hw/net/can: Add missing fallthrough statements
[qemu/ar7.git] / target / arm / vfp_helper.c
blob64266ece6203bbcef23c1961e70acafb86c7fff7
1 /*
2 * ARM VFP floating-point operations
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "internals.h"
24 #ifdef CONFIG_TCG
25 #include "qemu/log.h"
26 #include "fpu/softfloat.h"
27 #endif
29 /* VFP support. We follow the convention used for VFP instructions:
30 Single precision routines have a "s" suffix, double precision a
31 "d" suffix. */
33 #ifdef CONFIG_TCG
35 /* Convert host exception flags to vfp form. */
36 static inline int vfp_exceptbits_from_host(int host_bits)
38 int target_bits = 0;
40 if (host_bits & float_flag_invalid) {
41 target_bits |= 1;
43 if (host_bits & float_flag_divbyzero) {
44 target_bits |= 2;
46 if (host_bits & float_flag_overflow) {
47 target_bits |= 4;
49 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) {
50 target_bits |= 8;
52 if (host_bits & float_flag_inexact) {
53 target_bits |= 0x10;
55 if (host_bits & float_flag_input_denormal) {
56 target_bits |= 0x80;
58 return target_bits;
61 /* Convert vfp exception flags to target form. */
62 static inline int vfp_exceptbits_to_host(int target_bits)
64 int host_bits = 0;
66 if (target_bits & 1) {
67 host_bits |= float_flag_invalid;
69 if (target_bits & 2) {
70 host_bits |= float_flag_divbyzero;
72 if (target_bits & 4) {
73 host_bits |= float_flag_overflow;
75 if (target_bits & 8) {
76 host_bits |= float_flag_underflow;
78 if (target_bits & 0x10) {
79 host_bits |= float_flag_inexact;
81 if (target_bits & 0x80) {
82 host_bits |= float_flag_input_denormal;
84 return host_bits;
87 static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
89 uint32_t i;
91 i = get_float_exception_flags(&env->vfp.fp_status);
92 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
93 /* FZ16 does not generate an input denormal exception. */
94 i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
95 & ~float_flag_input_denormal);
96 i |= (get_float_exception_flags(&env->vfp.standard_fp_status_f16)
97 & ~float_flag_input_denormal);
98 return vfp_exceptbits_from_host(i);
101 static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
103 int i;
104 uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
106 changed ^= val;
107 if (changed & (3 << 22)) {
108 i = (val >> 22) & 3;
109 switch (i) {
110 case FPROUNDING_TIEEVEN:
111 i = float_round_nearest_even;
112 break;
113 case FPROUNDING_POSINF:
114 i = float_round_up;
115 break;
116 case FPROUNDING_NEGINF:
117 i = float_round_down;
118 break;
119 case FPROUNDING_ZERO:
120 i = float_round_to_zero;
121 break;
123 set_float_rounding_mode(i, &env->vfp.fp_status);
124 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
126 if (changed & FPCR_FZ16) {
127 bool ftz_enabled = val & FPCR_FZ16;
128 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
129 set_flush_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
130 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
131 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.standard_fp_status_f16);
133 if (changed & FPCR_FZ) {
134 bool ftz_enabled = val & FPCR_FZ;
135 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
136 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
138 if (changed & FPCR_DN) {
139 bool dnan_enabled = val & FPCR_DN;
140 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
141 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
145 * The exception flags are ORed together when we read fpscr so we
146 * only need to preserve the current state in one of our
147 * float_status values.
149 i = vfp_exceptbits_to_host(val);
150 set_float_exception_flags(i, &env->vfp.fp_status);
151 set_float_exception_flags(0, &env->vfp.fp_status_f16);
152 set_float_exception_flags(0, &env->vfp.standard_fp_status);
153 set_float_exception_flags(0, &env->vfp.standard_fp_status_f16);
156 #else
158 static uint32_t vfp_get_fpscr_from_host(CPUARMState *env)
160 return 0;
163 static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val)
167 #endif
169 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
171 uint32_t i, fpscr;
173 fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
174 | (env->vfp.vec_len << 16)
175 | (env->vfp.vec_stride << 20);
177 fpscr |= vfp_get_fpscr_from_host(env);
179 i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
180 fpscr |= i ? FPCR_QC : 0;
182 return fpscr;
185 uint32_t vfp_get_fpscr(CPUARMState *env)
187 return HELPER(vfp_get_fpscr)(env);
190 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
192 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
193 if (!cpu_isar_feature(any_fp16, env_archcpu(env))) {
194 val &= ~FPCR_FZ16;
197 if (arm_feature(env, ARM_FEATURE_M)) {
199 * M profile FPSCR is RES0 for the QC, STRIDE, FZ16, LEN bits
200 * and also for the trapped-exception-handling bits IxE.
202 val &= 0xf7c0009f;
205 vfp_set_fpscr_to_host(env, val);
208 * We don't implement trapped exception handling, so the
209 * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
211 * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC
212 * (which are stored in fp_status), and the other RES0 bits
213 * in between, then we clear all of the low 16 bits.
215 env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
216 env->vfp.vec_len = (val >> 16) & 7;
217 env->vfp.vec_stride = (val >> 20) & 3;
220 * The bit we set within fpscr_q is arbitrary; the register as a
221 * whole being zero/non-zero is what counts.
223 env->vfp.qc[0] = val & FPCR_QC;
224 env->vfp.qc[1] = 0;
225 env->vfp.qc[2] = 0;
226 env->vfp.qc[3] = 0;
229 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
231 HELPER(vfp_set_fpscr)(env, val);
234 #ifdef CONFIG_TCG
236 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
238 #define VFP_BINOP(name) \
239 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
241 float_status *fpst = fpstp; \
242 return float32_ ## name(a, b, fpst); \
244 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
246 float_status *fpst = fpstp; \
247 return float64_ ## name(a, b, fpst); \
249 VFP_BINOP(add)
250 VFP_BINOP(sub)
251 VFP_BINOP(mul)
252 VFP_BINOP(div)
253 VFP_BINOP(min)
254 VFP_BINOP(max)
255 VFP_BINOP(minnum)
256 VFP_BINOP(maxnum)
257 #undef VFP_BINOP
259 float32 VFP_HELPER(neg, s)(float32 a)
261 return float32_chs(a);
264 float64 VFP_HELPER(neg, d)(float64 a)
266 return float64_chs(a);
269 float32 VFP_HELPER(abs, s)(float32 a)
271 return float32_abs(a);
274 float64 VFP_HELPER(abs, d)(float64 a)
276 return float64_abs(a);
279 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
281 return float32_sqrt(a, &env->vfp.fp_status);
284 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
286 return float64_sqrt(a, &env->vfp.fp_status);
289 static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
291 uint32_t flags;
292 switch (cmp) {
293 case float_relation_equal:
294 flags = 0x6;
295 break;
296 case float_relation_less:
297 flags = 0x8;
298 break;
299 case float_relation_greater:
300 flags = 0x2;
301 break;
302 case float_relation_unordered:
303 flags = 0x3;
304 break;
305 default:
306 g_assert_not_reached();
308 env->vfp.xregs[ARM_VFP_FPSCR] =
309 deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
312 /* XXX: check quiet/signaling case */
313 #define DO_VFP_cmp(p, type) \
314 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
316 softfloat_to_vfp_compare(env, \
317 type ## _compare_quiet(a, b, &env->vfp.fp_status)); \
319 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
321 softfloat_to_vfp_compare(env, \
322 type ## _compare(a, b, &env->vfp.fp_status)); \
324 DO_VFP_cmp(s, float32)
325 DO_VFP_cmp(d, float64)
326 #undef DO_VFP_cmp
328 /* Integer to float and float to integer conversions */
330 #define CONV_ITOF(name, ftype, fsz, sign) \
331 ftype HELPER(name)(uint32_t x, void *fpstp) \
333 float_status *fpst = fpstp; \
334 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
337 #define CONV_FTOI(name, ftype, fsz, sign, round) \
338 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
340 float_status *fpst = fpstp; \
341 if (float##fsz##_is_any_nan(x)) { \
342 float_raise(float_flag_invalid, fpst); \
343 return 0; \
345 return float##fsz##_to_##sign##int32##round(x, fpst); \
348 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
349 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
350 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
351 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
353 FLOAT_CONVS(si, h, uint32_t, 16, )
354 FLOAT_CONVS(si, s, float32, 32, )
355 FLOAT_CONVS(si, d, float64, 64, )
356 FLOAT_CONVS(ui, h, uint32_t, 16, u)
357 FLOAT_CONVS(ui, s, float32, 32, u)
358 FLOAT_CONVS(ui, d, float64, 64, u)
360 #undef CONV_ITOF
361 #undef CONV_FTOI
362 #undef FLOAT_CONVS
364 /* floating point conversion */
365 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
367 return float32_to_float64(x, &env->vfp.fp_status);
370 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
372 return float64_to_float32(x, &env->vfp.fp_status);
375 /* VFP3 fixed point conversion. */
376 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
377 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
378 void *fpstp) \
379 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
381 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \
382 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
383 void *fpst) \
385 if (unlikely(float##fsz##_is_any_nan(x))) { \
386 float_raise(float_flag_invalid, fpst); \
387 return 0; \
389 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
392 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
393 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
394 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
395 float_round_to_zero, _round_to_zero) \
396 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
397 get_float_rounding_mode(fpst), )
399 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
400 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
401 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
402 get_float_rounding_mode(fpst), )
404 VFP_CONV_FIX(sh, d, 64, 64, int16)
405 VFP_CONV_FIX(sl, d, 64, 64, int32)
406 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
407 VFP_CONV_FIX(uh, d, 64, 64, uint16)
408 VFP_CONV_FIX(ul, d, 64, 64, uint32)
409 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
410 VFP_CONV_FIX(sh, s, 32, 32, int16)
411 VFP_CONV_FIX(sl, s, 32, 32, int32)
412 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
413 VFP_CONV_FIX(uh, s, 32, 32, uint16)
414 VFP_CONV_FIX(ul, s, 32, 32, uint32)
415 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
417 #undef VFP_CONV_FIX
418 #undef VFP_CONV_FIX_FLOAT
419 #undef VFP_CONV_FLOAT_FIX_ROUND
420 #undef VFP_CONV_FIX_A64
422 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
424 return int32_to_float16_scalbn(x, -shift, fpst);
427 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
429 return uint32_to_float16_scalbn(x, -shift, fpst);
432 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
434 return int64_to_float16_scalbn(x, -shift, fpst);
437 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
439 return uint64_to_float16_scalbn(x, -shift, fpst);
442 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
444 if (unlikely(float16_is_any_nan(x))) {
445 float_raise(float_flag_invalid, fpst);
446 return 0;
448 return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
449 shift, fpst);
452 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
454 if (unlikely(float16_is_any_nan(x))) {
455 float_raise(float_flag_invalid, fpst);
456 return 0;
458 return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
459 shift, fpst);
462 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
464 if (unlikely(float16_is_any_nan(x))) {
465 float_raise(float_flag_invalid, fpst);
466 return 0;
468 return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
469 shift, fpst);
472 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
474 if (unlikely(float16_is_any_nan(x))) {
475 float_raise(float_flag_invalid, fpst);
476 return 0;
478 return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
479 shift, fpst);
482 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
484 if (unlikely(float16_is_any_nan(x))) {
485 float_raise(float_flag_invalid, fpst);
486 return 0;
488 return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
489 shift, fpst);
492 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
494 if (unlikely(float16_is_any_nan(x))) {
495 float_raise(float_flag_invalid, fpst);
496 return 0;
498 return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
499 shift, fpst);
502 /* Set the current fp rounding mode and return the old one.
503 * The argument is a softfloat float_round_ value.
505 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
507 float_status *fp_status = fpstp;
509 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
510 set_float_rounding_mode(rmode, fp_status);
512 return prev_rmode;
515 /* Set the current fp rounding mode in the standard fp status and return
516 * the old one. This is for NEON instructions that need to change the
517 * rounding mode but wish to use the standard FPSCR values for everything
518 * else. Always set the rounding mode back to the correct value after
519 * modifying it.
520 * The argument is a softfloat float_round_ value.
522 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
524 float_status *fp_status = &env->vfp.standard_fp_status;
526 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
527 set_float_rounding_mode(rmode, fp_status);
529 return prev_rmode;
532 /* Half precision conversions. */
533 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
535 /* Squash FZ16 to 0 for the duration of conversion. In this case,
536 * it would affect flushing input denormals.
538 float_status *fpst = fpstp;
539 bool save = get_flush_inputs_to_zero(fpst);
540 set_flush_inputs_to_zero(false, fpst);
541 float32 r = float16_to_float32(a, !ahp_mode, fpst);
542 set_flush_inputs_to_zero(save, fpst);
543 return r;
546 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
548 /* Squash FZ16 to 0 for the duration of conversion. In this case,
549 * it would affect flushing output denormals.
551 float_status *fpst = fpstp;
552 bool save = get_flush_to_zero(fpst);
553 set_flush_to_zero(false, fpst);
554 float16 r = float32_to_float16(a, !ahp_mode, fpst);
555 set_flush_to_zero(save, fpst);
556 return r;
559 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
561 /* Squash FZ16 to 0 for the duration of conversion. In this case,
562 * it would affect flushing input denormals.
564 float_status *fpst = fpstp;
565 bool save = get_flush_inputs_to_zero(fpst);
566 set_flush_inputs_to_zero(false, fpst);
567 float64 r = float16_to_float64(a, !ahp_mode, fpst);
568 set_flush_inputs_to_zero(save, fpst);
569 return r;
572 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
574 /* Squash FZ16 to 0 for the duration of conversion. In this case,
575 * it would affect flushing output denormals.
577 float_status *fpst = fpstp;
578 bool save = get_flush_to_zero(fpst);
579 set_flush_to_zero(false, fpst);
580 float16 r = float64_to_float16(a, !ahp_mode, fpst);
581 set_flush_to_zero(save, fpst);
582 return r;
585 #define float32_two make_float32(0x40000000)
586 #define float32_three make_float32(0x40400000)
587 #define float32_one_point_five make_float32(0x3fc00000)
589 float32 HELPER(recps_f32)(CPUARMState *env, float32 a, float32 b)
591 float_status *s = &env->vfp.standard_fp_status;
592 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
593 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
594 if (!(float32_is_zero(a) || float32_is_zero(b))) {
595 float_raise(float_flag_input_denormal, s);
597 return float32_two;
599 return float32_sub(float32_two, float32_mul(a, b, s), s);
602 float32 HELPER(rsqrts_f32)(CPUARMState *env, float32 a, float32 b)
604 float_status *s = &env->vfp.standard_fp_status;
605 float32 product;
606 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
607 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
608 if (!(float32_is_zero(a) || float32_is_zero(b))) {
609 float_raise(float_flag_input_denormal, s);
611 return float32_one_point_five;
613 product = float32_mul(a, b, s);
614 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
617 /* NEON helpers. */
619 /* Constants 256 and 512 are used in some helpers; we avoid relying on
620 * int->float conversions at run-time. */
621 #define float64_256 make_float64(0x4070000000000000LL)
622 #define float64_512 make_float64(0x4080000000000000LL)
623 #define float16_maxnorm make_float16(0x7bff)
624 #define float32_maxnorm make_float32(0x7f7fffff)
625 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
627 /* Reciprocal functions
629 * The algorithm that must be used to calculate the estimate
630 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
633 /* See RecipEstimate()
635 * input is a 9 bit fixed point number
636 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
637 * result range 256 .. 511 for a number from 1.0 to 511/256.
640 static int recip_estimate(int input)
642 int a, b, r;
643 assert(256 <= input && input < 512);
644 a = (input * 2) + 1;
645 b = (1 << 19) / a;
646 r = (b + 1) >> 1;
647 assert(256 <= r && r < 512);
648 return r;
652 * Common wrapper to call recip_estimate
654 * The parameters are exponent and 64 bit fraction (without implicit
655 * bit) where the binary point is nominally at bit 52. Returns a
656 * float64 which can then be rounded to the appropriate size by the
657 * callee.
660 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
662 uint32_t scaled, estimate;
663 uint64_t result_frac;
664 int result_exp;
666 /* Handle sub-normals */
667 if (*exp == 0) {
668 if (extract64(frac, 51, 1) == 0) {
669 *exp = -1;
670 frac <<= 2;
671 } else {
672 frac <<= 1;
676 /* scaled = UInt('1':fraction<51:44>) */
677 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
678 estimate = recip_estimate(scaled);
680 result_exp = exp_off - *exp;
681 result_frac = deposit64(0, 44, 8, estimate);
682 if (result_exp == 0) {
683 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
684 } else if (result_exp == -1) {
685 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
686 result_exp = 0;
689 *exp = result_exp;
691 return result_frac;
694 static bool round_to_inf(float_status *fpst, bool sign_bit)
696 switch (fpst->float_rounding_mode) {
697 case float_round_nearest_even: /* Round to Nearest */
698 return true;
699 case float_round_up: /* Round to +Inf */
700 return !sign_bit;
701 case float_round_down: /* Round to -Inf */
702 return sign_bit;
703 case float_round_to_zero: /* Round to Zero */
704 return false;
705 default:
706 g_assert_not_reached();
710 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
712 float_status *fpst = fpstp;
713 float16 f16 = float16_squash_input_denormal(input, fpst);
714 uint32_t f16_val = float16_val(f16);
715 uint32_t f16_sign = float16_is_neg(f16);
716 int f16_exp = extract32(f16_val, 10, 5);
717 uint32_t f16_frac = extract32(f16_val, 0, 10);
718 uint64_t f64_frac;
720 if (float16_is_any_nan(f16)) {
721 float16 nan = f16;
722 if (float16_is_signaling_nan(f16, fpst)) {
723 float_raise(float_flag_invalid, fpst);
724 nan = float16_silence_nan(f16, fpst);
726 if (fpst->default_nan_mode) {
727 nan = float16_default_nan(fpst);
729 return nan;
730 } else if (float16_is_infinity(f16)) {
731 return float16_set_sign(float16_zero, float16_is_neg(f16));
732 } else if (float16_is_zero(f16)) {
733 float_raise(float_flag_divbyzero, fpst);
734 return float16_set_sign(float16_infinity, float16_is_neg(f16));
735 } else if (float16_abs(f16) < (1 << 8)) {
736 /* Abs(value) < 2.0^-16 */
737 float_raise(float_flag_overflow | float_flag_inexact, fpst);
738 if (round_to_inf(fpst, f16_sign)) {
739 return float16_set_sign(float16_infinity, f16_sign);
740 } else {
741 return float16_set_sign(float16_maxnorm, f16_sign);
743 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
744 float_raise(float_flag_underflow, fpst);
745 return float16_set_sign(float16_zero, float16_is_neg(f16));
748 f64_frac = call_recip_estimate(&f16_exp, 29,
749 ((uint64_t) f16_frac) << (52 - 10));
751 /* result = sign : result_exp<4:0> : fraction<51:42> */
752 f16_val = deposit32(0, 15, 1, f16_sign);
753 f16_val = deposit32(f16_val, 10, 5, f16_exp);
754 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
755 return make_float16(f16_val);
758 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
760 float_status *fpst = fpstp;
761 float32 f32 = float32_squash_input_denormal(input, fpst);
762 uint32_t f32_val = float32_val(f32);
763 bool f32_sign = float32_is_neg(f32);
764 int f32_exp = extract32(f32_val, 23, 8);
765 uint32_t f32_frac = extract32(f32_val, 0, 23);
766 uint64_t f64_frac;
768 if (float32_is_any_nan(f32)) {
769 float32 nan = f32;
770 if (float32_is_signaling_nan(f32, fpst)) {
771 float_raise(float_flag_invalid, fpst);
772 nan = float32_silence_nan(f32, fpst);
774 if (fpst->default_nan_mode) {
775 nan = float32_default_nan(fpst);
777 return nan;
778 } else if (float32_is_infinity(f32)) {
779 return float32_set_sign(float32_zero, float32_is_neg(f32));
780 } else if (float32_is_zero(f32)) {
781 float_raise(float_flag_divbyzero, fpst);
782 return float32_set_sign(float32_infinity, float32_is_neg(f32));
783 } else if (float32_abs(f32) < (1ULL << 21)) {
784 /* Abs(value) < 2.0^-128 */
785 float_raise(float_flag_overflow | float_flag_inexact, fpst);
786 if (round_to_inf(fpst, f32_sign)) {
787 return float32_set_sign(float32_infinity, f32_sign);
788 } else {
789 return float32_set_sign(float32_maxnorm, f32_sign);
791 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
792 float_raise(float_flag_underflow, fpst);
793 return float32_set_sign(float32_zero, float32_is_neg(f32));
796 f64_frac = call_recip_estimate(&f32_exp, 253,
797 ((uint64_t) f32_frac) << (52 - 23));
799 /* result = sign : result_exp<7:0> : fraction<51:29> */
800 f32_val = deposit32(0, 31, 1, f32_sign);
801 f32_val = deposit32(f32_val, 23, 8, f32_exp);
802 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
803 return make_float32(f32_val);
806 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
808 float_status *fpst = fpstp;
809 float64 f64 = float64_squash_input_denormal(input, fpst);
810 uint64_t f64_val = float64_val(f64);
811 bool f64_sign = float64_is_neg(f64);
812 int f64_exp = extract64(f64_val, 52, 11);
813 uint64_t f64_frac = extract64(f64_val, 0, 52);
815 /* Deal with any special cases */
816 if (float64_is_any_nan(f64)) {
817 float64 nan = f64;
818 if (float64_is_signaling_nan(f64, fpst)) {
819 float_raise(float_flag_invalid, fpst);
820 nan = float64_silence_nan(f64, fpst);
822 if (fpst->default_nan_mode) {
823 nan = float64_default_nan(fpst);
825 return nan;
826 } else if (float64_is_infinity(f64)) {
827 return float64_set_sign(float64_zero, float64_is_neg(f64));
828 } else if (float64_is_zero(f64)) {
829 float_raise(float_flag_divbyzero, fpst);
830 return float64_set_sign(float64_infinity, float64_is_neg(f64));
831 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
832 /* Abs(value) < 2.0^-1024 */
833 float_raise(float_flag_overflow | float_flag_inexact, fpst);
834 if (round_to_inf(fpst, f64_sign)) {
835 return float64_set_sign(float64_infinity, f64_sign);
836 } else {
837 return float64_set_sign(float64_maxnorm, f64_sign);
839 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
840 float_raise(float_flag_underflow, fpst);
841 return float64_set_sign(float64_zero, float64_is_neg(f64));
844 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
846 /* result = sign : result_exp<10:0> : fraction<51:0>; */
847 f64_val = deposit64(0, 63, 1, f64_sign);
848 f64_val = deposit64(f64_val, 52, 11, f64_exp);
849 f64_val = deposit64(f64_val, 0, 52, f64_frac);
850 return make_float64(f64_val);
853 /* The algorithm that must be used to calculate the estimate
854 * is specified by the ARM ARM.
857 static int do_recip_sqrt_estimate(int a)
859 int b, estimate;
861 assert(128 <= a && a < 512);
862 if (a < 256) {
863 a = a * 2 + 1;
864 } else {
865 a = (a >> 1) << 1;
866 a = (a + 1) * 2;
868 b = 512;
869 while (a * (b + 1) * (b + 1) < (1 << 28)) {
870 b += 1;
872 estimate = (b + 1) / 2;
873 assert(256 <= estimate && estimate < 512);
875 return estimate;
879 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
881 int estimate;
882 uint32_t scaled;
884 if (*exp == 0) {
885 while (extract64(frac, 51, 1) == 0) {
886 frac = frac << 1;
887 *exp -= 1;
889 frac = extract64(frac, 0, 51) << 1;
892 if (*exp & 1) {
893 /* scaled = UInt('01':fraction<51:45>) */
894 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
895 } else {
896 /* scaled = UInt('1':fraction<51:44>) */
897 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
899 estimate = do_recip_sqrt_estimate(scaled);
901 *exp = (exp_off - *exp) / 2;
902 return extract64(estimate, 0, 8) << 44;
905 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
907 float_status *s = fpstp;
908 float16 f16 = float16_squash_input_denormal(input, s);
909 uint16_t val = float16_val(f16);
910 bool f16_sign = float16_is_neg(f16);
911 int f16_exp = extract32(val, 10, 5);
912 uint16_t f16_frac = extract32(val, 0, 10);
913 uint64_t f64_frac;
915 if (float16_is_any_nan(f16)) {
916 float16 nan = f16;
917 if (float16_is_signaling_nan(f16, s)) {
918 float_raise(float_flag_invalid, s);
919 nan = float16_silence_nan(f16, s);
921 if (s->default_nan_mode) {
922 nan = float16_default_nan(s);
924 return nan;
925 } else if (float16_is_zero(f16)) {
926 float_raise(float_flag_divbyzero, s);
927 return float16_set_sign(float16_infinity, f16_sign);
928 } else if (f16_sign) {
929 float_raise(float_flag_invalid, s);
930 return float16_default_nan(s);
931 } else if (float16_is_infinity(f16)) {
932 return float16_zero;
935 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
936 * preserving the parity of the exponent. */
938 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
940 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
942 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
943 val = deposit32(0, 15, 1, f16_sign);
944 val = deposit32(val, 10, 5, f16_exp);
945 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
946 return make_float16(val);
949 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
951 float_status *s = fpstp;
952 float32 f32 = float32_squash_input_denormal(input, s);
953 uint32_t val = float32_val(f32);
954 uint32_t f32_sign = float32_is_neg(f32);
955 int f32_exp = extract32(val, 23, 8);
956 uint32_t f32_frac = extract32(val, 0, 23);
957 uint64_t f64_frac;
959 if (float32_is_any_nan(f32)) {
960 float32 nan = f32;
961 if (float32_is_signaling_nan(f32, s)) {
962 float_raise(float_flag_invalid, s);
963 nan = float32_silence_nan(f32, s);
965 if (s->default_nan_mode) {
966 nan = float32_default_nan(s);
968 return nan;
969 } else if (float32_is_zero(f32)) {
970 float_raise(float_flag_divbyzero, s);
971 return float32_set_sign(float32_infinity, float32_is_neg(f32));
972 } else if (float32_is_neg(f32)) {
973 float_raise(float_flag_invalid, s);
974 return float32_default_nan(s);
975 } else if (float32_is_infinity(f32)) {
976 return float32_zero;
979 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
980 * preserving the parity of the exponent. */
982 f64_frac = ((uint64_t) f32_frac) << 29;
984 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
986 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
987 val = deposit32(0, 31, 1, f32_sign);
988 val = deposit32(val, 23, 8, f32_exp);
989 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
990 return make_float32(val);
993 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
995 float_status *s = fpstp;
996 float64 f64 = float64_squash_input_denormal(input, s);
997 uint64_t val = float64_val(f64);
998 bool f64_sign = float64_is_neg(f64);
999 int f64_exp = extract64(val, 52, 11);
1000 uint64_t f64_frac = extract64(val, 0, 52);
1002 if (float64_is_any_nan(f64)) {
1003 float64 nan = f64;
1004 if (float64_is_signaling_nan(f64, s)) {
1005 float_raise(float_flag_invalid, s);
1006 nan = float64_silence_nan(f64, s);
1008 if (s->default_nan_mode) {
1009 nan = float64_default_nan(s);
1011 return nan;
1012 } else if (float64_is_zero(f64)) {
1013 float_raise(float_flag_divbyzero, s);
1014 return float64_set_sign(float64_infinity, float64_is_neg(f64));
1015 } else if (float64_is_neg(f64)) {
1016 float_raise(float_flag_invalid, s);
1017 return float64_default_nan(s);
1018 } else if (float64_is_infinity(f64)) {
1019 return float64_zero;
1022 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
1024 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
1025 val = deposit64(0, 61, 1, f64_sign);
1026 val = deposit64(val, 52, 11, f64_exp);
1027 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
1028 return make_float64(val);
1031 uint32_t HELPER(recpe_u32)(uint32_t a)
1033 int input, estimate;
1035 if ((a & 0x80000000) == 0) {
1036 return 0xffffffff;
1039 input = extract32(a, 23, 9);
1040 estimate = recip_estimate(input);
1042 return deposit32(0, (32 - 9), 9, estimate);
1045 uint32_t HELPER(rsqrte_u32)(uint32_t a)
1047 int estimate;
1049 if ((a & 0xc0000000) == 0) {
1050 return 0xffffffff;
1053 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
1055 return deposit32(0, 23, 9, estimate);
1058 /* VFPv4 fused multiply-accumulate */
1059 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
1061 float_status *fpst = fpstp;
1062 return float32_muladd(a, b, c, 0, fpst);
1065 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
1067 float_status *fpst = fpstp;
1068 return float64_muladd(a, b, c, 0, fpst);
1071 /* ARMv8 round to integral */
1072 float32 HELPER(rints_exact)(float32 x, void *fp_status)
1074 return float32_round_to_int(x, fp_status);
1077 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
1079 return float64_round_to_int(x, fp_status);
1082 float32 HELPER(rints)(float32 x, void *fp_status)
1084 int old_flags = get_float_exception_flags(fp_status), new_flags;
1085 float32 ret;
1087 ret = float32_round_to_int(x, fp_status);
1089 /* Suppress any inexact exceptions the conversion produced */
1090 if (!(old_flags & float_flag_inexact)) {
1091 new_flags = get_float_exception_flags(fp_status);
1092 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1095 return ret;
1098 float64 HELPER(rintd)(float64 x, void *fp_status)
1100 int old_flags = get_float_exception_flags(fp_status), new_flags;
1101 float64 ret;
1103 ret = float64_round_to_int(x, fp_status);
1105 new_flags = get_float_exception_flags(fp_status);
1107 /* Suppress any inexact exceptions the conversion produced */
1108 if (!(old_flags & float_flag_inexact)) {
1109 new_flags = get_float_exception_flags(fp_status);
1110 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
1113 return ret;
1116 /* Convert ARM rounding mode to softfloat */
1117 int arm_rmode_to_sf(int rmode)
1119 switch (rmode) {
1120 case FPROUNDING_TIEAWAY:
1121 rmode = float_round_ties_away;
1122 break;
1123 case FPROUNDING_ODD:
1124 /* FIXME: add support for TIEAWAY and ODD */
1125 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
1126 rmode);
1127 /* fall through for now */
1128 case FPROUNDING_TIEEVEN:
1129 default:
1130 rmode = float_round_nearest_even;
1131 break;
1132 case FPROUNDING_POSINF:
1133 rmode = float_round_up;
1134 break;
1135 case FPROUNDING_NEGINF:
1136 rmode = float_round_down;
1137 break;
1138 case FPROUNDING_ZERO:
1139 rmode = float_round_to_zero;
1140 break;
1142 return rmode;
1146 * Implement float64 to int32_t conversion without saturation;
1147 * the result is supplied modulo 2^32.
1149 uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
1151 float_status *status = vstatus;
1152 uint32_t exp, sign;
1153 uint64_t frac;
1154 uint32_t inexact = 1; /* !Z */
1156 sign = extract64(value, 63, 1);
1157 exp = extract64(value, 52, 11);
1158 frac = extract64(value, 0, 52);
1160 if (exp == 0) {
1161 /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
1162 inexact = sign;
1163 if (frac != 0) {
1164 if (status->flush_inputs_to_zero) {
1165 float_raise(float_flag_input_denormal, status);
1166 } else {
1167 float_raise(float_flag_inexact, status);
1168 inexact = 1;
1171 frac = 0;
1172 } else if (exp == 0x7ff) {
1173 /* This operation raises Invalid for both NaN and overflow (Inf). */
1174 float_raise(float_flag_invalid, status);
1175 frac = 0;
1176 } else {
1177 int true_exp = exp - 1023;
1178 int shift = true_exp - 52;
1180 /* Restore implicit bit. */
1181 frac |= 1ull << 52;
1183 /* Shift the fraction into place. */
1184 if (shift >= 0) {
1185 /* The number is so large we must shift the fraction left. */
1186 if (shift >= 64) {
1187 /* The fraction is shifted out entirely. */
1188 frac = 0;
1189 } else {
1190 frac <<= shift;
1192 } else if (shift > -64) {
1193 /* Normal case -- shift right and notice if bits shift out. */
1194 inexact = (frac << (64 + shift)) != 0;
1195 frac >>= -shift;
1196 } else {
1197 /* The fraction is shifted out entirely. */
1198 frac = 0;
1201 /* Notice overflow or inexact exceptions. */
1202 if (true_exp > 31 || frac > (sign ? 0x80000000ull : 0x7fffffff)) {
1203 /* Overflow, for which this operation raises invalid. */
1204 float_raise(float_flag_invalid, status);
1205 inexact = 1;
1206 } else if (inexact) {
1207 float_raise(float_flag_inexact, status);
1210 /* Honor the sign. */
1211 if (sign) {
1212 frac = -frac;
1216 /* Pack the result and the env->ZF representation of Z together. */
1217 return deposit64(frac, 32, 32, inexact);
1220 uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
1222 uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
1223 uint32_t result = pair;
1224 uint32_t z = (pair >> 32) == 0;
1226 /* Store Z, clear NCV, in FPSCR.NZCV. */
1227 env->vfp.xregs[ARM_VFP_FPSCR]
1228 = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
1230 return result;
1233 /* Round a float32 to an integer that fits in int32_t or int64_t. */
1234 static float32 frint_s(float32 f, float_status *fpst, int intsize)
1236 int old_flags = get_float_exception_flags(fpst);
1237 uint32_t exp = extract32(f, 23, 8);
1239 if (unlikely(exp == 0xff)) {
1240 /* NaN or Inf. */
1241 goto overflow;
1244 /* Round and re-extract the exponent. */
1245 f = float32_round_to_int(f, fpst);
1246 exp = extract32(f, 23, 8);
1248 /* Validate the range of the result. */
1249 if (exp < 126 + intsize) {
1250 /* abs(F) <= INT{N}_MAX */
1251 return f;
1253 if (exp == 126 + intsize) {
1254 uint32_t sign = extract32(f, 31, 1);
1255 uint32_t frac = extract32(f, 0, 23);
1256 if (sign && frac == 0) {
1257 /* F == INT{N}_MIN */
1258 return f;
1262 overflow:
1264 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1265 * inexact exception float32_round_to_int may have raised.
1267 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1268 return (0x100u + 126u + intsize) << 23;
1271 float32 HELPER(frint32_s)(float32 f, void *fpst)
1273 return frint_s(f, fpst, 32);
1276 float32 HELPER(frint64_s)(float32 f, void *fpst)
1278 return frint_s(f, fpst, 64);
1281 /* Round a float64 to an integer that fits in int32_t or int64_t. */
1282 static float64 frint_d(float64 f, float_status *fpst, int intsize)
1284 int old_flags = get_float_exception_flags(fpst);
1285 uint32_t exp = extract64(f, 52, 11);
1287 if (unlikely(exp == 0x7ff)) {
1288 /* NaN or Inf. */
1289 goto overflow;
1292 /* Round and re-extract the exponent. */
1293 f = float64_round_to_int(f, fpst);
1294 exp = extract64(f, 52, 11);
1296 /* Validate the range of the result. */
1297 if (exp < 1022 + intsize) {
1298 /* abs(F) <= INT{N}_MAX */
1299 return f;
1301 if (exp == 1022 + intsize) {
1302 uint64_t sign = extract64(f, 63, 1);
1303 uint64_t frac = extract64(f, 0, 52);
1304 if (sign && frac == 0) {
1305 /* F == INT{N}_MIN */
1306 return f;
1310 overflow:
1312 * Raise Invalid and return INT{N}_MIN as a float. Revert any
1313 * inexact exception float64_round_to_int may have raised.
1315 set_float_exception_flags(old_flags | float_flag_invalid, fpst);
1316 return (uint64_t)(0x800 + 1022 + intsize) << 52;
1319 float64 HELPER(frint32_d)(float64 f, void *fpst)
1321 return frint_d(f, fpst, 32);
1324 float64 HELPER(frint64_d)(float64 f, void *fpst)
1326 return frint_d(f, fpst, 64);
1329 void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
1331 uint32_t syndrome;
1333 switch (reg) {
1334 case ARM_VFP_MVFR0:
1335 case ARM_VFP_MVFR1:
1336 case ARM_VFP_MVFR2:
1337 if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
1338 return;
1340 break;
1341 case ARM_VFP_FPSID:
1342 if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
1343 return;
1345 break;
1346 default:
1347 g_assert_not_reached();
1350 syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
1351 | ARM_EL_IL
1352 | (1 << 24) | (0xe << 20) | (7 << 14)
1353 | (reg << 10) | (rt << 5) | 1);
1355 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
1358 #endif