block: make bdrv_co_is_allocated static
[qemu/ar7.git] / target-sparc / ldst_helper.c
blob2936b58b319fa21fce8eb0904ce1c2e8f7bcb767
1 /*
2 * Helpers for loads and stores
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "cpu.h"
21 #include "helper.h"
23 //#define DEBUG_MMU
24 //#define DEBUG_MXCC
25 //#define DEBUG_UNALIGNED
26 //#define DEBUG_UNASSIGNED
27 //#define DEBUG_ASI
28 //#define DEBUG_CACHE_CONTROL
30 #ifdef DEBUG_MMU
31 #define DPRINTF_MMU(fmt, ...) \
32 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
33 #else
34 #define DPRINTF_MMU(fmt, ...) do {} while (0)
35 #endif
37 #ifdef DEBUG_MXCC
38 #define DPRINTF_MXCC(fmt, ...) \
39 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
40 #else
41 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
42 #endif
44 #ifdef DEBUG_ASI
45 #define DPRINTF_ASI(fmt, ...) \
46 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
47 #endif
49 #ifdef DEBUG_CACHE_CONTROL
50 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
51 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
52 #else
53 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
54 #endif
56 #ifdef TARGET_SPARC64
57 #ifndef TARGET_ABI32
58 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
59 #else
60 #define AM_CHECK(env1) (1)
61 #endif
62 #endif
64 #define QT0 (env->qt0)
65 #define QT1 (env->qt1)
67 #if !defined(CONFIG_USER_ONLY)
68 static void QEMU_NORETURN do_unaligned_access(CPUSPARCState *env,
69 target_ulong addr, int is_write,
70 int is_user, uintptr_t retaddr);
71 #include "exec/softmmu_exec.h"
72 #define MMUSUFFIX _mmu
73 #define ALIGNED_ONLY
75 #define SHIFT 0
76 #include "exec/softmmu_template.h"
78 #define SHIFT 1
79 #include "exec/softmmu_template.h"
81 #define SHIFT 2
82 #include "exec/softmmu_template.h"
84 #define SHIFT 3
85 #include "exec/softmmu_template.h"
86 #endif
88 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
89 /* Calculates TSB pointer value for fault page size 8k or 64k */
90 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
91 uint64_t tag_access_register,
92 int page_size)
94 uint64_t tsb_base = tsb_register & ~0x1fffULL;
95 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
96 int tsb_size = tsb_register & 0xf;
98 /* discard lower 13 bits which hold tag access context */
99 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
101 /* now reorder bits */
102 uint64_t tsb_base_mask = ~0x1fffULL;
103 uint64_t va = tag_access_va;
105 /* move va bits to correct position */
106 if (page_size == 8*1024) {
107 va >>= 9;
108 } else if (page_size == 64*1024) {
109 va >>= 12;
112 if (tsb_size) {
113 tsb_base_mask <<= tsb_size;
116 /* calculate tsb_base mask and adjust va if split is in use */
117 if (tsb_split) {
118 if (page_size == 8*1024) {
119 va &= ~(1ULL << (13 + tsb_size));
120 } else if (page_size == 64*1024) {
121 va |= (1ULL << (13 + tsb_size));
123 tsb_base_mask <<= 1;
126 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
129 /* Calculates tag target register value by reordering bits
130 in tag access register */
131 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
133 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
136 static void replace_tlb_entry(SparcTLBEntry *tlb,
137 uint64_t tlb_tag, uint64_t tlb_tte,
138 CPUSPARCState *env1)
140 target_ulong mask, size, va, offset;
142 /* flush page range if translation is valid */
143 if (TTE_IS_VALID(tlb->tte)) {
145 mask = 0xffffffffffffe000ULL;
146 mask <<= 3 * ((tlb->tte >> 61) & 3);
147 size = ~mask + 1;
149 va = tlb->tag & mask;
151 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
152 tlb_flush_page(env1, va + offset);
156 tlb->tag = tlb_tag;
157 tlb->tte = tlb_tte;
160 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
161 const char *strmmu, CPUSPARCState *env1)
163 unsigned int i;
164 target_ulong mask;
165 uint64_t context;
167 int is_demap_context = (demap_addr >> 6) & 1;
169 /* demap context */
170 switch ((demap_addr >> 4) & 3) {
171 case 0: /* primary */
172 context = env1->dmmu.mmu_primary_context;
173 break;
174 case 1: /* secondary */
175 context = env1->dmmu.mmu_secondary_context;
176 break;
177 case 2: /* nucleus */
178 context = 0;
179 break;
180 case 3: /* reserved */
181 default:
182 return;
185 for (i = 0; i < 64; i++) {
186 if (TTE_IS_VALID(tlb[i].tte)) {
188 if (is_demap_context) {
189 /* will remove non-global entries matching context value */
190 if (TTE_IS_GLOBAL(tlb[i].tte) ||
191 !tlb_compare_context(&tlb[i], context)) {
192 continue;
194 } else {
195 /* demap page
196 will remove any entry matching VA */
197 mask = 0xffffffffffffe000ULL;
198 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
200 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
201 continue;
204 /* entry should be global or matching context value */
205 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
206 !tlb_compare_context(&tlb[i], context)) {
207 continue;
211 replace_tlb_entry(&tlb[i], 0, 0, env1);
212 #ifdef DEBUG_MMU
213 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
214 dump_mmu(stdout, fprintf, env1);
215 #endif
220 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
221 uint64_t tlb_tag, uint64_t tlb_tte,
222 const char *strmmu, CPUSPARCState *env1)
224 unsigned int i, replace_used;
226 /* Try replacing invalid entry */
227 for (i = 0; i < 64; i++) {
228 if (!TTE_IS_VALID(tlb[i].tte)) {
229 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
230 #ifdef DEBUG_MMU
231 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
232 dump_mmu(stdout, fprintf, env1);
233 #endif
234 return;
238 /* All entries are valid, try replacing unlocked entry */
240 for (replace_used = 0; replace_used < 2; ++replace_used) {
242 /* Used entries are not replaced on first pass */
244 for (i = 0; i < 64; i++) {
245 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
247 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
248 #ifdef DEBUG_MMU
249 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
250 strmmu, (replace_used ? "used" : "unused"), i);
251 dump_mmu(stdout, fprintf, env1);
252 #endif
253 return;
257 /* Now reset used bit and search for unused entries again */
259 for (i = 0; i < 64; i++) {
260 TTE_SET_UNUSED(tlb[i].tte);
264 #ifdef DEBUG_MMU
265 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
266 #endif
267 /* error state? */
270 #endif
272 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
274 #ifdef TARGET_SPARC64
275 if (AM_CHECK(env1)) {
276 addr &= 0xffffffffULL;
278 #endif
279 return addr;
282 /* returns true if access using this ASI is to have address translated by MMU
283 otherwise access is to raw physical address */
284 static inline int is_translating_asi(int asi)
286 #ifdef TARGET_SPARC64
287 /* Ultrasparc IIi translating asi
288 - note this list is defined by cpu implementation
290 switch (asi) {
291 case 0x04 ... 0x11:
292 case 0x16 ... 0x19:
293 case 0x1E ... 0x1F:
294 case 0x24 ... 0x2C:
295 case 0x70 ... 0x73:
296 case 0x78 ... 0x79:
297 case 0x80 ... 0xFF:
298 return 1;
300 default:
301 return 0;
303 #else
304 /* TODO: check sparc32 bits */
305 return 0;
306 #endif
309 static inline target_ulong asi_address_mask(CPUSPARCState *env,
310 int asi, target_ulong addr)
312 if (is_translating_asi(asi)) {
313 return address_mask(env, addr);
314 } else {
315 return addr;
319 void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
321 if (addr & align) {
322 #ifdef DEBUG_UNALIGNED
323 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
324 "\n", addr, env->pc);
325 #endif
326 helper_raise_exception(env, TT_UNALIGNED);
330 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
331 defined(DEBUG_MXCC)
332 static void dump_mxcc(CPUSPARCState *env)
334 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
335 "\n",
336 env->mxccdata[0], env->mxccdata[1],
337 env->mxccdata[2], env->mxccdata[3]);
338 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
339 "\n"
340 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
341 "\n",
342 env->mxccregs[0], env->mxccregs[1],
343 env->mxccregs[2], env->mxccregs[3],
344 env->mxccregs[4], env->mxccregs[5],
345 env->mxccregs[6], env->mxccregs[7]);
347 #endif
349 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
350 && defined(DEBUG_ASI)
351 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
352 uint64_t r1)
354 switch (size) {
355 case 1:
356 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
357 addr, asi, r1 & 0xff);
358 break;
359 case 2:
360 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
361 addr, asi, r1 & 0xffff);
362 break;
363 case 4:
364 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
365 addr, asi, r1 & 0xffffffff);
366 break;
367 case 8:
368 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
369 addr, asi, r1);
370 break;
373 #endif
375 #ifndef TARGET_SPARC64
376 #ifndef CONFIG_USER_ONLY
379 /* Leon3 cache control */
381 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
382 uint64_t val, int size)
384 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
385 addr, val, size);
387 if (size != 4) {
388 DPRINTF_CACHE_CONTROL("32bits only\n");
389 return;
392 switch (addr) {
393 case 0x00: /* Cache control */
395 /* These values must always be read as zeros */
396 val &= ~CACHE_CTRL_FD;
397 val &= ~CACHE_CTRL_FI;
398 val &= ~CACHE_CTRL_IB;
399 val &= ~CACHE_CTRL_IP;
400 val &= ~CACHE_CTRL_DP;
402 env->cache_control = val;
403 break;
404 case 0x04: /* Instruction cache configuration */
405 case 0x08: /* Data cache configuration */
406 /* Read Only */
407 break;
408 default:
409 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
410 break;
414 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
415 int size)
417 uint64_t ret = 0;
419 if (size != 4) {
420 DPRINTF_CACHE_CONTROL("32bits only\n");
421 return 0;
424 switch (addr) {
425 case 0x00: /* Cache control */
426 ret = env->cache_control;
427 break;
429 /* Configuration registers are read and only always keep those
430 predefined values */
432 case 0x04: /* Instruction cache configuration */
433 ret = 0x10220000;
434 break;
435 case 0x08: /* Data cache configuration */
436 ret = 0x18220000;
437 break;
438 default:
439 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
440 break;
442 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
443 addr, ret, size);
444 return ret;
447 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
448 int sign)
450 uint64_t ret = 0;
451 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
452 uint32_t last_addr = addr;
453 #endif
455 helper_check_align(env, addr, size - 1);
456 switch (asi) {
457 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
458 switch (addr) {
459 case 0x00: /* Leon3 Cache Control */
460 case 0x08: /* Leon3 Instruction Cache config */
461 case 0x0C: /* Leon3 Date Cache config */
462 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
463 ret = leon3_cache_control_ld(env, addr, size);
465 break;
466 case 0x01c00a00: /* MXCC control register */
467 if (size == 8) {
468 ret = env->mxccregs[3];
469 } else {
470 qemu_log_mask(LOG_UNIMP,
471 "%08x: unimplemented access size: %d\n", addr,
472 size);
474 break;
475 case 0x01c00a04: /* MXCC control register */
476 if (size == 4) {
477 ret = env->mxccregs[3];
478 } else {
479 qemu_log_mask(LOG_UNIMP,
480 "%08x: unimplemented access size: %d\n", addr,
481 size);
483 break;
484 case 0x01c00c00: /* Module reset register */
485 if (size == 8) {
486 ret = env->mxccregs[5];
487 /* should we do something here? */
488 } else {
489 qemu_log_mask(LOG_UNIMP,
490 "%08x: unimplemented access size: %d\n", addr,
491 size);
493 break;
494 case 0x01c00f00: /* MBus port address register */
495 if (size == 8) {
496 ret = env->mxccregs[7];
497 } else {
498 qemu_log_mask(LOG_UNIMP,
499 "%08x: unimplemented access size: %d\n", addr,
500 size);
502 break;
503 default:
504 qemu_log_mask(LOG_UNIMP,
505 "%08x: unimplemented address, size: %d\n", addr,
506 size);
507 break;
509 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
510 "addr = %08x -> ret = %" PRIx64 ","
511 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
512 #ifdef DEBUG_MXCC
513 dump_mxcc(env);
514 #endif
515 break;
516 case 3: /* MMU probe */
517 case 0x18: /* LEON3 MMU probe */
519 int mmulev;
521 mmulev = (addr >> 8) & 15;
522 if (mmulev > 4) {
523 ret = 0;
524 } else {
525 ret = mmu_probe(env, addr, mmulev);
527 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
528 addr, mmulev, ret);
530 break;
531 case 4: /* read MMU regs */
532 case 0x19: /* LEON3 read MMU regs */
534 int reg = (addr >> 8) & 0x1f;
536 ret = env->mmuregs[reg];
537 if (reg == 3) { /* Fault status cleared on read */
538 env->mmuregs[3] = 0;
539 } else if (reg == 0x13) { /* Fault status read */
540 ret = env->mmuregs[3];
541 } else if (reg == 0x14) { /* Fault address read */
542 ret = env->mmuregs[4];
544 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
546 break;
547 case 5: /* Turbosparc ITLB Diagnostic */
548 case 6: /* Turbosparc DTLB Diagnostic */
549 case 7: /* Turbosparc IOTLB Diagnostic */
550 break;
551 case 9: /* Supervisor code access */
552 switch (size) {
553 case 1:
554 ret = cpu_ldub_code(env, addr);
555 break;
556 case 2:
557 ret = cpu_lduw_code(env, addr);
558 break;
559 default:
560 case 4:
561 ret = cpu_ldl_code(env, addr);
562 break;
563 case 8:
564 ret = cpu_ldq_code(env, addr);
565 break;
567 break;
568 case 0xa: /* User data access */
569 switch (size) {
570 case 1:
571 ret = cpu_ldub_user(env, addr);
572 break;
573 case 2:
574 ret = cpu_lduw_user(env, addr);
575 break;
576 default:
577 case 4:
578 ret = cpu_ldl_user(env, addr);
579 break;
580 case 8:
581 ret = cpu_ldq_user(env, addr);
582 break;
584 break;
585 case 0xb: /* Supervisor data access */
586 switch (size) {
587 case 1:
588 ret = cpu_ldub_kernel(env, addr);
589 break;
590 case 2:
591 ret = cpu_lduw_kernel(env, addr);
592 break;
593 default:
594 case 4:
595 ret = cpu_ldl_kernel(env, addr);
596 break;
597 case 8:
598 ret = cpu_ldq_kernel(env, addr);
599 break;
601 break;
602 case 0xc: /* I-cache tag */
603 case 0xd: /* I-cache data */
604 case 0xe: /* D-cache tag */
605 case 0xf: /* D-cache data */
606 break;
607 case 0x20: /* MMU passthrough */
608 case 0x1c: /* LEON MMU passthrough */
609 switch (size) {
610 case 1:
611 ret = ldub_phys(addr);
612 break;
613 case 2:
614 ret = lduw_phys(addr);
615 break;
616 default:
617 case 4:
618 ret = ldl_phys(addr);
619 break;
620 case 8:
621 ret = ldq_phys(addr);
622 break;
624 break;
625 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
626 switch (size) {
627 case 1:
628 ret = ldub_phys((hwaddr)addr
629 | ((hwaddr)(asi & 0xf) << 32));
630 break;
631 case 2:
632 ret = lduw_phys((hwaddr)addr
633 | ((hwaddr)(asi & 0xf) << 32));
634 break;
635 default:
636 case 4:
637 ret = ldl_phys((hwaddr)addr
638 | ((hwaddr)(asi & 0xf) << 32));
639 break;
640 case 8:
641 ret = ldq_phys((hwaddr)addr
642 | ((hwaddr)(asi & 0xf) << 32));
643 break;
645 break;
646 case 0x30: /* Turbosparc secondary cache diagnostic */
647 case 0x31: /* Turbosparc RAM snoop */
648 case 0x32: /* Turbosparc page table descriptor diagnostic */
649 case 0x39: /* data cache diagnostic register */
650 ret = 0;
651 break;
652 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
654 int reg = (addr >> 8) & 3;
656 switch (reg) {
657 case 0: /* Breakpoint Value (Addr) */
658 ret = env->mmubpregs[reg];
659 break;
660 case 1: /* Breakpoint Mask */
661 ret = env->mmubpregs[reg];
662 break;
663 case 2: /* Breakpoint Control */
664 ret = env->mmubpregs[reg];
665 break;
666 case 3: /* Breakpoint Status */
667 ret = env->mmubpregs[reg];
668 env->mmubpregs[reg] = 0ULL;
669 break;
671 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
672 ret);
674 break;
675 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
676 ret = env->mmubpctrv;
677 break;
678 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
679 ret = env->mmubpctrc;
680 break;
681 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
682 ret = env->mmubpctrs;
683 break;
684 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
685 ret = env->mmubpaction;
686 break;
687 case 8: /* User code access, XXX */
688 default:
689 cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
690 addr, false, false, asi, size);
691 ret = 0;
692 break;
694 if (sign) {
695 switch (size) {
696 case 1:
697 ret = (int8_t) ret;
698 break;
699 case 2:
700 ret = (int16_t) ret;
701 break;
702 case 4:
703 ret = (int32_t) ret;
704 break;
705 default:
706 break;
709 #ifdef DEBUG_ASI
710 dump_asi("read ", last_addr, asi, size, ret);
711 #endif
712 return ret;
715 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, int asi,
716 int size)
718 helper_check_align(env, addr, size - 1);
719 switch (asi) {
720 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
721 switch (addr) {
722 case 0x00: /* Leon3 Cache Control */
723 case 0x08: /* Leon3 Instruction Cache config */
724 case 0x0C: /* Leon3 Date Cache config */
725 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
726 leon3_cache_control_st(env, addr, val, size);
728 break;
730 case 0x01c00000: /* MXCC stream data register 0 */
731 if (size == 8) {
732 env->mxccdata[0] = val;
733 } else {
734 qemu_log_mask(LOG_UNIMP,
735 "%08x: unimplemented access size: %d\n", addr,
736 size);
738 break;
739 case 0x01c00008: /* MXCC stream data register 1 */
740 if (size == 8) {
741 env->mxccdata[1] = val;
742 } else {
743 qemu_log_mask(LOG_UNIMP,
744 "%08x: unimplemented access size: %d\n", addr,
745 size);
747 break;
748 case 0x01c00010: /* MXCC stream data register 2 */
749 if (size == 8) {
750 env->mxccdata[2] = val;
751 } else {
752 qemu_log_mask(LOG_UNIMP,
753 "%08x: unimplemented access size: %d\n", addr,
754 size);
756 break;
757 case 0x01c00018: /* MXCC stream data register 3 */
758 if (size == 8) {
759 env->mxccdata[3] = val;
760 } else {
761 qemu_log_mask(LOG_UNIMP,
762 "%08x: unimplemented access size: %d\n", addr,
763 size);
765 break;
766 case 0x01c00100: /* MXCC stream source */
767 if (size == 8) {
768 env->mxccregs[0] = val;
769 } else {
770 qemu_log_mask(LOG_UNIMP,
771 "%08x: unimplemented access size: %d\n", addr,
772 size);
774 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
776 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
778 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
779 16);
780 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
781 24);
782 break;
783 case 0x01c00200: /* MXCC stream destination */
784 if (size == 8) {
785 env->mxccregs[1] = val;
786 } else {
787 qemu_log_mask(LOG_UNIMP,
788 "%08x: unimplemented access size: %d\n", addr,
789 size);
791 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
792 env->mxccdata[0]);
793 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
794 env->mxccdata[1]);
795 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
796 env->mxccdata[2]);
797 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
798 env->mxccdata[3]);
799 break;
800 case 0x01c00a00: /* MXCC control register */
801 if (size == 8) {
802 env->mxccregs[3] = val;
803 } else {
804 qemu_log_mask(LOG_UNIMP,
805 "%08x: unimplemented access size: %d\n", addr,
806 size);
808 break;
809 case 0x01c00a04: /* MXCC control register */
810 if (size == 4) {
811 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
812 | val;
813 } else {
814 qemu_log_mask(LOG_UNIMP,
815 "%08x: unimplemented access size: %d\n", addr,
816 size);
818 break;
819 case 0x01c00e00: /* MXCC error register */
820 /* writing a 1 bit clears the error */
821 if (size == 8) {
822 env->mxccregs[6] &= ~val;
823 } else {
824 qemu_log_mask(LOG_UNIMP,
825 "%08x: unimplemented access size: %d\n", addr,
826 size);
828 break;
829 case 0x01c00f00: /* MBus port address register */
830 if (size == 8) {
831 env->mxccregs[7] = val;
832 } else {
833 qemu_log_mask(LOG_UNIMP,
834 "%08x: unimplemented access size: %d\n", addr,
835 size);
837 break;
838 default:
839 qemu_log_mask(LOG_UNIMP,
840 "%08x: unimplemented address, size: %d\n", addr,
841 size);
842 break;
844 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
845 asi, size, addr, val);
846 #ifdef DEBUG_MXCC
847 dump_mxcc(env);
848 #endif
849 break;
850 case 3: /* MMU flush */
851 case 0x18: /* LEON3 MMU flush */
853 int mmulev;
855 mmulev = (addr >> 8) & 15;
856 DPRINTF_MMU("mmu flush level %d\n", mmulev);
857 switch (mmulev) {
858 case 0: /* flush page */
859 tlb_flush_page(env, addr & 0xfffff000);
860 break;
861 case 1: /* flush segment (256k) */
862 case 2: /* flush region (16M) */
863 case 3: /* flush context (4G) */
864 case 4: /* flush entire */
865 tlb_flush(env, 1);
866 break;
867 default:
868 break;
870 #ifdef DEBUG_MMU
871 dump_mmu(stdout, fprintf, env);
872 #endif
874 break;
875 case 4: /* write MMU regs */
876 case 0x19: /* LEON3 write MMU regs */
878 int reg = (addr >> 8) & 0x1f;
879 uint32_t oldreg;
881 oldreg = env->mmuregs[reg];
882 switch (reg) {
883 case 0: /* Control Register */
884 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
885 (val & 0x00ffffff);
886 /* Mappings generated during no-fault mode or MMU
887 disabled mode are invalid in normal mode */
888 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
889 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) {
890 tlb_flush(env, 1);
892 break;
893 case 1: /* Context Table Pointer Register */
894 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
895 break;
896 case 2: /* Context Register */
897 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
898 if (oldreg != env->mmuregs[reg]) {
899 /* we flush when the MMU context changes because
900 QEMU has no MMU context support */
901 tlb_flush(env, 1);
903 break;
904 case 3: /* Synchronous Fault Status Register with Clear */
905 case 4: /* Synchronous Fault Address Register */
906 break;
907 case 0x10: /* TLB Replacement Control Register */
908 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
909 break;
910 case 0x13: /* Synchronous Fault Status Register with Read
911 and Clear */
912 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
913 break;
914 case 0x14: /* Synchronous Fault Address Register */
915 env->mmuregs[4] = val;
916 break;
917 default:
918 env->mmuregs[reg] = val;
919 break;
921 if (oldreg != env->mmuregs[reg]) {
922 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
923 reg, oldreg, env->mmuregs[reg]);
925 #ifdef DEBUG_MMU
926 dump_mmu(stdout, fprintf, env);
927 #endif
929 break;
930 case 5: /* Turbosparc ITLB Diagnostic */
931 case 6: /* Turbosparc DTLB Diagnostic */
932 case 7: /* Turbosparc IOTLB Diagnostic */
933 break;
934 case 0xa: /* User data access */
935 switch (size) {
936 case 1:
937 cpu_stb_user(env, addr, val);
938 break;
939 case 2:
940 cpu_stw_user(env, addr, val);
941 break;
942 default:
943 case 4:
944 cpu_stl_user(env, addr, val);
945 break;
946 case 8:
947 cpu_stq_user(env, addr, val);
948 break;
950 break;
951 case 0xb: /* Supervisor data access */
952 switch (size) {
953 case 1:
954 cpu_stb_kernel(env, addr, val);
955 break;
956 case 2:
957 cpu_stw_kernel(env, addr, val);
958 break;
959 default:
960 case 4:
961 cpu_stl_kernel(env, addr, val);
962 break;
963 case 8:
964 cpu_stq_kernel(env, addr, val);
965 break;
967 break;
968 case 0xc: /* I-cache tag */
969 case 0xd: /* I-cache data */
970 case 0xe: /* D-cache tag */
971 case 0xf: /* D-cache data */
972 case 0x10: /* I/D-cache flush page */
973 case 0x11: /* I/D-cache flush segment */
974 case 0x12: /* I/D-cache flush region */
975 case 0x13: /* I/D-cache flush context */
976 case 0x14: /* I/D-cache flush user */
977 break;
978 case 0x17: /* Block copy, sta access */
980 /* val = src
981 addr = dst
982 copy 32 bytes */
983 unsigned int i;
984 uint32_t src = val & ~3, dst = addr & ~3, temp;
986 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
987 temp = cpu_ldl_kernel(env, src);
988 cpu_stl_kernel(env, dst, temp);
991 break;
992 case 0x1f: /* Block fill, stda access */
994 /* addr = dst
995 fill 32 bytes with val */
996 unsigned int i;
997 uint32_t dst = addr & 7;
999 for (i = 0; i < 32; i += 8, dst += 8) {
1000 cpu_stq_kernel(env, dst, val);
1003 break;
1004 case 0x20: /* MMU passthrough */
1005 case 0x1c: /* LEON MMU passthrough */
1007 switch (size) {
1008 case 1:
1009 stb_phys(addr, val);
1010 break;
1011 case 2:
1012 stw_phys(addr, val);
1013 break;
1014 case 4:
1015 default:
1016 stl_phys(addr, val);
1017 break;
1018 case 8:
1019 stq_phys(addr, val);
1020 break;
1023 break;
1024 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1026 switch (size) {
1027 case 1:
1028 stb_phys((hwaddr)addr
1029 | ((hwaddr)(asi & 0xf) << 32), val);
1030 break;
1031 case 2:
1032 stw_phys((hwaddr)addr
1033 | ((hwaddr)(asi & 0xf) << 32), val);
1034 break;
1035 case 4:
1036 default:
1037 stl_phys((hwaddr)addr
1038 | ((hwaddr)(asi & 0xf) << 32), val);
1039 break;
1040 case 8:
1041 stq_phys((hwaddr)addr
1042 | ((hwaddr)(asi & 0xf) << 32), val);
1043 break;
1046 break;
1047 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1048 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1049 Turbosparc snoop RAM */
1050 case 0x32: /* store buffer control or Turbosparc page table
1051 descriptor diagnostic */
1052 case 0x36: /* I-cache flash clear */
1053 case 0x37: /* D-cache flash clear */
1054 break;
1055 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1057 int reg = (addr >> 8) & 3;
1059 switch (reg) {
1060 case 0: /* Breakpoint Value (Addr) */
1061 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1062 break;
1063 case 1: /* Breakpoint Mask */
1064 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1065 break;
1066 case 2: /* Breakpoint Control */
1067 env->mmubpregs[reg] = (val & 0x7fULL);
1068 break;
1069 case 3: /* Breakpoint Status */
1070 env->mmubpregs[reg] = (val & 0xfULL);
1071 break;
1073 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1074 env->mmuregs[reg]);
1076 break;
1077 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1078 env->mmubpctrv = val & 0xffffffff;
1079 break;
1080 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1081 env->mmubpctrc = val & 0x3;
1082 break;
1083 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1084 env->mmubpctrs = val & 0x3;
1085 break;
1086 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1087 env->mmubpaction = val & 0x1fff;
1088 break;
1089 case 8: /* User code access, XXX */
1090 case 9: /* Supervisor code access, XXX */
1091 default:
1092 cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
1093 addr, true, false, asi, size);
1094 break;
1096 #ifdef DEBUG_ASI
1097 dump_asi("write", addr, asi, size, val);
1098 #endif
1101 #endif /* CONFIG_USER_ONLY */
1102 #else /* TARGET_SPARC64 */
1104 #ifdef CONFIG_USER_ONLY
1105 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
1106 int sign)
1108 uint64_t ret = 0;
1109 #if defined(DEBUG_ASI)
1110 target_ulong last_addr = addr;
1111 #endif
1113 if (asi < 0x80) {
1114 helper_raise_exception(env, TT_PRIV_ACT);
1117 helper_check_align(env, addr, size - 1);
1118 addr = asi_address_mask(env, asi, addr);
1120 switch (asi) {
1121 case 0x82: /* Primary no-fault */
1122 case 0x8a: /* Primary no-fault LE */
1123 if (page_check_range(addr, size, PAGE_READ) == -1) {
1124 #ifdef DEBUG_ASI
1125 dump_asi("read ", last_addr, asi, size, ret);
1126 #endif
1127 return 0;
1129 /* Fall through */
1130 case 0x80: /* Primary */
1131 case 0x88: /* Primary LE */
1133 switch (size) {
1134 case 1:
1135 ret = ldub_raw(addr);
1136 break;
1137 case 2:
1138 ret = lduw_raw(addr);
1139 break;
1140 case 4:
1141 ret = ldl_raw(addr);
1142 break;
1143 default:
1144 case 8:
1145 ret = ldq_raw(addr);
1146 break;
1149 break;
1150 case 0x83: /* Secondary no-fault */
1151 case 0x8b: /* Secondary no-fault LE */
1152 if (page_check_range(addr, size, PAGE_READ) == -1) {
1153 #ifdef DEBUG_ASI
1154 dump_asi("read ", last_addr, asi, size, ret);
1155 #endif
1156 return 0;
1158 /* Fall through */
1159 case 0x81: /* Secondary */
1160 case 0x89: /* Secondary LE */
1161 /* XXX */
1162 break;
1163 default:
1164 break;
1167 /* Convert from little endian */
1168 switch (asi) {
1169 case 0x88: /* Primary LE */
1170 case 0x89: /* Secondary LE */
1171 case 0x8a: /* Primary no-fault LE */
1172 case 0x8b: /* Secondary no-fault LE */
1173 switch (size) {
1174 case 2:
1175 ret = bswap16(ret);
1176 break;
1177 case 4:
1178 ret = bswap32(ret);
1179 break;
1180 case 8:
1181 ret = bswap64(ret);
1182 break;
1183 default:
1184 break;
1186 default:
1187 break;
1190 /* Convert to signed number */
1191 if (sign) {
1192 switch (size) {
1193 case 1:
1194 ret = (int8_t) ret;
1195 break;
1196 case 2:
1197 ret = (int16_t) ret;
1198 break;
1199 case 4:
1200 ret = (int32_t) ret;
1201 break;
1202 default:
1203 break;
1206 #ifdef DEBUG_ASI
1207 dump_asi("read ", last_addr, asi, size, ret);
1208 #endif
1209 return ret;
1212 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1213 int asi, int size)
1215 #ifdef DEBUG_ASI
1216 dump_asi("write", addr, asi, size, val);
1217 #endif
1218 if (asi < 0x80) {
1219 helper_raise_exception(env, TT_PRIV_ACT);
1222 helper_check_align(env, addr, size - 1);
1223 addr = asi_address_mask(env, asi, addr);
1225 /* Convert to little endian */
1226 switch (asi) {
1227 case 0x88: /* Primary LE */
1228 case 0x89: /* Secondary LE */
1229 switch (size) {
1230 case 2:
1231 val = bswap16(val);
1232 break;
1233 case 4:
1234 val = bswap32(val);
1235 break;
1236 case 8:
1237 val = bswap64(val);
1238 break;
1239 default:
1240 break;
1242 default:
1243 break;
1246 switch (asi) {
1247 case 0x80: /* Primary */
1248 case 0x88: /* Primary LE */
1250 switch (size) {
1251 case 1:
1252 stb_raw(addr, val);
1253 break;
1254 case 2:
1255 stw_raw(addr, val);
1256 break;
1257 case 4:
1258 stl_raw(addr, val);
1259 break;
1260 case 8:
1261 default:
1262 stq_raw(addr, val);
1263 break;
1266 break;
1267 case 0x81: /* Secondary */
1268 case 0x89: /* Secondary LE */
1269 /* XXX */
1270 return;
1272 case 0x82: /* Primary no-fault, RO */
1273 case 0x83: /* Secondary no-fault, RO */
1274 case 0x8a: /* Primary no-fault LE, RO */
1275 case 0x8b: /* Secondary no-fault LE, RO */
1276 default:
1277 helper_raise_exception(env, TT_DATA_ACCESS);
1278 return;
1282 #else /* CONFIG_USER_ONLY */
1284 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
1285 int sign)
1287 uint64_t ret = 0;
1288 #if defined(DEBUG_ASI)
1289 target_ulong last_addr = addr;
1290 #endif
1292 asi &= 0xff;
1294 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1295 || (cpu_has_hypervisor(env)
1296 && asi >= 0x30 && asi < 0x80
1297 && !(env->hpstate & HS_PRIV))) {
1298 helper_raise_exception(env, TT_PRIV_ACT);
1301 helper_check_align(env, addr, size - 1);
1302 addr = asi_address_mask(env, asi, addr);
1304 /* process nonfaulting loads first */
1305 if ((asi & 0xf6) == 0x82) {
1306 int mmu_idx;
1308 /* secondary space access has lowest asi bit equal to 1 */
1309 if (env->pstate & PS_PRIV) {
1310 mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX;
1311 } else {
1312 mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX;
1315 if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) {
1316 #ifdef DEBUG_ASI
1317 dump_asi("read ", last_addr, asi, size, ret);
1318 #endif
1319 /* env->exception_index is set in get_physical_address_data(). */
1320 helper_raise_exception(env, env->exception_index);
1323 /* convert nonfaulting load ASIs to normal load ASIs */
1324 asi &= ~0x02;
1327 switch (asi) {
1328 case 0x10: /* As if user primary */
1329 case 0x11: /* As if user secondary */
1330 case 0x18: /* As if user primary LE */
1331 case 0x19: /* As if user secondary LE */
1332 case 0x80: /* Primary */
1333 case 0x81: /* Secondary */
1334 case 0x88: /* Primary LE */
1335 case 0x89: /* Secondary LE */
1336 case 0xe2: /* UA2007 Primary block init */
1337 case 0xe3: /* UA2007 Secondary block init */
1338 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1339 if (cpu_hypervisor_mode(env)) {
1340 switch (size) {
1341 case 1:
1342 ret = cpu_ldub_hypv(env, addr);
1343 break;
1344 case 2:
1345 ret = cpu_lduw_hypv(env, addr);
1346 break;
1347 case 4:
1348 ret = cpu_ldl_hypv(env, addr);
1349 break;
1350 default:
1351 case 8:
1352 ret = cpu_ldq_hypv(env, addr);
1353 break;
1355 } else {
1356 /* secondary space access has lowest asi bit equal to 1 */
1357 if (asi & 1) {
1358 switch (size) {
1359 case 1:
1360 ret = cpu_ldub_kernel_secondary(env, addr);
1361 break;
1362 case 2:
1363 ret = cpu_lduw_kernel_secondary(env, addr);
1364 break;
1365 case 4:
1366 ret = cpu_ldl_kernel_secondary(env, addr);
1367 break;
1368 default:
1369 case 8:
1370 ret = cpu_ldq_kernel_secondary(env, addr);
1371 break;
1373 } else {
1374 switch (size) {
1375 case 1:
1376 ret = cpu_ldub_kernel(env, addr);
1377 break;
1378 case 2:
1379 ret = cpu_lduw_kernel(env, addr);
1380 break;
1381 case 4:
1382 ret = cpu_ldl_kernel(env, addr);
1383 break;
1384 default:
1385 case 8:
1386 ret = cpu_ldq_kernel(env, addr);
1387 break;
1391 } else {
1392 /* secondary space access has lowest asi bit equal to 1 */
1393 if (asi & 1) {
1394 switch (size) {
1395 case 1:
1396 ret = cpu_ldub_user_secondary(env, addr);
1397 break;
1398 case 2:
1399 ret = cpu_lduw_user_secondary(env, addr);
1400 break;
1401 case 4:
1402 ret = cpu_ldl_user_secondary(env, addr);
1403 break;
1404 default:
1405 case 8:
1406 ret = cpu_ldq_user_secondary(env, addr);
1407 break;
1409 } else {
1410 switch (size) {
1411 case 1:
1412 ret = cpu_ldub_user(env, addr);
1413 break;
1414 case 2:
1415 ret = cpu_lduw_user(env, addr);
1416 break;
1417 case 4:
1418 ret = cpu_ldl_user(env, addr);
1419 break;
1420 default:
1421 case 8:
1422 ret = cpu_ldq_user(env, addr);
1423 break;
1427 break;
1428 case 0x14: /* Bypass */
1429 case 0x15: /* Bypass, non-cacheable */
1430 case 0x1c: /* Bypass LE */
1431 case 0x1d: /* Bypass, non-cacheable LE */
1433 switch (size) {
1434 case 1:
1435 ret = ldub_phys(addr);
1436 break;
1437 case 2:
1438 ret = lduw_phys(addr);
1439 break;
1440 case 4:
1441 ret = ldl_phys(addr);
1442 break;
1443 default:
1444 case 8:
1445 ret = ldq_phys(addr);
1446 break;
1448 break;
1450 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1451 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1452 Only ldda allowed */
1453 helper_raise_exception(env, TT_ILL_INSN);
1454 return 0;
1455 case 0x04: /* Nucleus */
1456 case 0x0c: /* Nucleus Little Endian (LE) */
1458 switch (size) {
1459 case 1:
1460 ret = cpu_ldub_nucleus(env, addr);
1461 break;
1462 case 2:
1463 ret = cpu_lduw_nucleus(env, addr);
1464 break;
1465 case 4:
1466 ret = cpu_ldl_nucleus(env, addr);
1467 break;
1468 default:
1469 case 8:
1470 ret = cpu_ldq_nucleus(env, addr);
1471 break;
1473 break;
1475 case 0x4a: /* UPA config */
1476 /* XXX */
1477 break;
1478 case 0x45: /* LSU */
1479 ret = env->lsu;
1480 break;
1481 case 0x50: /* I-MMU regs */
1483 int reg = (addr >> 3) & 0xf;
1485 if (reg == 0) {
1486 /* I-TSB Tag Target register */
1487 ret = ultrasparc_tag_target(env->immu.tag_access);
1488 } else {
1489 ret = env->immuregs[reg];
1492 break;
1494 case 0x51: /* I-MMU 8k TSB pointer */
1496 /* env->immuregs[5] holds I-MMU TSB register value
1497 env->immuregs[6] holds I-MMU Tag Access register value */
1498 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1499 8*1024);
1500 break;
1502 case 0x52: /* I-MMU 64k TSB pointer */
1504 /* env->immuregs[5] holds I-MMU TSB register value
1505 env->immuregs[6] holds I-MMU Tag Access register value */
1506 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
1507 64*1024);
1508 break;
1510 case 0x55: /* I-MMU data access */
1512 int reg = (addr >> 3) & 0x3f;
1514 ret = env->itlb[reg].tte;
1515 break;
1517 case 0x56: /* I-MMU tag read */
1519 int reg = (addr >> 3) & 0x3f;
1521 ret = env->itlb[reg].tag;
1522 break;
1524 case 0x58: /* D-MMU regs */
1526 int reg = (addr >> 3) & 0xf;
1528 if (reg == 0) {
1529 /* D-TSB Tag Target register */
1530 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1531 } else {
1532 ret = env->dmmuregs[reg];
1534 break;
1536 case 0x59: /* D-MMU 8k TSB pointer */
1538 /* env->dmmuregs[5] holds D-MMU TSB register value
1539 env->dmmuregs[6] holds D-MMU Tag Access register value */
1540 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1541 8*1024);
1542 break;
1544 case 0x5a: /* D-MMU 64k TSB pointer */
1546 /* env->dmmuregs[5] holds D-MMU TSB register value
1547 env->dmmuregs[6] holds D-MMU Tag Access register value */
1548 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
1549 64*1024);
1550 break;
1552 case 0x5d: /* D-MMU data access */
1554 int reg = (addr >> 3) & 0x3f;
1556 ret = env->dtlb[reg].tte;
1557 break;
1559 case 0x5e: /* D-MMU tag read */
1561 int reg = (addr >> 3) & 0x3f;
1563 ret = env->dtlb[reg].tag;
1564 break;
1566 case 0x48: /* Interrupt dispatch, RO */
1567 break;
1568 case 0x49: /* Interrupt data receive */
1569 ret = env->ivec_status;
1570 break;
1571 case 0x7f: /* Incoming interrupt vector, RO */
1573 int reg = (addr >> 4) & 0x3;
1574 if (reg < 3) {
1575 ret = env->ivec_data[reg];
1577 break;
1579 case 0x46: /* D-cache data */
1580 case 0x47: /* D-cache tag access */
1581 case 0x4b: /* E-cache error enable */
1582 case 0x4c: /* E-cache asynchronous fault status */
1583 case 0x4d: /* E-cache asynchronous fault address */
1584 case 0x4e: /* E-cache tag data */
1585 case 0x66: /* I-cache instruction access */
1586 case 0x67: /* I-cache tag access */
1587 case 0x6e: /* I-cache predecode */
1588 case 0x6f: /* I-cache LRU etc. */
1589 case 0x76: /* E-cache tag */
1590 case 0x7e: /* E-cache tag */
1591 break;
1592 case 0x5b: /* D-MMU data pointer */
1593 case 0x54: /* I-MMU data in, WO */
1594 case 0x57: /* I-MMU demap, WO */
1595 case 0x5c: /* D-MMU data in, WO */
1596 case 0x5f: /* D-MMU demap, WO */
1597 case 0x77: /* Interrupt vector, WO */
1598 default:
1599 cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
1600 addr, false, false, 1, size);
1601 ret = 0;
1602 break;
1605 /* Convert from little endian */
1606 switch (asi) {
1607 case 0x0c: /* Nucleus Little Endian (LE) */
1608 case 0x18: /* As if user primary LE */
1609 case 0x19: /* As if user secondary LE */
1610 case 0x1c: /* Bypass LE */
1611 case 0x1d: /* Bypass, non-cacheable LE */
1612 case 0x88: /* Primary LE */
1613 case 0x89: /* Secondary LE */
1614 switch(size) {
1615 case 2:
1616 ret = bswap16(ret);
1617 break;
1618 case 4:
1619 ret = bswap32(ret);
1620 break;
1621 case 8:
1622 ret = bswap64(ret);
1623 break;
1624 default:
1625 break;
1627 default:
1628 break;
1631 /* Convert to signed number */
1632 if (sign) {
1633 switch (size) {
1634 case 1:
1635 ret = (int8_t) ret;
1636 break;
1637 case 2:
1638 ret = (int16_t) ret;
1639 break;
1640 case 4:
1641 ret = (int32_t) ret;
1642 break;
1643 default:
1644 break;
1647 #ifdef DEBUG_ASI
1648 dump_asi("read ", last_addr, asi, size, ret);
1649 #endif
1650 return ret;
1653 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1654 int asi, int size)
1656 #ifdef DEBUG_ASI
1657 dump_asi("write", addr, asi, size, val);
1658 #endif
1660 asi &= 0xff;
1662 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1663 || (cpu_has_hypervisor(env)
1664 && asi >= 0x30 && asi < 0x80
1665 && !(env->hpstate & HS_PRIV))) {
1666 helper_raise_exception(env, TT_PRIV_ACT);
1669 helper_check_align(env, addr, size - 1);
1670 addr = asi_address_mask(env, asi, addr);
1672 /* Convert to little endian */
1673 switch (asi) {
1674 case 0x0c: /* Nucleus Little Endian (LE) */
1675 case 0x18: /* As if user primary LE */
1676 case 0x19: /* As if user secondary LE */
1677 case 0x1c: /* Bypass LE */
1678 case 0x1d: /* Bypass, non-cacheable LE */
1679 case 0x88: /* Primary LE */
1680 case 0x89: /* Secondary LE */
1681 switch (size) {
1682 case 2:
1683 val = bswap16(val);
1684 break;
1685 case 4:
1686 val = bswap32(val);
1687 break;
1688 case 8:
1689 val = bswap64(val);
1690 break;
1691 default:
1692 break;
1694 default:
1695 break;
1698 switch (asi) {
1699 case 0x10: /* As if user primary */
1700 case 0x11: /* As if user secondary */
1701 case 0x18: /* As if user primary LE */
1702 case 0x19: /* As if user secondary LE */
1703 case 0x80: /* Primary */
1704 case 0x81: /* Secondary */
1705 case 0x88: /* Primary LE */
1706 case 0x89: /* Secondary LE */
1707 case 0xe2: /* UA2007 Primary block init */
1708 case 0xe3: /* UA2007 Secondary block init */
1709 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1710 if (cpu_hypervisor_mode(env)) {
1711 switch (size) {
1712 case 1:
1713 cpu_stb_hypv(env, addr, val);
1714 break;
1715 case 2:
1716 cpu_stw_hypv(env, addr, val);
1717 break;
1718 case 4:
1719 cpu_stl_hypv(env, addr, val);
1720 break;
1721 case 8:
1722 default:
1723 cpu_stq_hypv(env, addr, val);
1724 break;
1726 } else {
1727 /* secondary space access has lowest asi bit equal to 1 */
1728 if (asi & 1) {
1729 switch (size) {
1730 case 1:
1731 cpu_stb_kernel_secondary(env, addr, val);
1732 break;
1733 case 2:
1734 cpu_stw_kernel_secondary(env, addr, val);
1735 break;
1736 case 4:
1737 cpu_stl_kernel_secondary(env, addr, val);
1738 break;
1739 case 8:
1740 default:
1741 cpu_stq_kernel_secondary(env, addr, val);
1742 break;
1744 } else {
1745 switch (size) {
1746 case 1:
1747 cpu_stb_kernel(env, addr, val);
1748 break;
1749 case 2:
1750 cpu_stw_kernel(env, addr, val);
1751 break;
1752 case 4:
1753 cpu_stl_kernel(env, addr, val);
1754 break;
1755 case 8:
1756 default:
1757 cpu_stq_kernel(env, addr, val);
1758 break;
1762 } else {
1763 /* secondary space access has lowest asi bit equal to 1 */
1764 if (asi & 1) {
1765 switch (size) {
1766 case 1:
1767 cpu_stb_user_secondary(env, addr, val);
1768 break;
1769 case 2:
1770 cpu_stw_user_secondary(env, addr, val);
1771 break;
1772 case 4:
1773 cpu_stl_user_secondary(env, addr, val);
1774 break;
1775 case 8:
1776 default:
1777 cpu_stq_user_secondary(env, addr, val);
1778 break;
1780 } else {
1781 switch (size) {
1782 case 1:
1783 cpu_stb_user(env, addr, val);
1784 break;
1785 case 2:
1786 cpu_stw_user(env, addr, val);
1787 break;
1788 case 4:
1789 cpu_stl_user(env, addr, val);
1790 break;
1791 case 8:
1792 default:
1793 cpu_stq_user(env, addr, val);
1794 break;
1798 break;
1799 case 0x14: /* Bypass */
1800 case 0x15: /* Bypass, non-cacheable */
1801 case 0x1c: /* Bypass LE */
1802 case 0x1d: /* Bypass, non-cacheable LE */
1804 switch (size) {
1805 case 1:
1806 stb_phys(addr, val);
1807 break;
1808 case 2:
1809 stw_phys(addr, val);
1810 break;
1811 case 4:
1812 stl_phys(addr, val);
1813 break;
1814 case 8:
1815 default:
1816 stq_phys(addr, val);
1817 break;
1820 return;
1821 case 0x24: /* Nucleus quad LDD 128 bit atomic */
1822 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE
1823 Only ldda allowed */
1824 helper_raise_exception(env, TT_ILL_INSN);
1825 return;
1826 case 0x04: /* Nucleus */
1827 case 0x0c: /* Nucleus Little Endian (LE) */
1829 switch (size) {
1830 case 1:
1831 cpu_stb_nucleus(env, addr, val);
1832 break;
1833 case 2:
1834 cpu_stw_nucleus(env, addr, val);
1835 break;
1836 case 4:
1837 cpu_stl_nucleus(env, addr, val);
1838 break;
1839 default:
1840 case 8:
1841 cpu_stq_nucleus(env, addr, val);
1842 break;
1844 break;
1847 case 0x4a: /* UPA config */
1848 /* XXX */
1849 return;
1850 case 0x45: /* LSU */
1852 uint64_t oldreg;
1854 oldreg = env->lsu;
1855 env->lsu = val & (DMMU_E | IMMU_E);
1856 /* Mappings generated during D/I MMU disabled mode are
1857 invalid in normal mode */
1858 if (oldreg != env->lsu) {
1859 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
1860 oldreg, env->lsu);
1861 #ifdef DEBUG_MMU
1862 dump_mmu(stdout, fprintf, env);
1863 #endif
1864 tlb_flush(env, 1);
1866 return;
1868 case 0x50: /* I-MMU regs */
1870 int reg = (addr >> 3) & 0xf;
1871 uint64_t oldreg;
1873 oldreg = env->immuregs[reg];
1874 switch (reg) {
1875 case 0: /* RO */
1876 return;
1877 case 1: /* Not in I-MMU */
1878 case 2:
1879 return;
1880 case 3: /* SFSR */
1881 if ((val & 1) == 0) {
1882 val = 0; /* Clear SFSR */
1884 env->immu.sfsr = val;
1885 break;
1886 case 4: /* RO */
1887 return;
1888 case 5: /* TSB access */
1889 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1890 PRIx64 "\n", env->immu.tsb, val);
1891 env->immu.tsb = val;
1892 break;
1893 case 6: /* Tag access */
1894 env->immu.tag_access = val;
1895 break;
1896 case 7:
1897 case 8:
1898 return;
1899 default:
1900 break;
1903 if (oldreg != env->immuregs[reg]) {
1904 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1905 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1907 #ifdef DEBUG_MMU
1908 dump_mmu(stdout, fprintf, env);
1909 #endif
1910 return;
1912 case 0x54: /* I-MMU data in */
1913 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
1914 return;
1915 case 0x55: /* I-MMU data access */
1917 /* TODO: auto demap */
1919 unsigned int i = (addr >> 3) & 0x3f;
1921 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
1923 #ifdef DEBUG_MMU
1924 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1925 dump_mmu(stdout, fprintf, env);
1926 #endif
1927 return;
1929 case 0x57: /* I-MMU demap */
1930 demap_tlb(env->itlb, addr, "immu", env);
1931 return;
1932 case 0x58: /* D-MMU regs */
1934 int reg = (addr >> 3) & 0xf;
1935 uint64_t oldreg;
1937 oldreg = env->dmmuregs[reg];
1938 switch (reg) {
1939 case 0: /* RO */
1940 case 4:
1941 return;
1942 case 3: /* SFSR */
1943 if ((val & 1) == 0) {
1944 val = 0; /* Clear SFSR, Fault address */
1945 env->dmmu.sfar = 0;
1947 env->dmmu.sfsr = val;
1948 break;
1949 case 1: /* Primary context */
1950 env->dmmu.mmu_primary_context = val;
1951 /* can be optimized to only flush MMU_USER_IDX
1952 and MMU_KERNEL_IDX entries */
1953 tlb_flush(env, 1);
1954 break;
1955 case 2: /* Secondary context */
1956 env->dmmu.mmu_secondary_context = val;
1957 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1958 and MMU_KERNEL_SECONDARY_IDX entries */
1959 tlb_flush(env, 1);
1960 break;
1961 case 5: /* TSB access */
1962 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1963 PRIx64 "\n", env->dmmu.tsb, val);
1964 env->dmmu.tsb = val;
1965 break;
1966 case 6: /* Tag access */
1967 env->dmmu.tag_access = val;
1968 break;
1969 case 7: /* Virtual Watchpoint */
1970 case 8: /* Physical Watchpoint */
1971 default:
1972 env->dmmuregs[reg] = val;
1973 break;
1976 if (oldreg != env->dmmuregs[reg]) {
1977 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1978 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1980 #ifdef DEBUG_MMU
1981 dump_mmu(stdout, fprintf, env);
1982 #endif
1983 return;
1985 case 0x5c: /* D-MMU data in */
1986 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
1987 return;
1988 case 0x5d: /* D-MMU data access */
1990 unsigned int i = (addr >> 3) & 0x3f;
1992 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
1994 #ifdef DEBUG_MMU
1995 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1996 dump_mmu(stdout, fprintf, env);
1997 #endif
1998 return;
2000 case 0x5f: /* D-MMU demap */
2001 demap_tlb(env->dtlb, addr, "dmmu", env);
2002 return;
2003 case 0x49: /* Interrupt data receive */
2004 env->ivec_status = val & 0x20;
2005 return;
2006 case 0x46: /* D-cache data */
2007 case 0x47: /* D-cache tag access */
2008 case 0x4b: /* E-cache error enable */
2009 case 0x4c: /* E-cache asynchronous fault status */
2010 case 0x4d: /* E-cache asynchronous fault address */
2011 case 0x4e: /* E-cache tag data */
2012 case 0x66: /* I-cache instruction access */
2013 case 0x67: /* I-cache tag access */
2014 case 0x6e: /* I-cache predecode */
2015 case 0x6f: /* I-cache LRU etc. */
2016 case 0x76: /* E-cache tag */
2017 case 0x7e: /* E-cache tag */
2018 return;
2019 case 0x51: /* I-MMU 8k TSB pointer, RO */
2020 case 0x52: /* I-MMU 64k TSB pointer, RO */
2021 case 0x56: /* I-MMU tag read, RO */
2022 case 0x59: /* D-MMU 8k TSB pointer, RO */
2023 case 0x5a: /* D-MMU 64k TSB pointer, RO */
2024 case 0x5b: /* D-MMU data pointer, RO */
2025 case 0x5e: /* D-MMU tag read, RO */
2026 case 0x48: /* Interrupt dispatch, RO */
2027 case 0x7f: /* Incoming interrupt vector, RO */
2028 case 0x82: /* Primary no-fault, RO */
2029 case 0x83: /* Secondary no-fault, RO */
2030 case 0x8a: /* Primary no-fault LE, RO */
2031 case 0x8b: /* Secondary no-fault LE, RO */
2032 default:
2033 cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
2034 addr, true, false, 1, size);
2035 return;
2038 #endif /* CONFIG_USER_ONLY */
2040 void helper_ldda_asi(CPUSPARCState *env, target_ulong addr, int asi, int rd)
2042 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2043 || (cpu_has_hypervisor(env)
2044 && asi >= 0x30 && asi < 0x80
2045 && !(env->hpstate & HS_PRIV))) {
2046 helper_raise_exception(env, TT_PRIV_ACT);
2049 addr = asi_address_mask(env, asi, addr);
2051 switch (asi) {
2052 #if !defined(CONFIG_USER_ONLY)
2053 case 0x24: /* Nucleus quad LDD 128 bit atomic */
2054 case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */
2055 helper_check_align(env, addr, 0xf);
2056 if (rd == 0) {
2057 env->gregs[1] = cpu_ldq_nucleus(env, addr + 8);
2058 if (asi == 0x2c) {
2059 bswap64s(&env->gregs[1]);
2061 } else if (rd < 8) {
2062 env->gregs[rd] = cpu_ldq_nucleus(env, addr);
2063 env->gregs[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
2064 if (asi == 0x2c) {
2065 bswap64s(&env->gregs[rd]);
2066 bswap64s(&env->gregs[rd + 1]);
2068 } else {
2069 env->regwptr[rd] = cpu_ldq_nucleus(env, addr);
2070 env->regwptr[rd + 1] = cpu_ldq_nucleus(env, addr + 8);
2071 if (asi == 0x2c) {
2072 bswap64s(&env->regwptr[rd]);
2073 bswap64s(&env->regwptr[rd + 1]);
2076 break;
2077 #endif
2078 default:
2079 helper_check_align(env, addr, 0x3);
2080 if (rd == 0) {
2081 env->gregs[1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2082 } else if (rd < 8) {
2083 env->gregs[rd] = helper_ld_asi(env, addr, asi, 4, 0);
2084 env->gregs[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2085 } else {
2086 env->regwptr[rd] = helper_ld_asi(env, addr, asi, 4, 0);
2087 env->regwptr[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0);
2089 break;
2093 void helper_ldf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
2094 int rd)
2096 unsigned int i;
2097 target_ulong val;
2099 helper_check_align(env, addr, 3);
2100 addr = asi_address_mask(env, asi, addr);
2102 switch (asi) {
2103 case 0xf0: /* UA2007/JPS1 Block load primary */
2104 case 0xf1: /* UA2007/JPS1 Block load secondary */
2105 case 0xf8: /* UA2007/JPS1 Block load primary LE */
2106 case 0xf9: /* UA2007/JPS1 Block load secondary LE */
2107 if (rd & 7) {
2108 helper_raise_exception(env, TT_ILL_INSN);
2109 return;
2111 helper_check_align(env, addr, 0x3f);
2112 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2113 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x8f, 8, 0);
2115 return;
2117 case 0x16: /* UA2007 Block load primary, user privilege */
2118 case 0x17: /* UA2007 Block load secondary, user privilege */
2119 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2120 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2121 case 0x70: /* JPS1 Block load primary, user privilege */
2122 case 0x71: /* JPS1 Block load secondary, user privilege */
2123 case 0x78: /* JPS1 Block load primary LE, user privilege */
2124 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2125 if (rd & 7) {
2126 helper_raise_exception(env, TT_ILL_INSN);
2127 return;
2129 helper_check_align(env, addr, 0x3f);
2130 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2131 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x19, 8, 0);
2133 return;
2135 default:
2136 break;
2139 switch (size) {
2140 default:
2141 case 4:
2142 val = helper_ld_asi(env, addr, asi, size, 0);
2143 if (rd & 1) {
2144 env->fpr[rd / 2].l.lower = val;
2145 } else {
2146 env->fpr[rd / 2].l.upper = val;
2148 break;
2149 case 8:
2150 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, size, 0);
2151 break;
2152 case 16:
2153 env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, 8, 0);
2154 env->fpr[rd / 2 + 1].ll = helper_ld_asi(env, addr + 8, asi, 8, 0);
2155 break;
2159 void helper_stf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size,
2160 int rd)
2162 unsigned int i;
2163 target_ulong val;
2165 helper_check_align(env, addr, 3);
2166 addr = asi_address_mask(env, asi, addr);
2168 switch (asi) {
2169 case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
2170 case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
2171 case 0xf0: /* UA2007/JPS1 Block store primary */
2172 case 0xf1: /* UA2007/JPS1 Block store secondary */
2173 case 0xf8: /* UA2007/JPS1 Block store primary LE */
2174 case 0xf9: /* UA2007/JPS1 Block store secondary LE */
2175 if (rd & 7) {
2176 helper_raise_exception(env, TT_ILL_INSN);
2177 return;
2179 helper_check_align(env, addr, 0x3f);
2180 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2181 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x8f, 8);
2184 return;
2185 case 0x16: /* UA2007 Block load primary, user privilege */
2186 case 0x17: /* UA2007 Block load secondary, user privilege */
2187 case 0x1e: /* UA2007 Block load primary LE, user privilege */
2188 case 0x1f: /* UA2007 Block load secondary LE, user privilege */
2189 case 0x70: /* JPS1 Block store primary, user privilege */
2190 case 0x71: /* JPS1 Block store secondary, user privilege */
2191 case 0x78: /* JPS1 Block load primary LE, user privilege */
2192 case 0x79: /* JPS1 Block load secondary LE, user privilege */
2193 if (rd & 7) {
2194 helper_raise_exception(env, TT_ILL_INSN);
2195 return;
2197 helper_check_align(env, addr, 0x3f);
2198 for (i = 0; i < 8; i++, rd += 2, addr += 8) {
2199 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x19, 8);
2202 return;
2203 default:
2204 break;
2207 switch (size) {
2208 default:
2209 case 4:
2210 if (rd & 1) {
2211 val = env->fpr[rd / 2].l.lower;
2212 } else {
2213 val = env->fpr[rd / 2].l.upper;
2215 helper_st_asi(env, addr, val, asi, size);
2216 break;
2217 case 8:
2218 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, size);
2219 break;
2220 case 16:
2221 helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, 8);
2222 helper_st_asi(env, addr + 8, env->fpr[rd / 2 + 1].ll, asi, 8);
2223 break;
2227 target_ulong helper_cas_asi(CPUSPARCState *env, target_ulong addr,
2228 target_ulong val1, target_ulong val2, uint32_t asi)
2230 target_ulong ret;
2232 val2 &= 0xffffffffUL;
2233 ret = helper_ld_asi(env, addr, asi, 4, 0);
2234 ret &= 0xffffffffUL;
2235 if (val2 == ret) {
2236 helper_st_asi(env, addr, val1 & 0xffffffffUL, asi, 4);
2238 return ret;
2241 target_ulong helper_casx_asi(CPUSPARCState *env, target_ulong addr,
2242 target_ulong val1, target_ulong val2,
2243 uint32_t asi)
2245 target_ulong ret;
2247 ret = helper_ld_asi(env, addr, asi, 8, 0);
2248 if (val2 == ret) {
2249 helper_st_asi(env, addr, val1, asi, 8);
2251 return ret;
2253 #endif /* TARGET_SPARC64 */
2255 void helper_ldqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
2257 /* XXX add 128 bit load */
2258 CPU_QuadU u;
2260 helper_check_align(env, addr, 7);
2261 #if !defined(CONFIG_USER_ONLY)
2262 switch (mem_idx) {
2263 case MMU_USER_IDX:
2264 u.ll.upper = cpu_ldq_user(env, addr);
2265 u.ll.lower = cpu_ldq_user(env, addr + 8);
2266 QT0 = u.q;
2267 break;
2268 case MMU_KERNEL_IDX:
2269 u.ll.upper = cpu_ldq_kernel(env, addr);
2270 u.ll.lower = cpu_ldq_kernel(env, addr + 8);
2271 QT0 = u.q;
2272 break;
2273 #ifdef TARGET_SPARC64
2274 case MMU_HYPV_IDX:
2275 u.ll.upper = cpu_ldq_hypv(env, addr);
2276 u.ll.lower = cpu_ldq_hypv(env, addr + 8);
2277 QT0 = u.q;
2278 break;
2279 #endif
2280 default:
2281 DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
2282 break;
2284 #else
2285 u.ll.upper = ldq_raw(address_mask(env, addr));
2286 u.ll.lower = ldq_raw(address_mask(env, addr + 8));
2287 QT0 = u.q;
2288 #endif
2291 void helper_stqf(CPUSPARCState *env, target_ulong addr, int mem_idx)
2293 /* XXX add 128 bit store */
2294 CPU_QuadU u;
2296 helper_check_align(env, addr, 7);
2297 #if !defined(CONFIG_USER_ONLY)
2298 switch (mem_idx) {
2299 case MMU_USER_IDX:
2300 u.q = QT0;
2301 cpu_stq_user(env, addr, u.ll.upper);
2302 cpu_stq_user(env, addr + 8, u.ll.lower);
2303 break;
2304 case MMU_KERNEL_IDX:
2305 u.q = QT0;
2306 cpu_stq_kernel(env, addr, u.ll.upper);
2307 cpu_stq_kernel(env, addr + 8, u.ll.lower);
2308 break;
2309 #ifdef TARGET_SPARC64
2310 case MMU_HYPV_IDX:
2311 u.q = QT0;
2312 cpu_stq_hypv(env, addr, u.ll.upper);
2313 cpu_stq_hypv(env, addr + 8, u.ll.lower);
2314 break;
2315 #endif
2316 default:
2317 DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
2318 break;
2320 #else
2321 u.q = QT0;
2322 stq_raw(address_mask(env, addr), u.ll.upper);
2323 stq_raw(address_mask(env, addr + 8), u.ll.lower);
2324 #endif
2327 #if !defined(CONFIG_USER_ONLY)
2328 #ifndef TARGET_SPARC64
2329 void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2330 bool is_write, bool is_exec, int is_asi,
2331 unsigned size)
2333 SPARCCPU *cpu = SPARC_CPU(cs);
2334 CPUSPARCState *env = &cpu->env;
2335 int fault_type;
2337 #ifdef DEBUG_UNASSIGNED
2338 if (is_asi) {
2339 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2340 " asi 0x%02x from " TARGET_FMT_lx "\n",
2341 is_exec ? "exec" : is_write ? "write" : "read", size,
2342 size == 1 ? "" : "s", addr, is_asi, env->pc);
2343 } else {
2344 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
2345 " from " TARGET_FMT_lx "\n",
2346 is_exec ? "exec" : is_write ? "write" : "read", size,
2347 size == 1 ? "" : "s", addr, env->pc);
2349 #endif
2350 /* Don't overwrite translation and access faults */
2351 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
2352 if ((fault_type > 4) || (fault_type == 0)) {
2353 env->mmuregs[3] = 0; /* Fault status register */
2354 if (is_asi) {
2355 env->mmuregs[3] |= 1 << 16;
2357 if (env->psrs) {
2358 env->mmuregs[3] |= 1 << 5;
2360 if (is_exec) {
2361 env->mmuregs[3] |= 1 << 6;
2363 if (is_write) {
2364 env->mmuregs[3] |= 1 << 7;
2366 env->mmuregs[3] |= (5 << 2) | 2;
2367 /* SuperSPARC will never place instruction fault addresses in the FAR */
2368 if (!is_exec) {
2369 env->mmuregs[4] = addr; /* Fault address register */
2372 /* overflow (same type fault was not read before another fault) */
2373 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
2374 env->mmuregs[3] |= 1;
2377 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
2378 if (is_exec) {
2379 helper_raise_exception(env, TT_CODE_ACCESS);
2380 } else {
2381 helper_raise_exception(env, TT_DATA_ACCESS);
2385 /* flush neverland mappings created during no-fault mode,
2386 so the sequential MMU faults report proper fault types */
2387 if (env->mmuregs[0] & MMU_NF) {
2388 tlb_flush(env, 1);
2391 #else
2392 void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2393 bool is_write, bool is_exec, int is_asi,
2394 unsigned size)
2396 SPARCCPU *cpu = SPARC_CPU(cs);
2397 CPUSPARCState *env = &cpu->env;
2399 #ifdef DEBUG_UNASSIGNED
2400 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
2401 "\n", addr, env->pc);
2402 #endif
2404 if (is_exec) {
2405 helper_raise_exception(env, TT_CODE_ACCESS);
2406 } else {
2407 helper_raise_exception(env, TT_DATA_ACCESS);
2410 #endif
2411 #endif
2413 #if !defined(CONFIG_USER_ONLY)
2414 static void QEMU_NORETURN do_unaligned_access(CPUSPARCState *env,
2415 target_ulong addr, int is_write,
2416 int is_user, uintptr_t retaddr)
2418 #ifdef DEBUG_UNALIGNED
2419 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
2420 "\n", addr, env->pc);
2421 #endif
2422 if (retaddr) {
2423 cpu_restore_state(env, retaddr);
2425 helper_raise_exception(env, TT_UNALIGNED);
2428 /* try to fill the TLB and return an exception if error. If retaddr is
2429 NULL, it means that the function was called in C code (i.e. not
2430 from generated code or from helper.c) */
2431 /* XXX: fix it to restore all registers */
2432 void tlb_fill(CPUSPARCState *env, target_ulong addr, int is_write, int mmu_idx,
2433 uintptr_t retaddr)
2435 int ret;
2437 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx);
2438 if (ret) {
2439 if (retaddr) {
2440 cpu_restore_state(env, retaddr);
2442 cpu_loop_exit(env);
2445 #endif