:
575 return 1;
576 default:
577 return -1;
580 return -1;
584 * Return -1 if the condition can't be simplified,
585 * and the result of the condition (0 or 1) if it can.
587 static int do_constant_folding_cond2(TCGArg *p1, TCGArg *p2, TCGCond c)
589 TCGArg al = p1[0], ah = p1[1];
590 TCGArg bl = p2[0], bh = p2[1];
592 if (arg_is_const(bl) && arg_is_const(bh)) {
593 tcg_target_ulong blv = arg_info(bl)->val;
594 tcg_target_ulong bhv = arg_info(bh)->val;
595 uint64_t b = deposit64(blv, 32, 32, bhv);
597 if (arg_is_const(al) && arg_is_const(ah)) {
598 tcg_target_ulong alv = arg_info(al)->val;
599 tcg_target_ulong ahv = arg_info(ah)->val;
600 uint64_t a = deposit64(alv, 32, 32, ahv);
601 return do_constant_folding_cond_64(a, b, c);
603 if (b == 0) {
604 switch (c) {
605 case TCG_COND_LTU:
606 return 0;
607 case TCG_COND_GEU:
608 return 1;
609 default:
610 break;
614 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) {
615 return do_constant_folding_cond_eq(c);
617 return -1;
621 * swap_commutative:
622 * @dest: TCGArg of the destination argument, or NO_DEST.
623 * @p1: first paired argument
624 * @p2: second paired argument
626 * If *@p1 is a constant and *@p2 is not, swap.
627 * If *@p2 matches @dest, swap.
628 * Return true if a swap was performed.
631 #define NO_DEST temp_arg(NULL)
633 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2)
635 TCGArg a1 = *p1, a2 = *p2;
636 int sum = 0;
637 sum += arg_is_const(a1);
638 sum -= arg_is_const(a2);
640 /* Prefer the constant in second argument, and then the form
641 op a, a, b, which is better handled on non-RISC hosts. */
642 if (sum > 0 || (sum == 0 && dest == a2)) {
643 *p1 = a2;
644 *p2 = a1;
645 return true;
647 return false;
650 static bool swap_commutative2(TCGArg *p1, TCGArg *p2)
652 int sum = 0;
653 sum += arg_is_const(p1[0]);
654 sum += arg_is_const(p1[1]);
655 sum -= arg_is_const(p2[0]);
656 sum -= arg_is_const(p2[1]);
657 if (sum > 0) {
658 TCGArg t;
659 t = p1[0], p1[0] = p2[0], p2[0] = t;
660 t = p1[1], p1[1] = p2[1], p2[1] = t;
661 return true;
663 return false;
666 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args)
668 for (int i = 0; i < nb_args; i++) {
669 TCGTemp *ts = arg_temp(op->args[i]);
670 if (ts) {
671 init_ts_info(ctx, ts);
676 static void copy_propagate(OptContext *ctx, TCGOp *op,
677 int nb_oargs, int nb_iargs)
679 TCGContext *s = ctx->tcg;
681 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
682 TCGTemp *ts = arg_temp(op->args[i]);
683 if (ts && ts_is_copy(ts)) {
684 op->args[i] = temp_arg(find_better_copy(s, ts));
689 static void finish_folding(OptContext *ctx, TCGOp *op)
691 const TCGOpDef *def = &tcg_op_defs[op->opc];
692 int i, nb_oargs;
695 * For an opcode that ends a BB, reset all temp data.
696 * We do no cross-BB optimization.
698 if (def->flags & TCG_OPF_BB_END) {
699 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used));
700 ctx->prev_mb = NULL;
701 return;
704 nb_oargs = def->nb_oargs;
705 for (i = 0; i < nb_oargs; i++) {
706 TCGTemp *ts = arg_temp(op->args[i]);
707 reset_ts(ts);
709 * Save the corresponding known-zero/sign bits mask for the
710 * first output argument (only one supported so far).
712 if (i == 0) {
713 ts_info(ts)->z_mask = ctx->z_mask;
714 ts_info(ts)->s_mask = ctx->s_mask;
720 * The fold_* functions return true when processing is complete,
721 * usually by folding the operation to a constant or to a copy,
722 * and calling tcg_opt_gen_{mov,movi}. They may do other things,
723 * like collect information about the value produced, for use in
724 * optimizing a subsequent operation.
726 * These first fold_* functions are all helpers, used by other
727 * folders for more specific operations.
730 static bool fold_const1(OptContext *ctx, TCGOp *op)
732 if (arg_is_const(op->args[1])) {
733 uint64_t t;
735 t = arg_info(op->args[1])->val;
736 t = do_constant_folding(op->opc, ctx->type, t, 0);
737 return tcg_opt_gen_movi(ctx, op, op->args[0], t);
739 return false;
742 static bool fold_const2(OptContext *ctx, TCGOp *op)
744 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) {
745 uint64_t t1 = arg_info(op->args[1])->val;
746 uint64_t t2 = arg_info(op->args[2])->val;
748 t1 = do_constant_folding(op->opc, ctx->type, t1, t2);
749 return tcg_opt_gen_movi(ctx, op, op->args[0], t1);
751 return false;
754 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op)
756 swap_commutative(op->args[0], &op->args[1], &op->args[2]);
757 return fold_const2(ctx, op);
760 static bool fold_masks(OptContext *ctx, TCGOp *op)
762 uint64_t a_mask = ctx->a_mask;
763 uint64_t z_mask = ctx->z_mask;
764 uint64_t s_mask = ctx->s_mask;
767 * 32-bit ops generate 32-bit results, which for the purpose of
768 * simplifying tcg are sign-extended. Certainly that's how we
769 * represent our constants elsewhere. Note that the bits will
770 * be reset properly for a 64-bit value when encountering the
771 * type changing opcodes.
773 if (ctx->type == TCG_TYPE_I32) {
774 a_mask = (int32_t)a_mask;
775 z_mask = (int32_t)z_mask;
776 s_mask |= MAKE_64BIT_MASK(32, 32);
777 ctx->z_mask = z_mask;
778 ctx->s_mask = s_mask;
781 if (z_mask == 0) {
782 return tcg_opt_gen_movi(ctx, op, op->args[0], 0);
784 if (a_mask == 0) {
785 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
787 return false;
791 * Convert @op to NOT, if NOT is supported by the host.
792 * Return true f the conversion is successful, which will still
793 * indicate that the processing is complete.
795 static bool fold_not(OptContext *ctx, TCGOp *op);
796 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx)
798 TCGOpcode not_op;
799 bool have_not;
801 switch (ctx->type) {
802 case TCG_TYPE_I32:
803 not_op = INDEX_op_not_i32;
804 have_not = TCG_TARGET_HAS_not_i32;
805 break;
806 case TCG_TYPE_I64:
807 not_op = INDEX_op_not_i64;
808 have_not = TCG_TARGET_HAS_not_i64;
809 break;
810 case TCG_TYPE_V64:
811 case TCG_TYPE_V128:
812 case TCG_TYPE_V256:
813 not_op = INDEX_op_not_vec;
814 have_not = TCG_TARGET_HAS_not_vec;
815 break;
816 default:
817 g_assert_not_reached();
819 if (have_not) {
820 op->opc = not_op;
821 op->args[1] = op->args[idx];
822 return fold_not(ctx, op);
824 return false;
827 /* If the binary operation has first argument @i, fold to @i. */
828 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i)
830 if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == i) {
831 return tcg_opt_gen_movi(ctx, op, op->args[0], i);
833 return false;
836 /* If the binary operation has first argument @i, fold to NOT. */
837 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i)
839 if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == i) {
840 return fold_to_not(ctx, op, 2);
842 return false;
845 /* If the binary operation has second argument @i, fold to @i. */
846 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i)
848 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) {
849 return tcg_opt_gen_movi(ctx, op, op->args[0], i);
851 return false;
854 /* If the binary operation has second argument @i, fold to identity. */
855 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i)
857 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) {
858 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
860 return false;
863 /* If the binary operation has second argument @i, fold to NOT. */
864 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i)
866 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) {
867 return fold_to_not(ctx, op, 1);
869 return false;
872 /* If the binary operation has both arguments equal, fold to @i. */
873 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i)
875 if (args_are_copies(op->args[1], op->args[2])) {
876 return tcg_opt_gen_movi(ctx, op, op->args[0], i);
878 return false;
881 /* If the binary operation has both arguments equal, fold to identity. */
882 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op)
884 if (args_are_copies(op->args[1], op->args[2])) {
885 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
887 return false;
891 * These outermost fold_<op> functions are sorted alphabetically.
893 * The ordering of the transformations should be:
894 * 1) those that produce a constant
895 * 2) those that produce a copy
896 * 3) those that produce information about the result value.
899 static bool fold_add(OptContext *ctx, TCGOp *op)
901 if (fold_const2_commutative(ctx, op) ||
902 fold_xi_to_x(ctx, op, 0)) {
903 return true;
905 return false;
908 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add)
910 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3]) &&
911 arg_is_const(op->args[4]) && arg_is_const(op->args[5])) {
912 uint64_t al = arg_info(op->args[2])->val;
913 uint64_t ah = arg_info(op->args[3])->val;
914 uint64_t bl = arg_info(op->args[4])->val;
915 uint64_t bh = arg_info(op->args[5])->val;
916 TCGArg rl, rh;
917 TCGOp *op2;
919 if (ctx->type == TCG_TYPE_I32) {
920 uint64_t a = deposit64(al, 32, 32, ah);
921 uint64_t b = deposit64(bl, 32, 32, bh);
923 if (add) {
924 a += b;
925 } else {
926 a -= b;
929 al = sextract64(a, 0, 32);
930 ah = sextract64(a, 32, 32);
931 } else {
932 Int128 a = int128_make128(al, ah);
933 Int128 b = int128_make128(bl, bh);
935 if (add) {
936 a = int128_add(a, b);
937 } else {
938 a = int128_sub(a, b);
941 al = int128_getlo(a);
942 ah = int128_gethi(a);
945 rl = op->args[0];
946 rh = op->args[1];
948 /* The proper opcode is supplied by tcg_opt_gen_mov. */
949 op2 = tcg_op_insert_before(ctx->tcg, op, 0);
951 tcg_opt_gen_movi(ctx, op, rl, al);
952 tcg_opt_gen_movi(ctx, op2, rh, ah);
953 return true;
955 return false;
958 static bool fold_add2(OptContext *ctx, TCGOp *op)
960 /* Note that the high and low parts may be independently swapped. */
961 swap_commutative(op->args[0], &op->args[2], &op->args[4]);
962 swap_commutative(op->args[1], &op->args[3], &op->args[5]);
964 return fold_addsub2(ctx, op, true);
967 static bool fold_and(OptContext *ctx, TCGOp *op)
969 uint64_t z1, z2;
971 if (fold_const2_commutative(ctx, op) ||
972 fold_xi_to_i(ctx, op, 0) ||
973 fold_xi_to_x(ctx, op, -1) ||
974 fold_xx_to_x(ctx, op)) {
975 return true;
978 z1 = arg_info(op->args[1])->z_mask;
979 z2 = arg_info(op->args[2])->z_mask;
980 ctx->z_mask = z1 & z2;
983 * Sign repetitions are perforce all identical, whether they are 1 or 0.
984 * Bitwise operations preserve the relative quantity of the repetitions.
986 ctx->s_mask = arg_info(op->args[1])->s_mask
987 & arg_info(op->args[2])->s_mask;
990 * Known-zeros does not imply known-ones. Therefore unless
991 * arg2 is constant, we can't infer affected bits from it.
993 if (arg_is_const(op->args[2])) {
994 ctx->a_mask = z1 & ~z2;
997 return fold_masks(ctx, op);
1000 static bool fold_andc(OptContext *ctx, TCGOp *op)
1002 uint64_t z1;
1004 if (fold_const2(ctx, op) ||
1005 fold_xx_to_i(ctx, op, 0) ||
1006 fold_xi_to_x(ctx, op, 0) ||
1007 fold_ix_to_not(ctx, op, -1)) {
1008 return true;
1011 z1 = arg_info(op->args[1])->z_mask;
1014 * Known-zeros does not imply known-ones. Therefore unless
1015 * arg2 is constant, we can't infer anything from it.
1017 if (arg_is_const(op->args[2])) {
1018 uint64_t z2 = ~arg_info(op->args[2])->z_mask;
1019 ctx->a_mask = z1 & ~z2;
1020 z1 &= z2;
1022 ctx->z_mask = z1;
1024 ctx->s_mask = arg_info(op->args[1])->s_mask
1025 & arg_info(op->args[2])->s_mask;
1026 return fold_masks(ctx, op);
1029 static bool fold_brcond(OptContext *ctx, TCGOp *op)
1031 TCGCond cond = op->args[2];
1032 int i;
1034 if (swap_commutative(NO_DEST, &op->args[0], &op->args[1])) {
1035 op->args[2] = cond = tcg_swap_cond(cond);
1038 i = do_constant_folding_cond(ctx->type, op->args[0], op->args[1], cond);
1039 if (i == 0) {
1040 tcg_op_remove(ctx->tcg, op);
1041 return true;
1043 if (i > 0) {
1044 op->opc = INDEX_op_br;
1045 op->args[0] = op->args[3];
1047 return false;
1050 static bool fold_brcond2(OptContext *ctx, TCGOp *op)
1052 TCGCond cond = op->args[4];
1053 TCGArg label = op->args[5];
1054 int i, inv = 0;
1056 if (swap_commutative2(&op->args[0], &op->args[2])) {
1057 op->args[4] = cond = tcg_swap_cond(cond);
1060 i = do_constant_folding_cond2(&op->args[0], &op->args[2], cond);
1061 if (i >= 0) {
1062 goto do_brcond_const;
1065 switch (cond) {
1066 case TCG_COND_LT:
1067 case TCG_COND_GE:
1069 * Simplify LT/GE comparisons vs zero to a single compare
1070 * vs the high word of the input.
1072 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == 0 &&
1073 arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0) {
1074 goto do_brcond_high;
1076 break;
1078 case TCG_COND_NE:
1079 inv = 1;
1080 QEMU_FALLTHROUGH;
1081 case TCG_COND_EQ:
1083 * Simplify EQ/NE comparisons where one of the pairs
1084 * can be simplified.
1086 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0],
1087 op->args[2], cond);
1088 switch (i ^ inv) {
1089 case 0:
1090 goto do_brcond_const;
1091 case 1:
1092 goto do_brcond_high;
1095 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1],
1096 op->args[3], cond);
1097 switch (i ^ inv) {
1098 case 0:
1099 goto do_brcond_const;
1100 case 1:
1101 op->opc = INDEX_op_brcond_i32;
1102 op->args[1] = op->args[2];
1103 op->args[2] = cond;
1104 op->args[3] = label;
1105 break;
1107 break;
1109 default:
1110 break;
1112 do_brcond_high:
1113 op->opc = INDEX_op_brcond_i32;
1114 op->args[0] = op->args[1];
1115 op->args[1] = op->args[3];
1116 op->args[2] = cond;
1117 op->args[3] = label;
1118 break;
1120 do_brcond_const:
1121 if (i == 0) {
1122 tcg_op_remove(ctx->tcg, op);
1123 return true;
1125 op->opc = INDEX_op_br;
1126 op->args[0] = label;
1127 break;
1129 return false;
1132 static bool fold_bswap(OptContext *ctx, TCGOp *op)
1134 uint64_t z_mask, s_mask, sign;
1136 if (arg_is_const(op->args[1])) {
1137 uint64_t t = arg_info(op->args[1])->val;
1139 t = do_constant_folding(op->opc, ctx->type, t, op->args[2]);
1140 return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1143 z_mask = arg_info(op->args[1])->z_mask;
1145 switch (op->opc) {
1146 case INDEX_op_bswap16_i32:
1147 case INDEX_op_bswap16_i64:
1148 z_mask = bswap16(z_mask);
1149 sign = INT16_MIN;
1150 break;
1151 case INDEX_op_bswap32_i32:
1152 case INDEX_op_bswap32_i64:
1153 z_mask = bswap32(z_mask);
1154 sign = INT32_MIN;
1155 break;
1156 case INDEX_op_bswap64_i64:
1157 z_mask = bswap64(z_mask);
1158 sign = INT64_MIN;
1159 break;
1160 default:
1161 g_assert_not_reached();
1163 s_mask = smask_from_zmask(z_mask);
1165 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) {
1166 case TCG_BSWAP_OZ:
1167 break;
1168 case TCG_BSWAP_OS:
1169 /* If the sign bit may be 1, force all the bits above to 1. */
1170 if (z_mask & sign) {
1171 z_mask |= sign;
1172 s_mask = sign << 1;
1174 break;
1175 default:
1176 /* The high bits are undefined: force all bits above the sign to 1. */
1177 z_mask |= sign << 1;
1178 s_mask = 0;
1179 break;
1181 ctx->z_mask = z_mask;
1182 ctx->s_mask = s_mask;
1184 return fold_masks(ctx, op);
1187 static bool fold_call(OptContext *ctx, TCGOp *op)
1189 TCGContext *s = ctx->tcg;
1190 int nb_oargs = TCGOP_CALLO(op);
1191 int nb_iargs = TCGOP_CALLI(op);
1192 int flags, i;
1194 init_arguments(ctx, op, nb_oargs + nb_iargs);
1195 copy_propagate(ctx, op, nb_oargs, nb_iargs);
1197 /* If the function reads or writes globals, reset temp data. */
1198 flags = tcg_call_flags(op);
1199 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) {
1200 int nb_globals = s->nb_globals;
1202 for (i = 0; i < nb_globals; i++) {
1203 if (test_bit(i, ctx->temps_used.l)) {
1204 reset_ts(&ctx->tcg->temps[i]);
1209 /* Reset temp data for outputs. */
1210 for (i = 0; i < nb_oargs; i++) {
1211 reset_temp(op->args[i]);
1214 /* Stop optimizing MB across calls. */
1215 ctx->prev_mb = NULL;
1216 return true;
1219 static bool fold_count_zeros(OptContext *ctx, TCGOp *op)
1221 uint64_t z_mask;
1223 if (arg_is_const(op->args[1])) {
1224 uint64_t t = arg_info(op->args[1])->val;
1226 if (t != 0) {
1227 t = do_constant_folding(op->opc, ctx->type, t, 0);
1228 return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1230 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]);
1233 switch (ctx->type) {
1234 case TCG_TYPE_I32:
1235 z_mask = 31;
1236 break;
1237 case TCG_TYPE_I64:
1238 z_mask = 63;
1239 break;
1240 default:
1241 g_assert_not_reached();
1243 ctx->z_mask = arg_info(op->args[2])->z_mask | z_mask;
1244 ctx->s_mask = smask_from_zmask(ctx->z_mask);
1245 return false;
1248 static bool fold_ctpop(OptContext *ctx, TCGOp *op)
1250 if (fold_const1(ctx, op)) {
1251 return true;
1254 switch (ctx->type) {
1255 case TCG_TYPE_I32:
1256 ctx->z_mask = 32 | 31;
1257 break;
1258 case TCG_TYPE_I64:
1259 ctx->z_mask = 64 | 63;
1260 break;
1261 default:
1262 g_assert_not_reached();
1264 ctx->s_mask = smask_from_zmask(ctx->z_mask);
1265 return false;
1268 static bool fold_deposit(OptContext *ctx, TCGOp *op)
1270 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) {
1271 uint64_t t1 = arg_info(op->args[1])->val;
1272 uint64_t t2 = arg_info(op->args[2])->val;
1274 t1 = deposit64(t1, op->args[3], op->args[4], t2);
1275 return tcg_opt_gen_movi(ctx, op, op->args[0], t1);
1278 ctx->z_mask = deposit64(arg_info(op->args[1])->z_mask,
1279 op->args[3], op->args[4],
1280 arg_info(op->args[2])->z_mask);
1281 return false;
1284 static bool fold_divide(OptContext *ctx, TCGOp *op)
1286 if (fold_const2(ctx, op) ||
1287 fold_xi_to_x(ctx, op, 1)) {
1288 return true;
1290 return false;
1293 static bool fold_dup(OptContext *ctx, TCGOp *op)
1295 if (arg_is_const(op->args[1])) {
1296 uint64_t t = arg_info(op->args[1])->val;
1297 t = dup_const(TCGOP_VECE(op), t);
1298 return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1300 return false;
1303 static bool fold_dup2(OptContext *ctx, TCGOp *op)
1305 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) {
1306 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32,
1307 arg_info(op->args[2])->val);
1308 return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1311 if (args_are_copies(op->args[1], op->args[2])) {
1312 op->opc = INDEX_op_dup_vec;
1313 TCGOP_VECE(op) = MO_32;
1315 return false;
1318 static bool fold_eqv(OptContext *ctx, TCGOp *op)
1320 if (fold_const2_commutative(ctx, op) ||
1321 fold_xi_to_x(ctx, op, -1) ||
1322 fold_xi_to_not(ctx, op, 0)) {
1323 return true;
1326 ctx->s_mask = arg_info(op->args[1])->s_mask
1327 & arg_info(op->args[2])->s_mask;
1328 return false;
1331 static bool fold_extract(OptContext *ctx, TCGOp *op)
1333 uint64_t z_mask_old, z_mask;
1334 int pos = op->args[2];
1335 int len = op->args[3];
1337 if (arg_is_const(op->args[1])) {
1338 uint64_t t;
1340 t = arg_info(op->args[1])->val;
1341 t = extract64(t, pos, len);
1342 return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1345 z_mask_old = arg_info(op->args[1])->z_mask;
1346 z_mask = extract64(z_mask_old, pos, len);
1347 if (pos == 0) {
1348 ctx->a_mask = z_mask_old ^ z_mask;
1350 ctx->z_mask = z_mask;
1351 ctx->s_mask = smask_from_zmask(z_mask);
1353 return fold_masks(ctx, op);
1356 static bool fold_extract2(OptContext *ctx, TCGOp *op)
1358 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) {
1359 uint64_t v1 = arg_info(op->args[1])->val;
1360 uint64_t v2 = arg_info(op->args[2])->val;
1361 int shr = op->args[3];
1363 if (op->opc == INDEX_op_extract2_i64) {
1364 v1 >>= shr;
1365 v2 <<= 64 - shr;
1366 } else {
1367 v1 = (uint32_t)v1 >> shr;
1368 v2 = (int32_t)v2 << (32 - shr);
1370 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2);
1372 return false;
1375 static bool fold_exts(OptContext *ctx, TCGOp *op)
1377 uint64_t s_mask_old, s_mask, z_mask, sign;
1378 bool type_change = false;
1380 if (fold_const1(ctx, op)) {
1381 return true;
1384 z_mask = arg_info(op->args[1])->z_mask;
1385 s_mask = arg_info(op->args[1])->s_mask;
1386 s_mask_old = s_mask;
1388 switch (op->opc) {
1389 CASE_OP_32_64(ext8s):
1390 sign = INT8_MIN;
1391 z_mask = (uint8_t)z_mask;
1392 break;
1393 CASE_OP_32_64(ext16s):
1394 sign = INT16_MIN;
1395 z_mask = (uint16_t)z_mask;
1396 break;
1397 case INDEX_op_ext_i32_i64:
1398 type_change = true;
1399 QEMU_FALLTHROUGH;
1400 case INDEX_op_ext32s_i64:
1401 sign = INT32_MIN;
1402 z_mask = (uint32_t)z_mask;
1403 break;
1404 default:
1405 g_assert_not_reached();
1408 if (z_mask & sign) {
1409 z_mask |= sign;
1411 s_mask |= sign << 1;
1413 ctx->z_mask = z_mask;
1414 ctx->s_mask = s_mask;
1415 if (!type_change) {
1416 ctx->a_mask = s_mask & ~s_mask_old;
1419 return fold_masks(ctx, op);
1422 static bool fold_extu(OptContext *ctx, TCGOp *op)
1424 uint64_t z_mask_old, z_mask;
1425 bool type_change = false;
1427 if (fold_const1(ctx, op)) {
1428 return true;
1431 z_mask_old = z_mask = arg_info(op->args[1])->z_mask;
1433 switch (op->opc) {
1434 CASE_OP_32_64(ext8u):
1435 z_mask = (uint8_t)z_mask;
1436 break;
1437 CASE_OP_32_64(ext16u):
1438 z_mask = (uint16_t)z_mask;
1439 break;
1440 case INDEX_op_extrl_i64_i32:
1441 case INDEX_op_extu_i32_i64:
1442 type_change = true;
1443 QEMU_FALLTHROUGH;
1444 case INDEX_op_ext32u_i64:
1445 z_mask = (uint32_t)z_mask;
1446 break;
1447 case INDEX_op_extrh_i64_i32:
1448 type_change = true;
1449 z_mask >>= 32;
1450 break;
1451 default:
1452 g_assert_not_reached();
1455 ctx->z_mask = z_mask;
1456 ctx->s_mask = smask_from_zmask(z_mask);
1457 if (!type_change) {
1458 ctx->a_mask = z_mask_old ^ z_mask;
1460 return fold_masks(ctx, op);
1463 static bool fold_mb(OptContext *ctx, TCGOp *op)
1465 /* Eliminate duplicate and redundant fence instructions. */
1466 if (ctx->prev_mb) {
1468 * Merge two barriers of the same type into one,
1469 * or a weaker barrier into a stronger one,
1470 * or two weaker barriers into a stronger one.
1471 * mb X; mb Y => mb X|Y
1472 * mb; strl => mb; st
1473 * ldaq; mb => ld; mb
1474 * ldaq; strl => ld; mb; st
1475 * Other combinations are also merged into a strong
1476 * barrier. This is stricter than specified but for
1477 * the purposes of TCG is better than not optimizing.
1479 ctx->prev_mb->args[0] |= op->args[0];
1480 tcg_op_remove(ctx->tcg, op);
1481 } else {
1482 ctx->prev_mb = op;
1484 return true;
1487 static bool fold_mov(OptContext *ctx, TCGOp *op)
1489 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
1492 static bool fold_movcond(OptContext *ctx, TCGOp *op)
1494 TCGCond cond = op->args[5];
1495 int i;
1497 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) {
1498 op->args[5] = cond = tcg_swap_cond(cond);
1501 * Canonicalize the "false" input reg to match the destination reg so
1502 * that the tcg backend can implement a "move if true" operation.
1504 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) {
1505 op->args[5] = cond = tcg_invert_cond(cond);
1508 i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond);
1509 if (i >= 0) {
1510 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]);
1513 ctx->z_mask = arg_info(op->args[3])->z_mask
1514 | arg_info(op->args[4])->z_mask;
1515 ctx->s_mask = arg_info(op->args[3])->s_mask
1516 & arg_info(op->args[4])->s_mask;
1518 if (arg_is_const(op->args[3]) && arg_is_const(op->args[4])) {
1519 uint64_t tv = arg_info(op->args[3])->val;
1520 uint64_t fv = arg_info(op->args[4])->val;
1521 TCGOpcode opc;
1523 switch (ctx->type) {
1524 case TCG_TYPE_I32:
1525 opc = INDEX_op_setcond_i32;
1526 break;
1527 case TCG_TYPE_I64:
1528 opc = INDEX_op_setcond_i64;
1529 break;
1530 default:
1531 g_assert_not_reached();
1534 if (tv == 1 && fv == 0) {
1535 op->opc = opc;
1536 op->args[3] = cond;
1537 } else if (fv == 1 && tv == 0) {
1538 op->opc = opc;
1539 op->args[3] = tcg_invert_cond(cond);
1542 return false;
1545 static bool fold_mul(OptContext *ctx, TCGOp *op)
1547 if (fold_const2(ctx, op) ||
1548 fold_xi_to_i(ctx, op, 0) ||
1549 fold_xi_to_x(ctx, op, 1)) {
1550 return true;
1552 return false;
1555 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op)
1557 if (fold_const2_commutative(ctx, op) ||
1558 fold_xi_to_i(ctx, op, 0)) {
1559 return true;
1561 return false;
1564 static bool fold_multiply2(OptContext *ctx, TCGOp *op)
1566 swap_commutative(op->args[0], &op->args[2], &op->args[3]);
1568 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) {
1569 uint64_t a = arg_info(op->args[2])->val;
1570 uint64_t b = arg_info(op->args[3])->val;
1571 uint64_t h, l;
1572 TCGArg rl, rh;
1573 TCGOp *op2;
1575 switch (op->opc) {
1576 case INDEX_op_mulu2_i32:
1577 l = (uint64_t)(uint32_t)a * (uint32_t)b;
1578 h = (int32_t)(l >> 32);
1579 l = (int32_t)l;
1580 break;
1581 case INDEX_op_muls2_i32:
1582 l = (int64_t)(int32_t)a * (int32_t)b;
1583 h = l >> 32;
1584 l = (int32_t)l;
1585 break;
1586 case INDEX_op_mulu2_i64:
1587 mulu64(&l, &h, a, b);
1588 break;
1589 case INDEX_op_muls2_i64:
1590 muls64(&l, &h, a, b);
1591 break;
1592 default:
1593 g_assert_not_reached();
1596 rl = op->args[0];
1597 rh = op->args[1];
1599 /* The proper opcode is supplied by tcg_opt_gen_mov. */
1600 op2 = tcg_op_insert_before(ctx->tcg, op, 0);
1602 tcg_opt_gen_movi(ctx, op, rl, l);
1603 tcg_opt_gen_movi(ctx, op2, rh, h);
1604 return true;
1606 return false;
1609 static bool fold_nand(OptContext *ctx, TCGOp *op)
1611 if (fold_const2_commutative(ctx, op) ||
1612 fold_xi_to_not(ctx, op, -1)) {
1613 return true;
1616 ctx->s_mask = arg_info(op->args[1])->s_mask
1617 & arg_info(op->args[2])->s_mask;
1618 return false;
1621 static bool fold_neg(OptContext *ctx, TCGOp *op)
1623 uint64_t z_mask;
1625 if (fold_const1(ctx, op)) {
1626 return true;
1629 /* Set to 1 all bits to the left of the rightmost. */
1630 z_mask = arg_info(op->args[1])->z_mask;
1631 ctx->z_mask = -(z_mask & -z_mask);
1634 * Because of fold_sub_to_neg, we want to always return true,
1635 * via finish_folding.
1637 finish_folding(ctx, op);
1638 return true;
1641 static bool fold_nor(OptContext *ctx, TCGOp *op)
1643 if (fold_const2_commutative(ctx, op) ||
1644 fold_xi_to_not(ctx, op, 0)) {
1645 return true;
1648 ctx->s_mask = arg_info(op->args[1])->s_mask
1649 & arg_info(op->args[2])->s_mask;
1650 return false;
1653 static bool fold_not(OptContext *ctx, TCGOp *op)
1655 if (fold_const1(ctx, op)) {
1656 return true;
1659 ctx->s_mask = arg_info(op->args[1])->s_mask;
1661 /* Because of fold_to_not, we want to always return true, via finish. */
1662 finish_folding(ctx, op);
1663 return true;
1666 static bool fold_or(OptContext *ctx, TCGOp *op)
1668 if (fold_const2_commutative(ctx, op) ||
1669 fold_xi_to_x(ctx, op, 0) ||
1670 fold_xx_to_x(ctx, op)) {
1671 return true;
1674 ctx->z_mask = arg_info(op->args[1])->z_mask
1675 | arg_info(op->args[2])->z_mask;
1676 ctx->s_mask = arg_info(op->args[1])->s_mask
1677 & arg_info(op->args[2])->s_mask;
1678 return fold_masks(ctx, op);
1681 static bool fold_orc(OptContext *ctx, TCGOp *op)
1683 if (fold_const2(ctx, op) ||
1684 fold_xx_to_i(ctx, op, -1) ||
1685 fold_xi_to_x(ctx, op, -1) ||
1686 fold_ix_to_not(ctx, op, 0)) {
1687 return true;
1690 ctx->s_mask = arg_info(op->args[1])->s_mask
1691 & arg_info(op->args[2])->s_mask;
1692 return false;
1695 static bool fold_qemu_ld(OptContext *ctx, TCGOp *op)
1697 const TCGOpDef *def = &tcg_op_defs[op->opc];
1698 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs];
1699 MemOp mop = get_memop(oi);
1700 int width = 8 * memop_size(mop);
1702 if (width < 64) {
1703 ctx->s_mask = MAKE_64BIT_MASK(width, 64 - width);
1704 if (!(mop & MO_SIGN)) {
1705 ctx->z_mask = MAKE_64BIT_MASK(0, width);
1706 ctx->s_mask <<= 1;
1710 /* Opcodes that touch guest memory stop the mb optimization. */
1711 ctx->prev_mb = NULL;
1712 return false;
1715 static bool fold_qemu_st(OptContext *ctx, TCGOp *op)
1717 /* Opcodes that touch guest memory stop the mb optimization. */
1718 ctx->prev_mb = NULL;
1719 return false;
1722 static bool fold_remainder(OptContext *ctx, TCGOp *op)
1724 if (fold_const2(ctx, op) ||
1725 fold_xx_to_i(ctx, op, 0)) {
1726 return true;
1728 return false;
1731 static bool fold_setcond(OptContext *ctx, TCGOp *op)
1733 TCGCond cond = op->args[3];
1734 int i;
1736 if (swap_commutative(op->args[0], &op->args[1], &op->args[2])) {
1737 op->args[3] = cond = tcg_swap_cond(cond);
1740 i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond);
1741 if (i >= 0) {
1742 return tcg_opt_gen_movi(ctx, op, op->args[0], i);
1745 ctx->z_mask = 1;
1746 ctx->s_mask = smask_from_zmask(1);
1747 return false;
1750 static bool fold_setcond2(OptContext *ctx, TCGOp *op)
1752 TCGCond cond = op->args[5];
1753 int i, inv = 0;
1755 if (swap_commutative2(&op->args[1], &op->args[3])) {
1756 op->args[5] = cond = tcg_swap_cond(cond);
1759 i = do_constant_folding_cond2(&op->args[1], &op->args[3], cond);
1760 if (i >= 0) {
1761 goto do_setcond_const;
1764 switch (cond) {
1765 case TCG_COND_LT:
1766 case TCG_COND_GE:
1768 * Simplify LT/GE comparisons vs zero to a single compare
1769 * vs the high word of the input.
1771 if (arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0 &&
1772 arg_is_const(op->args[4]) && arg_info(op->args[4])->val == 0) {
1773 goto do_setcond_high;
1775 break;
1777 case TCG_COND_NE:
1778 inv = 1;
1779 QEMU_FALLTHROUGH;
1780 case TCG_COND_EQ:
1782 * Simplify EQ/NE comparisons where one of the pairs
1783 * can be simplified.
1785 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1],
1786 op->args[3], cond);
1787 switch (i ^ inv) {
1788 case 0:
1789 goto do_setcond_const;
1790 case 1:
1791 goto do_setcond_high;
1794 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2],
1795 op->args[4], cond);
1796 switch (i ^ inv) {
1797 case 0:
1798 goto do_setcond_const;
1799 case 1:
1800 op->args[2] = op->args[3];
1801 op->args[3] = cond;
1802 op->opc = INDEX_op_setcond_i32;
1803 break;
1805 break;
1807 default:
1808 break;
1810 do_setcond_high:
1811 op->args[1] = op->args[2];
1812 op->args[2] = op->args[4];
1813 op->args[3] = cond;
1814 op->opc = INDEX_op_setcond_i32;
1815 break;
1818 ctx->z_mask = 1;
1819 ctx->s_mask = smask_from_zmask(1);
1820 return false;
1822 do_setcond_const:
1823 return tcg_opt_gen_movi(ctx, op, op->args[0], i);
1826 static bool fold_sextract(OptContext *ctx, TCGOp *op)
1828 uint64_t z_mask, s_mask, s_mask_old;
1829 int pos = op->args[2];
1830 int len = op->args[3];
1832 if (arg_is_const(op->args[1])) {
1833 uint64_t t;
1835 t = arg_info(op->args[1])->val;
1836 t = sextract64(t, pos, len);
1837 return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1840 z_mask = arg_info(op->args[1])->z_mask;
1841 z_mask = sextract64(z_mask, pos, len);
1842 ctx->z_mask = z_mask;
1844 s_mask_old = arg_info(op->args[1])->s_mask;
1845 s_mask = sextract64(s_mask_old, pos, len);
1846 s_mask |= MAKE_64BIT_MASK(len, 64 - len);
1847 ctx->s_mask = s_mask;
1849 if (pos == 0) {
1850 ctx->a_mask = s_mask & ~s_mask_old;
1853 return fold_masks(ctx, op);
1856 static bool fold_shift(OptContext *ctx, TCGOp *op)
1858 uint64_t s_mask, z_mask, sign;
1860 if (fold_const2(ctx, op) ||
1861 fold_ix_to_i(ctx, op, 0) ||
1862 fold_xi_to_x(ctx, op, 0)) {
1863 return true;
1866 s_mask = arg_info(op->args[1])->s_mask;
1867 z_mask = arg_info(op->args[1])->z_mask;
1869 if (arg_is_const(op->args[2])) {
1870 int sh = arg_info(op->args[2])->val;
1872 ctx->z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh);
1874 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh);
1875 ctx->s_mask = smask_from_smask(s_mask);
1877 return fold_masks(ctx, op);
1880 switch (op->opc) {
1881 CASE_OP_32_64(sar):
1883 * Arithmetic right shift will not reduce the number of
1884 * input sign repetitions.
1886 ctx->s_mask = s_mask;
1887 break;
1888 CASE_OP_32_64(shr):
1890 * If the sign bit is known zero, then logical right shift
1891 * will not reduced the number of input sign repetitions.
1893 sign = (s_mask & -s_mask) >> 1;
1894 if (!(z_mask & sign)) {
1895 ctx->s_mask = s_mask;
1897 break;
1898 default:
1899 break;
1902 return false;
1905 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op)
1907 TCGOpcode neg_op;
1908 bool have_neg;
1910 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) {
1911 return false;
1914 switch (ctx->type) {
1915 case TCG_TYPE_I32:
1916 neg_op = INDEX_op_neg_i32;
1917 have_neg = TCG_TARGET_HAS_neg_i32;
1918 break;
1919 case TCG_TYPE_I64:
1920 neg_op = INDEX_op_neg_i64;
1921 have_neg = TCG_TARGET_HAS_neg_i64;
1922 break;
1923 case TCG_TYPE_V64:
1924 case TCG_TYPE_V128:
1925 case TCG_TYPE_V256:
1926 neg_op = INDEX_op_neg_vec;
1927 have_neg = (TCG_TARGET_HAS_neg_vec &&
1928 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0);
1929 break;
1930 default:
1931 g_assert_not_reached();
1933 if (have_neg) {
1934 op->opc = neg_op;
1935 op->args[1] = op->args[2];
1936 return fold_neg(ctx, op);
1938 return false;
1941 static bool fold_sub(OptContext *ctx, TCGOp *op)
1943 if (fold_const2(ctx, op) ||
1944 fold_xx_to_i(ctx, op, 0) ||
1945 fold_xi_to_x(ctx, op, 0) ||
1946 fold_sub_to_neg(ctx, op)) {
1947 return true;
1949 return false;
1952 static bool fold_sub2(OptContext *ctx, TCGOp *op)
1954 return fold_addsub2(ctx, op, false);
1957 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op)
1959 /* We can't do any folding with a load, but we can record bits. */
1960 switch (op->opc) {
1961 CASE_OP_32_64(ld8s):
1962 ctx->s_mask = MAKE_64BIT_MASK(8, 56);
1963 break;
1964 CASE_OP_32_64(ld8u):
1965 ctx->z_mask = MAKE_64BIT_MASK(0, 8);
1966 ctx->s_mask = MAKE_64BIT_MASK(9, 55);
1967 break;
1968 CASE_OP_32_64(ld16s):
1969 ctx->s_mask = MAKE_64BIT_MASK(16, 48);
1970 break;
1971 CASE_OP_32_64(ld16u):
1972 ctx->z_mask = MAKE_64BIT_MASK(0, 16);
1973 ctx->s_mask = MAKE_64BIT_MASK(17, 47);
1974 break;
1975 case INDEX_op_ld32s_i64:
1976 ctx->s_mask = MAKE_64BIT_MASK(32, 32);
1977 break;
1978 case INDEX_op_ld32u_i64:
1979 ctx->z_mask = MAKE_64BIT_MASK(0, 32);
1980 ctx->s_mask = MAKE_64BIT_MASK(33, 31);
1981 break;
1982 default:
1983 g_assert_not_reached();
1985 return false;
1988 static bool fold_xor(OptContext *ctx, TCGOp *op)
1990 if (fold_const2_commutative(ctx, op) ||
1991 fold_xx_to_i(ctx, op, 0) ||
1992 fold_xi_to_x(ctx, op, 0) ||
1993 fold_xi_to_not(ctx, op, -1)) {
1994 return true;
1997 ctx->z_mask = arg_info(op->args[1])->z_mask
1998 | arg_info(op->args[2])->z_mask;
1999 ctx->s_mask = arg_info(op->args[1])->s_mask
2000 & arg_info(op->args[2])->s_mask;
2001 return fold_masks(ctx, op);
2004 /* Propagate constants and copies, fold constant expressions. */
2005 void tcg_optimize(TCGContext *s)
2007 int nb_temps, i;
2008 TCGOp *op, *op_next;
2009 OptContext ctx = { .tcg = s };
2011 /* Array VALS has an element for each temp.
2012 If this temp holds a constant then its value is kept in VALS' element.
2013 If this temp is a copy of other ones then the other copies are
2014 available through the doubly linked circular list. */
2016 nb_temps = s->nb_temps;
2017 for (i = 0; i < nb_temps; ++i) {
2018 s->temps[i].state_ptr = NULL;
2021 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2022 TCGOpcode opc = op->opc;
2023 const TCGOpDef *def;
2024 bool done = false;
2026 /* Calls are special. */
2027 if (opc == INDEX_op_call) {
2028 fold_call(&ctx, op);
2029 continue;
2032 def = &tcg_op_defs[opc];
2033 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs);
2034 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs);
2036 /* Pre-compute the type of the operation. */
2037 if (def->flags & TCG_OPF_VECTOR) {
2038 ctx.type = TCG_TYPE_V64 + TCGOP_VECL(op);
2039 } else if (def->flags & TCG_OPF_64BIT) {
2040 ctx.type = TCG_TYPE_I64;
2041 } else {
2042 ctx.type = TCG_TYPE_I32;
2045 /* Assume all bits affected, no bits known zero, no sign reps. */
2046 ctx.a_mask = -1;
2047 ctx.z_mask = -1;
2048 ctx.s_mask = 0;
2051 * Process each opcode.
2052 * Sorted alphabetically by opcode as much as possible.
2054 switch (opc) {
2055 CASE_OP_32_64_VEC(add):
2056 done = fold_add(&ctx, op);
2057 break;
2058 CASE_OP_32_64(add2):
2059 done = fold_add2(&ctx, op);
2060 break;
2061 CASE_OP_32_64_VEC(and):
2062 done = fold_and(&ctx, op);
2063 break;
2064 CASE_OP_32_64_VEC(andc):
2065 done = fold_andc(&ctx, op);
2066 break;
2067 CASE_OP_32_64(brcond):
2068 done = fold_brcond(&ctx, op);
2069 break;
2070 case INDEX_op_brcond2_i32:
2071 done = fold_brcond2(&ctx, op);
2072 break;
2073 CASE_OP_32_64(bswap16):
2074 CASE_OP_32_64(bswap32):
2075 case INDEX_op_bswap64_i64:
2076 done = fold_bswap(&ctx, op);
2077 break;
2078 CASE_OP_32_64(clz):
2079 CASE_OP_32_64(ctz):
2080 done = fold_count_zeros(&ctx, op);
2081 break;
2082 CASE_OP_32_64(ctpop):
2083 done = fold_ctpop(&ctx, op);
2084 break;
2085 CASE_OP_32_64(deposit):
2086 done = fold_deposit(&ctx, op);
2087 break;
2088 CASE_OP_32_64(div):
2089 CASE_OP_32_64(divu):
2090 done = fold_divide(&ctx, op);
2091 break;
2092 case INDEX_op_dup_vec:
2093 done = fold_dup(&ctx, op);
2094 break;
2095 case INDEX_op_dup2_vec:
2096 done = fold_dup2(&ctx, op);
2097 break;
2098 CASE_OP_32_64(eqv):
2099 done = fold_eqv(&ctx, op);
2100 break;
2101 CASE_OP_32_64(extract):
2102 done = fold_extract(&ctx, op);
2103 break;
2104 CASE_OP_32_64(extract2):
2105 done = fold_extract2(&ctx, op);
2106 break;
2107 CASE_OP_32_64(ext8s):
2108 CASE_OP_32_64(ext16s):
2109 case INDEX_op_ext32s_i64:
2110 case INDEX_op_ext_i32_i64:
2111 done = fold_exts(&ctx, op);
2112 break;
2113 CASE_OP_32_64(ext8u):
2114 CASE_OP_32_64(ext16u):
2115 case INDEX_op_ext32u_i64:
2116 case INDEX_op_extu_i32_i64:
2117 case INDEX_op_extrl_i64_i32:
2118 case INDEX_op_extrh_i64_i32:
2119 done = fold_extu(&ctx, op);
2120 break;
2121 CASE_OP_32_64(ld8s):
2122 CASE_OP_32_64(ld8u):
2123 CASE_OP_32_64(ld16s):
2124 CASE_OP_32_64(ld16u):
2125 case INDEX_op_ld32s_i64:
2126 case INDEX_op_ld32u_i64:
2127 done = fold_tcg_ld(&ctx, op);
2128 break;
2129 case INDEX_op_mb:
2130 done = fold_mb(&ctx, op);
2131 break;
2132 CASE_OP_32_64_VEC(mov):
2133 done = fold_mov(&ctx, op);
2134 break;
2135 CASE_OP_32_64(movcond):
2136 done = fold_movcond(&ctx, op);
2137 break;
2138 CASE_OP_32_64(mul):
2139 done = fold_mul(&ctx, op);
2140 break;
2141 CASE_OP_32_64(mulsh):
2142 CASE_OP_32_64(muluh):
2143 done = fold_mul_highpart(&ctx, op);
2144 break;
2145 CASE_OP_32_64(muls2):
2146 CASE_OP_32_64(mulu2):
2147 done = fold_multiply2(&ctx, op);
2148 break;
2149 CASE_OP_32_64(nand):
2150 done = fold_nand(&ctx, op);
2151 break;
2152 CASE_OP_32_64(neg):
2153 done = fold_neg(&ctx, op);
2154 break;
2155 CASE_OP_32_64(nor):
2156 done = fold_nor(&ctx, op);
2157 break;
2158 CASE_OP_32_64_VEC(not):
2159 done = fold_not(&ctx, op);
2160 break;
2161 CASE_OP_32_64_VEC(or):
2162 done = fold_or(&ctx, op);
2163 break;
2164 CASE_OP_32_64_VEC(orc):
2165 done = fold_orc(&ctx, op);
2166 break;
2167 case INDEX_op_qemu_ld_i32:
2168 case INDEX_op_qemu_ld_i64:
2169 done = fold_qemu_ld(&ctx, op);
2170 break;
2171 case INDEX_op_qemu_st_i32:
2172 case INDEX_op_qemu_st8_i32:
2173 case INDEX_op_qemu_st_i64:
2174 done = fold_qemu_st(&ctx, op);
2175 break;
2176 CASE_OP_32_64(rem):
2177 CASE_OP_32_64(remu):
2178 done = fold_remainder(&ctx, op);
2179 break;
2180 CASE_OP_32_64(rotl):
2181 CASE_OP_32_64(rotr):
2182 CASE_OP_32_64(sar):
2183 CASE_OP_32_64(shl):
2184 CASE_OP_32_64(shr):
2185 done = fold_shift(&ctx, op);
2186 break;
2187 CASE_OP_32_64(setcond):
2188 done = fold_setcond(&ctx, op);
2189 break;
2190 case INDEX_op_setcond2_i32:
2191 done = fold_setcond2(&ctx, op);
2192 break;
2193 CASE_OP_32_64(sextract):
2194 done = fold_sextract(&ctx, op);
2195 break;
2196 CASE_OP_32_64_VEC(sub):
2197 done = fold_sub(&ctx, op);
2198 break;
2199 CASE_OP_32_64(sub2):
2200 done = fold_sub2(&ctx, op);
2201 break;
2202 CASE_OP_32_64_VEC(xor):
2203 done = fold_xor(&ctx, op);
2204 break;
2205 default:
2206 break;
2209 if (!done) {
2210 finish_folding(&ctx, op);