target/arm: v8M: Check state of exception being returned from
[qemu/ar7.git] / hw / intc / spapr_xive.c
blob3ae311d9ff7f16ce271670104ecfd011d13a1eff
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "monitor/monitor.h"
18 #include "hw/ppc/fdt.h"
19 #include "hw/ppc/spapr.h"
20 #include "hw/ppc/spapr_cpu_core.h"
21 #include "hw/ppc/spapr_xive.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
26 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
27 * use for the ESB pages and the TIMA pages
29 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
30 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
33 * The allocation of VP blocks is a complex operation in OPAL and the
34 * VP identifiers have a relation with the number of HW chips, the
35 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
36 * controller model does not have the same constraints and can use a
37 * simple mapping scheme of the CPU vcpu_id
39 * These identifiers are never returned to the OS.
42 #define SPAPR_XIVE_NVT_BASE 0x400
45 * sPAPR NVT and END indexing helpers
47 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
49 return nvt_idx - SPAPR_XIVE_NVT_BASE;
52 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
53 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
55 assert(cpu);
57 if (out_nvt_blk) {
58 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
61 if (out_nvt_blk) {
62 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
66 static int spapr_xive_target_to_nvt(uint32_t target,
67 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
69 PowerPCCPU *cpu = spapr_find_cpu(target);
71 if (!cpu) {
72 return -1;
75 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
76 return 0;
80 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
81 * priorities per CPU
83 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
84 uint32_t *out_server, uint8_t *out_prio)
87 assert(end_blk == SPAPR_XIVE_BLOCK_ID);
89 if (out_server) {
90 *out_server = end_idx >> 3;
93 if (out_prio) {
94 *out_prio = end_idx & 0x7;
96 return 0;
99 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
100 uint8_t *out_end_blk, uint32_t *out_end_idx)
102 assert(cpu);
104 if (out_end_blk) {
105 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
108 if (out_end_idx) {
109 *out_end_idx = (cpu->vcpu_id << 3) + prio;
113 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
114 uint8_t *out_end_blk, uint32_t *out_end_idx)
116 PowerPCCPU *cpu = spapr_find_cpu(target);
118 if (!cpu) {
119 return -1;
122 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
123 return 0;
127 * On sPAPR machines, use a simplified output for the XIVE END
128 * structure dumping only the information related to the OS EQ.
130 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
131 Monitor *mon)
133 uint64_t qaddr_base = xive_end_qaddr(end);
134 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
135 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
136 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
137 uint32_t qentries = 1 << (qsize + 10);
138 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
139 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
141 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
142 spapr_xive_nvt_to_target(0, nvt),
143 priority, qindex, qentries, qaddr_base, qgen);
145 xive_end_queue_pic_print_info(end, 6, mon);
146 monitor_printf(mon, "]");
149 void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
151 XiveSource *xsrc = &xive->source;
152 int i;
154 if (kvm_irqchip_in_kernel()) {
155 Error *local_err = NULL;
157 kvmppc_xive_synchronize_state(xive, &local_err);
158 if (local_err) {
159 error_report_err(local_err);
160 return;
164 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n");
166 for (i = 0; i < xive->nr_irqs; i++) {
167 uint8_t pq = xive_source_esb_get(xsrc, i);
168 XiveEAS *eas = &xive->eat[i];
170 if (!xive_eas_is_valid(eas)) {
171 continue;
174 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
175 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
176 pq & XIVE_ESB_VAL_P ? 'P' : '-',
177 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
178 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
179 xive_eas_is_masked(eas) ? "M" : " ",
180 (int) xive_get_field64(EAS_END_DATA, eas->w));
182 if (!xive_eas_is_masked(eas)) {
183 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
184 XiveEND *end;
186 assert(end_idx < xive->nr_ends);
187 end = &xive->endt[end_idx];
189 if (xive_end_is_valid(end)) {
190 spapr_xive_end_pic_print_info(xive, end, mon);
193 monitor_printf(mon, "\n");
197 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
199 memory_region_set_enabled(&xive->source.esb_mmio, enable);
200 memory_region_set_enabled(&xive->tm_mmio, enable);
202 /* Disable the END ESBs until a guest OS makes use of them */
203 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
207 * When a Virtual Processor is scheduled to run on a HW thread, the
208 * hypervisor pushes its identifier in the OS CAM line. Emulate the
209 * same behavior under QEMU.
211 void spapr_xive_set_tctx_os_cam(XiveTCTX *tctx)
213 uint8_t nvt_blk;
214 uint32_t nvt_idx;
215 uint32_t nvt_cam;
217 spapr_xive_cpu_to_nvt(POWERPC_CPU(tctx->cs), &nvt_blk, &nvt_idx);
219 nvt_cam = cpu_to_be32(TM_QW1W2_VO | xive_nvt_cam_line(nvt_blk, nvt_idx));
220 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &nvt_cam, 4);
223 static void spapr_xive_end_reset(XiveEND *end)
225 memset(end, 0, sizeof(*end));
227 /* switch off the escalation and notification ESBs */
228 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
231 static void spapr_xive_reset(void *dev)
233 SpaprXive *xive = SPAPR_XIVE(dev);
234 int i;
237 * The XiveSource has its own reset handler, which mask off all
238 * IRQs (!P|Q)
241 /* Mask all valid EASs in the IRQ number space. */
242 for (i = 0; i < xive->nr_irqs; i++) {
243 XiveEAS *eas = &xive->eat[i];
244 if (xive_eas_is_valid(eas)) {
245 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
246 } else {
247 eas->w = 0;
251 /* Clear all ENDs */
252 for (i = 0; i < xive->nr_ends; i++) {
253 spapr_xive_end_reset(&xive->endt[i]);
257 static void spapr_xive_instance_init(Object *obj)
259 SpaprXive *xive = SPAPR_XIVE(obj);
261 object_initialize_child(obj, "source", &xive->source, sizeof(xive->source),
262 TYPE_XIVE_SOURCE, &error_abort, NULL);
264 object_initialize_child(obj, "end_source", &xive->end_source,
265 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
266 &error_abort, NULL);
268 /* Not connected to the KVM XIVE device */
269 xive->fd = -1;
272 static void spapr_xive_realize(DeviceState *dev, Error **errp)
274 SpaprXive *xive = SPAPR_XIVE(dev);
275 XiveSource *xsrc = &xive->source;
276 XiveENDSource *end_xsrc = &xive->end_source;
277 Error *local_err = NULL;
279 if (!xive->nr_irqs) {
280 error_setg(errp, "Number of interrupt needs to be greater 0");
281 return;
284 if (!xive->nr_ends) {
285 error_setg(errp, "Number of interrupt needs to be greater 0");
286 return;
290 * Initialize the internal sources, for IPIs and virtual devices.
292 object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
293 &error_fatal);
294 object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
295 &error_fatal);
296 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
297 if (local_err) {
298 error_propagate(errp, local_err);
299 return;
301 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
304 * Initialize the END ESB source
306 object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
307 &error_fatal);
308 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
309 &error_fatal);
310 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
311 if (local_err) {
312 error_propagate(errp, local_err);
313 return;
315 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
317 /* Set the mapping address of the END ESB pages after the source ESBs */
318 xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
321 * Allocate the routing tables
323 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
324 xive->endt = g_new0(XiveEND, xive->nr_ends);
326 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
327 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
329 qemu_register_reset(spapr_xive_reset, dev);
331 /* TIMA initialization */
332 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive,
333 "xive.tima", 4ull << TM_SHIFT);
334 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
337 * Map all regions. These will be enabled or disabled at reset and
338 * can also be overridden by KVM memory regions if active
340 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
341 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
342 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
345 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
346 uint32_t eas_idx, XiveEAS *eas)
348 SpaprXive *xive = SPAPR_XIVE(xrtr);
350 if (eas_idx >= xive->nr_irqs) {
351 return -1;
354 *eas = xive->eat[eas_idx];
355 return 0;
358 static int spapr_xive_get_end(XiveRouter *xrtr,
359 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
361 SpaprXive *xive = SPAPR_XIVE(xrtr);
363 if (end_idx >= xive->nr_ends) {
364 return -1;
367 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
368 return 0;
371 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
372 uint32_t end_idx, XiveEND *end,
373 uint8_t word_number)
375 SpaprXive *xive = SPAPR_XIVE(xrtr);
377 if (end_idx >= xive->nr_ends) {
378 return -1;
381 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
382 return 0;
385 static int spapr_xive_get_nvt(XiveRouter *xrtr,
386 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
388 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
389 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
391 if (!cpu) {
392 /* TODO: should we assert() if we can find a NVT ? */
393 return -1;
397 * sPAPR does not maintain a NVT table. Return that the NVT is
398 * valid if we have found a matching CPU
400 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
401 return 0;
404 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
405 uint32_t nvt_idx, XiveNVT *nvt,
406 uint8_t word_number)
409 * We don't need to write back to the NVTs because the sPAPR
410 * machine should never hit a non-scheduled NVT. It should never
411 * get called.
413 g_assert_not_reached();
416 static XiveTCTX *spapr_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
418 PowerPCCPU *cpu = POWERPC_CPU(cs);
420 return spapr_cpu_state(cpu)->tctx;
423 static const VMStateDescription vmstate_spapr_xive_end = {
424 .name = TYPE_SPAPR_XIVE "/end",
425 .version_id = 1,
426 .minimum_version_id = 1,
427 .fields = (VMStateField []) {
428 VMSTATE_UINT32(w0, XiveEND),
429 VMSTATE_UINT32(w1, XiveEND),
430 VMSTATE_UINT32(w2, XiveEND),
431 VMSTATE_UINT32(w3, XiveEND),
432 VMSTATE_UINT32(w4, XiveEND),
433 VMSTATE_UINT32(w5, XiveEND),
434 VMSTATE_UINT32(w6, XiveEND),
435 VMSTATE_UINT32(w7, XiveEND),
436 VMSTATE_END_OF_LIST()
440 static const VMStateDescription vmstate_spapr_xive_eas = {
441 .name = TYPE_SPAPR_XIVE "/eas",
442 .version_id = 1,
443 .minimum_version_id = 1,
444 .fields = (VMStateField []) {
445 VMSTATE_UINT64(w, XiveEAS),
446 VMSTATE_END_OF_LIST()
450 static int vmstate_spapr_xive_pre_save(void *opaque)
452 if (kvm_irqchip_in_kernel()) {
453 return kvmppc_xive_pre_save(SPAPR_XIVE(opaque));
456 return 0;
460 * Called by the sPAPR IRQ backend 'post_load' method at the machine
461 * level.
463 int spapr_xive_post_load(SpaprXive *xive, int version_id)
465 if (kvm_irqchip_in_kernel()) {
466 return kvmppc_xive_post_load(xive, version_id);
469 return 0;
472 static const VMStateDescription vmstate_spapr_xive = {
473 .name = TYPE_SPAPR_XIVE,
474 .version_id = 1,
475 .minimum_version_id = 1,
476 .pre_save = vmstate_spapr_xive_pre_save,
477 .post_load = NULL, /* handled at the machine level */
478 .fields = (VMStateField[]) {
479 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
480 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
481 vmstate_spapr_xive_eas, XiveEAS),
482 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
483 vmstate_spapr_xive_end, XiveEND),
484 VMSTATE_END_OF_LIST()
488 static Property spapr_xive_properties[] = {
489 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
490 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
491 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
492 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
493 DEFINE_PROP_END_OF_LIST(),
496 static void spapr_xive_class_init(ObjectClass *klass, void *data)
498 DeviceClass *dc = DEVICE_CLASS(klass);
499 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
501 dc->desc = "sPAPR XIVE Interrupt Controller";
502 dc->props = spapr_xive_properties;
503 dc->realize = spapr_xive_realize;
504 dc->vmsd = &vmstate_spapr_xive;
506 xrc->get_eas = spapr_xive_get_eas;
507 xrc->get_end = spapr_xive_get_end;
508 xrc->write_end = spapr_xive_write_end;
509 xrc->get_nvt = spapr_xive_get_nvt;
510 xrc->write_nvt = spapr_xive_write_nvt;
511 xrc->get_tctx = spapr_xive_get_tctx;
514 static const TypeInfo spapr_xive_info = {
515 .name = TYPE_SPAPR_XIVE,
516 .parent = TYPE_XIVE_ROUTER,
517 .instance_init = spapr_xive_instance_init,
518 .instance_size = sizeof(SpaprXive),
519 .class_init = spapr_xive_class_init,
522 static void spapr_xive_register_types(void)
524 type_register_static(&spapr_xive_info);
527 type_init(spapr_xive_register_types)
529 bool spapr_xive_irq_claim(SpaprXive *xive, uint32_t lisn, bool lsi)
531 XiveSource *xsrc = &xive->source;
533 if (lisn >= xive->nr_irqs) {
534 return false;
537 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID);
538 if (lsi) {
539 xive_source_irq_set_lsi(xsrc, lisn);
542 if (kvm_irqchip_in_kernel()) {
543 Error *local_err = NULL;
545 kvmppc_xive_source_reset_one(xsrc, lisn, &local_err);
546 if (local_err) {
547 error_report_err(local_err);
548 return false;
552 return true;
555 bool spapr_xive_irq_free(SpaprXive *xive, uint32_t lisn)
557 if (lisn >= xive->nr_irqs) {
558 return false;
561 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
562 return true;
566 * XIVE hcalls
568 * The terminology used by the XIVE hcalls is the following :
570 * TARGET vCPU number
571 * EQ Event Queue assigned by OS to receive event data
572 * ESB page for source interrupt management
573 * LISN Logical Interrupt Source Number identifying a source in the
574 * machine
575 * EISN Effective Interrupt Source Number used by guest OS to
576 * identify source in the guest
578 * The EAS, END, NVT structures are not exposed.
582 * Linux hosts under OPAL reserve priority 7 for their own escalation
583 * interrupts (DD2.X POWER9). So we only allow the guest to use
584 * priorities [0..6].
586 static bool spapr_xive_priority_is_reserved(uint8_t priority)
588 switch (priority) {
589 case 0 ... 6:
590 return false;
591 case 7: /* OPAL escalation queue */
592 default:
593 return true;
598 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
599 * real address of the MMIO page through which the Event State Buffer
600 * entry associated with the value of the "lisn" parameter is managed.
602 * Parameters:
603 * Input
604 * - R4: "flags"
605 * Bits 0-63 reserved
606 * - R5: "lisn" is per "interrupts", "interrupt-map", or
607 * "ibm,xive-lisn-ranges" properties, or as returned by the
608 * ibm,query-interrupt-source-number RTAS call, or as returned
609 * by the H_ALLOCATE_VAS_WINDOW hcall
611 * Output
612 * - R4: "flags"
613 * Bits 0-59: Reserved
614 * Bit 60: H_INT_ESB must be used for Event State Buffer
615 * management
616 * Bit 61: 1 == LSI 0 == MSI
617 * Bit 62: the full function page supports trigger
618 * Bit 63: Store EOI Supported
619 * - R5: Logical Real address of full function Event State Buffer
620 * management page, -1 if H_INT_ESB hcall flag is set to 1.
621 * - R6: Logical Real Address of trigger only Event State Buffer
622 * management page or -1.
623 * - R7: Power of 2 page size for the ESB management pages returned in
624 * R5 and R6.
627 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
628 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
629 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
630 on same page */
631 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
633 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
634 SpaprMachineState *spapr,
635 target_ulong opcode,
636 target_ulong *args)
638 SpaprXive *xive = spapr->xive;
639 XiveSource *xsrc = &xive->source;
640 target_ulong flags = args[0];
641 target_ulong lisn = args[1];
643 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
644 return H_FUNCTION;
647 if (flags) {
648 return H_PARAMETER;
651 if (lisn >= xive->nr_irqs) {
652 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
653 lisn);
654 return H_P2;
657 if (!xive_eas_is_valid(&xive->eat[lisn])) {
658 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
659 lisn);
660 return H_P2;
664 * All sources are emulated under the main XIVE object and share
665 * the same characteristics.
667 args[0] = 0;
668 if (!xive_source_esb_has_2page(xsrc)) {
669 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
671 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
672 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
676 * Force the use of the H_INT_ESB hcall in case of an LSI
677 * interrupt. This is necessary under KVM to re-trigger the
678 * interrupt if the level is still asserted
680 if (xive_source_irq_is_lsi(xsrc, lisn)) {
681 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
684 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
685 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
686 } else {
687 args[1] = -1;
690 if (xive_source_esb_has_2page(xsrc) &&
691 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
692 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
693 } else {
694 args[2] = -1;
697 if (xive_source_esb_has_2page(xsrc)) {
698 args[3] = xsrc->esb_shift - 1;
699 } else {
700 args[3] = xsrc->esb_shift;
703 return H_SUCCESS;
707 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
708 * Interrupt Source to a target. The Logical Interrupt Source is
709 * designated with the "lisn" parameter and the target is designated
710 * with the "target" and "priority" parameters. Upon return from the
711 * hcall(), no additional interrupts will be directed to the old EQ.
713 * Parameters:
714 * Input:
715 * - R4: "flags"
716 * Bits 0-61: Reserved
717 * Bit 62: set the "eisn" in the EAS
718 * Bit 63: masks the interrupt source in the hardware interrupt
719 * control structure. An interrupt masked by this mechanism will
720 * be dropped, but it's source state bits will still be
721 * set. There is no race-free way of unmasking and restoring the
722 * source. Thus this should only be used in interrupts that are
723 * also masked at the source, and only in cases where the
724 * interrupt is not meant to be used for a large amount of time
725 * because no valid target exists for it for example
726 * - R5: "lisn" is per "interrupts", "interrupt-map", or
727 * "ibm,xive-lisn-ranges" properties, or as returned by the
728 * ibm,query-interrupt-source-number RTAS call, or as returned by
729 * the H_ALLOCATE_VAS_WINDOW hcall
730 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
731 * "ibm,ppc-interrupt-gserver#s"
732 * - R7: "priority" is a valid priority not in
733 * "ibm,plat-res-int-priorities"
734 * - R8: "eisn" is the guest EISN associated with the "lisn"
736 * Output:
737 * - None
740 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
741 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
743 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
744 SpaprMachineState *spapr,
745 target_ulong opcode,
746 target_ulong *args)
748 SpaprXive *xive = spapr->xive;
749 XiveEAS eas, new_eas;
750 target_ulong flags = args[0];
751 target_ulong lisn = args[1];
752 target_ulong target = args[2];
753 target_ulong priority = args[3];
754 target_ulong eisn = args[4];
755 uint8_t end_blk;
756 uint32_t end_idx;
758 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
759 return H_FUNCTION;
762 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
763 return H_PARAMETER;
766 if (lisn >= xive->nr_irqs) {
767 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
768 lisn);
769 return H_P2;
772 eas = xive->eat[lisn];
773 if (!xive_eas_is_valid(&eas)) {
774 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
775 lisn);
776 return H_P2;
779 /* priority 0xff is used to reset the EAS */
780 if (priority == 0xff) {
781 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
782 goto out;
785 if (flags & SPAPR_XIVE_SRC_MASK) {
786 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
787 } else {
788 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
791 if (spapr_xive_priority_is_reserved(priority)) {
792 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
793 " is reserved\n", priority);
794 return H_P4;
798 * Validate that "target" is part of the list of threads allocated
799 * to the partition. For that, find the END corresponding to the
800 * target.
802 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
803 return H_P3;
806 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
807 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
809 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
810 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
813 if (kvm_irqchip_in_kernel()) {
814 Error *local_err = NULL;
816 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
817 if (local_err) {
818 error_report_err(local_err);
819 return H_HARDWARE;
823 out:
824 xive->eat[lisn] = new_eas;
825 return H_SUCCESS;
829 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
830 * target/priority pair is assigned to the specified Logical Interrupt
831 * Source.
833 * Parameters:
834 * Input:
835 * - R4: "flags"
836 * Bits 0-63 Reserved
837 * - R5: "lisn" is per "interrupts", "interrupt-map", or
838 * "ibm,xive-lisn-ranges" properties, or as returned by the
839 * ibm,query-interrupt-source-number RTAS call, or as
840 * returned by the H_ALLOCATE_VAS_WINDOW hcall
842 * Output:
843 * - R4: Target to which the specified Logical Interrupt Source is
844 * assigned
845 * - R5: Priority to which the specified Logical Interrupt Source is
846 * assigned
847 * - R6: EISN for the specified Logical Interrupt Source (this will be
848 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
850 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
851 SpaprMachineState *spapr,
852 target_ulong opcode,
853 target_ulong *args)
855 SpaprXive *xive = spapr->xive;
856 target_ulong flags = args[0];
857 target_ulong lisn = args[1];
858 XiveEAS eas;
859 XiveEND *end;
860 uint8_t nvt_blk;
861 uint32_t end_idx, nvt_idx;
863 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
864 return H_FUNCTION;
867 if (flags) {
868 return H_PARAMETER;
871 if (lisn >= xive->nr_irqs) {
872 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
873 lisn);
874 return H_P2;
877 eas = xive->eat[lisn];
878 if (!xive_eas_is_valid(&eas)) {
879 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
880 lisn);
881 return H_P2;
884 /* EAS_END_BLOCK is unused on sPAPR */
885 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
887 assert(end_idx < xive->nr_ends);
888 end = &xive->endt[end_idx];
890 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
891 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
892 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
894 if (xive_eas_is_masked(&eas)) {
895 args[1] = 0xff;
896 } else {
897 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
900 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
902 return H_SUCCESS;
906 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
907 * address of the notification management page associated with the
908 * specified target and priority.
910 * Parameters:
911 * Input:
912 * - R4: "flags"
913 * Bits 0-63 Reserved
914 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
915 * "ibm,ppc-interrupt-gserver#s"
916 * - R6: "priority" is a valid priority not in
917 * "ibm,plat-res-int-priorities"
919 * Output:
920 * - R4: Logical real address of notification page
921 * - R5: Power of 2 page size of the notification page
923 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
924 SpaprMachineState *spapr,
925 target_ulong opcode,
926 target_ulong *args)
928 SpaprXive *xive = spapr->xive;
929 XiveENDSource *end_xsrc = &xive->end_source;
930 target_ulong flags = args[0];
931 target_ulong target = args[1];
932 target_ulong priority = args[2];
933 XiveEND *end;
934 uint8_t end_blk;
935 uint32_t end_idx;
937 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
938 return H_FUNCTION;
941 if (flags) {
942 return H_PARAMETER;
946 * H_STATE should be returned if a H_INT_RESET is in progress.
947 * This is not needed when running the emulation under QEMU
950 if (spapr_xive_priority_is_reserved(priority)) {
951 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
952 " is reserved\n", priority);
953 return H_P3;
957 * Validate that "target" is part of the list of threads allocated
958 * to the partition. For that, find the END corresponding to the
959 * target.
961 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
962 return H_P2;
965 assert(end_idx < xive->nr_ends);
966 end = &xive->endt[end_idx];
968 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
969 if (xive_end_is_enqueue(end)) {
970 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
971 } else {
972 args[1] = 0;
975 return H_SUCCESS;
979 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
980 * a given "target" and "priority". It is also used to set the
981 * notification config associated with the EQ. An EQ size of 0 is
982 * used to reset the EQ config for a given target and priority. If
983 * resetting the EQ config, the END associated with the given "target"
984 * and "priority" will be changed to disable queueing.
986 * Upon return from the hcall(), no additional interrupts will be
987 * directed to the old EQ (if one was set). The old EQ (if one was
988 * set) should be investigated for interrupts that occurred prior to
989 * or during the hcall().
991 * Parameters:
992 * Input:
993 * - R4: "flags"
994 * Bits 0-62: Reserved
995 * Bit 63: Unconditional Notify (n) per the XIVE spec
996 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
997 * "ibm,ppc-interrupt-gserver#s"
998 * - R6: "priority" is a valid priority not in
999 * "ibm,plat-res-int-priorities"
1000 * - R7: "eventQueue": The logical real address of the start of the EQ
1001 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1003 * Output:
1004 * - None
1007 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1009 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1010 SpaprMachineState *spapr,
1011 target_ulong opcode,
1012 target_ulong *args)
1014 SpaprXive *xive = spapr->xive;
1015 target_ulong flags = args[0];
1016 target_ulong target = args[1];
1017 target_ulong priority = args[2];
1018 target_ulong qpage = args[3];
1019 target_ulong qsize = args[4];
1020 XiveEND end;
1021 uint8_t end_blk, nvt_blk;
1022 uint32_t end_idx, nvt_idx;
1024 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1025 return H_FUNCTION;
1028 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1029 return H_PARAMETER;
1033 * H_STATE should be returned if a H_INT_RESET is in progress.
1034 * This is not needed when running the emulation under QEMU
1037 if (spapr_xive_priority_is_reserved(priority)) {
1038 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1039 " is reserved\n", priority);
1040 return H_P3;
1044 * Validate that "target" is part of the list of threads allocated
1045 * to the partition. For that, find the END corresponding to the
1046 * target.
1049 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1050 return H_P2;
1053 assert(end_idx < xive->nr_ends);
1054 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1056 switch (qsize) {
1057 case 12:
1058 case 16:
1059 case 21:
1060 case 24:
1061 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1062 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1063 " is not naturally aligned with %" HWADDR_PRIx "\n",
1064 qpage, (hwaddr)1 << qsize);
1065 return H_P4;
1067 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1068 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1069 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1070 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1071 break;
1072 case 0:
1073 /* reset queue and disable queueing */
1074 spapr_xive_end_reset(&end);
1075 goto out;
1077 default:
1078 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1079 qsize);
1080 return H_P5;
1083 if (qsize) {
1084 hwaddr plen = 1 << qsize;
1085 void *eq;
1088 * Validate the guest EQ. We should also check that the queue
1089 * has been zeroed by the OS.
1091 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1092 MEMTXATTRS_UNSPECIFIED);
1093 if (plen != 1 << qsize) {
1094 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1095 HWADDR_PRIx "\n", qpage);
1096 return H_P4;
1098 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1101 /* "target" should have been validated above */
1102 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1103 g_assert_not_reached();
1107 * Ensure the priority and target are correctly set (they will not
1108 * be right after allocation)
1110 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1111 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1112 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1114 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1115 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1116 } else {
1117 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1121 * The generation bit for the END starts at 1 and The END page
1122 * offset counter starts at 0.
1124 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1125 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1126 end.w0 |= cpu_to_be32(END_W0_VALID);
1129 * TODO: issue syncs required to ensure all in-flight interrupts
1130 * are complete on the old END
1133 out:
1134 if (kvm_irqchip_in_kernel()) {
1135 Error *local_err = NULL;
1137 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1138 if (local_err) {
1139 error_report_err(local_err);
1140 return H_HARDWARE;
1144 /* Update END */
1145 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1146 return H_SUCCESS;
1150 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1151 * target and priority.
1153 * Parameters:
1154 * Input:
1155 * - R4: "flags"
1156 * Bits 0-62: Reserved
1157 * Bit 63: Debug: Return debug data
1158 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1159 * "ibm,ppc-interrupt-gserver#s"
1160 * - R6: "priority" is a valid priority not in
1161 * "ibm,plat-res-int-priorities"
1163 * Output:
1164 * - R4: "flags":
1165 * Bits 0-61: Reserved
1166 * Bit 62: The value of Event Queue Generation Number (g) per
1167 * the XIVE spec if "Debug" = 1
1168 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1169 * - R5: The logical real address of the start of the EQ
1170 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1171 * - R7: The value of Event Queue Offset Counter per XIVE spec
1172 * if "Debug" = 1, else 0
1176 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1178 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1179 SpaprMachineState *spapr,
1180 target_ulong opcode,
1181 target_ulong *args)
1183 SpaprXive *xive = spapr->xive;
1184 target_ulong flags = args[0];
1185 target_ulong target = args[1];
1186 target_ulong priority = args[2];
1187 XiveEND *end;
1188 uint8_t end_blk;
1189 uint32_t end_idx;
1191 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1192 return H_FUNCTION;
1195 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1196 return H_PARAMETER;
1200 * H_STATE should be returned if a H_INT_RESET is in progress.
1201 * This is not needed when running the emulation under QEMU
1204 if (spapr_xive_priority_is_reserved(priority)) {
1205 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1206 " is reserved\n", priority);
1207 return H_P3;
1211 * Validate that "target" is part of the list of threads allocated
1212 * to the partition. For that, find the END corresponding to the
1213 * target.
1215 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1216 return H_P2;
1219 assert(end_idx < xive->nr_ends);
1220 end = &xive->endt[end_idx];
1222 args[0] = 0;
1223 if (xive_end_is_notify(end)) {
1224 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1227 if (xive_end_is_enqueue(end)) {
1228 args[1] = xive_end_qaddr(end);
1229 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1230 } else {
1231 args[1] = 0;
1232 args[2] = 0;
1235 if (kvm_irqchip_in_kernel()) {
1236 Error *local_err = NULL;
1238 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1239 if (local_err) {
1240 error_report_err(local_err);
1241 return H_HARDWARE;
1245 /* TODO: do we need any locking on the END ? */
1246 if (flags & SPAPR_XIVE_END_DEBUG) {
1247 /* Load the event queue generation number into the return flags */
1248 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1250 /* Load R7 with the event queue offset counter */
1251 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1252 } else {
1253 args[3] = 0;
1256 return H_SUCCESS;
1260 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1261 * reporting cache line pair for the calling thread. The reporting
1262 * cache lines will contain the OS interrupt context when the OS
1263 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1264 * interrupt. The reporting cache lines can be reset by inputting -1
1265 * in "reportingLine". Issuing the CI store byte without reporting
1266 * cache lines registered will result in the data not being accessible
1267 * to the OS.
1269 * Parameters:
1270 * Input:
1271 * - R4: "flags"
1272 * Bits 0-63: Reserved
1273 * - R5: "reportingLine": The logical real address of the reporting cache
1274 * line pair
1276 * Output:
1277 * - None
1279 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1280 SpaprMachineState *spapr,
1281 target_ulong opcode,
1282 target_ulong *args)
1284 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1285 return H_FUNCTION;
1289 * H_STATE should be returned if a H_INT_RESET is in progress.
1290 * This is not needed when running the emulation under QEMU
1293 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1294 return H_FUNCTION;
1298 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1299 * real address of the reporting cache line pair set for the input
1300 * "target". If no reporting cache line pair has been set, -1 is
1301 * returned.
1303 * Parameters:
1304 * Input:
1305 * - R4: "flags"
1306 * Bits 0-63: Reserved
1307 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1308 * "ibm,ppc-interrupt-gserver#s"
1309 * - R6: "reportingLine": The logical real address of the reporting
1310 * cache line pair
1312 * Output:
1313 * - R4: The logical real address of the reporting line if set, else -1
1315 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1316 SpaprMachineState *spapr,
1317 target_ulong opcode,
1318 target_ulong *args)
1320 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1321 return H_FUNCTION;
1325 * H_STATE should be returned if a H_INT_RESET is in progress.
1326 * This is not needed when running the emulation under QEMU
1329 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1330 return H_FUNCTION;
1334 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1335 * page for the input "lisn". This hcall is only supported for LISNs
1336 * that have the ESB hcall flag set to 1 when returned from hcall()
1337 * H_INT_GET_SOURCE_INFO.
1339 * Parameters:
1340 * Input:
1341 * - R4: "flags"
1342 * Bits 0-62: Reserved
1343 * bit 63: Store: Store=1, store operation, else load operation
1344 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1345 * "ibm,xive-lisn-ranges" properties, or as returned by the
1346 * ibm,query-interrupt-source-number RTAS call, or as
1347 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1348 * - R6: "esbOffset" is the offset into the ESB page for the load or
1349 * store operation
1350 * - R7: "storeData" is the data to write for a store operation
1352 * Output:
1353 * - R4: The value of the load if load operation, else -1
1356 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1358 static target_ulong h_int_esb(PowerPCCPU *cpu,
1359 SpaprMachineState *spapr,
1360 target_ulong opcode,
1361 target_ulong *args)
1363 SpaprXive *xive = spapr->xive;
1364 XiveEAS eas;
1365 target_ulong flags = args[0];
1366 target_ulong lisn = args[1];
1367 target_ulong offset = args[2];
1368 target_ulong data = args[3];
1369 hwaddr mmio_addr;
1370 XiveSource *xsrc = &xive->source;
1372 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1373 return H_FUNCTION;
1376 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1377 return H_PARAMETER;
1380 if (lisn >= xive->nr_irqs) {
1381 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1382 lisn);
1383 return H_P2;
1386 eas = xive->eat[lisn];
1387 if (!xive_eas_is_valid(&eas)) {
1388 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1389 lisn);
1390 return H_P2;
1393 if (offset > (1ull << xsrc->esb_shift)) {
1394 return H_P3;
1397 if (kvm_irqchip_in_kernel()) {
1398 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1399 flags & SPAPR_XIVE_ESB_STORE);
1400 } else {
1401 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1403 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1404 (flags & SPAPR_XIVE_ESB_STORE))) {
1405 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1406 HWADDR_PRIx "\n", mmio_addr);
1407 return H_HARDWARE;
1409 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1411 return H_SUCCESS;
1415 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1416 * ensure any in flight events for the input lisn are in the event
1417 * queue.
1419 * Parameters:
1420 * Input:
1421 * - R4: "flags"
1422 * Bits 0-63: Reserved
1423 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1424 * "ibm,xive-lisn-ranges" properties, or as returned by the
1425 * ibm,query-interrupt-source-number RTAS call, or as
1426 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1428 * Output:
1429 * - None
1431 static target_ulong h_int_sync(PowerPCCPU *cpu,
1432 SpaprMachineState *spapr,
1433 target_ulong opcode,
1434 target_ulong *args)
1436 SpaprXive *xive = spapr->xive;
1437 XiveEAS eas;
1438 target_ulong flags = args[0];
1439 target_ulong lisn = args[1];
1441 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1442 return H_FUNCTION;
1445 if (flags) {
1446 return H_PARAMETER;
1449 if (lisn >= xive->nr_irqs) {
1450 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1451 lisn);
1452 return H_P2;
1455 eas = xive->eat[lisn];
1456 if (!xive_eas_is_valid(&eas)) {
1457 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1458 lisn);
1459 return H_P2;
1463 * H_STATE should be returned if a H_INT_RESET is in progress.
1464 * This is not needed when running the emulation under QEMU
1468 * This is not real hardware. Nothing to be done unless when
1469 * under KVM
1472 if (kvm_irqchip_in_kernel()) {
1473 Error *local_err = NULL;
1475 kvmppc_xive_sync_source(xive, lisn, &local_err);
1476 if (local_err) {
1477 error_report_err(local_err);
1478 return H_HARDWARE;
1481 return H_SUCCESS;
1485 * The H_INT_RESET hcall() is used to reset all of the partition's
1486 * interrupt exploitation structures to their initial state. This
1487 * means losing all previously set interrupt state set via
1488 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1490 * Parameters:
1491 * Input:
1492 * - R4: "flags"
1493 * Bits 0-63: Reserved
1495 * Output:
1496 * - None
1498 static target_ulong h_int_reset(PowerPCCPU *cpu,
1499 SpaprMachineState *spapr,
1500 target_ulong opcode,
1501 target_ulong *args)
1503 SpaprXive *xive = spapr->xive;
1504 target_ulong flags = args[0];
1506 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1507 return H_FUNCTION;
1510 if (flags) {
1511 return H_PARAMETER;
1514 device_reset(DEVICE(xive));
1516 if (kvm_irqchip_in_kernel()) {
1517 Error *local_err = NULL;
1519 kvmppc_xive_reset(xive, &local_err);
1520 if (local_err) {
1521 error_report_err(local_err);
1522 return H_HARDWARE;
1525 return H_SUCCESS;
1528 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1530 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1531 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1532 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1533 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1534 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1535 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1536 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1537 h_int_set_os_reporting_line);
1538 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1539 h_int_get_os_reporting_line);
1540 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1541 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1542 spapr_register_hypercall(H_INT_RESET, h_int_reset);
1545 void spapr_dt_xive(SpaprMachineState *spapr, uint32_t nr_servers, void *fdt,
1546 uint32_t phandle)
1548 SpaprXive *xive = spapr->xive;
1549 int node;
1550 uint64_t timas[2 * 2];
1551 /* Interrupt number ranges for the IPIs */
1552 uint32_t lisn_ranges[] = {
1553 cpu_to_be32(0),
1554 cpu_to_be32(nr_servers),
1557 * EQ size - the sizes of pages supported by the system 4K, 64K,
1558 * 2M, 16M. We only advertise 64K for the moment.
1560 uint32_t eq_sizes[] = {
1561 cpu_to_be32(16), /* 64K */
1564 * The following array is in sync with the reserved priorities
1565 * defined by the 'spapr_xive_priority_is_reserved' routine.
1567 uint32_t plat_res_int_priorities[] = {
1568 cpu_to_be32(7), /* start */
1569 cpu_to_be32(0xf8), /* count */
1572 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
1573 timas[0] = cpu_to_be64(xive->tm_base +
1574 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
1575 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
1576 timas[2] = cpu_to_be64(xive->tm_base +
1577 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
1578 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
1580 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
1582 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
1583 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
1585 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
1586 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
1587 sizeof(eq_sizes)));
1588 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
1589 sizeof(lisn_ranges)));
1591 /* For Linux to link the LSIs to the interrupt controller. */
1592 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
1593 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
1595 /* For SLOF */
1596 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
1597 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
1600 * The "ibm,plat-res-int-priorities" property defines the priority
1601 * ranges reserved by the hypervisor
1603 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
1604 plat_res_int_priorities, sizeof(plat_res_int_priorities)));