4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
19 #include <sys/utsname.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_para.h>
24 #include "qemu-common.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/kvm_int.h"
31 #include "exec/gdbstub.h"
32 #include "qemu/host-utils.h"
33 #include "qemu/config-file.h"
34 #include "qemu/error-report.h"
35 #include "hw/i386/pc.h"
36 #include "hw/i386/apic.h"
37 #include "hw/i386/apic_internal.h"
38 #include "hw/i386/apic-msidef.h"
40 #include "exec/ioport.h"
41 #include "standard-headers/asm-x86/hyperv.h"
42 #include "hw/pci/pci.h"
43 #include "hw/pci/msi.h"
44 #include "migration/migration.h"
45 #include "exec/memattrs.h"
50 #define DPRINTF(fmt, ...) \
51 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
53 #define DPRINTF(fmt, ...) \
57 #define MSR_KVM_WALL_CLOCK 0x11
58 #define MSR_KVM_SYSTEM_TIME 0x12
61 #define BUS_MCEERR_AR 4
64 #define BUS_MCEERR_AO 5
67 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
68 KVM_CAP_INFO(SET_TSS_ADDR
),
69 KVM_CAP_INFO(EXT_CPUID
),
70 KVM_CAP_INFO(MP_STATE
),
74 static bool has_msr_star
;
75 static bool has_msr_hsave_pa
;
76 static bool has_msr_tsc_aux
;
77 static bool has_msr_tsc_adjust
;
78 static bool has_msr_tsc_deadline
;
79 static bool has_msr_feature_control
;
80 static bool has_msr_async_pf_en
;
81 static bool has_msr_pv_eoi_en
;
82 static bool has_msr_misc_enable
;
83 static bool has_msr_smbase
;
84 static bool has_msr_bndcfgs
;
85 static bool has_msr_kvm_steal_time
;
86 static int lm_capable_kernel
;
87 static bool has_msr_hv_hypercall
;
88 static bool has_msr_hv_vapic
;
89 static bool has_msr_hv_tsc
;
90 static bool has_msr_hv_crash
;
91 static bool has_msr_hv_reset
;
92 static bool has_msr_hv_vpindex
;
93 static bool has_msr_hv_runtime
;
94 static bool has_msr_hv_synic
;
95 static bool has_msr_hv_stimer
;
96 static bool has_msr_mtrr
;
97 static bool has_msr_xss
;
99 static bool has_msr_architectural_pmu
;
100 static uint32_t num_architectural_pmu_counters
;
102 static int has_xsave
;
104 static int has_pit_state2
;
106 int kvm_has_pit_state2(void)
108 return has_pit_state2
;
111 bool kvm_has_smm(void)
113 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
116 bool kvm_allows_irq0_override(void)
118 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
121 static int kvm_get_tsc(CPUState
*cs
)
123 X86CPU
*cpu
= X86_CPU(cs
);
124 CPUX86State
*env
= &cpu
->env
;
126 struct kvm_msrs info
;
127 struct kvm_msr_entry entries
[1];
131 if (env
->tsc_valid
) {
135 msr_data
.info
.nmsrs
= 1;
136 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
137 env
->tsc_valid
= !runstate_is_running();
139 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
145 env
->tsc
= msr_data
.entries
[0].data
;
149 static inline void do_kvm_synchronize_tsc(void *arg
)
156 void kvm_synchronize_all_tsc(void)
162 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, cpu
);
167 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
169 struct kvm_cpuid2
*cpuid
;
172 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
173 cpuid
= g_malloc0(size
);
175 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
176 if (r
== 0 && cpuid
->nent
>= max
) {
184 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
192 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
195 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
197 struct kvm_cpuid2
*cpuid
;
199 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
205 static const struct kvm_para_features
{
208 } para_features
[] = {
209 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
210 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
211 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
212 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
215 static int get_para_features(KVMState
*s
)
219 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
220 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
221 features
|= (1 << para_features
[i
].feature
);
229 /* Returns the value for a specific register on the cpuid entry
231 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
251 /* Find matching entry for function/index on kvm_cpuid2 struct
253 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
258 for (i
= 0; i
< cpuid
->nent
; ++i
) {
259 if (cpuid
->entries
[i
].function
== function
&&
260 cpuid
->entries
[i
].index
== index
) {
261 return &cpuid
->entries
[i
];
268 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
269 uint32_t index
, int reg
)
271 struct kvm_cpuid2
*cpuid
;
273 uint32_t cpuid_1_edx
;
276 cpuid
= get_supported_cpuid(s
);
278 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
281 ret
= cpuid_entry_get_reg(entry
, reg
);
284 /* Fixups for the data returned by KVM, below */
286 if (function
== 1 && reg
== R_EDX
) {
287 /* KVM before 2.6.30 misreports the following features */
288 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
289 } else if (function
== 1 && reg
== R_ECX
) {
290 /* We can set the hypervisor flag, even if KVM does not return it on
291 * GET_SUPPORTED_CPUID
293 ret
|= CPUID_EXT_HYPERVISOR
;
294 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
295 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
296 * and the irqchip is in the kernel.
298 if (kvm_irqchip_in_kernel() &&
299 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
300 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
303 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
304 * without the in-kernel irqchip
306 if (!kvm_irqchip_in_kernel()) {
307 ret
&= ~CPUID_EXT_X2APIC
;
309 } else if (function
== 6 && reg
== R_EAX
) {
310 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
311 } else if (function
== 0x80000001 && reg
== R_EDX
) {
312 /* On Intel, kvm returns cpuid according to the Intel spec,
313 * so add missing bits according to the AMD spec:
315 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
316 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
321 /* fallback for older kernels */
322 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
323 ret
= get_para_features(s
);
329 typedef struct HWPoisonPage
{
331 QLIST_ENTRY(HWPoisonPage
) list
;
334 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
335 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
337 static void kvm_unpoison_all(void *param
)
339 HWPoisonPage
*page
, *next_page
;
341 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
342 QLIST_REMOVE(page
, list
);
343 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
348 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
352 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
353 if (page
->ram_addr
== ram_addr
) {
357 page
= g_new(HWPoisonPage
, 1);
358 page
->ram_addr
= ram_addr
;
359 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
362 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
367 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
370 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
375 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
377 CPUX86State
*env
= &cpu
->env
;
378 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
379 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
380 uint64_t mcg_status
= MCG_STATUS_MCIP
;
382 if (code
== BUS_MCEERR_AR
) {
383 status
|= MCI_STATUS_AR
| 0x134;
384 mcg_status
|= MCG_STATUS_EIPV
;
387 mcg_status
|= MCG_STATUS_RIPV
;
389 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
390 (MCM_ADDR_PHYS
<< 6) | 0xc,
391 cpu_x86_support_mca_broadcast(env
) ?
392 MCE_INJECT_BROADCAST
: 0);
395 static void hardware_memory_error(void)
397 fprintf(stderr
, "Hardware memory error!\n");
401 int kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
403 X86CPU
*cpu
= X86_CPU(c
);
404 CPUX86State
*env
= &cpu
->env
;
408 if ((env
->mcg_cap
& MCG_SER_P
) && addr
409 && (code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
)) {
410 if (qemu_ram_addr_from_host(addr
, &ram_addr
) == NULL
||
411 !kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
412 fprintf(stderr
, "Hardware memory error for memory used by "
413 "QEMU itself instead of guest system!\n");
414 /* Hope we are lucky for AO MCE */
415 if (code
== BUS_MCEERR_AO
) {
418 hardware_memory_error();
421 kvm_hwpoison_page_add(ram_addr
);
422 kvm_mce_inject(cpu
, paddr
, code
);
424 if (code
== BUS_MCEERR_AO
) {
426 } else if (code
== BUS_MCEERR_AR
) {
427 hardware_memory_error();
435 int kvm_arch_on_sigbus(int code
, void *addr
)
437 X86CPU
*cpu
= X86_CPU(first_cpu
);
439 if ((cpu
->env
.mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
443 /* Hope we are lucky for AO MCE */
444 if (qemu_ram_addr_from_host(addr
, &ram_addr
) == NULL
||
445 !kvm_physical_memory_addr_from_host(first_cpu
->kvm_state
,
447 fprintf(stderr
, "Hardware memory error for memory used by "
448 "QEMU itself instead of guest system!: %p\n", addr
);
451 kvm_hwpoison_page_add(ram_addr
);
452 kvm_mce_inject(X86_CPU(first_cpu
), paddr
, code
);
454 if (code
== BUS_MCEERR_AO
) {
456 } else if (code
== BUS_MCEERR_AR
) {
457 hardware_memory_error();
465 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
467 CPUX86State
*env
= &cpu
->env
;
469 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
470 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
471 struct kvm_x86_mce mce
;
473 env
->exception_injected
= -1;
476 * There must be at least one bank in use if an MCE is pending.
477 * Find it and use its values for the event injection.
479 for (bank
= 0; bank
< bank_num
; bank
++) {
480 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
484 assert(bank
< bank_num
);
487 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
488 mce
.mcg_status
= env
->mcg_status
;
489 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
490 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
492 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
497 static void cpu_update_state(void *opaque
, int running
, RunState state
)
499 CPUX86State
*env
= opaque
;
502 env
->tsc_valid
= false;
506 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
508 X86CPU
*cpu
= X86_CPU(cs
);
512 #ifndef KVM_CPUID_SIGNATURE_NEXT
513 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
516 static bool hyperv_hypercall_available(X86CPU
*cpu
)
518 return cpu
->hyperv_vapic
||
519 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
522 static bool hyperv_enabled(X86CPU
*cpu
)
524 CPUState
*cs
= CPU(cpu
);
525 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
526 (hyperv_hypercall_available(cpu
) ||
528 cpu
->hyperv_relaxed_timing
||
531 cpu
->hyperv_vpindex
||
532 cpu
->hyperv_runtime
||
537 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
539 X86CPU
*cpu
= X86_CPU(cs
);
540 CPUX86State
*env
= &cpu
->env
;
547 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
548 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
551 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
552 * TSC frequency doesn't match the one we want.
554 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
555 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
557 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
558 error_report("warning: TSC frequency mismatch between "
559 "VM and host, and TSC scaling unavailable");
567 static Error
*invtsc_mig_blocker
;
569 #define KVM_MAX_CPUID_ENTRIES 100
571 int kvm_arch_init_vcpu(CPUState
*cs
)
574 struct kvm_cpuid2 cpuid
;
575 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
576 } QEMU_PACKED cpuid_data
;
577 X86CPU
*cpu
= X86_CPU(cs
);
578 CPUX86State
*env
= &cpu
->env
;
579 uint32_t limit
, i
, j
, cpuid_i
;
581 struct kvm_cpuid_entry2
*c
;
582 uint32_t signature
[3];
583 int kvm_base
= KVM_CPUID_SIGNATURE
;
586 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
590 /* Paravirtualization CPUIDs */
591 if (hyperv_enabled(cpu
)) {
592 c
= &cpuid_data
.entries
[cpuid_i
++];
593 c
->function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
594 if (!cpu
->hyperv_vendor_id
) {
595 memcpy(signature
, "Microsoft Hv", 12);
597 size_t len
= strlen(cpu
->hyperv_vendor_id
);
600 error_report("hv-vendor-id truncated to 12 characters");
603 memset(signature
, 0, 12);
604 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
606 c
->eax
= HYPERV_CPUID_MIN
;
607 c
->ebx
= signature
[0];
608 c
->ecx
= signature
[1];
609 c
->edx
= signature
[2];
611 c
= &cpuid_data
.entries
[cpuid_i
++];
612 c
->function
= HYPERV_CPUID_INTERFACE
;
613 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
614 c
->eax
= signature
[0];
619 c
= &cpuid_data
.entries
[cpuid_i
++];
620 c
->function
= HYPERV_CPUID_VERSION
;
624 c
= &cpuid_data
.entries
[cpuid_i
++];
625 c
->function
= HYPERV_CPUID_FEATURES
;
626 if (cpu
->hyperv_relaxed_timing
) {
627 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
629 if (cpu
->hyperv_vapic
) {
630 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
631 c
->eax
|= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
632 has_msr_hv_vapic
= true;
634 if (cpu
->hyperv_time
&&
635 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) > 0) {
636 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
637 c
->eax
|= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE
;
639 has_msr_hv_tsc
= true;
641 if (cpu
->hyperv_crash
&& has_msr_hv_crash
) {
642 c
->edx
|= HV_X64_GUEST_CRASH_MSR_AVAILABLE
;
644 c
->edx
|= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
645 if (cpu
->hyperv_reset
&& has_msr_hv_reset
) {
646 c
->eax
|= HV_X64_MSR_RESET_AVAILABLE
;
648 if (cpu
->hyperv_vpindex
&& has_msr_hv_vpindex
) {
649 c
->eax
|= HV_X64_MSR_VP_INDEX_AVAILABLE
;
651 if (cpu
->hyperv_runtime
&& has_msr_hv_runtime
) {
652 c
->eax
|= HV_X64_MSR_VP_RUNTIME_AVAILABLE
;
654 if (cpu
->hyperv_synic
) {
657 if (!has_msr_hv_synic
||
658 kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_SYNIC
, 0)) {
659 fprintf(stderr
, "Hyper-V SynIC is not supported by kernel\n");
663 c
->eax
|= HV_X64_MSR_SYNIC_AVAILABLE
;
664 env
->msr_hv_synic_version
= HV_SYNIC_VERSION_1
;
665 for (sint
= 0; sint
< ARRAY_SIZE(env
->msr_hv_synic_sint
); sint
++) {
666 env
->msr_hv_synic_sint
[sint
] = HV_SYNIC_SINT_MASKED
;
669 if (cpu
->hyperv_stimer
) {
670 if (!has_msr_hv_stimer
) {
671 fprintf(stderr
, "Hyper-V timers aren't supported by kernel\n");
674 c
->eax
|= HV_X64_MSR_SYNTIMER_AVAILABLE
;
676 c
= &cpuid_data
.entries
[cpuid_i
++];
677 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
678 if (cpu
->hyperv_relaxed_timing
) {
679 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
681 if (has_msr_hv_vapic
) {
682 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
684 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
686 c
= &cpuid_data
.entries
[cpuid_i
++];
687 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
691 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
692 has_msr_hv_hypercall
= true;
695 if (cpu
->expose_kvm
) {
696 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
697 c
= &cpuid_data
.entries
[cpuid_i
++];
698 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
699 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
700 c
->ebx
= signature
[0];
701 c
->ecx
= signature
[1];
702 c
->edx
= signature
[2];
704 c
= &cpuid_data
.entries
[cpuid_i
++];
705 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
706 c
->eax
= env
->features
[FEAT_KVM
];
708 has_msr_async_pf_en
= c
->eax
& (1 << KVM_FEATURE_ASYNC_PF
);
710 has_msr_pv_eoi_en
= c
->eax
& (1 << KVM_FEATURE_PV_EOI
);
712 has_msr_kvm_steal_time
= c
->eax
& (1 << KVM_FEATURE_STEAL_TIME
);
715 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
717 for (i
= 0; i
<= limit
; i
++) {
718 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
719 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
722 c
= &cpuid_data
.entries
[cpuid_i
++];
726 /* Keep reading function 2 till all the input is received */
730 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
731 KVM_CPUID_FLAG_STATE_READ_NEXT
;
732 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
733 times
= c
->eax
& 0xff;
735 for (j
= 1; j
< times
; ++j
) {
736 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
737 fprintf(stderr
, "cpuid_data is full, no space for "
738 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
741 c
= &cpuid_data
.entries
[cpuid_i
++];
743 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
744 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
752 if (i
== 0xd && j
== 64) {
756 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
758 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
760 if (i
== 4 && c
->eax
== 0) {
763 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
766 if (i
== 0xd && c
->eax
== 0) {
769 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
770 fprintf(stderr
, "cpuid_data is full, no space for "
771 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
774 c
= &cpuid_data
.entries
[cpuid_i
++];
780 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
788 cpu_x86_cpuid(env
, 0x0a, 0, &ver
, &unused
, &unused
, &unused
);
789 if ((ver
& 0xff) > 0) {
790 has_msr_architectural_pmu
= true;
791 num_architectural_pmu_counters
= (ver
& 0xff00) >> 8;
793 /* Shouldn't be more than 32, since that's the number of bits
794 * available in EBX to tell us _which_ counters are available.
797 if (num_architectural_pmu_counters
> MAX_GP_COUNTERS
) {
798 num_architectural_pmu_counters
= MAX_GP_COUNTERS
;
803 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
805 for (i
= 0x80000000; i
<= limit
; i
++) {
806 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
807 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
810 c
= &cpuid_data
.entries
[cpuid_i
++];
814 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
817 /* Call Centaur's CPUID instructions they are supported. */
818 if (env
->cpuid_xlevel2
> 0) {
819 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
821 for (i
= 0xC0000000; i
<= limit
; i
++) {
822 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
823 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
826 c
= &cpuid_data
.entries
[cpuid_i
++];
830 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
834 cpuid_data
.cpuid
.nent
= cpuid_i
;
836 if (((env
->cpuid_version
>> 8)&0xF) >= 6
837 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
838 (CPUID_MCE
| CPUID_MCA
)
839 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
840 uint64_t mcg_cap
, unsupported_caps
;
844 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
846 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
850 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
851 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
852 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
856 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
857 if (unsupported_caps
) {
858 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64
,
862 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
863 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
865 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
870 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
872 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
874 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
875 !!(c
->ecx
& CPUID_EXT_SMX
);
878 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 0x80000007, 0);
879 if (c
&& (c
->edx
& 1<<8) && invtsc_mig_blocker
== NULL
) {
881 error_setg(&invtsc_mig_blocker
,
882 "State blocked by non-migratable CPU device"
884 migrate_add_blocker(invtsc_mig_blocker
);
886 vmstate_x86_cpu
.unmigratable
= 1;
889 cpuid_data
.cpuid
.padding
= 0;
890 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
895 r
= kvm_arch_set_tsc_khz(cs
);
900 /* vcpu's TSC frequency is either specified by user, or following
901 * the value used by KVM if the former is not present. In the
902 * latter case, we query it from KVM and record in env->tsc_khz,
903 * so that vcpu's TSC frequency can be migrated later via this field.
906 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
907 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
915 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
918 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
921 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_RDTSCP
)) {
922 has_msr_tsc_aux
= false;
928 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
930 CPUX86State
*env
= &cpu
->env
;
932 env
->exception_injected
= -1;
933 env
->interrupt_injected
= -1;
935 if (kvm_irqchip_in_kernel()) {
936 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
937 KVM_MP_STATE_UNINITIALIZED
;
939 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
943 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
945 CPUX86State
*env
= &cpu
->env
;
947 /* APs get directly into wait-for-SIPI state. */
948 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
949 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
953 static int kvm_get_supported_msrs(KVMState
*s
)
955 static int kvm_supported_msrs
;
959 if (kvm_supported_msrs
== 0) {
960 struct kvm_msr_list msr_list
, *kvm_msr_list
;
962 kvm_supported_msrs
= -1;
964 /* Obtain MSR list from KVM. These are the MSRs that we must
967 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
968 if (ret
< 0 && ret
!= -E2BIG
) {
971 /* Old kernel modules had a bug and could write beyond the provided
972 memory. Allocate at least a safe amount of 1K. */
973 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
975 sizeof(msr_list
.indices
[0])));
977 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
978 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
982 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
983 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
987 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
988 has_msr_hsave_pa
= true;
991 if (kvm_msr_list
->indices
[i
] == MSR_TSC_AUX
) {
992 has_msr_tsc_aux
= true;
995 if (kvm_msr_list
->indices
[i
] == MSR_TSC_ADJUST
) {
996 has_msr_tsc_adjust
= true;
999 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
1000 has_msr_tsc_deadline
= true;
1003 if (kvm_msr_list
->indices
[i
] == MSR_IA32_SMBASE
) {
1004 has_msr_smbase
= true;
1007 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
1008 has_msr_misc_enable
= true;
1011 if (kvm_msr_list
->indices
[i
] == MSR_IA32_BNDCFGS
) {
1012 has_msr_bndcfgs
= true;
1015 if (kvm_msr_list
->indices
[i
] == MSR_IA32_XSS
) {
1019 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_CRASH_CTL
) {
1020 has_msr_hv_crash
= true;
1023 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_RESET
) {
1024 has_msr_hv_reset
= true;
1027 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_INDEX
) {
1028 has_msr_hv_vpindex
= true;
1031 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_RUNTIME
) {
1032 has_msr_hv_runtime
= true;
1035 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_SCONTROL
) {
1036 has_msr_hv_synic
= true;
1039 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_STIMER0_CONFIG
) {
1040 has_msr_hv_stimer
= true;
1046 g_free(kvm_msr_list
);
1052 static Notifier smram_machine_done
;
1053 static KVMMemoryListener smram_listener
;
1054 static AddressSpace smram_address_space
;
1055 static MemoryRegion smram_as_root
;
1056 static MemoryRegion smram_as_mem
;
1058 static void register_smram_listener(Notifier
*n
, void *unused
)
1060 MemoryRegion
*smram
=
1061 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1063 /* Outer container... */
1064 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1065 memory_region_set_enabled(&smram_as_root
, true);
1067 /* ... with two regions inside: normal system memory with low
1070 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1071 get_system_memory(), 0, ~0ull);
1072 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1073 memory_region_set_enabled(&smram_as_mem
, true);
1076 /* ... SMRAM with higher priority */
1077 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1078 memory_region_set_enabled(smram
, true);
1081 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1082 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1083 &smram_address_space
, 1);
1086 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1088 uint64_t identity_base
= 0xfffbc000;
1089 uint64_t shadow_mem
;
1091 struct utsname utsname
;
1093 #ifdef KVM_CAP_XSAVE
1094 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1098 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1101 #ifdef KVM_CAP_PIT_STATE2
1102 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1105 ret
= kvm_get_supported_msrs(s
);
1111 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1114 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1115 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1116 * Since these must be part of guest physical memory, we need to allocate
1117 * them, both by setting their start addresses in the kernel and by
1118 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1120 * Older KVM versions may not support setting the identity map base. In
1121 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1124 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1125 /* Allows up to 16M BIOSes. */
1126 identity_base
= 0xfeffc000;
1128 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1134 /* Set TSS base one page after EPT identity map. */
1135 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1140 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1141 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1143 fprintf(stderr
, "e820_add_entry() table is full\n");
1146 qemu_register_reset(kvm_unpoison_all
, NULL
);
1148 shadow_mem
= machine_kvm_shadow_mem(ms
);
1149 if (shadow_mem
!= -1) {
1151 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1157 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
)) {
1158 smram_machine_done
.notify
= register_smram_listener
;
1159 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1164 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1166 lhs
->selector
= rhs
->selector
;
1167 lhs
->base
= rhs
->base
;
1168 lhs
->limit
= rhs
->limit
;
1180 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1182 unsigned flags
= rhs
->flags
;
1183 lhs
->selector
= rhs
->selector
;
1184 lhs
->base
= rhs
->base
;
1185 lhs
->limit
= rhs
->limit
;
1186 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1187 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1188 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1189 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1190 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1191 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1192 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1193 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1194 lhs
->unusable
= !lhs
->present
;
1198 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1200 lhs
->selector
= rhs
->selector
;
1201 lhs
->base
= rhs
->base
;
1202 lhs
->limit
= rhs
->limit
;
1203 if (rhs
->unusable
) {
1206 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1207 (rhs
->present
* DESC_P_MASK
) |
1208 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1209 (rhs
->db
<< DESC_B_SHIFT
) |
1210 (rhs
->s
* DESC_S_MASK
) |
1211 (rhs
->l
<< DESC_L_SHIFT
) |
1212 (rhs
->g
* DESC_G_MASK
) |
1213 (rhs
->avl
* DESC_AVL_MASK
);
1217 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1220 *kvm_reg
= *qemu_reg
;
1222 *qemu_reg
= *kvm_reg
;
1226 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1228 CPUX86State
*env
= &cpu
->env
;
1229 struct kvm_regs regs
;
1233 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1239 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1240 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1241 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1242 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1243 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1244 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1245 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1246 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1247 #ifdef TARGET_X86_64
1248 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1249 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1250 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1251 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1252 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1253 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1254 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1255 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1258 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1259 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1262 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1268 static int kvm_put_fpu(X86CPU
*cpu
)
1270 CPUX86State
*env
= &cpu
->env
;
1274 memset(&fpu
, 0, sizeof fpu
);
1275 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1276 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1277 fpu
.fcw
= env
->fpuc
;
1278 fpu
.last_opcode
= env
->fpop
;
1279 fpu
.last_ip
= env
->fpip
;
1280 fpu
.last_dp
= env
->fpdp
;
1281 for (i
= 0; i
< 8; ++i
) {
1282 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1284 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1285 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1286 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
1287 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
1289 fpu
.mxcsr
= env
->mxcsr
;
1291 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1294 #define XSAVE_FCW_FSW 0
1295 #define XSAVE_FTW_FOP 1
1296 #define XSAVE_CWD_RIP 2
1297 #define XSAVE_CWD_RDP 4
1298 #define XSAVE_MXCSR 6
1299 #define XSAVE_ST_SPACE 8
1300 #define XSAVE_XMM_SPACE 40
1301 #define XSAVE_XSTATE_BV 128
1302 #define XSAVE_YMMH_SPACE 144
1303 #define XSAVE_BNDREGS 240
1304 #define XSAVE_BNDCSR 256
1305 #define XSAVE_OPMASK 272
1306 #define XSAVE_ZMM_Hi256 288
1307 #define XSAVE_Hi16_ZMM 416
1308 #define XSAVE_PKRU 672
1310 static int kvm_put_xsave(X86CPU
*cpu
)
1312 CPUX86State
*env
= &cpu
->env
;
1313 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1314 uint16_t cwd
, swd
, twd
;
1315 uint8_t *xmm
, *ymmh
, *zmmh
;
1319 return kvm_put_fpu(cpu
);
1322 memset(xsave
, 0, sizeof(struct kvm_xsave
));
1324 swd
= env
->fpus
& ~(7 << 11);
1325 swd
|= (env
->fpstt
& 7) << 11;
1327 for (i
= 0; i
< 8; ++i
) {
1328 twd
|= (!env
->fptags
[i
]) << i
;
1330 xsave
->region
[XSAVE_FCW_FSW
] = (uint32_t)(swd
<< 16) + cwd
;
1331 xsave
->region
[XSAVE_FTW_FOP
] = (uint32_t)(env
->fpop
<< 16) + twd
;
1332 memcpy(&xsave
->region
[XSAVE_CWD_RIP
], &env
->fpip
, sizeof(env
->fpip
));
1333 memcpy(&xsave
->region
[XSAVE_CWD_RDP
], &env
->fpdp
, sizeof(env
->fpdp
));
1334 memcpy(&xsave
->region
[XSAVE_ST_SPACE
], env
->fpregs
,
1335 sizeof env
->fpregs
);
1336 xsave
->region
[XSAVE_MXCSR
] = env
->mxcsr
;
1337 *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
] = env
->xstate_bv
;
1338 memcpy(&xsave
->region
[XSAVE_BNDREGS
], env
->bnd_regs
,
1339 sizeof env
->bnd_regs
);
1340 memcpy(&xsave
->region
[XSAVE_BNDCSR
], &env
->bndcs_regs
,
1341 sizeof(env
->bndcs_regs
));
1342 memcpy(&xsave
->region
[XSAVE_OPMASK
], env
->opmask_regs
,
1343 sizeof env
->opmask_regs
);
1345 xmm
= (uint8_t *)&xsave
->region
[XSAVE_XMM_SPACE
];
1346 ymmh
= (uint8_t *)&xsave
->region
[XSAVE_YMMH_SPACE
];
1347 zmmh
= (uint8_t *)&xsave
->region
[XSAVE_ZMM_Hi256
];
1348 for (i
= 0; i
< CPU_NB_REGS
; i
++, xmm
+= 16, ymmh
+= 16, zmmh
+= 32) {
1349 stq_p(xmm
, env
->xmm_regs
[i
].ZMM_Q(0));
1350 stq_p(xmm
+8, env
->xmm_regs
[i
].ZMM_Q(1));
1351 stq_p(ymmh
, env
->xmm_regs
[i
].ZMM_Q(2));
1352 stq_p(ymmh
+8, env
->xmm_regs
[i
].ZMM_Q(3));
1353 stq_p(zmmh
, env
->xmm_regs
[i
].ZMM_Q(4));
1354 stq_p(zmmh
+8, env
->xmm_regs
[i
].ZMM_Q(5));
1355 stq_p(zmmh
+16, env
->xmm_regs
[i
].ZMM_Q(6));
1356 stq_p(zmmh
+24, env
->xmm_regs
[i
].ZMM_Q(7));
1359 #ifdef TARGET_X86_64
1360 memcpy(&xsave
->region
[XSAVE_Hi16_ZMM
], &env
->xmm_regs
[16],
1361 16 * sizeof env
->xmm_regs
[16]);
1362 memcpy(&xsave
->region
[XSAVE_PKRU
], &env
->pkru
, sizeof env
->pkru
);
1364 r
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1368 static int kvm_put_xcrs(X86CPU
*cpu
)
1370 CPUX86State
*env
= &cpu
->env
;
1371 struct kvm_xcrs xcrs
= {};
1379 xcrs
.xcrs
[0].xcr
= 0;
1380 xcrs
.xcrs
[0].value
= env
->xcr0
;
1381 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1384 static int kvm_put_sregs(X86CPU
*cpu
)
1386 CPUX86State
*env
= &cpu
->env
;
1387 struct kvm_sregs sregs
;
1389 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1390 if (env
->interrupt_injected
>= 0) {
1391 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1392 (uint64_t)1 << (env
->interrupt_injected
% 64);
1395 if ((env
->eflags
& VM_MASK
)) {
1396 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1397 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1398 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1399 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1400 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1401 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1403 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1404 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1405 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1406 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1407 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1408 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1411 set_seg(&sregs
.tr
, &env
->tr
);
1412 set_seg(&sregs
.ldt
, &env
->ldt
);
1414 sregs
.idt
.limit
= env
->idt
.limit
;
1415 sregs
.idt
.base
= env
->idt
.base
;
1416 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1417 sregs
.gdt
.limit
= env
->gdt
.limit
;
1418 sregs
.gdt
.base
= env
->gdt
.base
;
1419 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1421 sregs
.cr0
= env
->cr
[0];
1422 sregs
.cr2
= env
->cr
[2];
1423 sregs
.cr3
= env
->cr
[3];
1424 sregs
.cr4
= env
->cr
[4];
1426 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1427 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1429 sregs
.efer
= env
->efer
;
1431 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1434 static void kvm_msr_entry_set(struct kvm_msr_entry
*entry
,
1435 uint32_t index
, uint64_t value
)
1437 entry
->index
= index
;
1438 entry
->reserved
= 0;
1439 entry
->data
= value
;
1442 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1444 CPUX86State
*env
= &cpu
->env
;
1446 struct kvm_msrs info
;
1447 struct kvm_msr_entry entries
[1];
1449 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1452 if (!has_msr_tsc_deadline
) {
1456 kvm_msr_entry_set(&msrs
[0], MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1458 msr_data
.info
= (struct kvm_msrs
) {
1462 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1472 * Provide a separate write service for the feature control MSR in order to
1473 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1474 * before writing any other state because forcibly leaving nested mode
1475 * invalidates the VCPU state.
1477 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1480 struct kvm_msrs info
;
1481 struct kvm_msr_entry entry
;
1485 if (!has_msr_feature_control
) {
1489 kvm_msr_entry_set(&msr_data
.entry
, MSR_IA32_FEATURE_CONTROL
,
1490 cpu
->env
.msr_ia32_feature_control
);
1492 msr_data
.info
= (struct kvm_msrs
) {
1496 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1505 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1507 CPUX86State
*env
= &cpu
->env
;
1509 struct kvm_msrs info
;
1510 struct kvm_msr_entry entries
[150];
1512 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1516 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1517 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1518 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1519 kvm_msr_entry_set(&msrs
[n
++], MSR_PAT
, env
->pat
);
1521 kvm_msr_entry_set(&msrs
[n
++], MSR_STAR
, env
->star
);
1523 if (has_msr_hsave_pa
) {
1524 kvm_msr_entry_set(&msrs
[n
++], MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1526 if (has_msr_tsc_aux
) {
1527 kvm_msr_entry_set(&msrs
[n
++], MSR_TSC_AUX
, env
->tsc_aux
);
1529 if (has_msr_tsc_adjust
) {
1530 kvm_msr_entry_set(&msrs
[n
++], MSR_TSC_ADJUST
, env
->tsc_adjust
);
1532 if (has_msr_misc_enable
) {
1533 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_MISC_ENABLE
,
1534 env
->msr_ia32_misc_enable
);
1536 if (has_msr_smbase
) {
1537 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_SMBASE
, env
->smbase
);
1539 if (has_msr_bndcfgs
) {
1540 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1543 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_XSS
, env
->xss
);
1545 #ifdef TARGET_X86_64
1546 if (lm_capable_kernel
) {
1547 kvm_msr_entry_set(&msrs
[n
++], MSR_CSTAR
, env
->cstar
);
1548 kvm_msr_entry_set(&msrs
[n
++], MSR_KERNELGSBASE
, env
->kernelgsbase
);
1549 kvm_msr_entry_set(&msrs
[n
++], MSR_FMASK
, env
->fmask
);
1550 kvm_msr_entry_set(&msrs
[n
++], MSR_LSTAR
, env
->lstar
);
1554 * The following MSRs have side effects on the guest or are too heavy
1555 * for normal writeback. Limit them to reset or full state updates.
1557 if (level
>= KVM_PUT_RESET_STATE
) {
1558 kvm_msr_entry_set(&msrs
[n
++], MSR_IA32_TSC
, env
->tsc
);
1559 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_SYSTEM_TIME
,
1560 env
->system_time_msr
);
1561 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1562 if (has_msr_async_pf_en
) {
1563 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_ASYNC_PF_EN
,
1564 env
->async_pf_en_msr
);
1566 if (has_msr_pv_eoi_en
) {
1567 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_PV_EOI_EN
,
1568 env
->pv_eoi_en_msr
);
1570 if (has_msr_kvm_steal_time
) {
1571 kvm_msr_entry_set(&msrs
[n
++], MSR_KVM_STEAL_TIME
,
1572 env
->steal_time_msr
);
1574 if (has_msr_architectural_pmu
) {
1575 /* Stop the counter. */
1576 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1577 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1579 /* Set the counter values. */
1580 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1581 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR0
+ i
,
1582 env
->msr_fixed_counters
[i
]);
1584 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1585 kvm_msr_entry_set(&msrs
[n
++], MSR_P6_PERFCTR0
+ i
,
1586 env
->msr_gp_counters
[i
]);
1587 kvm_msr_entry_set(&msrs
[n
++], MSR_P6_EVNTSEL0
+ i
,
1588 env
->msr_gp_evtsel
[i
]);
1590 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_STATUS
,
1591 env
->msr_global_status
);
1592 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1593 env
->msr_global_ovf_ctrl
);
1595 /* Now start the PMU. */
1596 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_FIXED_CTR_CTRL
,
1597 env
->msr_fixed_ctr_ctrl
);
1598 kvm_msr_entry_set(&msrs
[n
++], MSR_CORE_PERF_GLOBAL_CTRL
,
1599 env
->msr_global_ctrl
);
1601 if (has_msr_hv_hypercall
) {
1602 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_GUEST_OS_ID
,
1603 env
->msr_hv_guest_os_id
);
1604 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_HYPERCALL
,
1605 env
->msr_hv_hypercall
);
1607 if (has_msr_hv_vapic
) {
1608 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_APIC_ASSIST_PAGE
,
1611 if (has_msr_hv_tsc
) {
1612 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_REFERENCE_TSC
,
1615 if (has_msr_hv_crash
) {
1618 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++)
1619 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_CRASH_P0
+ j
,
1620 env
->msr_hv_crash_params
[j
]);
1622 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_CRASH_CTL
,
1623 HV_X64_MSR_CRASH_CTL_NOTIFY
);
1625 if (has_msr_hv_runtime
) {
1626 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_VP_RUNTIME
,
1627 env
->msr_hv_runtime
);
1629 if (cpu
->hyperv_synic
) {
1632 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SCONTROL
,
1633 env
->msr_hv_synic_control
);
1634 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SVERSION
,
1635 env
->msr_hv_synic_version
);
1636 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SIEFP
,
1637 env
->msr_hv_synic_evt_page
);
1638 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SIMP
,
1639 env
->msr_hv_synic_msg_page
);
1641 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
1642 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_SINT0
+ j
,
1643 env
->msr_hv_synic_sint
[j
]);
1646 if (has_msr_hv_stimer
) {
1649 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
1650 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_STIMER0_CONFIG
+ j
*2,
1651 env
->msr_hv_stimer_config
[j
]);
1654 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
1655 kvm_msr_entry_set(&msrs
[n
++], HV_X64_MSR_STIMER0_COUNT
+ j
*2,
1656 env
->msr_hv_stimer_count
[j
]);
1660 kvm_msr_entry_set(&msrs
[n
++], MSR_MTRRdefType
, env
->mtrr_deftype
);
1661 kvm_msr_entry_set(&msrs
[n
++],
1662 MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1663 kvm_msr_entry_set(&msrs
[n
++],
1664 MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1665 kvm_msr_entry_set(&msrs
[n
++],
1666 MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1667 kvm_msr_entry_set(&msrs
[n
++],
1668 MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1669 kvm_msr_entry_set(&msrs
[n
++],
1670 MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1671 kvm_msr_entry_set(&msrs
[n
++],
1672 MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1673 kvm_msr_entry_set(&msrs
[n
++],
1674 MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1675 kvm_msr_entry_set(&msrs
[n
++],
1676 MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1677 kvm_msr_entry_set(&msrs
[n
++],
1678 MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1679 kvm_msr_entry_set(&msrs
[n
++],
1680 MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1681 kvm_msr_entry_set(&msrs
[n
++],
1682 MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1683 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1684 kvm_msr_entry_set(&msrs
[n
++],
1685 MSR_MTRRphysBase(i
), env
->mtrr_var
[i
].base
);
1686 kvm_msr_entry_set(&msrs
[n
++],
1687 MSR_MTRRphysMask(i
), env
->mtrr_var
[i
].mask
);
1691 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1692 * kvm_put_msr_feature_control. */
1697 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_STATUS
, env
->mcg_status
);
1698 kvm_msr_entry_set(&msrs
[n
++], MSR_MCG_CTL
, env
->mcg_ctl
);
1699 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1700 kvm_msr_entry_set(&msrs
[n
++], MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1704 msr_data
.info
= (struct kvm_msrs
) {
1708 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, &msr_data
);
1718 static int kvm_get_fpu(X86CPU
*cpu
)
1720 CPUX86State
*env
= &cpu
->env
;
1724 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1729 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1730 env
->fpus
= fpu
.fsw
;
1731 env
->fpuc
= fpu
.fcw
;
1732 env
->fpop
= fpu
.last_opcode
;
1733 env
->fpip
= fpu
.last_ip
;
1734 env
->fpdp
= fpu
.last_dp
;
1735 for (i
= 0; i
< 8; ++i
) {
1736 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1738 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1739 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1740 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1741 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1743 env
->mxcsr
= fpu
.mxcsr
;
1748 static int kvm_get_xsave(X86CPU
*cpu
)
1750 CPUX86State
*env
= &cpu
->env
;
1751 struct kvm_xsave
* xsave
= env
->kvm_xsave_buf
;
1753 const uint8_t *xmm
, *ymmh
, *zmmh
;
1754 uint16_t cwd
, swd
, twd
;
1757 return kvm_get_fpu(cpu
);
1760 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1765 cwd
= (uint16_t)xsave
->region
[XSAVE_FCW_FSW
];
1766 swd
= (uint16_t)(xsave
->region
[XSAVE_FCW_FSW
] >> 16);
1767 twd
= (uint16_t)xsave
->region
[XSAVE_FTW_FOP
];
1768 env
->fpop
= (uint16_t)(xsave
->region
[XSAVE_FTW_FOP
] >> 16);
1769 env
->fpstt
= (swd
>> 11) & 7;
1772 for (i
= 0; i
< 8; ++i
) {
1773 env
->fptags
[i
] = !((twd
>> i
) & 1);
1775 memcpy(&env
->fpip
, &xsave
->region
[XSAVE_CWD_RIP
], sizeof(env
->fpip
));
1776 memcpy(&env
->fpdp
, &xsave
->region
[XSAVE_CWD_RDP
], sizeof(env
->fpdp
));
1777 env
->mxcsr
= xsave
->region
[XSAVE_MXCSR
];
1778 memcpy(env
->fpregs
, &xsave
->region
[XSAVE_ST_SPACE
],
1779 sizeof env
->fpregs
);
1780 env
->xstate_bv
= *(uint64_t *)&xsave
->region
[XSAVE_XSTATE_BV
];
1781 memcpy(env
->bnd_regs
, &xsave
->region
[XSAVE_BNDREGS
],
1782 sizeof env
->bnd_regs
);
1783 memcpy(&env
->bndcs_regs
, &xsave
->region
[XSAVE_BNDCSR
],
1784 sizeof(env
->bndcs_regs
));
1785 memcpy(env
->opmask_regs
, &xsave
->region
[XSAVE_OPMASK
],
1786 sizeof env
->opmask_regs
);
1788 xmm
= (const uint8_t *)&xsave
->region
[XSAVE_XMM_SPACE
];
1789 ymmh
= (const uint8_t *)&xsave
->region
[XSAVE_YMMH_SPACE
];
1790 zmmh
= (const uint8_t *)&xsave
->region
[XSAVE_ZMM_Hi256
];
1791 for (i
= 0; i
< CPU_NB_REGS
; i
++, xmm
+= 16, ymmh
+= 16, zmmh
+= 32) {
1792 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(xmm
);
1793 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(xmm
+8);
1794 env
->xmm_regs
[i
].ZMM_Q(2) = ldq_p(ymmh
);
1795 env
->xmm_regs
[i
].ZMM_Q(3) = ldq_p(ymmh
+8);
1796 env
->xmm_regs
[i
].ZMM_Q(4) = ldq_p(zmmh
);
1797 env
->xmm_regs
[i
].ZMM_Q(5) = ldq_p(zmmh
+8);
1798 env
->xmm_regs
[i
].ZMM_Q(6) = ldq_p(zmmh
+16);
1799 env
->xmm_regs
[i
].ZMM_Q(7) = ldq_p(zmmh
+24);
1802 #ifdef TARGET_X86_64
1803 memcpy(&env
->xmm_regs
[16], &xsave
->region
[XSAVE_Hi16_ZMM
],
1804 16 * sizeof env
->xmm_regs
[16]);
1805 memcpy(&env
->pkru
, &xsave
->region
[XSAVE_PKRU
], sizeof env
->pkru
);
1810 static int kvm_get_xcrs(X86CPU
*cpu
)
1812 CPUX86State
*env
= &cpu
->env
;
1814 struct kvm_xcrs xcrs
;
1820 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1825 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1826 /* Only support xcr0 now */
1827 if (xcrs
.xcrs
[i
].xcr
== 0) {
1828 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1835 static int kvm_get_sregs(X86CPU
*cpu
)
1837 CPUX86State
*env
= &cpu
->env
;
1838 struct kvm_sregs sregs
;
1842 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1847 /* There can only be one pending IRQ set in the bitmap at a time, so try
1848 to find it and save its number instead (-1 for none). */
1849 env
->interrupt_injected
= -1;
1850 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1851 if (sregs
.interrupt_bitmap
[i
]) {
1852 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1853 env
->interrupt_injected
= i
* 64 + bit
;
1858 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1859 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1860 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1861 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1862 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1863 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1865 get_seg(&env
->tr
, &sregs
.tr
);
1866 get_seg(&env
->ldt
, &sregs
.ldt
);
1868 env
->idt
.limit
= sregs
.idt
.limit
;
1869 env
->idt
.base
= sregs
.idt
.base
;
1870 env
->gdt
.limit
= sregs
.gdt
.limit
;
1871 env
->gdt
.base
= sregs
.gdt
.base
;
1873 env
->cr
[0] = sregs
.cr0
;
1874 env
->cr
[2] = sregs
.cr2
;
1875 env
->cr
[3] = sregs
.cr3
;
1876 env
->cr
[4] = sregs
.cr4
;
1878 env
->efer
= sregs
.efer
;
1880 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1882 #define HFLAG_COPY_MASK \
1883 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1884 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1885 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1886 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1888 hflags
= env
->hflags
& HFLAG_COPY_MASK
;
1889 hflags
|= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1890 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1891 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1892 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1893 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1895 if (env
->cr
[4] & CR4_OSFXSR_MASK
) {
1896 hflags
|= HF_OSFXSR_MASK
;
1899 if (env
->efer
& MSR_EFER_LMA
) {
1900 hflags
|= HF_LMA_MASK
;
1903 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1904 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1906 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1907 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1908 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1909 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1910 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1911 !(hflags
& HF_CS32_MASK
)) {
1912 hflags
|= HF_ADDSEG_MASK
;
1914 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1915 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1918 env
->hflags
= hflags
;
1923 static int kvm_get_msrs(X86CPU
*cpu
)
1925 CPUX86State
*env
= &cpu
->env
;
1927 struct kvm_msrs info
;
1928 struct kvm_msr_entry entries
[150];
1930 struct kvm_msr_entry
*msrs
= msr_data
.entries
;
1934 msrs
[n
++].index
= MSR_IA32_SYSENTER_CS
;
1935 msrs
[n
++].index
= MSR_IA32_SYSENTER_ESP
;
1936 msrs
[n
++].index
= MSR_IA32_SYSENTER_EIP
;
1937 msrs
[n
++].index
= MSR_PAT
;
1939 msrs
[n
++].index
= MSR_STAR
;
1941 if (has_msr_hsave_pa
) {
1942 msrs
[n
++].index
= MSR_VM_HSAVE_PA
;
1944 if (has_msr_tsc_aux
) {
1945 msrs
[n
++].index
= MSR_TSC_AUX
;
1947 if (has_msr_tsc_adjust
) {
1948 msrs
[n
++].index
= MSR_TSC_ADJUST
;
1950 if (has_msr_tsc_deadline
) {
1951 msrs
[n
++].index
= MSR_IA32_TSCDEADLINE
;
1953 if (has_msr_misc_enable
) {
1954 msrs
[n
++].index
= MSR_IA32_MISC_ENABLE
;
1956 if (has_msr_smbase
) {
1957 msrs
[n
++].index
= MSR_IA32_SMBASE
;
1959 if (has_msr_feature_control
) {
1960 msrs
[n
++].index
= MSR_IA32_FEATURE_CONTROL
;
1962 if (has_msr_bndcfgs
) {
1963 msrs
[n
++].index
= MSR_IA32_BNDCFGS
;
1966 msrs
[n
++].index
= MSR_IA32_XSS
;
1970 if (!env
->tsc_valid
) {
1971 msrs
[n
++].index
= MSR_IA32_TSC
;
1972 env
->tsc_valid
= !runstate_is_running();
1975 #ifdef TARGET_X86_64
1976 if (lm_capable_kernel
) {
1977 msrs
[n
++].index
= MSR_CSTAR
;
1978 msrs
[n
++].index
= MSR_KERNELGSBASE
;
1979 msrs
[n
++].index
= MSR_FMASK
;
1980 msrs
[n
++].index
= MSR_LSTAR
;
1983 msrs
[n
++].index
= MSR_KVM_SYSTEM_TIME
;
1984 msrs
[n
++].index
= MSR_KVM_WALL_CLOCK
;
1985 if (has_msr_async_pf_en
) {
1986 msrs
[n
++].index
= MSR_KVM_ASYNC_PF_EN
;
1988 if (has_msr_pv_eoi_en
) {
1989 msrs
[n
++].index
= MSR_KVM_PV_EOI_EN
;
1991 if (has_msr_kvm_steal_time
) {
1992 msrs
[n
++].index
= MSR_KVM_STEAL_TIME
;
1994 if (has_msr_architectural_pmu
) {
1995 msrs
[n
++].index
= MSR_CORE_PERF_FIXED_CTR_CTRL
;
1996 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_CTRL
;
1997 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_STATUS
;
1998 msrs
[n
++].index
= MSR_CORE_PERF_GLOBAL_OVF_CTRL
;
1999 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
2000 msrs
[n
++].index
= MSR_CORE_PERF_FIXED_CTR0
+ i
;
2002 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
2003 msrs
[n
++].index
= MSR_P6_PERFCTR0
+ i
;
2004 msrs
[n
++].index
= MSR_P6_EVNTSEL0
+ i
;
2009 msrs
[n
++].index
= MSR_MCG_STATUS
;
2010 msrs
[n
++].index
= MSR_MCG_CTL
;
2011 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2012 msrs
[n
++].index
= MSR_MC0_CTL
+ i
;
2016 if (has_msr_hv_hypercall
) {
2017 msrs
[n
++].index
= HV_X64_MSR_HYPERCALL
;
2018 msrs
[n
++].index
= HV_X64_MSR_GUEST_OS_ID
;
2020 if (has_msr_hv_vapic
) {
2021 msrs
[n
++].index
= HV_X64_MSR_APIC_ASSIST_PAGE
;
2023 if (has_msr_hv_tsc
) {
2024 msrs
[n
++].index
= HV_X64_MSR_REFERENCE_TSC
;
2026 if (has_msr_hv_crash
) {
2029 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++) {
2030 msrs
[n
++].index
= HV_X64_MSR_CRASH_P0
+ j
;
2033 if (has_msr_hv_runtime
) {
2034 msrs
[n
++].index
= HV_X64_MSR_VP_RUNTIME
;
2036 if (cpu
->hyperv_synic
) {
2039 msrs
[n
++].index
= HV_X64_MSR_SCONTROL
;
2040 msrs
[n
++].index
= HV_X64_MSR_SVERSION
;
2041 msrs
[n
++].index
= HV_X64_MSR_SIEFP
;
2042 msrs
[n
++].index
= HV_X64_MSR_SIMP
;
2043 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
2044 msrs
[n
++].index
= msr
;
2047 if (has_msr_hv_stimer
) {
2050 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
2052 msrs
[n
++].index
= msr
;
2056 msrs
[n
++].index
= MSR_MTRRdefType
;
2057 msrs
[n
++].index
= MSR_MTRRfix64K_00000
;
2058 msrs
[n
++].index
= MSR_MTRRfix16K_80000
;
2059 msrs
[n
++].index
= MSR_MTRRfix16K_A0000
;
2060 msrs
[n
++].index
= MSR_MTRRfix4K_C0000
;
2061 msrs
[n
++].index
= MSR_MTRRfix4K_C8000
;
2062 msrs
[n
++].index
= MSR_MTRRfix4K_D0000
;
2063 msrs
[n
++].index
= MSR_MTRRfix4K_D8000
;
2064 msrs
[n
++].index
= MSR_MTRRfix4K_E0000
;
2065 msrs
[n
++].index
= MSR_MTRRfix4K_E8000
;
2066 msrs
[n
++].index
= MSR_MTRRfix4K_F0000
;
2067 msrs
[n
++].index
= MSR_MTRRfix4K_F8000
;
2068 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2069 msrs
[n
++].index
= MSR_MTRRphysBase(i
);
2070 msrs
[n
++].index
= MSR_MTRRphysMask(i
);
2074 msr_data
.info
= (struct kvm_msrs
) {
2078 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
2084 for (i
= 0; i
< ret
; i
++) {
2085 uint32_t index
= msrs
[i
].index
;
2087 case MSR_IA32_SYSENTER_CS
:
2088 env
->sysenter_cs
= msrs
[i
].data
;
2090 case MSR_IA32_SYSENTER_ESP
:
2091 env
->sysenter_esp
= msrs
[i
].data
;
2093 case MSR_IA32_SYSENTER_EIP
:
2094 env
->sysenter_eip
= msrs
[i
].data
;
2097 env
->pat
= msrs
[i
].data
;
2100 env
->star
= msrs
[i
].data
;
2102 #ifdef TARGET_X86_64
2104 env
->cstar
= msrs
[i
].data
;
2106 case MSR_KERNELGSBASE
:
2107 env
->kernelgsbase
= msrs
[i
].data
;
2110 env
->fmask
= msrs
[i
].data
;
2113 env
->lstar
= msrs
[i
].data
;
2117 env
->tsc
= msrs
[i
].data
;
2120 env
->tsc_aux
= msrs
[i
].data
;
2122 case MSR_TSC_ADJUST
:
2123 env
->tsc_adjust
= msrs
[i
].data
;
2125 case MSR_IA32_TSCDEADLINE
:
2126 env
->tsc_deadline
= msrs
[i
].data
;
2128 case MSR_VM_HSAVE_PA
:
2129 env
->vm_hsave
= msrs
[i
].data
;
2131 case MSR_KVM_SYSTEM_TIME
:
2132 env
->system_time_msr
= msrs
[i
].data
;
2134 case MSR_KVM_WALL_CLOCK
:
2135 env
->wall_clock_msr
= msrs
[i
].data
;
2137 case MSR_MCG_STATUS
:
2138 env
->mcg_status
= msrs
[i
].data
;
2141 env
->mcg_ctl
= msrs
[i
].data
;
2143 case MSR_IA32_MISC_ENABLE
:
2144 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
2146 case MSR_IA32_SMBASE
:
2147 env
->smbase
= msrs
[i
].data
;
2149 case MSR_IA32_FEATURE_CONTROL
:
2150 env
->msr_ia32_feature_control
= msrs
[i
].data
;
2152 case MSR_IA32_BNDCFGS
:
2153 env
->msr_bndcfgs
= msrs
[i
].data
;
2156 env
->xss
= msrs
[i
].data
;
2159 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
2160 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
2161 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
2164 case MSR_KVM_ASYNC_PF_EN
:
2165 env
->async_pf_en_msr
= msrs
[i
].data
;
2167 case MSR_KVM_PV_EOI_EN
:
2168 env
->pv_eoi_en_msr
= msrs
[i
].data
;
2170 case MSR_KVM_STEAL_TIME
:
2171 env
->steal_time_msr
= msrs
[i
].data
;
2173 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2174 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2176 case MSR_CORE_PERF_GLOBAL_CTRL
:
2177 env
->msr_global_ctrl
= msrs
[i
].data
;
2179 case MSR_CORE_PERF_GLOBAL_STATUS
:
2180 env
->msr_global_status
= msrs
[i
].data
;
2182 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2183 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2185 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2186 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2188 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2189 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2191 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2192 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2194 case HV_X64_MSR_HYPERCALL
:
2195 env
->msr_hv_hypercall
= msrs
[i
].data
;
2197 case HV_X64_MSR_GUEST_OS_ID
:
2198 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2200 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2201 env
->msr_hv_vapic
= msrs
[i
].data
;
2203 case HV_X64_MSR_REFERENCE_TSC
:
2204 env
->msr_hv_tsc
= msrs
[i
].data
;
2206 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2207 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2209 case HV_X64_MSR_VP_RUNTIME
:
2210 env
->msr_hv_runtime
= msrs
[i
].data
;
2212 case HV_X64_MSR_SCONTROL
:
2213 env
->msr_hv_synic_control
= msrs
[i
].data
;
2215 case HV_X64_MSR_SVERSION
:
2216 env
->msr_hv_synic_version
= msrs
[i
].data
;
2218 case HV_X64_MSR_SIEFP
:
2219 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
2221 case HV_X64_MSR_SIMP
:
2222 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
2224 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
2225 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
2227 case HV_X64_MSR_STIMER0_CONFIG
:
2228 case HV_X64_MSR_STIMER1_CONFIG
:
2229 case HV_X64_MSR_STIMER2_CONFIG
:
2230 case HV_X64_MSR_STIMER3_CONFIG
:
2231 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
2234 case HV_X64_MSR_STIMER0_COUNT
:
2235 case HV_X64_MSR_STIMER1_COUNT
:
2236 case HV_X64_MSR_STIMER2_COUNT
:
2237 case HV_X64_MSR_STIMER3_COUNT
:
2238 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
2241 case MSR_MTRRdefType
:
2242 env
->mtrr_deftype
= msrs
[i
].data
;
2244 case MSR_MTRRfix64K_00000
:
2245 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2247 case MSR_MTRRfix16K_80000
:
2248 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2250 case MSR_MTRRfix16K_A0000
:
2251 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2253 case MSR_MTRRfix4K_C0000
:
2254 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2256 case MSR_MTRRfix4K_C8000
:
2257 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2259 case MSR_MTRRfix4K_D0000
:
2260 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2262 case MSR_MTRRfix4K_D8000
:
2263 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2265 case MSR_MTRRfix4K_E0000
:
2266 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2268 case MSR_MTRRfix4K_E8000
:
2269 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2271 case MSR_MTRRfix4K_F0000
:
2272 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2274 case MSR_MTRRfix4K_F8000
:
2275 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2277 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2279 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
;
2281 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2290 static int kvm_put_mp_state(X86CPU
*cpu
)
2292 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2294 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2297 static int kvm_get_mp_state(X86CPU
*cpu
)
2299 CPUState
*cs
= CPU(cpu
);
2300 CPUX86State
*env
= &cpu
->env
;
2301 struct kvm_mp_state mp_state
;
2304 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2308 env
->mp_state
= mp_state
.mp_state
;
2309 if (kvm_irqchip_in_kernel()) {
2310 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2315 static int kvm_get_apic(X86CPU
*cpu
)
2317 DeviceState
*apic
= cpu
->apic_state
;
2318 struct kvm_lapic_state kapic
;
2321 if (apic
&& kvm_irqchip_in_kernel()) {
2322 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2327 kvm_get_apic_state(apic
, &kapic
);
2332 static int kvm_put_apic(X86CPU
*cpu
)
2334 DeviceState
*apic
= cpu
->apic_state
;
2335 struct kvm_lapic_state kapic
;
2337 if (apic
&& kvm_irqchip_in_kernel()) {
2338 kvm_put_apic_state(apic
, &kapic
);
2340 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_LAPIC
, &kapic
);
2345 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2347 CPUState
*cs
= CPU(cpu
);
2348 CPUX86State
*env
= &cpu
->env
;
2349 struct kvm_vcpu_events events
= {};
2351 if (!kvm_has_vcpu_events()) {
2355 events
.exception
.injected
= (env
->exception_injected
>= 0);
2356 events
.exception
.nr
= env
->exception_injected
;
2357 events
.exception
.has_error_code
= env
->has_error_code
;
2358 events
.exception
.error_code
= env
->error_code
;
2359 events
.exception
.pad
= 0;
2361 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2362 events
.interrupt
.nr
= env
->interrupt_injected
;
2363 events
.interrupt
.soft
= env
->soft_interrupt
;
2365 events
.nmi
.injected
= env
->nmi_injected
;
2366 events
.nmi
.pending
= env
->nmi_pending
;
2367 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2370 events
.sipi_vector
= env
->sipi_vector
;
2372 if (has_msr_smbase
) {
2373 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2374 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2375 if (kvm_irqchip_in_kernel()) {
2376 /* As soon as these are moved to the kernel, remove them
2377 * from cs->interrupt_request.
2379 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2380 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2381 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2383 /* Keep these in cs->interrupt_request. */
2384 events
.smi
.pending
= 0;
2385 events
.smi
.latched_init
= 0;
2387 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2391 if (level
>= KVM_PUT_RESET_STATE
) {
2393 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2396 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2399 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2401 CPUX86State
*env
= &cpu
->env
;
2402 struct kvm_vcpu_events events
;
2405 if (!kvm_has_vcpu_events()) {
2409 memset(&events
, 0, sizeof(events
));
2410 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2414 env
->exception_injected
=
2415 events
.exception
.injected
? events
.exception
.nr
: -1;
2416 env
->has_error_code
= events
.exception
.has_error_code
;
2417 env
->error_code
= events
.exception
.error_code
;
2419 env
->interrupt_injected
=
2420 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2421 env
->soft_interrupt
= events
.interrupt
.soft
;
2423 env
->nmi_injected
= events
.nmi
.injected
;
2424 env
->nmi_pending
= events
.nmi
.pending
;
2425 if (events
.nmi
.masked
) {
2426 env
->hflags2
|= HF2_NMI_MASK
;
2428 env
->hflags2
&= ~HF2_NMI_MASK
;
2431 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2432 if (events
.smi
.smm
) {
2433 env
->hflags
|= HF_SMM_MASK
;
2435 env
->hflags
&= ~HF_SMM_MASK
;
2437 if (events
.smi
.pending
) {
2438 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2440 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2442 if (events
.smi
.smm_inside_nmi
) {
2443 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2445 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2447 if (events
.smi
.latched_init
) {
2448 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2450 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2454 env
->sipi_vector
= events
.sipi_vector
;
2459 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2461 CPUState
*cs
= CPU(cpu
);
2462 CPUX86State
*env
= &cpu
->env
;
2464 unsigned long reinject_trap
= 0;
2466 if (!kvm_has_vcpu_events()) {
2467 if (env
->exception_injected
== 1) {
2468 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2469 } else if (env
->exception_injected
== 3) {
2470 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2472 env
->exception_injected
= -1;
2476 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2477 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2478 * by updating the debug state once again if single-stepping is on.
2479 * Another reason to call kvm_update_guest_debug here is a pending debug
2480 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2481 * reinject them via SET_GUEST_DEBUG.
2483 if (reinject_trap
||
2484 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2485 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2490 static int kvm_put_debugregs(X86CPU
*cpu
)
2492 CPUX86State
*env
= &cpu
->env
;
2493 struct kvm_debugregs dbgregs
;
2496 if (!kvm_has_debugregs()) {
2500 for (i
= 0; i
< 4; i
++) {
2501 dbgregs
.db
[i
] = env
->dr
[i
];
2503 dbgregs
.dr6
= env
->dr
[6];
2504 dbgregs
.dr7
= env
->dr
[7];
2507 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2510 static int kvm_get_debugregs(X86CPU
*cpu
)
2512 CPUX86State
*env
= &cpu
->env
;
2513 struct kvm_debugregs dbgregs
;
2516 if (!kvm_has_debugregs()) {
2520 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2524 for (i
= 0; i
< 4; i
++) {
2525 env
->dr
[i
] = dbgregs
.db
[i
];
2527 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2528 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2533 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2535 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2538 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2540 if (level
>= KVM_PUT_RESET_STATE
) {
2541 ret
= kvm_put_msr_feature_control(x86_cpu
);
2547 if (level
== KVM_PUT_FULL_STATE
) {
2548 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2549 * because TSC frequency mismatch shouldn't abort migration,
2550 * unless the user explicitly asked for a more strict TSC
2551 * setting (e.g. using an explicit "tsc-freq" option).
2553 kvm_arch_set_tsc_khz(cpu
);
2556 ret
= kvm_getput_regs(x86_cpu
, 1);
2560 ret
= kvm_put_xsave(x86_cpu
);
2564 ret
= kvm_put_xcrs(x86_cpu
);
2568 ret
= kvm_put_sregs(x86_cpu
);
2572 /* must be before kvm_put_msrs */
2573 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2577 ret
= kvm_put_msrs(x86_cpu
, level
);
2581 if (level
>= KVM_PUT_RESET_STATE
) {
2582 ret
= kvm_put_mp_state(x86_cpu
);
2586 ret
= kvm_put_apic(x86_cpu
);
2592 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2597 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2601 ret
= kvm_put_debugregs(x86_cpu
);
2606 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2613 int kvm_arch_get_registers(CPUState
*cs
)
2615 X86CPU
*cpu
= X86_CPU(cs
);
2618 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2620 ret
= kvm_getput_regs(cpu
, 0);
2624 ret
= kvm_get_xsave(cpu
);
2628 ret
= kvm_get_xcrs(cpu
);
2632 ret
= kvm_get_sregs(cpu
);
2636 ret
= kvm_get_msrs(cpu
);
2640 ret
= kvm_get_mp_state(cpu
);
2644 ret
= kvm_get_apic(cpu
);
2648 ret
= kvm_get_vcpu_events(cpu
);
2652 ret
= kvm_get_debugregs(cpu
);
2658 cpu_sync_bndcs_hflags(&cpu
->env
);
2662 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2664 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2665 CPUX86State
*env
= &x86_cpu
->env
;
2669 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2670 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2671 qemu_mutex_lock_iothread();
2672 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2673 qemu_mutex_unlock_iothread();
2674 DPRINTF("injected NMI\n");
2675 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2677 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2681 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2682 qemu_mutex_lock_iothread();
2683 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2684 qemu_mutex_unlock_iothread();
2685 DPRINTF("injected SMI\n");
2686 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2688 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2694 if (!kvm_pic_in_kernel()) {
2695 qemu_mutex_lock_iothread();
2698 /* Force the VCPU out of its inner loop to process any INIT requests
2699 * or (for userspace APIC, but it is cheap to combine the checks here)
2700 * pending TPR access reports.
2702 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2703 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2704 !(env
->hflags
& HF_SMM_MASK
)) {
2705 cpu
->exit_request
= 1;
2707 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2708 cpu
->exit_request
= 1;
2712 if (!kvm_pic_in_kernel()) {
2713 /* Try to inject an interrupt if the guest can accept it */
2714 if (run
->ready_for_interrupt_injection
&&
2715 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2716 (env
->eflags
& IF_MASK
)) {
2719 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2720 irq
= cpu_get_pic_interrupt(env
);
2722 struct kvm_interrupt intr
;
2725 DPRINTF("injected interrupt %d\n", irq
);
2726 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2729 "KVM: injection failed, interrupt lost (%s)\n",
2735 /* If we have an interrupt but the guest is not ready to receive an
2736 * interrupt, request an interrupt window exit. This will
2737 * cause a return to userspace as soon as the guest is ready to
2738 * receive interrupts. */
2739 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2740 run
->request_interrupt_window
= 1;
2742 run
->request_interrupt_window
= 0;
2745 DPRINTF("setting tpr\n");
2746 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2748 qemu_mutex_unlock_iothread();
2752 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2754 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2755 CPUX86State
*env
= &x86_cpu
->env
;
2757 if (run
->flags
& KVM_RUN_X86_SMM
) {
2758 env
->hflags
|= HF_SMM_MASK
;
2760 env
->hflags
&= HF_SMM_MASK
;
2763 env
->eflags
|= IF_MASK
;
2765 env
->eflags
&= ~IF_MASK
;
2768 /* We need to protect the apic state against concurrent accesses from
2769 * different threads in case the userspace irqchip is used. */
2770 if (!kvm_irqchip_in_kernel()) {
2771 qemu_mutex_lock_iothread();
2773 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2774 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2775 if (!kvm_irqchip_in_kernel()) {
2776 qemu_mutex_unlock_iothread();
2778 return cpu_get_mem_attrs(env
);
2781 int kvm_arch_process_async_events(CPUState
*cs
)
2783 X86CPU
*cpu
= X86_CPU(cs
);
2784 CPUX86State
*env
= &cpu
->env
;
2786 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2787 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2788 assert(env
->mcg_cap
);
2790 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2792 kvm_cpu_synchronize_state(cs
);
2794 if (env
->exception_injected
== EXCP08_DBLE
) {
2795 /* this means triple fault */
2796 qemu_system_reset_request();
2797 cs
->exit_request
= 1;
2800 env
->exception_injected
= EXCP12_MCHK
;
2801 env
->has_error_code
= 0;
2804 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2805 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2809 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2810 !(env
->hflags
& HF_SMM_MASK
)) {
2811 kvm_cpu_synchronize_state(cs
);
2815 if (kvm_irqchip_in_kernel()) {
2819 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2820 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2821 apic_poll_irq(cpu
->apic_state
);
2823 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2824 (env
->eflags
& IF_MASK
)) ||
2825 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2828 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2829 kvm_cpu_synchronize_state(cs
);
2832 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2833 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2834 kvm_cpu_synchronize_state(cs
);
2835 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2836 env
->tpr_access_type
);
2842 static int kvm_handle_halt(X86CPU
*cpu
)
2844 CPUState
*cs
= CPU(cpu
);
2845 CPUX86State
*env
= &cpu
->env
;
2847 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2848 (env
->eflags
& IF_MASK
)) &&
2849 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2857 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2859 CPUState
*cs
= CPU(cpu
);
2860 struct kvm_run
*run
= cs
->kvm_run
;
2862 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
2863 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
2868 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2870 static const uint8_t int3
= 0xcc;
2872 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
2873 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
2879 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2883 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
2884 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
2896 static int nb_hw_breakpoint
;
2898 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
2902 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2903 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
2904 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
2911 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
2912 target_ulong len
, int type
)
2915 case GDB_BREAKPOINT_HW
:
2918 case GDB_WATCHPOINT_WRITE
:
2919 case GDB_WATCHPOINT_ACCESS
:
2926 if (addr
& (len
- 1)) {
2938 if (nb_hw_breakpoint
== 4) {
2941 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
2944 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
2945 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
2946 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
2952 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
2953 target_ulong len
, int type
)
2957 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
2962 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
2967 void kvm_arch_remove_all_hw_breakpoints(void)
2969 nb_hw_breakpoint
= 0;
2972 static CPUWatchpoint hw_watchpoint
;
2974 static int kvm_handle_debug(X86CPU
*cpu
,
2975 struct kvm_debug_exit_arch
*arch_info
)
2977 CPUState
*cs
= CPU(cpu
);
2978 CPUX86State
*env
= &cpu
->env
;
2982 if (arch_info
->exception
== 1) {
2983 if (arch_info
->dr6
& (1 << 14)) {
2984 if (cs
->singlestep_enabled
) {
2988 for (n
= 0; n
< 4; n
++) {
2989 if (arch_info
->dr6
& (1 << n
)) {
2990 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
2996 cs
->watchpoint_hit
= &hw_watchpoint
;
2997 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2998 hw_watchpoint
.flags
= BP_MEM_WRITE
;
3002 cs
->watchpoint_hit
= &hw_watchpoint
;
3003 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3004 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
3010 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
3014 cpu_synchronize_state(cs
);
3015 assert(env
->exception_injected
== -1);
3018 env
->exception_injected
= arch_info
->exception
;
3019 env
->has_error_code
= 0;
3025 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
3027 const uint8_t type_code
[] = {
3028 [GDB_BREAKPOINT_HW
] = 0x0,
3029 [GDB_WATCHPOINT_WRITE
] = 0x1,
3030 [GDB_WATCHPOINT_ACCESS
] = 0x3
3032 const uint8_t len_code
[] = {
3033 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3037 if (kvm_sw_breakpoints_active(cpu
)) {
3038 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
3040 if (nb_hw_breakpoint
> 0) {
3041 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
3042 dbg
->arch
.debugreg
[7] = 0x0600;
3043 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3044 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
3045 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
3046 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
3047 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
3052 static bool host_supports_vmx(void)
3054 uint32_t ecx
, unused
;
3056 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
3057 return ecx
& CPUID_EXT_VMX
;
3060 #define VMX_INVALID_GUEST_STATE 0x80000021
3062 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
3064 X86CPU
*cpu
= X86_CPU(cs
);
3068 switch (run
->exit_reason
) {
3070 DPRINTF("handle_hlt\n");
3071 qemu_mutex_lock_iothread();
3072 ret
= kvm_handle_halt(cpu
);
3073 qemu_mutex_unlock_iothread();
3075 case KVM_EXIT_SET_TPR
:
3078 case KVM_EXIT_TPR_ACCESS
:
3079 qemu_mutex_lock_iothread();
3080 ret
= kvm_handle_tpr_access(cpu
);
3081 qemu_mutex_unlock_iothread();
3083 case KVM_EXIT_FAIL_ENTRY
:
3084 code
= run
->fail_entry
.hardware_entry_failure_reason
;
3085 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
3087 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
3089 "\nIf you're running a guest on an Intel machine without "
3090 "unrestricted mode\n"
3091 "support, the failure can be most likely due to the guest "
3092 "entering an invalid\n"
3093 "state for Intel VT. For example, the guest maybe running "
3094 "in big real mode\n"
3095 "which is not supported on less recent Intel processors."
3100 case KVM_EXIT_EXCEPTION
:
3101 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
3102 run
->ex
.exception
, run
->ex
.error_code
);
3105 case KVM_EXIT_DEBUG
:
3106 DPRINTF("kvm_exit_debug\n");
3107 qemu_mutex_lock_iothread();
3108 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
3109 qemu_mutex_unlock_iothread();
3111 case KVM_EXIT_HYPERV
:
3112 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
3114 case KVM_EXIT_IOAPIC_EOI
:
3115 ioapic_eoi_broadcast(run
->eoi
.vector
);
3119 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
3127 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
3129 X86CPU
*cpu
= X86_CPU(cs
);
3130 CPUX86State
*env
= &cpu
->env
;
3132 kvm_cpu_synchronize_state(cs
);
3133 return !(env
->cr
[0] & CR0_PE_MASK
) ||
3134 ((env
->segs
[R_CS
].selector
& 3) != 3);
3137 void kvm_arch_init_irq_routing(KVMState
*s
)
3139 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
3140 /* If kernel can't do irq routing, interrupt source
3141 * override 0->2 cannot be set up as required by HPET.
3142 * So we have to disable it.
3146 /* We know at this point that we're using the in-kernel
3147 * irqchip, so we can use irqfds, and on x86 we know
3148 * we can use msi via irqfd and GSI routing.
3150 kvm_msi_via_irqfd_allowed
= true;
3151 kvm_gsi_routing_allowed
= true;
3153 if (kvm_irqchip_is_split()) {
3156 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3157 MSI routes for signaling interrupts to the local apics. */
3158 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
3159 struct MSIMessage msg
= { 0x0, 0x0 };
3160 if (kvm_irqchip_add_msi_route(s
, msg
, NULL
) < 0) {
3161 error_report("Could not enable split IRQ mode.");
3168 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
3171 if (machine_kernel_irqchip_split(ms
)) {
3172 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
3174 error_report("Could not enable split irqchip mode: %s\n",
3178 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3179 kvm_split_irqchip
= true;
3187 /* Classic KVM device assignment interface. Will remain x86 only. */
3188 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
3189 uint32_t flags
, uint32_t *dev_id
)
3191 struct kvm_assigned_pci_dev dev_data
= {
3192 .segnr
= dev_addr
->domain
,
3193 .busnr
= dev_addr
->bus
,
3194 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
3199 dev_data
.assigned_dev_id
=
3200 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
3202 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
3207 *dev_id
= dev_data
.assigned_dev_id
;
3212 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
3214 struct kvm_assigned_pci_dev dev_data
= {
3215 .assigned_dev_id
= dev_id
,
3218 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
3221 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3222 uint32_t irq_type
, uint32_t guest_irq
)
3224 struct kvm_assigned_irq assigned_irq
= {
3225 .assigned_dev_id
= dev_id
,
3226 .guest_irq
= guest_irq
,
3230 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
3231 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
3233 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
3237 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
3240 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
3241 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
3243 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
3246 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
3248 struct kvm_assigned_pci_dev dev_data
= {
3249 .assigned_dev_id
= dev_id
,
3250 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
3253 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3256 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3259 struct kvm_assigned_irq assigned_irq
= {
3260 .assigned_dev_id
= dev_id
,
3264 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3267 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3269 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3270 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3273 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3275 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3276 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3279 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3281 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3282 KVM_DEV_IRQ_HOST_MSI
);
3285 bool kvm_device_msix_supported(KVMState
*s
)
3287 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3288 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3289 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3292 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3293 uint32_t nr_vectors
)
3295 struct kvm_assigned_msix_nr msix_nr
= {
3296 .assigned_dev_id
= dev_id
,
3297 .entry_nr
= nr_vectors
,
3300 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3303 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3306 struct kvm_assigned_msix_entry msix_entry
= {
3307 .assigned_dev_id
= dev_id
,
3312 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3315 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3317 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3318 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3321 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3323 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3324 KVM_DEV_IRQ_HOST_MSIX
);
3327 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3328 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3333 int kvm_arch_msi_data_to_gsi(uint32_t data
)