target/arm: v8M: Check state of exception being returned from
[qemu/ar7.git] / hw / intc / armv7m_nvic.c
blob9f8f0d3ff555dc3248641636f5bec6755fc94c53
1 /*
2 * ARM Nested Vectored Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "hw/sysbus.h"
17 #include "qemu/timer.h"
18 #include "hw/intc/armv7m_nvic.h"
19 #include "target/arm/cpu.h"
20 #include "exec/exec-all.h"
21 #include "qemu/log.h"
22 #include "qemu/module.h"
23 #include "trace.h"
25 /* IRQ number counting:
27 * the num-irq property counts the number of external IRQ lines
29 * NVICState::num_irq counts the total number of exceptions
30 * (external IRQs, the 15 internal exceptions including reset,
31 * and one for the unused exception number 0).
33 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37 * Iterating through all exceptions should typically be done with
38 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40 * The external qemu_irq lines are the NVIC's external IRQ lines,
41 * so line 0 is exception 16.
43 * In the terminology of the architecture manual, "interrupts" are
44 * a subcategory of exception referring to the external interrupts
45 * (which are exception numbers NVIC_FIRST_IRQ and upward).
46 * For historical reasons QEMU tends to use "interrupt" and
47 * "exception" more or less interchangeably.
49 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
50 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52 /* Effective running priority of the CPU when no exception is active
53 * (higher than the highest possible priority value)
55 #define NVIC_NOEXC_PRIO 0x100
56 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
57 #define NVIC_NS_PRIO_LIMIT 0x80
59 static const uint8_t nvic_id[] = {
60 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
63 static int nvic_pending_prio(NVICState *s)
65 /* return the group priority of the current pending interrupt,
66 * or NVIC_NOEXC_PRIO if no interrupt is pending
68 return s->vectpending_prio;
71 /* Return the value of the ISCR RETTOBASE bit:
72 * 1 if there is exactly one active exception
73 * 0 if there is more than one active exception
74 * UNKNOWN if there are no active exceptions (we choose 1,
75 * which matches the choice Cortex-M3 is documented as making).
77 * NB: some versions of the documentation talk about this
78 * counting "active exceptions other than the one shown by IPSR";
79 * this is only different in the obscure corner case where guest
80 * code has manually deactivated an exception and is about
81 * to fail an exception-return integrity check. The definition
82 * above is the one from the v8M ARM ARM and is also in line
83 * with the behaviour documented for the Cortex-M3.
85 static bool nvic_rettobase(NVICState *s)
87 int irq, nhand = 0;
88 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
90 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
91 if (s->vectors[irq].active ||
92 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
93 s->sec_vectors[irq].active)) {
94 nhand++;
95 if (nhand == 2) {
96 return 0;
101 return 1;
104 /* Return the value of the ISCR ISRPENDING bit:
105 * 1 if an external interrupt is pending
106 * 0 if no external interrupt is pending
108 static bool nvic_isrpending(NVICState *s)
110 int irq;
112 /* We can shortcut if the highest priority pending interrupt
113 * happens to be external or if there is nothing pending.
115 if (s->vectpending > NVIC_FIRST_IRQ) {
116 return true;
118 if (s->vectpending == 0) {
119 return false;
122 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
123 if (s->vectors[irq].pending) {
124 return true;
127 return false;
130 static bool exc_is_banked(int exc)
132 /* Return true if this is one of the limited set of exceptions which
133 * are banked (and thus have state in sec_vectors[])
135 return exc == ARMV7M_EXCP_HARD ||
136 exc == ARMV7M_EXCP_MEM ||
137 exc == ARMV7M_EXCP_USAGE ||
138 exc == ARMV7M_EXCP_SVC ||
139 exc == ARMV7M_EXCP_PENDSV ||
140 exc == ARMV7M_EXCP_SYSTICK;
143 /* Return a mask word which clears the subpriority bits from
144 * a priority value for an M-profile exception, leaving only
145 * the group priority.
147 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
149 return ~0U << (s->prigroup[secure] + 1);
152 static bool exc_targets_secure(NVICState *s, int exc)
154 /* Return true if this non-banked exception targets Secure state. */
155 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
156 return false;
159 if (exc >= NVIC_FIRST_IRQ) {
160 return !s->itns[exc];
163 /* Function shouldn't be called for banked exceptions. */
164 assert(!exc_is_banked(exc));
166 switch (exc) {
167 case ARMV7M_EXCP_NMI:
168 case ARMV7M_EXCP_BUS:
169 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
170 case ARMV7M_EXCP_SECURE:
171 return true;
172 case ARMV7M_EXCP_DEBUG:
173 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
174 return false;
175 default:
176 /* reset, and reserved (unused) low exception numbers.
177 * We'll get called by code that loops through all the exception
178 * numbers, but it doesn't matter what we return here as these
179 * non-existent exceptions will never be pended or active.
181 return true;
185 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187 /* Return the group priority for this exception, given its raw
188 * (group-and-subgroup) priority value and whether it is targeting
189 * secure state or not.
191 if (rawprio < 0) {
192 return rawprio;
194 rawprio &= nvic_gprio_mask(s, targets_secure);
195 /* AIRCR.PRIS causes us to squash all NS priorities into the
196 * lower half of the total range
198 if (!targets_secure &&
199 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
200 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202 return rawprio;
205 /* Recompute vectpending and exception_prio for a CPU which implements
206 * the Security extension
208 static void nvic_recompute_state_secure(NVICState *s)
210 int i, bank;
211 int pend_prio = NVIC_NOEXC_PRIO;
212 int active_prio = NVIC_NOEXC_PRIO;
213 int pend_irq = 0;
214 bool pending_is_s_banked = false;
215 int pend_subprio = 0;
217 /* R_CQRV: precedence is by:
218 * - lowest group priority; if both the same then
219 * - lowest subpriority; if both the same then
220 * - lowest exception number; if both the same (ie banked) then
221 * - secure exception takes precedence
222 * Compare pseudocode RawExecutionPriority.
223 * Annoyingly, now we have two prigroup values (for S and NS)
224 * we can't do the loop comparison on raw priority values.
226 for (i = 1; i < s->num_irq; i++) {
227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228 VecInfo *vec;
229 int prio, subprio;
230 bool targets_secure;
232 if (bank == M_REG_S) {
233 if (!exc_is_banked(i)) {
234 continue;
236 vec = &s->sec_vectors[i];
237 targets_secure = true;
238 } else {
239 vec = &s->vectors[i];
240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
243 prio = exc_group_prio(s, vec->prio, targets_secure);
244 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
245 if (vec->enabled && vec->pending &&
246 ((prio < pend_prio) ||
247 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
248 pend_prio = prio;
249 pend_subprio = subprio;
250 pend_irq = i;
251 pending_is_s_banked = (bank == M_REG_S);
253 if (vec->active && prio < active_prio) {
254 active_prio = prio;
259 s->vectpending_is_s_banked = pending_is_s_banked;
260 s->vectpending = pend_irq;
261 s->vectpending_prio = pend_prio;
262 s->exception_prio = active_prio;
264 trace_nvic_recompute_state_secure(s->vectpending,
265 s->vectpending_is_s_banked,
266 s->vectpending_prio,
267 s->exception_prio);
270 /* Recompute vectpending and exception_prio */
271 static void nvic_recompute_state(NVICState *s)
273 int i;
274 int pend_prio = NVIC_NOEXC_PRIO;
275 int active_prio = NVIC_NOEXC_PRIO;
276 int pend_irq = 0;
278 /* In theory we could write one function that handled both
279 * the "security extension present" and "not present"; however
280 * the security related changes significantly complicate the
281 * recomputation just by themselves and mixing both cases together
282 * would be even worse, so we retain a separate non-secure-only
283 * version for CPUs which don't implement the security extension.
285 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
286 nvic_recompute_state_secure(s);
287 return;
290 for (i = 1; i < s->num_irq; i++) {
291 VecInfo *vec = &s->vectors[i];
293 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
294 pend_prio = vec->prio;
295 pend_irq = i;
297 if (vec->active && vec->prio < active_prio) {
298 active_prio = vec->prio;
302 if (active_prio > 0) {
303 active_prio &= nvic_gprio_mask(s, false);
306 if (pend_prio > 0) {
307 pend_prio &= nvic_gprio_mask(s, false);
310 s->vectpending = pend_irq;
311 s->vectpending_prio = pend_prio;
312 s->exception_prio = active_prio;
314 trace_nvic_recompute_state(s->vectpending,
315 s->vectpending_prio,
316 s->exception_prio);
319 /* Return the current execution priority of the CPU
320 * (equivalent to the pseudocode ExecutionPriority function).
321 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
323 static inline int nvic_exec_prio(NVICState *s)
325 CPUARMState *env = &s->cpu->env;
326 int running = NVIC_NOEXC_PRIO;
328 if (env->v7m.basepri[M_REG_NS] > 0) {
329 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
332 if (env->v7m.basepri[M_REG_S] > 0) {
333 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
334 if (running > basepri) {
335 running = basepri;
339 if (env->v7m.primask[M_REG_NS]) {
340 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
341 if (running > NVIC_NS_PRIO_LIMIT) {
342 running = NVIC_NS_PRIO_LIMIT;
344 } else {
345 running = 0;
349 if (env->v7m.primask[M_REG_S]) {
350 running = 0;
353 if (env->v7m.faultmask[M_REG_NS]) {
354 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
355 running = -1;
356 } else {
357 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
358 if (running > NVIC_NS_PRIO_LIMIT) {
359 running = NVIC_NS_PRIO_LIMIT;
361 } else {
362 running = 0;
367 if (env->v7m.faultmask[M_REG_S]) {
368 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
371 /* consider priority of active handler */
372 return MIN(running, s->exception_prio);
375 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
377 /* Return true if the requested execution priority is negative
378 * for the specified security state, ie that security state
379 * has an active NMI or HardFault or has set its FAULTMASK.
380 * Note that this is not the same as whether the execution
381 * priority is actually negative (for instance AIRCR.PRIS may
382 * mean we don't allow FAULTMASK_NS to actually make the execution
383 * priority negative). Compare pseudocode IsReqExcPriNeg().
385 NVICState *s = opaque;
387 if (s->cpu->env.v7m.faultmask[secure]) {
388 return true;
391 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
392 s->vectors[ARMV7M_EXCP_HARD].active) {
393 return true;
396 if (s->vectors[ARMV7M_EXCP_NMI].active &&
397 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
398 return true;
401 return false;
404 bool armv7m_nvic_can_take_pending_exception(void *opaque)
406 NVICState *s = opaque;
408 return nvic_exec_prio(s) > nvic_pending_prio(s);
411 int armv7m_nvic_raw_execution_priority(void *opaque)
413 NVICState *s = opaque;
415 return s->exception_prio;
418 /* caller must call nvic_irq_update() after this.
419 * secure indicates the bank to use for banked exceptions (we assert if
420 * we are passed secure=true for a non-banked exception).
422 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
424 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
425 assert(irq < s->num_irq);
427 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
429 if (secure) {
430 assert(exc_is_banked(irq));
431 s->sec_vectors[irq].prio = prio;
432 } else {
433 s->vectors[irq].prio = prio;
436 trace_nvic_set_prio(irq, secure, prio);
439 /* Return the current raw priority register value.
440 * secure indicates the bank to use for banked exceptions (we assert if
441 * we are passed secure=true for a non-banked exception).
443 static int get_prio(NVICState *s, unsigned irq, bool secure)
445 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
446 assert(irq < s->num_irq);
448 if (secure) {
449 assert(exc_is_banked(irq));
450 return s->sec_vectors[irq].prio;
451 } else {
452 return s->vectors[irq].prio;
456 /* Recompute state and assert irq line accordingly.
457 * Must be called after changes to:
458 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
459 * prigroup
461 static void nvic_irq_update(NVICState *s)
463 int lvl;
464 int pend_prio;
466 nvic_recompute_state(s);
467 pend_prio = nvic_pending_prio(s);
469 /* Raise NVIC output if this IRQ would be taken, except that we
470 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
471 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
472 * to those CPU registers don't cause us to recalculate the NVIC
473 * pending info.
475 lvl = (pend_prio < s->exception_prio);
476 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
477 qemu_set_irq(s->excpout, lvl);
481 * armv7m_nvic_clear_pending: mark the specified exception as not pending
482 * @opaque: the NVIC
483 * @irq: the exception number to mark as not pending
484 * @secure: false for non-banked exceptions or for the nonsecure
485 * version of a banked exception, true for the secure version of a banked
486 * exception.
488 * Marks the specified exception as not pending. Note that we will assert()
489 * if @secure is true and @irq does not specify one of the fixed set
490 * of architecturally banked exceptions.
492 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
494 NVICState *s = (NVICState *)opaque;
495 VecInfo *vec;
497 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
499 if (secure) {
500 assert(exc_is_banked(irq));
501 vec = &s->sec_vectors[irq];
502 } else {
503 vec = &s->vectors[irq];
505 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
506 if (vec->pending) {
507 vec->pending = 0;
508 nvic_irq_update(s);
512 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
513 bool derived)
515 /* Pend an exception, including possibly escalating it to HardFault.
517 * This function handles both "normal" pending of interrupts and
518 * exceptions, and also derived exceptions (ones which occur as
519 * a result of trying to take some other exception).
521 * If derived == true, the caller guarantees that we are part way through
522 * trying to take an exception (but have not yet called
523 * armv7m_nvic_acknowledge_irq() to make it active), and so:
524 * - s->vectpending is the "original exception" we were trying to take
525 * - irq is the "derived exception"
526 * - nvic_exec_prio(s) gives the priority before exception entry
527 * Here we handle the prioritization logic which the pseudocode puts
528 * in the DerivedLateArrival() function.
531 NVICState *s = (NVICState *)opaque;
532 bool banked = exc_is_banked(irq);
533 VecInfo *vec;
534 bool targets_secure;
536 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
537 assert(!secure || banked);
539 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
541 targets_secure = banked ? secure : exc_targets_secure(s, irq);
543 trace_nvic_set_pending(irq, secure, targets_secure,
544 derived, vec->enabled, vec->prio);
546 if (derived) {
547 /* Derived exceptions are always synchronous. */
548 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
550 if (irq == ARMV7M_EXCP_DEBUG &&
551 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
552 /* DebugMonitorFault, but its priority is lower than the
553 * preempted exception priority: just ignore it.
555 return;
558 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
559 /* If this is a terminal exception (one which means we cannot
560 * take the original exception, like a failure to read its
561 * vector table entry), then we must take the derived exception.
562 * If the derived exception can't take priority over the
563 * original exception, then we go into Lockup.
565 * For QEMU, we rely on the fact that a derived exception is
566 * terminal if and only if it's reported to us as HardFault,
567 * which saves having to have an extra argument is_terminal
568 * that we'd only use in one place.
570 cpu_abort(&s->cpu->parent_obj,
571 "Lockup: can't take terminal derived exception "
572 "(original exception priority %d)\n",
573 s->vectpending_prio);
575 /* We now continue with the same code as for a normal pending
576 * exception, which will cause us to pend the derived exception.
577 * We'll then take either the original or the derived exception
578 * based on which is higher priority by the usual mechanism
579 * for selecting the highest priority pending interrupt.
583 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
584 /* If a synchronous exception is pending then it may be
585 * escalated to HardFault if:
586 * * it is equal or lower priority to current execution
587 * * it is disabled
588 * (ie we need to take it immediately but we can't do so).
589 * Asynchronous exceptions (and interrupts) simply remain pending.
591 * For QEMU, we don't have any imprecise (asynchronous) faults,
592 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
593 * synchronous.
594 * Debug exceptions are awkward because only Debug exceptions
595 * resulting from the BKPT instruction should be escalated,
596 * but we don't currently implement any Debug exceptions other
597 * than those that result from BKPT, so we treat all debug exceptions
598 * as needing escalation.
600 * This all means we can identify whether to escalate based only on
601 * the exception number and don't (yet) need the caller to explicitly
602 * tell us whether this exception is synchronous or not.
604 int running = nvic_exec_prio(s);
605 bool escalate = false;
607 if (exc_group_prio(s, vec->prio, secure) >= running) {
608 trace_nvic_escalate_prio(irq, vec->prio, running);
609 escalate = true;
610 } else if (!vec->enabled) {
611 trace_nvic_escalate_disabled(irq);
612 escalate = true;
615 if (escalate) {
617 /* We need to escalate this exception to a synchronous HardFault.
618 * If BFHFNMINS is set then we escalate to the banked HF for
619 * the target security state of the original exception; otherwise
620 * we take a Secure HardFault.
622 irq = ARMV7M_EXCP_HARD;
623 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
624 (targets_secure ||
625 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
626 vec = &s->sec_vectors[irq];
627 } else {
628 vec = &s->vectors[irq];
630 if (running <= vec->prio) {
631 /* We want to escalate to HardFault but we can't take the
632 * synchronous HardFault at this point either. This is a
633 * Lockup condition due to a guest bug. We don't model
634 * Lockup, so report via cpu_abort() instead.
636 cpu_abort(&s->cpu->parent_obj,
637 "Lockup: can't escalate %d to HardFault "
638 "(current priority %d)\n", irq, running);
641 /* HF may be banked but there is only one shared HFSR */
642 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
646 if (!vec->pending) {
647 vec->pending = 1;
648 nvic_irq_update(s);
652 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
654 do_armv7m_nvic_set_pending(opaque, irq, secure, false);
657 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
659 do_armv7m_nvic_set_pending(opaque, irq, secure, true);
662 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
665 * Pend an exception during lazy FP stacking. This differs
666 * from the usual exception pending because the logic for
667 * whether we should escalate depends on the saved context
668 * in the FPCCR register, not on the current state of the CPU/NVIC.
670 NVICState *s = (NVICState *)opaque;
671 bool banked = exc_is_banked(irq);
672 VecInfo *vec;
673 bool targets_secure;
674 bool escalate = false;
676 * We will only look at bits in fpccr if this is a banked exception
677 * (in which case 'secure' tells us whether it is the S or NS version).
678 * All the bits for the non-banked exceptions are in fpccr_s.
680 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
681 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
683 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
684 assert(!secure || banked);
686 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
688 targets_secure = banked ? secure : exc_targets_secure(s, irq);
690 switch (irq) {
691 case ARMV7M_EXCP_DEBUG:
692 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
693 /* Ignore DebugMonitor exception */
694 return;
696 break;
697 case ARMV7M_EXCP_MEM:
698 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
699 break;
700 case ARMV7M_EXCP_USAGE:
701 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
702 break;
703 case ARMV7M_EXCP_BUS:
704 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
705 break;
706 case ARMV7M_EXCP_SECURE:
707 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
708 break;
709 default:
710 g_assert_not_reached();
713 if (escalate) {
715 * Escalate to HardFault: faults that initially targeted Secure
716 * continue to do so, even if HF normally targets NonSecure.
718 irq = ARMV7M_EXCP_HARD;
719 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
720 (targets_secure ||
721 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
722 vec = &s->sec_vectors[irq];
723 } else {
724 vec = &s->vectors[irq];
728 if (!vec->enabled ||
729 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
730 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
732 * We want to escalate to HardFault but the context the
733 * FP state belongs to prevents the exception pre-empting.
735 cpu_abort(&s->cpu->parent_obj,
736 "Lockup: can't escalate to HardFault during "
737 "lazy FP register stacking\n");
741 if (escalate) {
742 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
744 if (!vec->pending) {
745 vec->pending = 1;
747 * We do not call nvic_irq_update(), because we know our caller
748 * is going to handle causing us to take the exception by
749 * raising EXCP_LAZYFP, so raising the IRQ line would be
750 * pointless extra work. We just need to recompute the
751 * priorities so that armv7m_nvic_can_take_pending_exception()
752 * returns the right answer.
754 nvic_recompute_state(s);
758 /* Make pending IRQ active. */
759 void armv7m_nvic_acknowledge_irq(void *opaque)
761 NVICState *s = (NVICState *)opaque;
762 CPUARMState *env = &s->cpu->env;
763 const int pending = s->vectpending;
764 const int running = nvic_exec_prio(s);
765 VecInfo *vec;
767 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
769 if (s->vectpending_is_s_banked) {
770 vec = &s->sec_vectors[pending];
771 } else {
772 vec = &s->vectors[pending];
775 assert(vec->enabled);
776 assert(vec->pending);
778 assert(s->vectpending_prio < running);
780 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
782 vec->active = 1;
783 vec->pending = 0;
785 write_v7m_exception(env, s->vectpending);
787 nvic_irq_update(s);
790 void armv7m_nvic_get_pending_irq_info(void *opaque,
791 int *pirq, bool *ptargets_secure)
793 NVICState *s = (NVICState *)opaque;
794 const int pending = s->vectpending;
795 bool targets_secure;
797 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
799 if (s->vectpending_is_s_banked) {
800 targets_secure = true;
801 } else {
802 targets_secure = !exc_is_banked(pending) &&
803 exc_targets_secure(s, pending);
806 trace_nvic_get_pending_irq_info(pending, targets_secure);
808 *ptargets_secure = targets_secure;
809 *pirq = pending;
812 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
814 NVICState *s = (NVICState *)opaque;
815 VecInfo *vec = NULL;
816 int ret;
818 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
821 * For negative priorities, v8M will forcibly deactivate the appropriate
822 * NMI or HardFault regardless of what interrupt we're being asked to
823 * deactivate (compare the DeActivate() pseudocode). This is a guard
824 * against software returning from NMI or HardFault with a corrupted
825 * IPSR and leaving the CPU in a negative-priority state.
826 * v7M does not do this, but simply deactivates the requested interrupt.
828 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
829 switch (armv7m_nvic_raw_execution_priority(s)) {
830 case -1:
831 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
832 vec = &s->vectors[ARMV7M_EXCP_HARD];
833 } else {
834 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
836 break;
837 case -2:
838 vec = &s->vectors[ARMV7M_EXCP_NMI];
839 break;
840 case -3:
841 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
842 break;
843 default:
844 break;
848 if (!vec) {
849 if (secure && exc_is_banked(irq)) {
850 vec = &s->sec_vectors[irq];
851 } else {
852 vec = &s->vectors[irq];
856 trace_nvic_complete_irq(irq, secure);
858 if (!vec->active) {
859 /* Tell the caller this was an illegal exception return */
860 return -1;
864 * If this is a configurable exception and it is currently
865 * targeting the opposite security state from the one we're trying
866 * to complete it for, this counts as an illegal exception return.
867 * We still need to deactivate whatever vector the logic above has
868 * selected, though, as it might not be the same as the one for the
869 * requested exception number.
871 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
872 ret = -1;
873 } else {
874 ret = nvic_rettobase(s);
877 vec->active = 0;
878 if (vec->level) {
879 /* Re-pend the exception if it's still held high; only
880 * happens for extenal IRQs
882 assert(irq >= NVIC_FIRST_IRQ);
883 vec->pending = 1;
886 nvic_irq_update(s);
888 return ret;
891 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
894 * Return whether an exception is "ready", i.e. it is enabled and is
895 * configured at a priority which would allow it to interrupt the
896 * current execution priority.
898 * irq and secure have the same semantics as for armv7m_nvic_set_pending():
899 * for non-banked exceptions secure is always false; for banked exceptions
900 * it indicates which of the exceptions is required.
902 NVICState *s = (NVICState *)opaque;
903 bool banked = exc_is_banked(irq);
904 VecInfo *vec;
905 int running = nvic_exec_prio(s);
907 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
908 assert(!secure || banked);
911 * HardFault is an odd special case: we always check against -1,
912 * even if we're secure and HardFault has priority -3; we never
913 * need to check for enabled state.
915 if (irq == ARMV7M_EXCP_HARD) {
916 return running > -1;
919 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
921 return vec->enabled &&
922 exc_group_prio(s, vec->prio, secure) < running;
925 /* callback when external interrupt line is changed */
926 static void set_irq_level(void *opaque, int n, int level)
928 NVICState *s = opaque;
929 VecInfo *vec;
931 n += NVIC_FIRST_IRQ;
933 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
935 trace_nvic_set_irq_level(n, level);
937 /* The pending status of an external interrupt is
938 * latched on rising edge and exception handler return.
940 * Pulsing the IRQ will always run the handler
941 * once, and the handler will re-run until the
942 * level is low when the handler completes.
944 vec = &s->vectors[n];
945 if (level != vec->level) {
946 vec->level = level;
947 if (level) {
948 armv7m_nvic_set_pending(s, n, false);
953 /* callback when external NMI line is changed */
954 static void nvic_nmi_trigger(void *opaque, int n, int level)
956 NVICState *s = opaque;
958 trace_nvic_set_nmi_level(level);
961 * The architecture doesn't specify whether NMI should share
962 * the normal-interrupt behaviour of being resampled on
963 * exception handler return. We choose not to, so just
964 * set NMI pending here and don't track the current level.
966 if (level) {
967 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
971 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
973 ARMCPU *cpu = s->cpu;
974 uint32_t val;
976 switch (offset) {
977 case 4: /* Interrupt Control Type. */
978 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
979 goto bad_offset;
981 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
982 case 0xc: /* CPPWR */
983 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
984 goto bad_offset;
986 /* We make the IMPDEF choice that nothing can ever go into a
987 * non-retentive power state, which allows us to RAZ/WI this.
989 return 0;
990 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
992 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
993 int i;
995 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
996 goto bad_offset;
998 if (!attrs.secure) {
999 return 0;
1001 val = 0;
1002 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1003 if (s->itns[startvec + i]) {
1004 val |= (1 << i);
1007 return val;
1009 case 0xd00: /* CPUID Base. */
1010 return cpu->midr;
1011 case 0xd04: /* Interrupt Control State (ICSR) */
1012 /* VECTACTIVE */
1013 val = cpu->env.v7m.exception;
1014 /* VECTPENDING */
1015 val |= (s->vectpending & 0xff) << 12;
1016 /* ISRPENDING - set if any external IRQ is pending */
1017 if (nvic_isrpending(s)) {
1018 val |= (1 << 22);
1020 /* RETTOBASE - set if only one handler is active */
1021 if (nvic_rettobase(s)) {
1022 val |= (1 << 11);
1024 if (attrs.secure) {
1025 /* PENDSTSET */
1026 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1027 val |= (1 << 26);
1029 /* PENDSVSET */
1030 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1031 val |= (1 << 28);
1033 } else {
1034 /* PENDSTSET */
1035 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1036 val |= (1 << 26);
1038 /* PENDSVSET */
1039 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1040 val |= (1 << 28);
1043 /* NMIPENDSET */
1044 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1045 && s->vectors[ARMV7M_EXCP_NMI].pending) {
1046 val |= (1 << 31);
1048 /* ISRPREEMPT: RES0 when halting debug not implemented */
1049 /* STTNS: RES0 for the Main Extension */
1050 return val;
1051 case 0xd08: /* Vector Table Offset. */
1052 return cpu->env.v7m.vecbase[attrs.secure];
1053 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1054 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1055 if (attrs.secure) {
1056 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1057 val |= cpu->env.v7m.aircr;
1058 } else {
1059 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1060 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1061 * security isn't supported then BFHFNMINS is RAO (and
1062 * the bit in env.v7m.aircr is always set).
1064 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1067 return val;
1068 case 0xd10: /* System Control. */
1069 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1070 goto bad_offset;
1072 return cpu->env.v7m.scr[attrs.secure];
1073 case 0xd14: /* Configuration Control. */
1074 /* The BFHFNMIGN bit is the only non-banked bit; we
1075 * keep it in the non-secure copy of the register.
1077 val = cpu->env.v7m.ccr[attrs.secure];
1078 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1079 return val;
1080 case 0xd24: /* System Handler Control and State (SHCSR) */
1081 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1082 goto bad_offset;
1084 val = 0;
1085 if (attrs.secure) {
1086 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1087 val |= (1 << 0);
1089 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1090 val |= (1 << 2);
1092 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1093 val |= (1 << 3);
1095 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1096 val |= (1 << 7);
1098 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1099 val |= (1 << 10);
1101 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1102 val |= (1 << 11);
1104 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1105 val |= (1 << 12);
1107 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1108 val |= (1 << 13);
1110 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1111 val |= (1 << 15);
1113 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1114 val |= (1 << 16);
1116 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1117 val |= (1 << 18);
1119 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1120 val |= (1 << 21);
1122 /* SecureFault is not banked but is always RAZ/WI to NS */
1123 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1124 val |= (1 << 4);
1126 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1127 val |= (1 << 19);
1129 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1130 val |= (1 << 20);
1132 } else {
1133 if (s->vectors[ARMV7M_EXCP_MEM].active) {
1134 val |= (1 << 0);
1136 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1137 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1138 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1139 val |= (1 << 2);
1141 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1142 val |= (1 << 21);
1145 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1146 val |= (1 << 3);
1148 if (s->vectors[ARMV7M_EXCP_SVC].active) {
1149 val |= (1 << 7);
1151 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1152 val |= (1 << 10);
1154 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1155 val |= (1 << 11);
1157 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1158 val |= (1 << 12);
1160 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1161 val |= (1 << 13);
1163 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1164 val |= (1 << 15);
1166 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1167 val |= (1 << 16);
1169 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1170 val |= (1 << 18);
1173 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1174 if (s->vectors[ARMV7M_EXCP_BUS].active) {
1175 val |= (1 << 1);
1177 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1178 val |= (1 << 14);
1180 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1181 val |= (1 << 17);
1183 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1184 s->vectors[ARMV7M_EXCP_NMI].active) {
1185 /* NMIACT is not present in v7M */
1186 val |= (1 << 5);
1190 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1191 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1192 val |= (1 << 8);
1194 return val;
1195 case 0xd2c: /* Hard Fault Status. */
1196 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1197 goto bad_offset;
1199 return cpu->env.v7m.hfsr;
1200 case 0xd30: /* Debug Fault Status. */
1201 return cpu->env.v7m.dfsr;
1202 case 0xd34: /* MMFAR MemManage Fault Address */
1203 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1204 goto bad_offset;
1206 return cpu->env.v7m.mmfar[attrs.secure];
1207 case 0xd38: /* Bus Fault Address. */
1208 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1209 goto bad_offset;
1211 if (!attrs.secure &&
1212 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1213 return 0;
1215 return cpu->env.v7m.bfar;
1216 case 0xd3c: /* Aux Fault Status. */
1217 /* TODO: Implement fault status registers. */
1218 qemu_log_mask(LOG_UNIMP,
1219 "Aux Fault status registers unimplemented\n");
1220 return 0;
1221 case 0xd40: /* PFR0. */
1222 return cpu->id_pfr0;
1223 case 0xd44: /* PFR1. */
1224 return cpu->id_pfr1;
1225 case 0xd48: /* DFR0. */
1226 return cpu->id_dfr0;
1227 case 0xd4c: /* AFR0. */
1228 return cpu->id_afr0;
1229 case 0xd50: /* MMFR0. */
1230 return cpu->id_mmfr0;
1231 case 0xd54: /* MMFR1. */
1232 return cpu->id_mmfr1;
1233 case 0xd58: /* MMFR2. */
1234 return cpu->id_mmfr2;
1235 case 0xd5c: /* MMFR3. */
1236 return cpu->id_mmfr3;
1237 case 0xd60: /* ISAR0. */
1238 return cpu->isar.id_isar0;
1239 case 0xd64: /* ISAR1. */
1240 return cpu->isar.id_isar1;
1241 case 0xd68: /* ISAR2. */
1242 return cpu->isar.id_isar2;
1243 case 0xd6c: /* ISAR3. */
1244 return cpu->isar.id_isar3;
1245 case 0xd70: /* ISAR4. */
1246 return cpu->isar.id_isar4;
1247 case 0xd74: /* ISAR5. */
1248 return cpu->isar.id_isar5;
1249 case 0xd78: /* CLIDR */
1250 return cpu->clidr;
1251 case 0xd7c: /* CTR */
1252 return cpu->ctr;
1253 case 0xd80: /* CSSIDR */
1255 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1256 return cpu->ccsidr[idx];
1258 case 0xd84: /* CSSELR */
1259 return cpu->env.v7m.csselr[attrs.secure];
1260 case 0xd88: /* CPACR */
1261 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1262 return 0;
1264 return cpu->env.v7m.cpacr[attrs.secure];
1265 case 0xd8c: /* NSACR */
1266 if (!attrs.secure || !arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1267 return 0;
1269 return cpu->env.v7m.nsacr;
1270 /* TODO: Implement debug registers. */
1271 case 0xd90: /* MPU_TYPE */
1272 /* Unified MPU; if the MPU is not present this value is zero */
1273 return cpu->pmsav7_dregion << 8;
1274 break;
1275 case 0xd94: /* MPU_CTRL */
1276 return cpu->env.v7m.mpu_ctrl[attrs.secure];
1277 case 0xd98: /* MPU_RNR */
1278 return cpu->env.pmsav7.rnr[attrs.secure];
1279 case 0xd9c: /* MPU_RBAR */
1280 case 0xda4: /* MPU_RBAR_A1 */
1281 case 0xdac: /* MPU_RBAR_A2 */
1282 case 0xdb4: /* MPU_RBAR_A3 */
1284 int region = cpu->env.pmsav7.rnr[attrs.secure];
1286 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1287 /* PMSAv8M handling of the aliases is different from v7M:
1288 * aliases A1, A2, A3 override the low two bits of the region
1289 * number in MPU_RNR, and there is no 'region' field in the
1290 * RBAR register.
1292 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1293 if (aliasno) {
1294 region = deposit32(region, 0, 2, aliasno);
1296 if (region >= cpu->pmsav7_dregion) {
1297 return 0;
1299 return cpu->env.pmsav8.rbar[attrs.secure][region];
1302 if (region >= cpu->pmsav7_dregion) {
1303 return 0;
1305 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1307 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1308 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1309 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1310 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1312 int region = cpu->env.pmsav7.rnr[attrs.secure];
1314 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1315 /* PMSAv8M handling of the aliases is different from v7M:
1316 * aliases A1, A2, A3 override the low two bits of the region
1317 * number in MPU_RNR.
1319 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1320 if (aliasno) {
1321 region = deposit32(region, 0, 2, aliasno);
1323 if (region >= cpu->pmsav7_dregion) {
1324 return 0;
1326 return cpu->env.pmsav8.rlar[attrs.secure][region];
1329 if (region >= cpu->pmsav7_dregion) {
1330 return 0;
1332 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1333 (cpu->env.pmsav7.drsr[region] & 0xffff);
1335 case 0xdc0: /* MPU_MAIR0 */
1336 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1337 goto bad_offset;
1339 return cpu->env.pmsav8.mair0[attrs.secure];
1340 case 0xdc4: /* MPU_MAIR1 */
1341 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1342 goto bad_offset;
1344 return cpu->env.pmsav8.mair1[attrs.secure];
1345 case 0xdd0: /* SAU_CTRL */
1346 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1347 goto bad_offset;
1349 if (!attrs.secure) {
1350 return 0;
1352 return cpu->env.sau.ctrl;
1353 case 0xdd4: /* SAU_TYPE */
1354 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1355 goto bad_offset;
1357 if (!attrs.secure) {
1358 return 0;
1360 return cpu->sau_sregion;
1361 case 0xdd8: /* SAU_RNR */
1362 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1363 goto bad_offset;
1365 if (!attrs.secure) {
1366 return 0;
1368 return cpu->env.sau.rnr;
1369 case 0xddc: /* SAU_RBAR */
1371 int region = cpu->env.sau.rnr;
1373 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1374 goto bad_offset;
1376 if (!attrs.secure) {
1377 return 0;
1379 if (region >= cpu->sau_sregion) {
1380 return 0;
1382 return cpu->env.sau.rbar[region];
1384 case 0xde0: /* SAU_RLAR */
1386 int region = cpu->env.sau.rnr;
1388 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1389 goto bad_offset;
1391 if (!attrs.secure) {
1392 return 0;
1394 if (region >= cpu->sau_sregion) {
1395 return 0;
1397 return cpu->env.sau.rlar[region];
1399 case 0xde4: /* SFSR */
1400 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1401 goto bad_offset;
1403 if (!attrs.secure) {
1404 return 0;
1406 return cpu->env.v7m.sfsr;
1407 case 0xde8: /* SFAR */
1408 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1409 goto bad_offset;
1411 if (!attrs.secure) {
1412 return 0;
1414 return cpu->env.v7m.sfar;
1415 case 0xf34: /* FPCCR */
1416 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1417 return 0;
1419 if (attrs.secure) {
1420 return cpu->env.v7m.fpccr[M_REG_S];
1421 } else {
1423 * NS can read LSPEN, CLRONRET and MONRDY. It can read
1424 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1425 * other non-banked bits RAZ.
1426 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1428 uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1429 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1430 R_V7M_FPCCR_CLRONRET_MASK |
1431 R_V7M_FPCCR_MONRDY_MASK;
1433 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1434 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1437 value &= mask;
1439 value |= cpu->env.v7m.fpccr[M_REG_NS];
1440 return value;
1442 case 0xf38: /* FPCAR */
1443 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1444 return 0;
1446 return cpu->env.v7m.fpcar[attrs.secure];
1447 case 0xf3c: /* FPDSCR */
1448 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1449 return 0;
1451 return cpu->env.v7m.fpdscr[attrs.secure];
1452 case 0xf40: /* MVFR0 */
1453 return cpu->isar.mvfr0;
1454 case 0xf44: /* MVFR1 */
1455 return cpu->isar.mvfr1;
1456 case 0xf48: /* MVFR2 */
1457 return cpu->isar.mvfr2;
1458 default:
1459 bad_offset:
1460 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1461 return 0;
1465 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1466 MemTxAttrs attrs)
1468 ARMCPU *cpu = s->cpu;
1470 switch (offset) {
1471 case 0xc: /* CPPWR */
1472 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1473 goto bad_offset;
1475 /* Make the IMPDEF choice to RAZ/WI this. */
1476 break;
1477 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1479 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1480 int i;
1482 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1483 goto bad_offset;
1485 if (!attrs.secure) {
1486 break;
1488 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1489 s->itns[startvec + i] = (value >> i) & 1;
1491 nvic_irq_update(s);
1492 break;
1494 case 0xd04: /* Interrupt Control State (ICSR) */
1495 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1496 if (value & (1 << 31)) {
1497 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1498 } else if (value & (1 << 30) &&
1499 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1500 /* PENDNMICLR didn't exist in v7M */
1501 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1504 if (value & (1 << 28)) {
1505 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1506 } else if (value & (1 << 27)) {
1507 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1509 if (value & (1 << 26)) {
1510 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1511 } else if (value & (1 << 25)) {
1512 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1514 break;
1515 case 0xd08: /* Vector Table Offset. */
1516 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1517 break;
1518 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1519 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1520 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1521 if (attrs.secure ||
1522 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1523 qemu_irq_pulse(s->sysresetreq);
1526 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1527 qemu_log_mask(LOG_GUEST_ERROR,
1528 "Setting VECTCLRACTIVE when not in DEBUG mode "
1529 "is UNPREDICTABLE\n");
1531 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1532 /* NB: this bit is RES0 in v8M */
1533 qemu_log_mask(LOG_GUEST_ERROR,
1534 "Setting VECTRESET when not in DEBUG mode "
1535 "is UNPREDICTABLE\n");
1537 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1538 s->prigroup[attrs.secure] =
1539 extract32(value,
1540 R_V7M_AIRCR_PRIGROUP_SHIFT,
1541 R_V7M_AIRCR_PRIGROUP_LENGTH);
1543 if (attrs.secure) {
1544 /* These bits are only writable by secure */
1545 cpu->env.v7m.aircr = value &
1546 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1547 R_V7M_AIRCR_BFHFNMINS_MASK |
1548 R_V7M_AIRCR_PRIS_MASK);
1549 /* BFHFNMINS changes the priority of Secure HardFault, and
1550 * allows a pending Non-secure HardFault to preempt (which
1551 * we implement by marking it enabled).
1553 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1554 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1555 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1556 } else {
1557 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1558 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1561 nvic_irq_update(s);
1563 break;
1564 case 0xd10: /* System Control. */
1565 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1566 goto bad_offset;
1568 /* We don't implement deep-sleep so these bits are RAZ/WI.
1569 * The other bits in the register are banked.
1570 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1571 * is architecturally permitted.
1573 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1574 cpu->env.v7m.scr[attrs.secure] = value;
1575 break;
1576 case 0xd14: /* Configuration Control. */
1577 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1578 goto bad_offset;
1581 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1582 value &= (R_V7M_CCR_STKALIGN_MASK |
1583 R_V7M_CCR_BFHFNMIGN_MASK |
1584 R_V7M_CCR_DIV_0_TRP_MASK |
1585 R_V7M_CCR_UNALIGN_TRP_MASK |
1586 R_V7M_CCR_USERSETMPEND_MASK |
1587 R_V7M_CCR_NONBASETHRDENA_MASK);
1589 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1590 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1591 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1592 | R_V7M_CCR_STKALIGN_MASK;
1594 if (attrs.secure) {
1595 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1596 cpu->env.v7m.ccr[M_REG_NS] =
1597 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1598 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1599 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1602 cpu->env.v7m.ccr[attrs.secure] = value;
1603 break;
1604 case 0xd24: /* System Handler Control and State (SHCSR) */
1605 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1606 goto bad_offset;
1608 if (attrs.secure) {
1609 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1610 /* Secure HardFault active bit cannot be written */
1611 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1612 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1613 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1614 (value & (1 << 10)) != 0;
1615 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1616 (value & (1 << 11)) != 0;
1617 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1618 (value & (1 << 12)) != 0;
1619 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1620 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1621 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1622 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1623 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1624 (value & (1 << 18)) != 0;
1625 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1626 /* SecureFault not banked, but RAZ/WI to NS */
1627 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1628 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1629 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1630 } else {
1631 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1632 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1633 /* HARDFAULTPENDED is not present in v7M */
1634 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1636 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1637 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1638 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1639 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1640 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1641 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1642 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1643 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1644 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1646 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1647 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1648 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1649 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1651 /* NMIACT can only be written if the write is of a zero, with
1652 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1654 if (!attrs.secure && cpu->env.v7m.secure &&
1655 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1656 (value & (1 << 5)) == 0) {
1657 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1659 /* HARDFAULTACT can only be written if the write is of a zero
1660 * to the non-secure HardFault state by the CPU in secure state.
1661 * The only case where we can be targeting the non-secure HF state
1662 * when in secure state is if this is a write via the NS alias
1663 * and BFHFNMINS is 1.
1665 if (!attrs.secure && cpu->env.v7m.secure &&
1666 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1667 (value & (1 << 2)) == 0) {
1668 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1671 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1672 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1673 nvic_irq_update(s);
1674 break;
1675 case 0xd2c: /* Hard Fault Status. */
1676 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1677 goto bad_offset;
1679 cpu->env.v7m.hfsr &= ~value; /* W1C */
1680 break;
1681 case 0xd30: /* Debug Fault Status. */
1682 cpu->env.v7m.dfsr &= ~value; /* W1C */
1683 break;
1684 case 0xd34: /* Mem Manage Address. */
1685 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1686 goto bad_offset;
1688 cpu->env.v7m.mmfar[attrs.secure] = value;
1689 return;
1690 case 0xd38: /* Bus Fault Address. */
1691 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1692 goto bad_offset;
1694 if (!attrs.secure &&
1695 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1696 return;
1698 cpu->env.v7m.bfar = value;
1699 return;
1700 case 0xd3c: /* Aux Fault Status. */
1701 qemu_log_mask(LOG_UNIMP,
1702 "NVIC: Aux fault status registers unimplemented\n");
1703 break;
1704 case 0xd84: /* CSSELR */
1705 if (!arm_v7m_csselr_razwi(cpu)) {
1706 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1708 break;
1709 case 0xd88: /* CPACR */
1710 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1711 /* We implement only the Floating Point extension's CP10/CP11 */
1712 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1714 break;
1715 case 0xd8c: /* NSACR */
1716 if (attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1717 /* We implement only the Floating Point extension's CP10/CP11 */
1718 cpu->env.v7m.nsacr = value & (3 << 10);
1720 break;
1721 case 0xd90: /* MPU_TYPE */
1722 return; /* RO */
1723 case 0xd94: /* MPU_CTRL */
1724 if ((value &
1725 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1726 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1727 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1728 "UNPREDICTABLE\n");
1730 cpu->env.v7m.mpu_ctrl[attrs.secure]
1731 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1732 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1733 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1734 tlb_flush(CPU(cpu));
1735 break;
1736 case 0xd98: /* MPU_RNR */
1737 if (value >= cpu->pmsav7_dregion) {
1738 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1739 PRIu32 "/%" PRIu32 "\n",
1740 value, cpu->pmsav7_dregion);
1741 } else {
1742 cpu->env.pmsav7.rnr[attrs.secure] = value;
1744 break;
1745 case 0xd9c: /* MPU_RBAR */
1746 case 0xda4: /* MPU_RBAR_A1 */
1747 case 0xdac: /* MPU_RBAR_A2 */
1748 case 0xdb4: /* MPU_RBAR_A3 */
1750 int region;
1752 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1753 /* PMSAv8M handling of the aliases is different from v7M:
1754 * aliases A1, A2, A3 override the low two bits of the region
1755 * number in MPU_RNR, and there is no 'region' field in the
1756 * RBAR register.
1758 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1760 region = cpu->env.pmsav7.rnr[attrs.secure];
1761 if (aliasno) {
1762 region = deposit32(region, 0, 2, aliasno);
1764 if (region >= cpu->pmsav7_dregion) {
1765 return;
1767 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1768 tlb_flush(CPU(cpu));
1769 return;
1772 if (value & (1 << 4)) {
1773 /* VALID bit means use the region number specified in this
1774 * value and also update MPU_RNR.REGION with that value.
1776 region = extract32(value, 0, 4);
1777 if (region >= cpu->pmsav7_dregion) {
1778 qemu_log_mask(LOG_GUEST_ERROR,
1779 "MPU region out of range %u/%" PRIu32 "\n",
1780 region, cpu->pmsav7_dregion);
1781 return;
1783 cpu->env.pmsav7.rnr[attrs.secure] = region;
1784 } else {
1785 region = cpu->env.pmsav7.rnr[attrs.secure];
1788 if (region >= cpu->pmsav7_dregion) {
1789 return;
1792 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1793 tlb_flush(CPU(cpu));
1794 break;
1796 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1797 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1798 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1799 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1801 int region = cpu->env.pmsav7.rnr[attrs.secure];
1803 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1804 /* PMSAv8M handling of the aliases is different from v7M:
1805 * aliases A1, A2, A3 override the low two bits of the region
1806 * number in MPU_RNR.
1808 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1810 region = cpu->env.pmsav7.rnr[attrs.secure];
1811 if (aliasno) {
1812 region = deposit32(region, 0, 2, aliasno);
1814 if (region >= cpu->pmsav7_dregion) {
1815 return;
1817 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1818 tlb_flush(CPU(cpu));
1819 return;
1822 if (region >= cpu->pmsav7_dregion) {
1823 return;
1826 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1827 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1828 tlb_flush(CPU(cpu));
1829 break;
1831 case 0xdc0: /* MPU_MAIR0 */
1832 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1833 goto bad_offset;
1835 if (cpu->pmsav7_dregion) {
1836 /* Register is RES0 if no MPU regions are implemented */
1837 cpu->env.pmsav8.mair0[attrs.secure] = value;
1839 /* We don't need to do anything else because memory attributes
1840 * only affect cacheability, and we don't implement caching.
1842 break;
1843 case 0xdc4: /* MPU_MAIR1 */
1844 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1845 goto bad_offset;
1847 if (cpu->pmsav7_dregion) {
1848 /* Register is RES0 if no MPU regions are implemented */
1849 cpu->env.pmsav8.mair1[attrs.secure] = value;
1851 /* We don't need to do anything else because memory attributes
1852 * only affect cacheability, and we don't implement caching.
1854 break;
1855 case 0xdd0: /* SAU_CTRL */
1856 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1857 goto bad_offset;
1859 if (!attrs.secure) {
1860 return;
1862 cpu->env.sau.ctrl = value & 3;
1863 break;
1864 case 0xdd4: /* SAU_TYPE */
1865 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1866 goto bad_offset;
1868 break;
1869 case 0xdd8: /* SAU_RNR */
1870 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1871 goto bad_offset;
1873 if (!attrs.secure) {
1874 return;
1876 if (value >= cpu->sau_sregion) {
1877 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1878 PRIu32 "/%" PRIu32 "\n",
1879 value, cpu->sau_sregion);
1880 } else {
1881 cpu->env.sau.rnr = value;
1883 break;
1884 case 0xddc: /* SAU_RBAR */
1886 int region = cpu->env.sau.rnr;
1888 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1889 goto bad_offset;
1891 if (!attrs.secure) {
1892 return;
1894 if (region >= cpu->sau_sregion) {
1895 return;
1897 cpu->env.sau.rbar[region] = value & ~0x1f;
1898 tlb_flush(CPU(cpu));
1899 break;
1901 case 0xde0: /* SAU_RLAR */
1903 int region = cpu->env.sau.rnr;
1905 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1906 goto bad_offset;
1908 if (!attrs.secure) {
1909 return;
1911 if (region >= cpu->sau_sregion) {
1912 return;
1914 cpu->env.sau.rlar[region] = value & ~0x1c;
1915 tlb_flush(CPU(cpu));
1916 break;
1918 case 0xde4: /* SFSR */
1919 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1920 goto bad_offset;
1922 if (!attrs.secure) {
1923 return;
1925 cpu->env.v7m.sfsr &= ~value; /* W1C */
1926 break;
1927 case 0xde8: /* SFAR */
1928 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1929 goto bad_offset;
1931 if (!attrs.secure) {
1932 return;
1934 cpu->env.v7m.sfsr = value;
1935 break;
1936 case 0xf00: /* Software Triggered Interrupt Register */
1938 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1940 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1941 goto bad_offset;
1944 if (excnum < s->num_irq) {
1945 armv7m_nvic_set_pending(s, excnum, false);
1947 break;
1949 case 0xf34: /* FPCCR */
1950 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1951 /* Not all bits here are banked. */
1952 uint32_t fpccr_s;
1954 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1955 /* Don't allow setting of bits not present in v7M */
1956 value &= (R_V7M_FPCCR_LSPACT_MASK |
1957 R_V7M_FPCCR_USER_MASK |
1958 R_V7M_FPCCR_THREAD_MASK |
1959 R_V7M_FPCCR_HFRDY_MASK |
1960 R_V7M_FPCCR_MMRDY_MASK |
1961 R_V7M_FPCCR_BFRDY_MASK |
1962 R_V7M_FPCCR_MONRDY_MASK |
1963 R_V7M_FPCCR_LSPEN_MASK |
1964 R_V7M_FPCCR_ASPEN_MASK);
1966 value &= ~R_V7M_FPCCR_RES0_MASK;
1968 if (!attrs.secure) {
1969 /* Some non-banked bits are configurably writable by NS */
1970 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
1971 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
1972 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
1973 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
1975 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
1976 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
1977 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
1979 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1980 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
1981 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
1982 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1983 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1985 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
1987 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
1988 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1992 * All other non-banked bits are RAZ/WI from NS; write
1993 * just the banked bits to fpccr[M_REG_NS].
1995 value &= R_V7M_FPCCR_BANKED_MASK;
1996 cpu->env.v7m.fpccr[M_REG_NS] = value;
1997 } else {
1998 fpccr_s = value;
2000 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2002 break;
2003 case 0xf38: /* FPCAR */
2004 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
2005 value &= ~7;
2006 cpu->env.v7m.fpcar[attrs.secure] = value;
2008 break;
2009 case 0xf3c: /* FPDSCR */
2010 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
2011 value &= 0x07c00000;
2012 cpu->env.v7m.fpdscr[attrs.secure] = value;
2014 break;
2015 case 0xf50: /* ICIALLU */
2016 case 0xf58: /* ICIMVAU */
2017 case 0xf5c: /* DCIMVAC */
2018 case 0xf60: /* DCISW */
2019 case 0xf64: /* DCCMVAU */
2020 case 0xf68: /* DCCMVAC */
2021 case 0xf6c: /* DCCSW */
2022 case 0xf70: /* DCCIMVAC */
2023 case 0xf74: /* DCCISW */
2024 case 0xf78: /* BPIALL */
2025 /* Cache and branch predictor maintenance: for QEMU these always NOP */
2026 break;
2027 default:
2028 bad_offset:
2029 qemu_log_mask(LOG_GUEST_ERROR,
2030 "NVIC: Bad write offset 0x%x\n", offset);
2034 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2036 /* Return true if unprivileged access to this register is permitted. */
2037 switch (offset) {
2038 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2039 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2040 * controls access even though the CPU is in Secure state (I_QDKX).
2042 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2043 default:
2044 /* All other user accesses cause a BusFault unconditionally */
2045 return false;
2049 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2051 /* Behaviour for the SHPR register field for this exception:
2052 * return M_REG_NS to use the nonsecure vector (including for
2053 * non-banked exceptions), M_REG_S for the secure version of
2054 * a banked exception, and -1 if this field should RAZ/WI.
2056 switch (exc) {
2057 case ARMV7M_EXCP_MEM:
2058 case ARMV7M_EXCP_USAGE:
2059 case ARMV7M_EXCP_SVC:
2060 case ARMV7M_EXCP_PENDSV:
2061 case ARMV7M_EXCP_SYSTICK:
2062 /* Banked exceptions */
2063 return attrs.secure;
2064 case ARMV7M_EXCP_BUS:
2065 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2066 if (!attrs.secure &&
2067 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2068 return -1;
2070 return M_REG_NS;
2071 case ARMV7M_EXCP_SECURE:
2072 /* Not banked, RAZ/WI from nonsecure */
2073 if (!attrs.secure) {
2074 return -1;
2076 return M_REG_NS;
2077 case ARMV7M_EXCP_DEBUG:
2078 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2079 return M_REG_NS;
2080 case 8 ... 10:
2081 case 13:
2082 /* RES0 */
2083 return -1;
2084 default:
2085 /* Not reachable due to decode of SHPR register addresses */
2086 g_assert_not_reached();
2090 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2091 uint64_t *data, unsigned size,
2092 MemTxAttrs attrs)
2094 NVICState *s = (NVICState *)opaque;
2095 uint32_t offset = addr;
2096 unsigned i, startvec, end;
2097 uint32_t val;
2099 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2100 /* Generate BusFault for unprivileged accesses */
2101 return MEMTX_ERROR;
2104 switch (offset) {
2105 /* reads of set and clear both return the status */
2106 case 0x100 ... 0x13f: /* NVIC Set enable */
2107 offset += 0x80;
2108 /* fall through */
2109 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2110 val = 0;
2111 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2113 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2114 if (s->vectors[startvec + i].enabled &&
2115 (attrs.secure || s->itns[startvec + i])) {
2116 val |= (1 << i);
2119 break;
2120 case 0x200 ... 0x23f: /* NVIC Set pend */
2121 offset += 0x80;
2122 /* fall through */
2123 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2124 val = 0;
2125 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2126 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2127 if (s->vectors[startvec + i].pending &&
2128 (attrs.secure || s->itns[startvec + i])) {
2129 val |= (1 << i);
2132 break;
2133 case 0x300 ... 0x33f: /* NVIC Active */
2134 val = 0;
2136 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2137 break;
2140 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2142 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2143 if (s->vectors[startvec + i].active &&
2144 (attrs.secure || s->itns[startvec + i])) {
2145 val |= (1 << i);
2148 break;
2149 case 0x400 ... 0x5ef: /* NVIC Priority */
2150 val = 0;
2151 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2153 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2154 if (attrs.secure || s->itns[startvec + i]) {
2155 val |= s->vectors[startvec + i].prio << (8 * i);
2158 break;
2159 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2160 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2161 val = 0;
2162 break;
2164 /* fall through */
2165 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2166 val = 0;
2167 for (i = 0; i < size; i++) {
2168 unsigned hdlidx = (offset - 0xd14) + i;
2169 int sbank = shpr_bank(s, hdlidx, attrs);
2171 if (sbank < 0) {
2172 continue;
2174 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2176 break;
2177 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2178 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2179 val = 0;
2180 break;
2183 * The BFSR bits [15:8] are shared between security states
2184 * and we store them in the NS copy. They are RAZ/WI for
2185 * NS code if AIRCR.BFHFNMINS is 0.
2187 val = s->cpu->env.v7m.cfsr[attrs.secure];
2188 if (!attrs.secure &&
2189 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2190 val &= ~R_V7M_CFSR_BFSR_MASK;
2191 } else {
2192 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2194 val = extract32(val, (offset - 0xd28) * 8, size * 8);
2195 break;
2196 case 0xfe0 ... 0xfff: /* ID. */
2197 if (offset & 3) {
2198 val = 0;
2199 } else {
2200 val = nvic_id[(offset - 0xfe0) >> 2];
2202 break;
2203 default:
2204 if (size == 4) {
2205 val = nvic_readl(s, offset, attrs);
2206 } else {
2207 qemu_log_mask(LOG_GUEST_ERROR,
2208 "NVIC: Bad read of size %d at offset 0x%x\n",
2209 size, offset);
2210 val = 0;
2214 trace_nvic_sysreg_read(addr, val, size);
2215 *data = val;
2216 return MEMTX_OK;
2219 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2220 uint64_t value, unsigned size,
2221 MemTxAttrs attrs)
2223 NVICState *s = (NVICState *)opaque;
2224 uint32_t offset = addr;
2225 unsigned i, startvec, end;
2226 unsigned setval = 0;
2228 trace_nvic_sysreg_write(addr, value, size);
2230 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2231 /* Generate BusFault for unprivileged accesses */
2232 return MEMTX_ERROR;
2235 switch (offset) {
2236 case 0x100 ... 0x13f: /* NVIC Set enable */
2237 offset += 0x80;
2238 setval = 1;
2239 /* fall through */
2240 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2241 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2243 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2244 if (value & (1 << i) &&
2245 (attrs.secure || s->itns[startvec + i])) {
2246 s->vectors[startvec + i].enabled = setval;
2249 nvic_irq_update(s);
2250 return MEMTX_OK;
2251 case 0x200 ... 0x23f: /* NVIC Set pend */
2252 /* the special logic in armv7m_nvic_set_pending()
2253 * is not needed since IRQs are never escalated
2255 offset += 0x80;
2256 setval = 1;
2257 /* fall through */
2258 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2259 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2261 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2262 if (value & (1 << i) &&
2263 (attrs.secure || s->itns[startvec + i])) {
2264 s->vectors[startvec + i].pending = setval;
2267 nvic_irq_update(s);
2268 return MEMTX_OK;
2269 case 0x300 ... 0x33f: /* NVIC Active */
2270 return MEMTX_OK; /* R/O */
2271 case 0x400 ... 0x5ef: /* NVIC Priority */
2272 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2274 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2275 if (attrs.secure || s->itns[startvec + i]) {
2276 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2279 nvic_irq_update(s);
2280 return MEMTX_OK;
2281 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2282 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2283 return MEMTX_OK;
2285 /* fall through */
2286 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2287 for (i = 0; i < size; i++) {
2288 unsigned hdlidx = (offset - 0xd14) + i;
2289 int newprio = extract32(value, i * 8, 8);
2290 int sbank = shpr_bank(s, hdlidx, attrs);
2292 if (sbank < 0) {
2293 continue;
2295 set_prio(s, hdlidx, sbank, newprio);
2297 nvic_irq_update(s);
2298 return MEMTX_OK;
2299 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2300 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2301 return MEMTX_OK;
2303 /* All bits are W1C, so construct 32 bit value with 0s in
2304 * the parts not written by the access size
2306 value <<= ((offset - 0xd28) * 8);
2308 if (!attrs.secure &&
2309 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2310 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2311 value &= ~R_V7M_CFSR_BFSR_MASK;
2314 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2315 if (attrs.secure) {
2316 /* The BFSR bits [15:8] are shared between security states
2317 * and we store them in the NS copy.
2319 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2321 return MEMTX_OK;
2323 if (size == 4) {
2324 nvic_writel(s, offset, value, attrs);
2325 return MEMTX_OK;
2327 qemu_log_mask(LOG_GUEST_ERROR,
2328 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2329 /* This is UNPREDICTABLE; treat as RAZ/WI */
2330 return MEMTX_OK;
2333 static const MemoryRegionOps nvic_sysreg_ops = {
2334 .read_with_attrs = nvic_sysreg_read,
2335 .write_with_attrs = nvic_sysreg_write,
2336 .endianness = DEVICE_NATIVE_ENDIAN,
2339 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2340 uint64_t value, unsigned size,
2341 MemTxAttrs attrs)
2343 MemoryRegion *mr = opaque;
2345 if (attrs.secure) {
2346 /* S accesses to the alias act like NS accesses to the real region */
2347 attrs.secure = 0;
2348 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2349 } else {
2350 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2351 if (attrs.user) {
2352 return MEMTX_ERROR;
2354 return MEMTX_OK;
2358 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2359 uint64_t *data, unsigned size,
2360 MemTxAttrs attrs)
2362 MemoryRegion *mr = opaque;
2364 if (attrs.secure) {
2365 /* S accesses to the alias act like NS accesses to the real region */
2366 attrs.secure = 0;
2367 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2368 } else {
2369 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2370 if (attrs.user) {
2371 return MEMTX_ERROR;
2373 *data = 0;
2374 return MEMTX_OK;
2378 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2379 .read_with_attrs = nvic_sysreg_ns_read,
2380 .write_with_attrs = nvic_sysreg_ns_write,
2381 .endianness = DEVICE_NATIVE_ENDIAN,
2384 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2385 uint64_t value, unsigned size,
2386 MemTxAttrs attrs)
2388 NVICState *s = opaque;
2389 MemoryRegion *mr;
2391 /* Direct the access to the correct systick */
2392 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2393 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2396 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2397 uint64_t *data, unsigned size,
2398 MemTxAttrs attrs)
2400 NVICState *s = opaque;
2401 MemoryRegion *mr;
2403 /* Direct the access to the correct systick */
2404 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2405 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2408 static const MemoryRegionOps nvic_systick_ops = {
2409 .read_with_attrs = nvic_systick_read,
2410 .write_with_attrs = nvic_systick_write,
2411 .endianness = DEVICE_NATIVE_ENDIAN,
2414 static int nvic_post_load(void *opaque, int version_id)
2416 NVICState *s = opaque;
2417 unsigned i;
2418 int resetprio;
2420 /* Check for out of range priority settings */
2421 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2423 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2424 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2425 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2426 return 1;
2428 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2429 if (s->vectors[i].prio & ~0xff) {
2430 return 1;
2434 nvic_recompute_state(s);
2436 return 0;
2439 static const VMStateDescription vmstate_VecInfo = {
2440 .name = "armv7m_nvic_info",
2441 .version_id = 1,
2442 .minimum_version_id = 1,
2443 .fields = (VMStateField[]) {
2444 VMSTATE_INT16(prio, VecInfo),
2445 VMSTATE_UINT8(enabled, VecInfo),
2446 VMSTATE_UINT8(pending, VecInfo),
2447 VMSTATE_UINT8(active, VecInfo),
2448 VMSTATE_UINT8(level, VecInfo),
2449 VMSTATE_END_OF_LIST()
2453 static bool nvic_security_needed(void *opaque)
2455 NVICState *s = opaque;
2457 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2460 static int nvic_security_post_load(void *opaque, int version_id)
2462 NVICState *s = opaque;
2463 int i;
2465 /* Check for out of range priority settings */
2466 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2467 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2468 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2469 * if the CPU state has been migrated yet; a mismatch won't
2470 * cause the emulation to blow up, though.
2472 return 1;
2474 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2475 if (s->sec_vectors[i].prio & ~0xff) {
2476 return 1;
2479 return 0;
2482 static const VMStateDescription vmstate_nvic_security = {
2483 .name = "armv7m_nvic/m-security",
2484 .version_id = 1,
2485 .minimum_version_id = 1,
2486 .needed = nvic_security_needed,
2487 .post_load = &nvic_security_post_load,
2488 .fields = (VMStateField[]) {
2489 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2490 vmstate_VecInfo, VecInfo),
2491 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2492 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2493 VMSTATE_END_OF_LIST()
2497 static const VMStateDescription vmstate_nvic = {
2498 .name = "armv7m_nvic",
2499 .version_id = 4,
2500 .minimum_version_id = 4,
2501 .post_load = &nvic_post_load,
2502 .fields = (VMStateField[]) {
2503 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2504 vmstate_VecInfo, VecInfo),
2505 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2506 VMSTATE_END_OF_LIST()
2508 .subsections = (const VMStateDescription*[]) {
2509 &vmstate_nvic_security,
2510 NULL
2514 static Property props_nvic[] = {
2515 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2516 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2517 DEFINE_PROP_END_OF_LIST()
2520 static void armv7m_nvic_reset(DeviceState *dev)
2522 int resetprio;
2523 NVICState *s = NVIC(dev);
2525 memset(s->vectors, 0, sizeof(s->vectors));
2526 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2527 s->prigroup[M_REG_NS] = 0;
2528 s->prigroup[M_REG_S] = 0;
2530 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2531 /* MEM, BUS, and USAGE are enabled through
2532 * the System Handler Control register
2534 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2535 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2536 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2538 /* DebugMonitor is enabled via DEMCR.MON_EN */
2539 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2541 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2542 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2543 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2544 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2546 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2547 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2548 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2549 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2550 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2552 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2553 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2554 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2555 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2556 } else {
2557 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2560 /* Strictly speaking the reset handler should be enabled.
2561 * However, we don't simulate soft resets through the NVIC,
2562 * and the reset vector should never be pended.
2563 * So we leave it disabled to catch logic errors.
2566 s->exception_prio = NVIC_NOEXC_PRIO;
2567 s->vectpending = 0;
2568 s->vectpending_is_s_banked = false;
2569 s->vectpending_prio = NVIC_NOEXC_PRIO;
2571 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2572 memset(s->itns, 0, sizeof(s->itns));
2573 } else {
2574 /* This state is constant and not guest accessible in a non-security
2575 * NVIC; we set the bits to true to avoid having to do a feature
2576 * bit check in the NVIC enable/pend/etc register accessors.
2578 int i;
2580 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2581 s->itns[i] = true;
2586 static void nvic_systick_trigger(void *opaque, int n, int level)
2588 NVICState *s = opaque;
2590 if (level) {
2591 /* SysTick just asked us to pend its exception.
2592 * (This is different from an external interrupt line's
2593 * behaviour.)
2594 * n == 0 : NonSecure systick
2595 * n == 1 : Secure systick
2597 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2601 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2603 NVICState *s = NVIC(dev);
2604 Error *err = NULL;
2605 int regionlen;
2607 /* The armv7m container object will have set our CPU pointer */
2608 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2609 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2610 return;
2613 if (s->num_irq > NVIC_MAX_IRQ) {
2614 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2615 return;
2618 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2620 /* include space for internal exception vectors */
2621 s->num_irq += NVIC_FIRST_IRQ;
2623 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2625 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2626 "realized", &err);
2627 if (err != NULL) {
2628 error_propagate(errp, err);
2629 return;
2631 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2632 qdev_get_gpio_in_named(dev, "systick-trigger",
2633 M_REG_NS));
2635 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2636 /* We couldn't init the secure systick device in instance_init
2637 * as we didn't know then if the CPU had the security extensions;
2638 * so we have to do it here.
2640 sysbus_init_child_obj(OBJECT(dev), "systick-reg-s",
2641 &s->systick[M_REG_S],
2642 sizeof(s->systick[M_REG_S]), TYPE_SYSTICK);
2644 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2645 "realized", &err);
2646 if (err != NULL) {
2647 error_propagate(errp, err);
2648 return;
2650 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2651 qdev_get_gpio_in_named(dev, "systick-trigger",
2652 M_REG_S));
2655 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2656 * and looks like this:
2657 * 0x004 - ICTR
2658 * 0x010 - 0xff - systick
2659 * 0x100..0x7ec - NVIC
2660 * 0x7f0..0xcff - Reserved
2661 * 0xd00..0xd3c - SCS registers
2662 * 0xd40..0xeff - Reserved or Not implemented
2663 * 0xf00 - STIR
2665 * Some registers within this space are banked between security states.
2666 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2667 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2668 * to the main SCS range, and non-secure accesses (including when
2669 * the security extension is not implemented) are RAZ/WI.
2670 * Note that both the main SCS range and the alias range are defined
2671 * to be exempt from memory attribution (R_BLJT) and so the memory
2672 * transaction attribute always matches the current CPU security
2673 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2674 * wrappers we change attrs.secure to indicate the NS access; so
2675 * generally code determining which banked register to use should
2676 * use attrs.secure; code determining actual behaviour of the system
2677 * should use env->v7m.secure.
2679 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2680 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2681 /* The system register region goes at the bottom of the priority
2682 * stack as it covers the whole page.
2684 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2685 "nvic_sysregs", 0x1000);
2686 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2688 memory_region_init_io(&s->systickmem, OBJECT(s),
2689 &nvic_systick_ops, s,
2690 "nvic_systick", 0xe0);
2692 memory_region_add_subregion_overlap(&s->container, 0x10,
2693 &s->systickmem, 1);
2695 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2696 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2697 &nvic_sysreg_ns_ops, &s->sysregmem,
2698 "nvic_sysregs_ns", 0x1000);
2699 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2700 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2701 &nvic_sysreg_ns_ops, &s->systickmem,
2702 "nvic_systick_ns", 0xe0);
2703 memory_region_add_subregion_overlap(&s->container, 0x20010,
2704 &s->systick_ns_mem, 1);
2707 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2710 static void armv7m_nvic_instance_init(Object *obj)
2712 /* We have a different default value for the num-irq property
2713 * than our superclass. This function runs after qdev init
2714 * has set the defaults from the Property array and before
2715 * any user-specified property setting, so just modify the
2716 * value in the GICState struct.
2718 DeviceState *dev = DEVICE(obj);
2719 NVICState *nvic = NVIC(obj);
2720 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2722 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2723 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2724 /* We can't initialize the secure systick here, as we don't know
2725 * yet if we need it.
2728 sysbus_init_irq(sbd, &nvic->excpout);
2729 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2730 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2731 M_REG_NUM_BANKS);
2732 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2735 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2737 DeviceClass *dc = DEVICE_CLASS(klass);
2739 dc->vmsd = &vmstate_nvic;
2740 dc->props = props_nvic;
2741 dc->reset = armv7m_nvic_reset;
2742 dc->realize = armv7m_nvic_realize;
2745 static const TypeInfo armv7m_nvic_info = {
2746 .name = TYPE_NVIC,
2747 .parent = TYPE_SYS_BUS_DEVICE,
2748 .instance_init = armv7m_nvic_instance_init,
2749 .instance_size = sizeof(NVICState),
2750 .class_init = armv7m_nvic_class_init,
2751 .class_size = sizeof(SysBusDeviceClass),
2754 static void armv7m_nvic_register_types(void)
2756 type_register_static(&armv7m_nvic_info);
2759 type_init(armv7m_nvic_register_types)