aspeed/smc: reset flash after each test
[qemu/ar7.git] / hw / block / nvme.c
blobd479fd22f573c99daf0fa9b7fb4ed7a1a6e23e46
1 /*
2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
9 */
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.1, 1.0e
14 * http://www.nvmexpress.org/resources/
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>
23 #include "qemu/osdep.h"
24 #include "hw/block/block.h"
25 #include "hw/hw.h"
26 #include "hw/pci/msix.h"
27 #include "hw/pci/pci.h"
28 #include "sysemu/sysemu.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/block-backend.h"
33 #include "nvme.h"
35 static void nvme_process_sq(void *opaque);
37 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
39 return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
42 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
44 return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
47 static void nvme_inc_cq_tail(NvmeCQueue *cq)
49 cq->tail++;
50 if (cq->tail >= cq->size) {
51 cq->tail = 0;
52 cq->phase = !cq->phase;
56 static void nvme_inc_sq_head(NvmeSQueue *sq)
58 sq->head = (sq->head + 1) % sq->size;
61 static uint8_t nvme_cq_full(NvmeCQueue *cq)
63 return (cq->tail + 1) % cq->size == cq->head;
66 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
68 return sq->head == sq->tail;
71 static void nvme_isr_notify(NvmeCtrl *n, NvmeCQueue *cq)
73 if (cq->irq_enabled) {
74 if (msix_enabled(&(n->parent_obj))) {
75 msix_notify(&(n->parent_obj), cq->vector);
76 } else {
77 pci_irq_pulse(&n->parent_obj);
82 static uint16_t nvme_map_prp(QEMUSGList *qsg, uint64_t prp1, uint64_t prp2,
83 uint32_t len, NvmeCtrl *n)
85 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
86 trans_len = MIN(len, trans_len);
87 int num_prps = (len >> n->page_bits) + 1;
89 if (!prp1) {
90 return NVME_INVALID_FIELD | NVME_DNR;
93 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
94 qemu_sglist_add(qsg, prp1, trans_len);
95 len -= trans_len;
96 if (len) {
97 if (!prp2) {
98 goto unmap;
100 if (len > n->page_size) {
101 uint64_t prp_list[n->max_prp_ents];
102 uint32_t nents, prp_trans;
103 int i = 0;
105 nents = (len + n->page_size - 1) >> n->page_bits;
106 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
107 pci_dma_read(&n->parent_obj, prp2, (void *)prp_list, prp_trans);
108 while (len != 0) {
109 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
111 if (i == n->max_prp_ents - 1 && len > n->page_size) {
112 if (!prp_ent || prp_ent & (n->page_size - 1)) {
113 goto unmap;
116 i = 0;
117 nents = (len + n->page_size - 1) >> n->page_bits;
118 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
119 pci_dma_read(&n->parent_obj, prp_ent, (void *)prp_list,
120 prp_trans);
121 prp_ent = le64_to_cpu(prp_list[i]);
124 if (!prp_ent || prp_ent & (n->page_size - 1)) {
125 goto unmap;
128 trans_len = MIN(len, n->page_size);
129 qemu_sglist_add(qsg, prp_ent, trans_len);
130 len -= trans_len;
131 i++;
133 } else {
134 if (prp2 & (n->page_size - 1)) {
135 goto unmap;
137 qemu_sglist_add(qsg, prp2, len);
140 return NVME_SUCCESS;
142 unmap:
143 qemu_sglist_destroy(qsg);
144 return NVME_INVALID_FIELD | NVME_DNR;
147 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
148 uint64_t prp1, uint64_t prp2)
150 QEMUSGList qsg;
152 if (nvme_map_prp(&qsg, prp1, prp2, len, n)) {
153 return NVME_INVALID_FIELD | NVME_DNR;
155 if (dma_buf_read(ptr, len, &qsg)) {
156 qemu_sglist_destroy(&qsg);
157 return NVME_INVALID_FIELD | NVME_DNR;
159 qemu_sglist_destroy(&qsg);
160 return NVME_SUCCESS;
163 static void nvme_post_cqes(void *opaque)
165 NvmeCQueue *cq = opaque;
166 NvmeCtrl *n = cq->ctrl;
167 NvmeRequest *req, *next;
169 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
170 NvmeSQueue *sq;
171 hwaddr addr;
173 if (nvme_cq_full(cq)) {
174 break;
177 QTAILQ_REMOVE(&cq->req_list, req, entry);
178 sq = req->sq;
179 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
180 req->cqe.sq_id = cpu_to_le16(sq->sqid);
181 req->cqe.sq_head = cpu_to_le16(sq->head);
182 addr = cq->dma_addr + cq->tail * n->cqe_size;
183 nvme_inc_cq_tail(cq);
184 pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
185 sizeof(req->cqe));
186 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
188 nvme_isr_notify(n, cq);
191 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
193 assert(cq->cqid == req->sq->cqid);
194 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
195 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
196 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
199 static void nvme_rw_cb(void *opaque, int ret)
201 NvmeRequest *req = opaque;
202 NvmeSQueue *sq = req->sq;
203 NvmeCtrl *n = sq->ctrl;
204 NvmeCQueue *cq = n->cq[sq->cqid];
206 if (!ret) {
207 block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
208 req->status = NVME_SUCCESS;
209 } else {
210 block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
211 req->status = NVME_INTERNAL_DEV_ERROR;
213 if (req->has_sg) {
214 qemu_sglist_destroy(&req->qsg);
216 nvme_enqueue_req_completion(cq, req);
219 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
220 NvmeRequest *req)
222 req->has_sg = false;
223 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
224 BLOCK_ACCT_FLUSH);
225 req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
227 return NVME_NO_COMPLETE;
230 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
231 NvmeRequest *req)
233 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
234 uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
235 uint64_t slba = le64_to_cpu(rw->slba);
236 uint64_t prp1 = le64_to_cpu(rw->prp1);
237 uint64_t prp2 = le64_to_cpu(rw->prp2);
239 uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
240 uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
241 uint64_t data_size = (uint64_t)nlb << data_shift;
242 uint64_t data_offset = slba << data_shift;
243 int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
244 enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
246 if ((slba + nlb) > ns->id_ns.nsze) {
247 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
248 return NVME_LBA_RANGE | NVME_DNR;
251 if (nvme_map_prp(&req->qsg, prp1, prp2, data_size, n)) {
252 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
253 return NVME_INVALID_FIELD | NVME_DNR;
256 assert((nlb << data_shift) == req->qsg.size);
258 req->has_sg = true;
259 dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
260 req->aiocb = is_write ?
261 dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
262 nvme_rw_cb, req) :
263 dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
264 nvme_rw_cb, req);
266 return NVME_NO_COMPLETE;
269 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
271 NvmeNamespace *ns;
272 uint32_t nsid = le32_to_cpu(cmd->nsid);
274 if (nsid == 0 || nsid > n->num_namespaces) {
275 return NVME_INVALID_NSID | NVME_DNR;
278 ns = &n->namespaces[nsid - 1];
279 switch (cmd->opcode) {
280 case NVME_CMD_FLUSH:
281 return nvme_flush(n, ns, cmd, req);
282 case NVME_CMD_WRITE:
283 case NVME_CMD_READ:
284 return nvme_rw(n, ns, cmd, req);
285 default:
286 return NVME_INVALID_OPCODE | NVME_DNR;
290 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
292 n->sq[sq->sqid] = NULL;
293 timer_del(sq->timer);
294 timer_free(sq->timer);
295 g_free(sq->io_req);
296 if (sq->sqid) {
297 g_free(sq);
301 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
303 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
304 NvmeRequest *req, *next;
305 NvmeSQueue *sq;
306 NvmeCQueue *cq;
307 uint16_t qid = le16_to_cpu(c->qid);
309 if (!qid || nvme_check_sqid(n, qid)) {
310 return NVME_INVALID_QID | NVME_DNR;
313 sq = n->sq[qid];
314 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
315 req = QTAILQ_FIRST(&sq->out_req_list);
316 assert(req->aiocb);
317 blk_aio_cancel(req->aiocb);
319 if (!nvme_check_cqid(n, sq->cqid)) {
320 cq = n->cq[sq->cqid];
321 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
323 nvme_post_cqes(cq);
324 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
325 if (req->sq == sq) {
326 QTAILQ_REMOVE(&cq->req_list, req, entry);
327 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
332 nvme_free_sq(sq, n);
333 return NVME_SUCCESS;
336 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
337 uint16_t sqid, uint16_t cqid, uint16_t size)
339 int i;
340 NvmeCQueue *cq;
342 sq->ctrl = n;
343 sq->dma_addr = dma_addr;
344 sq->sqid = sqid;
345 sq->size = size;
346 sq->cqid = cqid;
347 sq->head = sq->tail = 0;
348 sq->io_req = g_new(NvmeRequest, sq->size);
350 QTAILQ_INIT(&sq->req_list);
351 QTAILQ_INIT(&sq->out_req_list);
352 for (i = 0; i < sq->size; i++) {
353 sq->io_req[i].sq = sq;
354 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
356 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
358 assert(n->cq[cqid]);
359 cq = n->cq[cqid];
360 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
361 n->sq[sqid] = sq;
364 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
366 NvmeSQueue *sq;
367 NvmeCreateSq *c = (NvmeCreateSq *)cmd;
369 uint16_t cqid = le16_to_cpu(c->cqid);
370 uint16_t sqid = le16_to_cpu(c->sqid);
371 uint16_t qsize = le16_to_cpu(c->qsize);
372 uint16_t qflags = le16_to_cpu(c->sq_flags);
373 uint64_t prp1 = le64_to_cpu(c->prp1);
375 if (!cqid || nvme_check_cqid(n, cqid)) {
376 return NVME_INVALID_CQID | NVME_DNR;
378 if (!sqid || !nvme_check_sqid(n, sqid)) {
379 return NVME_INVALID_QID | NVME_DNR;
381 if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
382 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
384 if (!prp1 || prp1 & (n->page_size - 1)) {
385 return NVME_INVALID_FIELD | NVME_DNR;
387 if (!(NVME_SQ_FLAGS_PC(qflags))) {
388 return NVME_INVALID_FIELD | NVME_DNR;
390 sq = g_malloc0(sizeof(*sq));
391 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
392 return NVME_SUCCESS;
395 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
397 n->cq[cq->cqid] = NULL;
398 timer_del(cq->timer);
399 timer_free(cq->timer);
400 msix_vector_unuse(&n->parent_obj, cq->vector);
401 if (cq->cqid) {
402 g_free(cq);
406 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
408 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
409 NvmeCQueue *cq;
410 uint16_t qid = le16_to_cpu(c->qid);
412 if (!qid || nvme_check_cqid(n, qid)) {
413 return NVME_INVALID_CQID | NVME_DNR;
416 cq = n->cq[qid];
417 if (!QTAILQ_EMPTY(&cq->sq_list)) {
418 return NVME_INVALID_QUEUE_DEL;
420 nvme_free_cq(cq, n);
421 return NVME_SUCCESS;
424 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
425 uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
427 cq->ctrl = n;
428 cq->cqid = cqid;
429 cq->size = size;
430 cq->dma_addr = dma_addr;
431 cq->phase = 1;
432 cq->irq_enabled = irq_enabled;
433 cq->vector = vector;
434 cq->head = cq->tail = 0;
435 QTAILQ_INIT(&cq->req_list);
436 QTAILQ_INIT(&cq->sq_list);
437 msix_vector_use(&n->parent_obj, cq->vector);
438 n->cq[cqid] = cq;
439 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
442 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
444 NvmeCQueue *cq;
445 NvmeCreateCq *c = (NvmeCreateCq *)cmd;
446 uint16_t cqid = le16_to_cpu(c->cqid);
447 uint16_t vector = le16_to_cpu(c->irq_vector);
448 uint16_t qsize = le16_to_cpu(c->qsize);
449 uint16_t qflags = le16_to_cpu(c->cq_flags);
450 uint64_t prp1 = le64_to_cpu(c->prp1);
452 if (!cqid || !nvme_check_cqid(n, cqid)) {
453 return NVME_INVALID_CQID | NVME_DNR;
455 if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
456 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
458 if (!prp1) {
459 return NVME_INVALID_FIELD | NVME_DNR;
461 if (vector > n->num_queues) {
462 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
464 if (!(NVME_CQ_FLAGS_PC(qflags))) {
465 return NVME_INVALID_FIELD | NVME_DNR;
468 cq = g_malloc0(sizeof(*cq));
469 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
470 NVME_CQ_FLAGS_IEN(qflags));
471 return NVME_SUCCESS;
474 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
476 uint64_t prp1 = le64_to_cpu(c->prp1);
477 uint64_t prp2 = le64_to_cpu(c->prp2);
479 return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
480 prp1, prp2);
483 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
485 NvmeNamespace *ns;
486 uint32_t nsid = le32_to_cpu(c->nsid);
487 uint64_t prp1 = le64_to_cpu(c->prp1);
488 uint64_t prp2 = le64_to_cpu(c->prp2);
490 if (nsid == 0 || nsid > n->num_namespaces) {
491 return NVME_INVALID_NSID | NVME_DNR;
494 ns = &n->namespaces[nsid - 1];
495 return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
496 prp1, prp2);
499 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
501 static const int data_len = 4096;
502 uint32_t min_nsid = le32_to_cpu(c->nsid);
503 uint64_t prp1 = le64_to_cpu(c->prp1);
504 uint64_t prp2 = le64_to_cpu(c->prp2);
505 uint32_t *list;
506 uint16_t ret;
507 int i, j = 0;
509 list = g_malloc0(data_len);
510 for (i = 0; i < n->num_namespaces; i++) {
511 if (i < min_nsid) {
512 continue;
514 list[j++] = cpu_to_le32(i + 1);
515 if (j == data_len / sizeof(uint32_t)) {
516 break;
519 ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
520 g_free(list);
521 return ret;
525 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
527 NvmeIdentify *c = (NvmeIdentify *)cmd;
529 switch (le32_to_cpu(c->cns)) {
530 case 0x00:
531 return nvme_identify_ns(n, c);
532 case 0x01:
533 return nvme_identify_ctrl(n, c);
534 case 0x02:
535 return nvme_identify_nslist(n, c);
536 default:
537 return NVME_INVALID_FIELD | NVME_DNR;
541 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
543 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
544 uint32_t result;
546 switch (dw10) {
547 case NVME_VOLATILE_WRITE_CACHE:
548 result = blk_enable_write_cache(n->conf.blk);
549 break;
550 case NVME_NUMBER_OF_QUEUES:
551 result = cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
552 break;
553 default:
554 return NVME_INVALID_FIELD | NVME_DNR;
557 req->cqe.result = result;
558 return NVME_SUCCESS;
561 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
563 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
564 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
566 switch (dw10) {
567 case NVME_VOLATILE_WRITE_CACHE:
568 blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
569 break;
570 case NVME_NUMBER_OF_QUEUES:
571 req->cqe.result =
572 cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
573 break;
574 default:
575 return NVME_INVALID_FIELD | NVME_DNR;
577 return NVME_SUCCESS;
580 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
582 switch (cmd->opcode) {
583 case NVME_ADM_CMD_DELETE_SQ:
584 return nvme_del_sq(n, cmd);
585 case NVME_ADM_CMD_CREATE_SQ:
586 return nvme_create_sq(n, cmd);
587 case NVME_ADM_CMD_DELETE_CQ:
588 return nvme_del_cq(n, cmd);
589 case NVME_ADM_CMD_CREATE_CQ:
590 return nvme_create_cq(n, cmd);
591 case NVME_ADM_CMD_IDENTIFY:
592 return nvme_identify(n, cmd);
593 case NVME_ADM_CMD_SET_FEATURES:
594 return nvme_set_feature(n, cmd, req);
595 case NVME_ADM_CMD_GET_FEATURES:
596 return nvme_get_feature(n, cmd, req);
597 default:
598 return NVME_INVALID_OPCODE | NVME_DNR;
602 static void nvme_process_sq(void *opaque)
604 NvmeSQueue *sq = opaque;
605 NvmeCtrl *n = sq->ctrl;
606 NvmeCQueue *cq = n->cq[sq->cqid];
608 uint16_t status;
609 hwaddr addr;
610 NvmeCmd cmd;
611 NvmeRequest *req;
613 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
614 addr = sq->dma_addr + sq->head * n->sqe_size;
615 pci_dma_read(&n->parent_obj, addr, (void *)&cmd, sizeof(cmd));
616 nvme_inc_sq_head(sq);
618 req = QTAILQ_FIRST(&sq->req_list);
619 QTAILQ_REMOVE(&sq->req_list, req, entry);
620 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
621 memset(&req->cqe, 0, sizeof(req->cqe));
622 req->cqe.cid = cmd.cid;
624 status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
625 nvme_admin_cmd(n, &cmd, req);
626 if (status != NVME_NO_COMPLETE) {
627 req->status = status;
628 nvme_enqueue_req_completion(cq, req);
633 static void nvme_clear_ctrl(NvmeCtrl *n)
635 int i;
637 for (i = 0; i < n->num_queues; i++) {
638 if (n->sq[i] != NULL) {
639 nvme_free_sq(n->sq[i], n);
642 for (i = 0; i < n->num_queues; i++) {
643 if (n->cq[i] != NULL) {
644 nvme_free_cq(n->cq[i], n);
648 blk_flush(n->conf.blk);
649 n->bar.cc = 0;
652 static int nvme_start_ctrl(NvmeCtrl *n)
654 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
655 uint32_t page_size = 1 << page_bits;
657 if (n->cq[0] || n->sq[0] || !n->bar.asq || !n->bar.acq ||
658 n->bar.asq & (page_size - 1) || n->bar.acq & (page_size - 1) ||
659 NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap) ||
660 NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap) ||
661 NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes) ||
662 NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes) ||
663 NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes) ||
664 NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes) ||
665 !NVME_AQA_ASQS(n->bar.aqa) || !NVME_AQA_ACQS(n->bar.aqa)) {
666 return -1;
669 n->page_bits = page_bits;
670 n->page_size = page_size;
671 n->max_prp_ents = n->page_size / sizeof(uint64_t);
672 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
673 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
674 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
675 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
676 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
677 NVME_AQA_ASQS(n->bar.aqa) + 1);
679 return 0;
682 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
683 unsigned size)
685 switch (offset) {
686 case 0xc:
687 n->bar.intms |= data & 0xffffffff;
688 n->bar.intmc = n->bar.intms;
689 break;
690 case 0x10:
691 n->bar.intms &= ~(data & 0xffffffff);
692 n->bar.intmc = n->bar.intms;
693 break;
694 case 0x14:
695 /* Windows first sends data, then sends enable bit */
696 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
697 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
699 n->bar.cc = data;
702 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
703 n->bar.cc = data;
704 if (nvme_start_ctrl(n)) {
705 n->bar.csts = NVME_CSTS_FAILED;
706 } else {
707 n->bar.csts = NVME_CSTS_READY;
709 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
710 nvme_clear_ctrl(n);
711 n->bar.csts &= ~NVME_CSTS_READY;
713 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
714 nvme_clear_ctrl(n);
715 n->bar.cc = data;
716 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
717 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
718 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
719 n->bar.cc = data;
721 break;
722 case 0x24:
723 n->bar.aqa = data & 0xffffffff;
724 break;
725 case 0x28:
726 n->bar.asq = data;
727 break;
728 case 0x2c:
729 n->bar.asq |= data << 32;
730 break;
731 case 0x30:
732 n->bar.acq = data;
733 break;
734 case 0x34:
735 n->bar.acq |= data << 32;
736 break;
737 default:
738 break;
742 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
744 NvmeCtrl *n = (NvmeCtrl *)opaque;
745 uint8_t *ptr = (uint8_t *)&n->bar;
746 uint64_t val = 0;
748 if (addr < sizeof(n->bar)) {
749 memcpy(&val, ptr + addr, size);
751 return val;
754 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
756 uint32_t qid;
758 if (addr & ((1 << 2) - 1)) {
759 return;
762 if (((addr - 0x1000) >> 2) & 1) {
763 uint16_t new_head = val & 0xffff;
764 int start_sqs;
765 NvmeCQueue *cq;
767 qid = (addr - (0x1000 + (1 << 2))) >> 3;
768 if (nvme_check_cqid(n, qid)) {
769 return;
772 cq = n->cq[qid];
773 if (new_head >= cq->size) {
774 return;
777 start_sqs = nvme_cq_full(cq) ? 1 : 0;
778 cq->head = new_head;
779 if (start_sqs) {
780 NvmeSQueue *sq;
781 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
782 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
784 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
787 if (cq->tail != cq->head) {
788 nvme_isr_notify(n, cq);
790 } else {
791 uint16_t new_tail = val & 0xffff;
792 NvmeSQueue *sq;
794 qid = (addr - 0x1000) >> 3;
795 if (nvme_check_sqid(n, qid)) {
796 return;
799 sq = n->sq[qid];
800 if (new_tail >= sq->size) {
801 return;
804 sq->tail = new_tail;
805 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
809 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
810 unsigned size)
812 NvmeCtrl *n = (NvmeCtrl *)opaque;
813 if (addr < sizeof(n->bar)) {
814 nvme_write_bar(n, addr, data, size);
815 } else if (addr >= 0x1000) {
816 nvme_process_db(n, addr, data);
820 static const MemoryRegionOps nvme_mmio_ops = {
821 .read = nvme_mmio_read,
822 .write = nvme_mmio_write,
823 .endianness = DEVICE_LITTLE_ENDIAN,
824 .impl = {
825 .min_access_size = 2,
826 .max_access_size = 8,
830 static int nvme_init(PCIDevice *pci_dev)
832 NvmeCtrl *n = NVME(pci_dev);
833 NvmeIdCtrl *id = &n->id_ctrl;
835 int i;
836 int64_t bs_size;
837 uint8_t *pci_conf;
839 if (!n->conf.blk) {
840 return -1;
843 bs_size = blk_getlength(n->conf.blk);
844 if (bs_size < 0) {
845 return -1;
848 blkconf_serial(&n->conf, &n->serial);
849 if (!n->serial) {
850 return -1;
852 blkconf_blocksizes(&n->conf);
853 blkconf_apply_backend_options(&n->conf);
855 pci_conf = pci_dev->config;
856 pci_conf[PCI_INTERRUPT_PIN] = 1;
857 pci_config_set_prog_interface(pci_dev->config, 0x2);
858 pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
859 pcie_endpoint_cap_init(&n->parent_obj, 0x80);
861 n->num_namespaces = 1;
862 n->num_queues = 64;
863 n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
864 n->ns_size = bs_size / (uint64_t)n->num_namespaces;
866 n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
867 n->sq = g_new0(NvmeSQueue *, n->num_queues);
868 n->cq = g_new0(NvmeCQueue *, n->num_queues);
870 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
871 "nvme", n->reg_size);
872 pci_register_bar(&n->parent_obj, 0,
873 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
874 &n->iomem);
875 msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4);
877 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
878 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
879 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
880 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
881 strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
882 id->rab = 6;
883 id->ieee[0] = 0x00;
884 id->ieee[1] = 0x02;
885 id->ieee[2] = 0xb3;
886 id->oacs = cpu_to_le16(0);
887 id->frmw = 7 << 1;
888 id->lpa = 1 << 0;
889 id->sqes = (0x6 << 4) | 0x6;
890 id->cqes = (0x4 << 4) | 0x4;
891 id->nn = cpu_to_le32(n->num_namespaces);
892 id->psd[0].mp = cpu_to_le16(0x9c4);
893 id->psd[0].enlat = cpu_to_le32(0x10);
894 id->psd[0].exlat = cpu_to_le32(0x4);
895 if (blk_enable_write_cache(n->conf.blk)) {
896 id->vwc = 1;
899 n->bar.cap = 0;
900 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
901 NVME_CAP_SET_CQR(n->bar.cap, 1);
902 NVME_CAP_SET_AMS(n->bar.cap, 1);
903 NVME_CAP_SET_TO(n->bar.cap, 0xf);
904 NVME_CAP_SET_CSS(n->bar.cap, 1);
905 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
907 n->bar.vs = 0x00010100;
908 n->bar.intmc = n->bar.intms = 0;
910 for (i = 0; i < n->num_namespaces; i++) {
911 NvmeNamespace *ns = &n->namespaces[i];
912 NvmeIdNs *id_ns = &ns->id_ns;
913 id_ns->nsfeat = 0;
914 id_ns->nlbaf = 0;
915 id_ns->flbas = 0;
916 id_ns->mc = 0;
917 id_ns->dpc = 0;
918 id_ns->dps = 0;
919 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
920 id_ns->ncap = id_ns->nuse = id_ns->nsze =
921 cpu_to_le64(n->ns_size >>
922 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
924 return 0;
927 static void nvme_exit(PCIDevice *pci_dev)
929 NvmeCtrl *n = NVME(pci_dev);
931 nvme_clear_ctrl(n);
932 g_free(n->namespaces);
933 g_free(n->cq);
934 g_free(n->sq);
935 msix_uninit_exclusive_bar(pci_dev);
938 static Property nvme_props[] = {
939 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
940 DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
941 DEFINE_PROP_END_OF_LIST(),
944 static const VMStateDescription nvme_vmstate = {
945 .name = "nvme",
946 .unmigratable = 1,
949 static void nvme_class_init(ObjectClass *oc, void *data)
951 DeviceClass *dc = DEVICE_CLASS(oc);
952 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
954 pc->init = nvme_init;
955 pc->exit = nvme_exit;
956 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
957 pc->vendor_id = PCI_VENDOR_ID_INTEL;
958 pc->device_id = 0x5845;
959 pc->revision = 2;
960 pc->is_express = 1;
962 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
963 dc->desc = "Non-Volatile Memory Express";
964 dc->props = nvme_props;
965 dc->vmsd = &nvme_vmstate;
968 static void nvme_instance_init(Object *obj)
970 NvmeCtrl *s = NVME(obj);
972 device_add_bootindex_property(obj, &s->conf.bootindex,
973 "bootindex", "/namespace@1,0",
974 DEVICE(obj), &error_abort);
977 static const TypeInfo nvme_info = {
978 .name = "nvme",
979 .parent = TYPE_PCI_DEVICE,
980 .instance_size = sizeof(NvmeCtrl),
981 .class_init = nvme_class_init,
982 .instance_init = nvme_instance_init,
985 static void nvme_register_types(void)
987 type_register_static(&nvme_info);
990 type_init(nvme_register_types)