s390x: sort some devices into categories
[qemu/ar7.git] / block / io.c
blob4378ae4c7d7fd0df9e348506ca44d8416ec27ee5
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/blockjob_int.h"
30 #include "block/block_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
38 int64_t offset, int bytes, BdrvRequestFlags flags);
40 void bdrv_parent_drained_begin(BlockDriverState *bs)
42 BdrvChild *c;
44 QLIST_FOREACH(c, &bs->parents, next_parent) {
45 if (c->role->drained_begin) {
46 c->role->drained_begin(c);
51 void bdrv_parent_drained_end(BlockDriverState *bs)
53 BdrvChild *c;
55 QLIST_FOREACH(c, &bs->parents, next_parent) {
56 if (c->role->drained_end) {
57 c->role->drained_end(c);
62 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
64 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
65 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
66 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
67 src->opt_mem_alignment);
68 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
69 src->min_mem_alignment);
70 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
73 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
75 BlockDriver *drv = bs->drv;
76 Error *local_err = NULL;
78 memset(&bs->bl, 0, sizeof(bs->bl));
80 if (!drv) {
81 return;
84 /* Default alignment based on whether driver has byte interface */
85 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
87 /* Take some limits from the children as a default */
88 if (bs->file) {
89 bdrv_refresh_limits(bs->file->bs, &local_err);
90 if (local_err) {
91 error_propagate(errp, local_err);
92 return;
94 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
95 } else {
96 bs->bl.min_mem_alignment = 512;
97 bs->bl.opt_mem_alignment = getpagesize();
99 /* Safe default since most protocols use readv()/writev()/etc */
100 bs->bl.max_iov = IOV_MAX;
103 if (bs->backing) {
104 bdrv_refresh_limits(bs->backing->bs, &local_err);
105 if (local_err) {
106 error_propagate(errp, local_err);
107 return;
109 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
112 /* Then let the driver override it */
113 if (drv->bdrv_refresh_limits) {
114 drv->bdrv_refresh_limits(bs, errp);
119 * The copy-on-read flag is actually a reference count so multiple users may
120 * use the feature without worrying about clobbering its previous state.
121 * Copy-on-read stays enabled until all users have called to disable it.
123 void bdrv_enable_copy_on_read(BlockDriverState *bs)
125 atomic_inc(&bs->copy_on_read);
128 void bdrv_disable_copy_on_read(BlockDriverState *bs)
130 int old = atomic_fetch_dec(&bs->copy_on_read);
131 assert(old >= 1);
134 /* Check if any requests are in-flight (including throttled requests) */
135 bool bdrv_requests_pending(BlockDriverState *bs)
137 BdrvChild *child;
139 if (atomic_read(&bs->in_flight)) {
140 return true;
143 QLIST_FOREACH(child, &bs->children, next) {
144 if (bdrv_requests_pending(child->bs)) {
145 return true;
149 return false;
152 typedef struct {
153 Coroutine *co;
154 BlockDriverState *bs;
155 bool done;
156 } BdrvCoDrainData;
158 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
160 BdrvCoDrainData *data = opaque;
161 BlockDriverState *bs = data->bs;
163 bs->drv->bdrv_co_drain(bs);
165 /* Set data->done before reading bs->wakeup. */
166 atomic_mb_set(&data->done, true);
167 bdrv_wakeup(bs);
170 static void bdrv_drain_invoke(BlockDriverState *bs)
172 BdrvCoDrainData data = { .bs = bs, .done = false };
174 if (!bs->drv || !bs->drv->bdrv_co_drain) {
175 return;
178 data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data);
179 bdrv_coroutine_enter(bs, data.co);
180 BDRV_POLL_WHILE(bs, !data.done);
183 static bool bdrv_drain_recurse(BlockDriverState *bs)
185 BdrvChild *child, *tmp;
186 bool waited;
188 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
190 /* Ensure any pending metadata writes are submitted to bs->file. */
191 bdrv_drain_invoke(bs);
193 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
194 BlockDriverState *bs = child->bs;
195 bool in_main_loop =
196 qemu_get_current_aio_context() == qemu_get_aio_context();
197 assert(bs->refcnt > 0);
198 if (in_main_loop) {
199 /* In case the recursive bdrv_drain_recurse processes a
200 * block_job_defer_to_main_loop BH and modifies the graph,
201 * let's hold a reference to bs until we are done.
203 * IOThread doesn't have such a BH, and it is not safe to call
204 * bdrv_unref without BQL, so skip doing it there.
206 bdrv_ref(bs);
208 waited |= bdrv_drain_recurse(bs);
209 if (in_main_loop) {
210 bdrv_unref(bs);
214 return waited;
217 static void bdrv_co_drain_bh_cb(void *opaque)
219 BdrvCoDrainData *data = opaque;
220 Coroutine *co = data->co;
221 BlockDriverState *bs = data->bs;
223 bdrv_dec_in_flight(bs);
224 bdrv_drained_begin(bs);
225 data->done = true;
226 aio_co_wake(co);
229 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
231 BdrvCoDrainData data;
233 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
234 * other coroutines run if they were queued from
235 * qemu_co_queue_run_restart(). */
237 assert(qemu_in_coroutine());
238 data = (BdrvCoDrainData) {
239 .co = qemu_coroutine_self(),
240 .bs = bs,
241 .done = false,
243 bdrv_inc_in_flight(bs);
244 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
245 bdrv_co_drain_bh_cb, &data);
247 qemu_coroutine_yield();
248 /* If we are resumed from some other event (such as an aio completion or a
249 * timer callback), it is a bug in the caller that should be fixed. */
250 assert(data.done);
253 void bdrv_drained_begin(BlockDriverState *bs)
255 if (qemu_in_coroutine()) {
256 bdrv_co_yield_to_drain(bs);
257 return;
260 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
261 aio_disable_external(bdrv_get_aio_context(bs));
262 bdrv_parent_drained_begin(bs);
265 bdrv_drain_recurse(bs);
268 void bdrv_drained_end(BlockDriverState *bs)
270 assert(bs->quiesce_counter > 0);
271 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) {
272 return;
275 bdrv_parent_drained_end(bs);
276 aio_enable_external(bdrv_get_aio_context(bs));
280 * Wait for pending requests to complete on a single BlockDriverState subtree,
281 * and suspend block driver's internal I/O until next request arrives.
283 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
284 * AioContext.
286 * Only this BlockDriverState's AioContext is run, so in-flight requests must
287 * not depend on events in other AioContexts. In that case, use
288 * bdrv_drain_all() instead.
290 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
292 assert(qemu_in_coroutine());
293 bdrv_drained_begin(bs);
294 bdrv_drained_end(bs);
297 void bdrv_drain(BlockDriverState *bs)
299 bdrv_drained_begin(bs);
300 bdrv_drained_end(bs);
304 * Wait for pending requests to complete across all BlockDriverStates
306 * This function does not flush data to disk, use bdrv_flush_all() for that
307 * after calling this function.
309 * This pauses all block jobs and disables external clients. It must
310 * be paired with bdrv_drain_all_end().
312 * NOTE: no new block jobs or BlockDriverStates can be created between
313 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
315 void bdrv_drain_all_begin(void)
317 /* Always run first iteration so any pending completion BHs run */
318 bool waited = true;
319 BlockDriverState *bs;
320 BdrvNextIterator it;
321 GSList *aio_ctxs = NULL, *ctx;
323 block_job_pause_all();
325 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
326 AioContext *aio_context = bdrv_get_aio_context(bs);
328 aio_context_acquire(aio_context);
329 bdrv_parent_drained_begin(bs);
330 aio_disable_external(aio_context);
331 aio_context_release(aio_context);
333 if (!g_slist_find(aio_ctxs, aio_context)) {
334 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
338 /* Note that completion of an asynchronous I/O operation can trigger any
339 * number of other I/O operations on other devices---for example a
340 * coroutine can submit an I/O request to another device in response to
341 * request completion. Therefore we must keep looping until there was no
342 * more activity rather than simply draining each device independently.
344 while (waited) {
345 waited = false;
347 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
348 AioContext *aio_context = ctx->data;
350 aio_context_acquire(aio_context);
351 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
352 if (aio_context == bdrv_get_aio_context(bs)) {
353 waited |= bdrv_drain_recurse(bs);
356 aio_context_release(aio_context);
360 g_slist_free(aio_ctxs);
363 void bdrv_drain_all_end(void)
365 BlockDriverState *bs;
366 BdrvNextIterator it;
368 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
369 AioContext *aio_context = bdrv_get_aio_context(bs);
371 aio_context_acquire(aio_context);
372 aio_enable_external(aio_context);
373 bdrv_parent_drained_end(bs);
374 aio_context_release(aio_context);
377 block_job_resume_all();
380 void bdrv_drain_all(void)
382 bdrv_drain_all_begin();
383 bdrv_drain_all_end();
387 * Remove an active request from the tracked requests list
389 * This function should be called when a tracked request is completing.
391 static void tracked_request_end(BdrvTrackedRequest *req)
393 if (req->serialising) {
394 atomic_dec(&req->bs->serialising_in_flight);
397 qemu_co_mutex_lock(&req->bs->reqs_lock);
398 QLIST_REMOVE(req, list);
399 qemu_co_queue_restart_all(&req->wait_queue);
400 qemu_co_mutex_unlock(&req->bs->reqs_lock);
404 * Add an active request to the tracked requests list
406 static void tracked_request_begin(BdrvTrackedRequest *req,
407 BlockDriverState *bs,
408 int64_t offset,
409 unsigned int bytes,
410 enum BdrvTrackedRequestType type)
412 *req = (BdrvTrackedRequest){
413 .bs = bs,
414 .offset = offset,
415 .bytes = bytes,
416 .type = type,
417 .co = qemu_coroutine_self(),
418 .serialising = false,
419 .overlap_offset = offset,
420 .overlap_bytes = bytes,
423 qemu_co_queue_init(&req->wait_queue);
425 qemu_co_mutex_lock(&bs->reqs_lock);
426 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
427 qemu_co_mutex_unlock(&bs->reqs_lock);
430 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
432 int64_t overlap_offset = req->offset & ~(align - 1);
433 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
434 - overlap_offset;
436 if (!req->serialising) {
437 atomic_inc(&req->bs->serialising_in_flight);
438 req->serialising = true;
441 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
442 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
446 * Round a region to cluster boundaries
448 void bdrv_round_to_clusters(BlockDriverState *bs,
449 int64_t offset, unsigned int bytes,
450 int64_t *cluster_offset,
451 unsigned int *cluster_bytes)
453 BlockDriverInfo bdi;
455 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
456 *cluster_offset = offset;
457 *cluster_bytes = bytes;
458 } else {
459 int64_t c = bdi.cluster_size;
460 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
461 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
465 static int bdrv_get_cluster_size(BlockDriverState *bs)
467 BlockDriverInfo bdi;
468 int ret;
470 ret = bdrv_get_info(bs, &bdi);
471 if (ret < 0 || bdi.cluster_size == 0) {
472 return bs->bl.request_alignment;
473 } else {
474 return bdi.cluster_size;
478 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
479 int64_t offset, unsigned int bytes)
481 /* aaaa bbbb */
482 if (offset >= req->overlap_offset + req->overlap_bytes) {
483 return false;
485 /* bbbb aaaa */
486 if (req->overlap_offset >= offset + bytes) {
487 return false;
489 return true;
492 void bdrv_inc_in_flight(BlockDriverState *bs)
494 atomic_inc(&bs->in_flight);
497 static void dummy_bh_cb(void *opaque)
501 void bdrv_wakeup(BlockDriverState *bs)
503 /* The barrier (or an atomic op) is in the caller. */
504 if (atomic_read(&bs->wakeup)) {
505 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
509 void bdrv_dec_in_flight(BlockDriverState *bs)
511 atomic_dec(&bs->in_flight);
512 bdrv_wakeup(bs);
515 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
517 BlockDriverState *bs = self->bs;
518 BdrvTrackedRequest *req;
519 bool retry;
520 bool waited = false;
522 if (!atomic_read(&bs->serialising_in_flight)) {
523 return false;
526 do {
527 retry = false;
528 qemu_co_mutex_lock(&bs->reqs_lock);
529 QLIST_FOREACH(req, &bs->tracked_requests, list) {
530 if (req == self || (!req->serialising && !self->serialising)) {
531 continue;
533 if (tracked_request_overlaps(req, self->overlap_offset,
534 self->overlap_bytes))
536 /* Hitting this means there was a reentrant request, for
537 * example, a block driver issuing nested requests. This must
538 * never happen since it means deadlock.
540 assert(qemu_coroutine_self() != req->co);
542 /* If the request is already (indirectly) waiting for us, or
543 * will wait for us as soon as it wakes up, then just go on
544 * (instead of producing a deadlock in the former case). */
545 if (!req->waiting_for) {
546 self->waiting_for = req;
547 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
548 self->waiting_for = NULL;
549 retry = true;
550 waited = true;
551 break;
555 qemu_co_mutex_unlock(&bs->reqs_lock);
556 } while (retry);
558 return waited;
561 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
562 size_t size)
564 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
565 return -EIO;
568 if (!bdrv_is_inserted(bs)) {
569 return -ENOMEDIUM;
572 if (offset < 0) {
573 return -EIO;
576 return 0;
579 typedef struct RwCo {
580 BdrvChild *child;
581 int64_t offset;
582 QEMUIOVector *qiov;
583 bool is_write;
584 int ret;
585 BdrvRequestFlags flags;
586 } RwCo;
588 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
590 RwCo *rwco = opaque;
592 if (!rwco->is_write) {
593 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
594 rwco->qiov->size, rwco->qiov,
595 rwco->flags);
596 } else {
597 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
598 rwco->qiov->size, rwco->qiov,
599 rwco->flags);
604 * Process a vectored synchronous request using coroutines
606 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
607 QEMUIOVector *qiov, bool is_write,
608 BdrvRequestFlags flags)
610 Coroutine *co;
611 RwCo rwco = {
612 .child = child,
613 .offset = offset,
614 .qiov = qiov,
615 .is_write = is_write,
616 .ret = NOT_DONE,
617 .flags = flags,
620 if (qemu_in_coroutine()) {
621 /* Fast-path if already in coroutine context */
622 bdrv_rw_co_entry(&rwco);
623 } else {
624 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
625 bdrv_coroutine_enter(child->bs, co);
626 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
628 return rwco.ret;
632 * Process a synchronous request using coroutines
634 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
635 int nb_sectors, bool is_write, BdrvRequestFlags flags)
637 QEMUIOVector qiov;
638 struct iovec iov = {
639 .iov_base = (void *)buf,
640 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
643 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
644 return -EINVAL;
647 qemu_iovec_init_external(&qiov, &iov, 1);
648 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
649 &qiov, is_write, flags);
652 /* return < 0 if error. See bdrv_write() for the return codes */
653 int bdrv_read(BdrvChild *child, int64_t sector_num,
654 uint8_t *buf, int nb_sectors)
656 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
659 /* Return < 0 if error. Important errors are:
660 -EIO generic I/O error (may happen for all errors)
661 -ENOMEDIUM No media inserted.
662 -EINVAL Invalid sector number or nb_sectors
663 -EACCES Trying to write a read-only device
665 int bdrv_write(BdrvChild *child, int64_t sector_num,
666 const uint8_t *buf, int nb_sectors)
668 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
671 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
672 int bytes, BdrvRequestFlags flags)
674 QEMUIOVector qiov;
675 struct iovec iov = {
676 .iov_base = NULL,
677 .iov_len = bytes,
680 qemu_iovec_init_external(&qiov, &iov, 1);
681 return bdrv_prwv_co(child, offset, &qiov, true,
682 BDRV_REQ_ZERO_WRITE | flags);
686 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
687 * The operation is sped up by checking the block status and only writing
688 * zeroes to the device if they currently do not return zeroes. Optional
689 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
690 * BDRV_REQ_FUA).
692 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
694 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
696 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
697 BlockDriverState *bs = child->bs;
698 BlockDriverState *file;
699 int n;
701 target_sectors = bdrv_nb_sectors(bs);
702 if (target_sectors < 0) {
703 return target_sectors;
706 for (;;) {
707 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
708 if (nb_sectors <= 0) {
709 return 0;
711 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
712 if (ret < 0) {
713 error_report("error getting block status at sector %" PRId64 ": %s",
714 sector_num, strerror(-ret));
715 return ret;
717 if (ret & BDRV_BLOCK_ZERO) {
718 sector_num += n;
719 continue;
721 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
722 n << BDRV_SECTOR_BITS, flags);
723 if (ret < 0) {
724 error_report("error writing zeroes at sector %" PRId64 ": %s",
725 sector_num, strerror(-ret));
726 return ret;
728 sector_num += n;
732 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
734 int ret;
736 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
737 if (ret < 0) {
738 return ret;
741 return qiov->size;
744 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
746 QEMUIOVector qiov;
747 struct iovec iov = {
748 .iov_base = (void *)buf,
749 .iov_len = bytes,
752 if (bytes < 0) {
753 return -EINVAL;
756 qemu_iovec_init_external(&qiov, &iov, 1);
757 return bdrv_preadv(child, offset, &qiov);
760 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
762 int ret;
764 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
765 if (ret < 0) {
766 return ret;
769 return qiov->size;
772 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
774 QEMUIOVector qiov;
775 struct iovec iov = {
776 .iov_base = (void *) buf,
777 .iov_len = bytes,
780 if (bytes < 0) {
781 return -EINVAL;
784 qemu_iovec_init_external(&qiov, &iov, 1);
785 return bdrv_pwritev(child, offset, &qiov);
789 * Writes to the file and ensures that no writes are reordered across this
790 * request (acts as a barrier)
792 * Returns 0 on success, -errno in error cases.
794 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
795 const void *buf, int count)
797 int ret;
799 ret = bdrv_pwrite(child, offset, buf, count);
800 if (ret < 0) {
801 return ret;
804 ret = bdrv_flush(child->bs);
805 if (ret < 0) {
806 return ret;
809 return 0;
812 typedef struct CoroutineIOCompletion {
813 Coroutine *coroutine;
814 int ret;
815 } CoroutineIOCompletion;
817 static void bdrv_co_io_em_complete(void *opaque, int ret)
819 CoroutineIOCompletion *co = opaque;
821 co->ret = ret;
822 aio_co_wake(co->coroutine);
825 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
826 uint64_t offset, uint64_t bytes,
827 QEMUIOVector *qiov, int flags)
829 BlockDriver *drv = bs->drv;
830 int64_t sector_num;
831 unsigned int nb_sectors;
833 assert(!(flags & ~BDRV_REQ_MASK));
835 if (drv->bdrv_co_preadv) {
836 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
839 sector_num = offset >> BDRV_SECTOR_BITS;
840 nb_sectors = bytes >> BDRV_SECTOR_BITS;
842 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
843 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
844 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
846 if (drv->bdrv_co_readv) {
847 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
848 } else {
849 BlockAIOCB *acb;
850 CoroutineIOCompletion co = {
851 .coroutine = qemu_coroutine_self(),
854 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
855 bdrv_co_io_em_complete, &co);
856 if (acb == NULL) {
857 return -EIO;
858 } else {
859 qemu_coroutine_yield();
860 return co.ret;
865 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
866 uint64_t offset, uint64_t bytes,
867 QEMUIOVector *qiov, int flags)
869 BlockDriver *drv = bs->drv;
870 int64_t sector_num;
871 unsigned int nb_sectors;
872 int ret;
874 assert(!(flags & ~BDRV_REQ_MASK));
876 if (drv->bdrv_co_pwritev) {
877 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
878 flags & bs->supported_write_flags);
879 flags &= ~bs->supported_write_flags;
880 goto emulate_flags;
883 sector_num = offset >> BDRV_SECTOR_BITS;
884 nb_sectors = bytes >> BDRV_SECTOR_BITS;
886 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
887 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
888 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
890 if (drv->bdrv_co_writev_flags) {
891 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
892 flags & bs->supported_write_flags);
893 flags &= ~bs->supported_write_flags;
894 } else if (drv->bdrv_co_writev) {
895 assert(!bs->supported_write_flags);
896 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
897 } else {
898 BlockAIOCB *acb;
899 CoroutineIOCompletion co = {
900 .coroutine = qemu_coroutine_self(),
903 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
904 bdrv_co_io_em_complete, &co);
905 if (acb == NULL) {
906 ret = -EIO;
907 } else {
908 qemu_coroutine_yield();
909 ret = co.ret;
913 emulate_flags:
914 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
915 ret = bdrv_co_flush(bs);
918 return ret;
921 static int coroutine_fn
922 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
923 uint64_t bytes, QEMUIOVector *qiov)
925 BlockDriver *drv = bs->drv;
927 if (!drv->bdrv_co_pwritev_compressed) {
928 return -ENOTSUP;
931 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
934 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
935 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
937 BlockDriverState *bs = child->bs;
939 /* Perform I/O through a temporary buffer so that users who scribble over
940 * their read buffer while the operation is in progress do not end up
941 * modifying the image file. This is critical for zero-copy guest I/O
942 * where anything might happen inside guest memory.
944 void *bounce_buffer;
946 BlockDriver *drv = bs->drv;
947 struct iovec iov;
948 QEMUIOVector bounce_qiov;
949 int64_t cluster_offset;
950 unsigned int cluster_bytes;
951 size_t skip_bytes;
952 int ret;
954 /* FIXME We cannot require callers to have write permissions when all they
955 * are doing is a read request. If we did things right, write permissions
956 * would be obtained anyway, but internally by the copy-on-read code. As
957 * long as it is implemented here rather than in a separat filter driver,
958 * the copy-on-read code doesn't have its own BdrvChild, however, for which
959 * it could request permissions. Therefore we have to bypass the permission
960 * system for the moment. */
961 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
963 /* Cover entire cluster so no additional backing file I/O is required when
964 * allocating cluster in the image file.
966 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
968 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
969 cluster_offset, cluster_bytes);
971 iov.iov_len = cluster_bytes;
972 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
973 if (bounce_buffer == NULL) {
974 ret = -ENOMEM;
975 goto err;
978 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
980 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
981 &bounce_qiov, 0);
982 if (ret < 0) {
983 goto err;
986 if (drv->bdrv_co_pwrite_zeroes &&
987 buffer_is_zero(bounce_buffer, iov.iov_len)) {
988 /* FIXME: Should we (perhaps conditionally) be setting
989 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
990 * that still correctly reads as zero? */
991 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
992 } else {
993 /* This does not change the data on the disk, it is not necessary
994 * to flush even in cache=writethrough mode.
996 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
997 &bounce_qiov, 0);
1000 if (ret < 0) {
1001 /* It might be okay to ignore write errors for guest requests. If this
1002 * is a deliberate copy-on-read then we don't want to ignore the error.
1003 * Simply report it in all cases.
1005 goto err;
1008 skip_bytes = offset - cluster_offset;
1009 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
1011 err:
1012 qemu_vfree(bounce_buffer);
1013 return ret;
1017 * Forwards an already correctly aligned request to the BlockDriver. This
1018 * handles copy on read, zeroing after EOF, and fragmentation of large
1019 * reads; any other features must be implemented by the caller.
1021 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1022 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1023 int64_t align, QEMUIOVector *qiov, int flags)
1025 BlockDriverState *bs = child->bs;
1026 int64_t total_bytes, max_bytes;
1027 int ret = 0;
1028 uint64_t bytes_remaining = bytes;
1029 int max_transfer;
1031 assert(is_power_of_2(align));
1032 assert((offset & (align - 1)) == 0);
1033 assert((bytes & (align - 1)) == 0);
1034 assert(!qiov || bytes == qiov->size);
1035 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1036 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1037 align);
1039 /* TODO: We would need a per-BDS .supported_read_flags and
1040 * potential fallback support, if we ever implement any read flags
1041 * to pass through to drivers. For now, there aren't any
1042 * passthrough flags. */
1043 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1045 /* Handle Copy on Read and associated serialisation */
1046 if (flags & BDRV_REQ_COPY_ON_READ) {
1047 /* If we touch the same cluster it counts as an overlap. This
1048 * guarantees that allocating writes will be serialized and not race
1049 * with each other for the same cluster. For example, in copy-on-read
1050 * it ensures that the CoR read and write operations are atomic and
1051 * guest writes cannot interleave between them. */
1052 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1055 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1056 wait_serialising_requests(req);
1059 if (flags & BDRV_REQ_COPY_ON_READ) {
1060 /* TODO: Simplify further once bdrv_is_allocated no longer
1061 * requires sector alignment */
1062 int64_t start = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
1063 int64_t end = QEMU_ALIGN_UP(offset + bytes, BDRV_SECTOR_SIZE);
1064 int64_t pnum;
1066 ret = bdrv_is_allocated(bs, start, end - start, &pnum);
1067 if (ret < 0) {
1068 goto out;
1071 if (!ret || pnum != end - start) {
1072 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1073 goto out;
1077 /* Forward the request to the BlockDriver, possibly fragmenting it */
1078 total_bytes = bdrv_getlength(bs);
1079 if (total_bytes < 0) {
1080 ret = total_bytes;
1081 goto out;
1084 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1085 if (bytes <= max_bytes && bytes <= max_transfer) {
1086 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1087 goto out;
1090 while (bytes_remaining) {
1091 int num;
1093 if (max_bytes) {
1094 QEMUIOVector local_qiov;
1096 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1097 assert(num);
1098 qemu_iovec_init(&local_qiov, qiov->niov);
1099 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1101 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1102 num, &local_qiov, 0);
1103 max_bytes -= num;
1104 qemu_iovec_destroy(&local_qiov);
1105 } else {
1106 num = bytes_remaining;
1107 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1108 bytes_remaining);
1110 if (ret < 0) {
1111 goto out;
1113 bytes_remaining -= num;
1116 out:
1117 return ret < 0 ? ret : 0;
1121 * Handle a read request in coroutine context
1123 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1124 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1125 BdrvRequestFlags flags)
1127 BlockDriverState *bs = child->bs;
1128 BlockDriver *drv = bs->drv;
1129 BdrvTrackedRequest req;
1131 uint64_t align = bs->bl.request_alignment;
1132 uint8_t *head_buf = NULL;
1133 uint8_t *tail_buf = NULL;
1134 QEMUIOVector local_qiov;
1135 bool use_local_qiov = false;
1136 int ret;
1138 trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1140 if (!drv) {
1141 return -ENOMEDIUM;
1144 ret = bdrv_check_byte_request(bs, offset, bytes);
1145 if (ret < 0) {
1146 return ret;
1149 bdrv_inc_in_flight(bs);
1151 /* Don't do copy-on-read if we read data before write operation */
1152 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1153 flags |= BDRV_REQ_COPY_ON_READ;
1156 /* Align read if necessary by padding qiov */
1157 if (offset & (align - 1)) {
1158 head_buf = qemu_blockalign(bs, align);
1159 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1160 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1161 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1162 use_local_qiov = true;
1164 bytes += offset & (align - 1);
1165 offset = offset & ~(align - 1);
1168 if ((offset + bytes) & (align - 1)) {
1169 if (!use_local_qiov) {
1170 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1171 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1172 use_local_qiov = true;
1174 tail_buf = qemu_blockalign(bs, align);
1175 qemu_iovec_add(&local_qiov, tail_buf,
1176 align - ((offset + bytes) & (align - 1)));
1178 bytes = ROUND_UP(bytes, align);
1181 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1182 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1183 use_local_qiov ? &local_qiov : qiov,
1184 flags);
1185 tracked_request_end(&req);
1186 bdrv_dec_in_flight(bs);
1188 if (use_local_qiov) {
1189 qemu_iovec_destroy(&local_qiov);
1190 qemu_vfree(head_buf);
1191 qemu_vfree(tail_buf);
1194 return ret;
1197 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1198 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1199 BdrvRequestFlags flags)
1201 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1202 return -EINVAL;
1205 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1206 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1209 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1210 int nb_sectors, QEMUIOVector *qiov)
1212 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1215 /* Maximum buffer for write zeroes fallback, in bytes */
1216 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1218 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1219 int64_t offset, int bytes, BdrvRequestFlags flags)
1221 BlockDriver *drv = bs->drv;
1222 QEMUIOVector qiov;
1223 struct iovec iov = {0};
1224 int ret = 0;
1225 bool need_flush = false;
1226 int head = 0;
1227 int tail = 0;
1229 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1230 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1231 bs->bl.request_alignment);
1232 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1233 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1235 assert(alignment % bs->bl.request_alignment == 0);
1236 head = offset % alignment;
1237 tail = (offset + bytes) % alignment;
1238 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1239 assert(max_write_zeroes >= bs->bl.request_alignment);
1241 while (bytes > 0 && !ret) {
1242 int num = bytes;
1244 /* Align request. Block drivers can expect the "bulk" of the request
1245 * to be aligned, and that unaligned requests do not cross cluster
1246 * boundaries.
1248 if (head) {
1249 /* Make a small request up to the first aligned sector. For
1250 * convenience, limit this request to max_transfer even if
1251 * we don't need to fall back to writes. */
1252 num = MIN(MIN(bytes, max_transfer), alignment - head);
1253 head = (head + num) % alignment;
1254 assert(num < max_write_zeroes);
1255 } else if (tail && num > alignment) {
1256 /* Shorten the request to the last aligned sector. */
1257 num -= tail;
1260 /* limit request size */
1261 if (num > max_write_zeroes) {
1262 num = max_write_zeroes;
1265 ret = -ENOTSUP;
1266 /* First try the efficient write zeroes operation */
1267 if (drv->bdrv_co_pwrite_zeroes) {
1268 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1269 flags & bs->supported_zero_flags);
1270 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1271 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1272 need_flush = true;
1274 } else {
1275 assert(!bs->supported_zero_flags);
1278 if (ret == -ENOTSUP) {
1279 /* Fall back to bounce buffer if write zeroes is unsupported */
1280 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1282 if ((flags & BDRV_REQ_FUA) &&
1283 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1284 /* No need for bdrv_driver_pwrite() to do a fallback
1285 * flush on each chunk; use just one at the end */
1286 write_flags &= ~BDRV_REQ_FUA;
1287 need_flush = true;
1289 num = MIN(num, max_transfer);
1290 iov.iov_len = num;
1291 if (iov.iov_base == NULL) {
1292 iov.iov_base = qemu_try_blockalign(bs, num);
1293 if (iov.iov_base == NULL) {
1294 ret = -ENOMEM;
1295 goto fail;
1297 memset(iov.iov_base, 0, num);
1299 qemu_iovec_init_external(&qiov, &iov, 1);
1301 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1303 /* Keep bounce buffer around if it is big enough for all
1304 * all future requests.
1306 if (num < max_transfer) {
1307 qemu_vfree(iov.iov_base);
1308 iov.iov_base = NULL;
1312 offset += num;
1313 bytes -= num;
1316 fail:
1317 if (ret == 0 && need_flush) {
1318 ret = bdrv_co_flush(bs);
1320 qemu_vfree(iov.iov_base);
1321 return ret;
1325 * Forwards an already correctly aligned write request to the BlockDriver,
1326 * after possibly fragmenting it.
1328 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1329 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1330 int64_t align, QEMUIOVector *qiov, int flags)
1332 BlockDriverState *bs = child->bs;
1333 BlockDriver *drv = bs->drv;
1334 bool waited;
1335 int ret;
1337 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1338 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1339 uint64_t bytes_remaining = bytes;
1340 int max_transfer;
1342 if (bdrv_has_readonly_bitmaps(bs)) {
1343 return -EPERM;
1346 assert(is_power_of_2(align));
1347 assert((offset & (align - 1)) == 0);
1348 assert((bytes & (align - 1)) == 0);
1349 assert(!qiov || bytes == qiov->size);
1350 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1351 assert(!(flags & ~BDRV_REQ_MASK));
1352 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1353 align);
1355 waited = wait_serialising_requests(req);
1356 assert(!waited || !req->serialising);
1357 assert(req->overlap_offset <= offset);
1358 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1359 assert(child->perm & BLK_PERM_WRITE);
1360 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1362 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1364 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1365 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1366 qemu_iovec_is_zero(qiov)) {
1367 flags |= BDRV_REQ_ZERO_WRITE;
1368 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1369 flags |= BDRV_REQ_MAY_UNMAP;
1373 if (ret < 0) {
1374 /* Do nothing, write notifier decided to fail this request */
1375 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1376 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1377 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1378 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1379 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1380 } else if (bytes <= max_transfer) {
1381 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1382 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1383 } else {
1384 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1385 while (bytes_remaining) {
1386 int num = MIN(bytes_remaining, max_transfer);
1387 QEMUIOVector local_qiov;
1388 int local_flags = flags;
1390 assert(num);
1391 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1392 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1393 /* If FUA is going to be emulated by flush, we only
1394 * need to flush on the last iteration */
1395 local_flags &= ~BDRV_REQ_FUA;
1397 qemu_iovec_init(&local_qiov, qiov->niov);
1398 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1400 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1401 num, &local_qiov, local_flags);
1402 qemu_iovec_destroy(&local_qiov);
1403 if (ret < 0) {
1404 break;
1406 bytes_remaining -= num;
1409 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1411 atomic_inc(&bs->write_gen);
1412 bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1414 stat64_max(&bs->wr_highest_offset, offset + bytes);
1416 if (ret >= 0) {
1417 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1418 ret = 0;
1421 return ret;
1424 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1425 int64_t offset,
1426 unsigned int bytes,
1427 BdrvRequestFlags flags,
1428 BdrvTrackedRequest *req)
1430 BlockDriverState *bs = child->bs;
1431 uint8_t *buf = NULL;
1432 QEMUIOVector local_qiov;
1433 struct iovec iov;
1434 uint64_t align = bs->bl.request_alignment;
1435 unsigned int head_padding_bytes, tail_padding_bytes;
1436 int ret = 0;
1438 head_padding_bytes = offset & (align - 1);
1439 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1442 assert(flags & BDRV_REQ_ZERO_WRITE);
1443 if (head_padding_bytes || tail_padding_bytes) {
1444 buf = qemu_blockalign(bs, align);
1445 iov = (struct iovec) {
1446 .iov_base = buf,
1447 .iov_len = align,
1449 qemu_iovec_init_external(&local_qiov, &iov, 1);
1451 if (head_padding_bytes) {
1452 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1454 /* RMW the unaligned part before head. */
1455 mark_request_serialising(req, align);
1456 wait_serialising_requests(req);
1457 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1458 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1459 align, &local_qiov, 0);
1460 if (ret < 0) {
1461 goto fail;
1463 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1465 memset(buf + head_padding_bytes, 0, zero_bytes);
1466 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1467 align, &local_qiov,
1468 flags & ~BDRV_REQ_ZERO_WRITE);
1469 if (ret < 0) {
1470 goto fail;
1472 offset += zero_bytes;
1473 bytes -= zero_bytes;
1476 assert(!bytes || (offset & (align - 1)) == 0);
1477 if (bytes >= align) {
1478 /* Write the aligned part in the middle. */
1479 uint64_t aligned_bytes = bytes & ~(align - 1);
1480 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1481 NULL, flags);
1482 if (ret < 0) {
1483 goto fail;
1485 bytes -= aligned_bytes;
1486 offset += aligned_bytes;
1489 assert(!bytes || (offset & (align - 1)) == 0);
1490 if (bytes) {
1491 assert(align == tail_padding_bytes + bytes);
1492 /* RMW the unaligned part after tail. */
1493 mark_request_serialising(req, align);
1494 wait_serialising_requests(req);
1495 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1496 ret = bdrv_aligned_preadv(child, req, offset, align,
1497 align, &local_qiov, 0);
1498 if (ret < 0) {
1499 goto fail;
1501 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1503 memset(buf, 0, bytes);
1504 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1505 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1507 fail:
1508 qemu_vfree(buf);
1509 return ret;
1514 * Handle a write request in coroutine context
1516 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1517 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1518 BdrvRequestFlags flags)
1520 BlockDriverState *bs = child->bs;
1521 BdrvTrackedRequest req;
1522 uint64_t align = bs->bl.request_alignment;
1523 uint8_t *head_buf = NULL;
1524 uint8_t *tail_buf = NULL;
1525 QEMUIOVector local_qiov;
1526 bool use_local_qiov = false;
1527 int ret;
1529 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1531 if (!bs->drv) {
1532 return -ENOMEDIUM;
1534 if (bs->read_only) {
1535 return -EPERM;
1537 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1539 ret = bdrv_check_byte_request(bs, offset, bytes);
1540 if (ret < 0) {
1541 return ret;
1544 bdrv_inc_in_flight(bs);
1546 * Align write if necessary by performing a read-modify-write cycle.
1547 * Pad qiov with the read parts and be sure to have a tracked request not
1548 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1550 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1552 if (!qiov) {
1553 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1554 goto out;
1557 if (offset & (align - 1)) {
1558 QEMUIOVector head_qiov;
1559 struct iovec head_iov;
1561 mark_request_serialising(&req, align);
1562 wait_serialising_requests(&req);
1564 head_buf = qemu_blockalign(bs, align);
1565 head_iov = (struct iovec) {
1566 .iov_base = head_buf,
1567 .iov_len = align,
1569 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1571 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1572 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1573 align, &head_qiov, 0);
1574 if (ret < 0) {
1575 goto fail;
1577 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1579 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1580 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1581 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1582 use_local_qiov = true;
1584 bytes += offset & (align - 1);
1585 offset = offset & ~(align - 1);
1587 /* We have read the tail already if the request is smaller
1588 * than one aligned block.
1590 if (bytes < align) {
1591 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1592 bytes = align;
1596 if ((offset + bytes) & (align - 1)) {
1597 QEMUIOVector tail_qiov;
1598 struct iovec tail_iov;
1599 size_t tail_bytes;
1600 bool waited;
1602 mark_request_serialising(&req, align);
1603 waited = wait_serialising_requests(&req);
1604 assert(!waited || !use_local_qiov);
1606 tail_buf = qemu_blockalign(bs, align);
1607 tail_iov = (struct iovec) {
1608 .iov_base = tail_buf,
1609 .iov_len = align,
1611 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1613 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1614 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1615 align, align, &tail_qiov, 0);
1616 if (ret < 0) {
1617 goto fail;
1619 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1621 if (!use_local_qiov) {
1622 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1623 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1624 use_local_qiov = true;
1627 tail_bytes = (offset + bytes) & (align - 1);
1628 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1630 bytes = ROUND_UP(bytes, align);
1633 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1634 use_local_qiov ? &local_qiov : qiov,
1635 flags);
1637 fail:
1639 if (use_local_qiov) {
1640 qemu_iovec_destroy(&local_qiov);
1642 qemu_vfree(head_buf);
1643 qemu_vfree(tail_buf);
1644 out:
1645 tracked_request_end(&req);
1646 bdrv_dec_in_flight(bs);
1647 return ret;
1650 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1651 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1652 BdrvRequestFlags flags)
1654 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1655 return -EINVAL;
1658 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1659 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1662 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1663 int nb_sectors, QEMUIOVector *qiov)
1665 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1668 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1669 int bytes, BdrvRequestFlags flags)
1671 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1673 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1674 flags &= ~BDRV_REQ_MAY_UNMAP;
1677 return bdrv_co_pwritev(child, offset, bytes, NULL,
1678 BDRV_REQ_ZERO_WRITE | flags);
1682 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1684 int bdrv_flush_all(void)
1686 BdrvNextIterator it;
1687 BlockDriverState *bs = NULL;
1688 int result = 0;
1690 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1691 AioContext *aio_context = bdrv_get_aio_context(bs);
1692 int ret;
1694 aio_context_acquire(aio_context);
1695 ret = bdrv_flush(bs);
1696 if (ret < 0 && !result) {
1697 result = ret;
1699 aio_context_release(aio_context);
1702 return result;
1706 typedef struct BdrvCoGetBlockStatusData {
1707 BlockDriverState *bs;
1708 BlockDriverState *base;
1709 BlockDriverState **file;
1710 int64_t sector_num;
1711 int nb_sectors;
1712 int *pnum;
1713 int64_t ret;
1714 bool done;
1715 } BdrvCoGetBlockStatusData;
1717 int64_t coroutine_fn bdrv_co_get_block_status_from_file(BlockDriverState *bs,
1718 int64_t sector_num,
1719 int nb_sectors,
1720 int *pnum,
1721 BlockDriverState **file)
1723 assert(bs->file && bs->file->bs);
1724 *pnum = nb_sectors;
1725 *file = bs->file->bs;
1726 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID |
1727 (sector_num << BDRV_SECTOR_BITS);
1730 int64_t coroutine_fn bdrv_co_get_block_status_from_backing(BlockDriverState *bs,
1731 int64_t sector_num,
1732 int nb_sectors,
1733 int *pnum,
1734 BlockDriverState **file)
1736 assert(bs->backing && bs->backing->bs);
1737 *pnum = nb_sectors;
1738 *file = bs->backing->bs;
1739 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID |
1740 (sector_num << BDRV_SECTOR_BITS);
1744 * Returns the allocation status of the specified sectors.
1745 * Drivers not implementing the functionality are assumed to not support
1746 * backing files, hence all their sectors are reported as allocated.
1748 * If 'sector_num' is beyond the end of the disk image the return value is
1749 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1751 * 'pnum' is set to the number of sectors (including and immediately following
1752 * the specified sector) that are known to be in the same
1753 * allocated/unallocated state.
1755 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1756 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1757 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1759 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1760 * points to the BDS which the sector range is allocated in.
1762 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1763 int64_t sector_num,
1764 int nb_sectors, int *pnum,
1765 BlockDriverState **file)
1767 int64_t total_sectors;
1768 int64_t n;
1769 int64_t ret, ret2;
1771 *file = NULL;
1772 total_sectors = bdrv_nb_sectors(bs);
1773 if (total_sectors < 0) {
1774 return total_sectors;
1777 if (sector_num >= total_sectors) {
1778 *pnum = 0;
1779 return BDRV_BLOCK_EOF;
1782 n = total_sectors - sector_num;
1783 if (n < nb_sectors) {
1784 nb_sectors = n;
1787 if (!bs->drv->bdrv_co_get_block_status) {
1788 *pnum = nb_sectors;
1789 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1790 if (sector_num + nb_sectors == total_sectors) {
1791 ret |= BDRV_BLOCK_EOF;
1793 if (bs->drv->protocol_name) {
1794 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1795 *file = bs;
1797 return ret;
1800 bdrv_inc_in_flight(bs);
1801 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1802 file);
1803 if (ret < 0) {
1804 *pnum = 0;
1805 goto out;
1808 if (ret & BDRV_BLOCK_RAW) {
1809 assert(ret & BDRV_BLOCK_OFFSET_VALID && *file);
1810 ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1811 *pnum, pnum, file);
1812 goto out;
1815 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1816 ret |= BDRV_BLOCK_ALLOCATED;
1817 } else {
1818 if (bdrv_unallocated_blocks_are_zero(bs)) {
1819 ret |= BDRV_BLOCK_ZERO;
1820 } else if (bs->backing) {
1821 BlockDriverState *bs2 = bs->backing->bs;
1822 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1823 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1824 ret |= BDRV_BLOCK_ZERO;
1829 if (*file && *file != bs &&
1830 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1831 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1832 BlockDriverState *file2;
1833 int file_pnum;
1835 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1836 *pnum, &file_pnum, &file2);
1837 if (ret2 >= 0) {
1838 /* Ignore errors. This is just providing extra information, it
1839 * is useful but not necessary.
1841 if (ret2 & BDRV_BLOCK_EOF &&
1842 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
1844 * It is valid for the format block driver to read
1845 * beyond the end of the underlying file's current
1846 * size; such areas read as zero.
1848 ret |= BDRV_BLOCK_ZERO;
1849 } else {
1850 /* Limit request to the range reported by the protocol driver */
1851 *pnum = file_pnum;
1852 ret |= (ret2 & BDRV_BLOCK_ZERO);
1857 out:
1858 bdrv_dec_in_flight(bs);
1859 if (ret >= 0 && sector_num + *pnum == total_sectors) {
1860 ret |= BDRV_BLOCK_EOF;
1862 return ret;
1865 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1866 BlockDriverState *base,
1867 int64_t sector_num,
1868 int nb_sectors,
1869 int *pnum,
1870 BlockDriverState **file)
1872 BlockDriverState *p;
1873 int64_t ret = 0;
1874 bool first = true;
1876 assert(bs != base);
1877 for (p = bs; p != base; p = backing_bs(p)) {
1878 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1879 if (ret < 0) {
1880 break;
1882 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
1884 * Reading beyond the end of the file continues to read
1885 * zeroes, but we can only widen the result to the
1886 * unallocated length we learned from an earlier
1887 * iteration.
1889 *pnum = nb_sectors;
1891 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
1892 break;
1894 /* [sector_num, pnum] unallocated on this layer, which could be only
1895 * the first part of [sector_num, nb_sectors]. */
1896 nb_sectors = MIN(nb_sectors, *pnum);
1897 first = false;
1899 return ret;
1902 /* Coroutine wrapper for bdrv_get_block_status_above() */
1903 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1905 BdrvCoGetBlockStatusData *data = opaque;
1907 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1908 data->sector_num,
1909 data->nb_sectors,
1910 data->pnum,
1911 data->file);
1912 data->done = true;
1916 * Synchronous wrapper around bdrv_co_get_block_status_above().
1918 * See bdrv_co_get_block_status_above() for details.
1920 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1921 BlockDriverState *base,
1922 int64_t sector_num,
1923 int nb_sectors, int *pnum,
1924 BlockDriverState **file)
1926 Coroutine *co;
1927 BdrvCoGetBlockStatusData data = {
1928 .bs = bs,
1929 .base = base,
1930 .file = file,
1931 .sector_num = sector_num,
1932 .nb_sectors = nb_sectors,
1933 .pnum = pnum,
1934 .done = false,
1937 if (qemu_in_coroutine()) {
1938 /* Fast-path if already in coroutine context */
1939 bdrv_get_block_status_above_co_entry(&data);
1940 } else {
1941 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1942 &data);
1943 bdrv_coroutine_enter(bs, co);
1944 BDRV_POLL_WHILE(bs, !data.done);
1946 return data.ret;
1949 int64_t bdrv_get_block_status(BlockDriverState *bs,
1950 int64_t sector_num,
1951 int nb_sectors, int *pnum,
1952 BlockDriverState **file)
1954 return bdrv_get_block_status_above(bs, backing_bs(bs),
1955 sector_num, nb_sectors, pnum, file);
1958 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
1959 int64_t bytes, int64_t *pnum)
1961 BlockDriverState *file;
1962 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1963 int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1964 int64_t ret;
1965 int psectors;
1967 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1968 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE) && bytes < INT_MAX);
1969 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &psectors,
1970 &file);
1971 if (ret < 0) {
1972 return ret;
1974 if (pnum) {
1975 *pnum = psectors * BDRV_SECTOR_SIZE;
1977 return !!(ret & BDRV_BLOCK_ALLOCATED);
1981 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1983 * Return true if (a prefix of) the given range is allocated in any image
1984 * between BASE and TOP (inclusive). BASE can be NULL to check if the given
1985 * offset is allocated in any image of the chain. Return false otherwise,
1986 * or negative errno on failure.
1988 * 'pnum' is set to the number of bytes (including and immediately
1989 * following the specified offset) that are known to be in the same
1990 * allocated/unallocated state. Note that a subsequent call starting
1991 * at 'offset + *pnum' may return the same allocation status (in other
1992 * words, the result is not necessarily the maximum possible range);
1993 * but 'pnum' will only be 0 when end of file is reached.
1996 int bdrv_is_allocated_above(BlockDriverState *top,
1997 BlockDriverState *base,
1998 int64_t offset, int64_t bytes, int64_t *pnum)
2000 BlockDriverState *intermediate;
2001 int ret;
2002 int64_t n = bytes;
2004 intermediate = top;
2005 while (intermediate && intermediate != base) {
2006 int64_t pnum_inter;
2007 int64_t size_inter;
2009 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2010 if (ret < 0) {
2011 return ret;
2013 if (ret) {
2014 *pnum = pnum_inter;
2015 return 1;
2018 size_inter = bdrv_getlength(intermediate);
2019 if (size_inter < 0) {
2020 return size_inter;
2022 if (n > pnum_inter &&
2023 (intermediate == top || offset + pnum_inter < size_inter)) {
2024 n = pnum_inter;
2027 intermediate = backing_bs(intermediate);
2030 *pnum = n;
2031 return 0;
2034 typedef struct BdrvVmstateCo {
2035 BlockDriverState *bs;
2036 QEMUIOVector *qiov;
2037 int64_t pos;
2038 bool is_read;
2039 int ret;
2040 } BdrvVmstateCo;
2042 static int coroutine_fn
2043 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2044 bool is_read)
2046 BlockDriver *drv = bs->drv;
2047 int ret = -ENOTSUP;
2049 bdrv_inc_in_flight(bs);
2051 if (!drv) {
2052 ret = -ENOMEDIUM;
2053 } else if (drv->bdrv_load_vmstate) {
2054 if (is_read) {
2055 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2056 } else {
2057 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2059 } else if (bs->file) {
2060 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2063 bdrv_dec_in_flight(bs);
2064 return ret;
2067 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2069 BdrvVmstateCo *co = opaque;
2070 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2073 static inline int
2074 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2075 bool is_read)
2077 if (qemu_in_coroutine()) {
2078 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2079 } else {
2080 BdrvVmstateCo data = {
2081 .bs = bs,
2082 .qiov = qiov,
2083 .pos = pos,
2084 .is_read = is_read,
2085 .ret = -EINPROGRESS,
2087 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2089 bdrv_coroutine_enter(bs, co);
2090 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2091 return data.ret;
2095 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2096 int64_t pos, int size)
2098 QEMUIOVector qiov;
2099 struct iovec iov = {
2100 .iov_base = (void *) buf,
2101 .iov_len = size,
2103 int ret;
2105 qemu_iovec_init_external(&qiov, &iov, 1);
2107 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2108 if (ret < 0) {
2109 return ret;
2112 return size;
2115 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2117 return bdrv_rw_vmstate(bs, qiov, pos, false);
2120 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2121 int64_t pos, int size)
2123 QEMUIOVector qiov;
2124 struct iovec iov = {
2125 .iov_base = buf,
2126 .iov_len = size,
2128 int ret;
2130 qemu_iovec_init_external(&qiov, &iov, 1);
2131 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2132 if (ret < 0) {
2133 return ret;
2136 return size;
2139 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2141 return bdrv_rw_vmstate(bs, qiov, pos, true);
2144 /**************************************************************/
2145 /* async I/Os */
2147 void bdrv_aio_cancel(BlockAIOCB *acb)
2149 qemu_aio_ref(acb);
2150 bdrv_aio_cancel_async(acb);
2151 while (acb->refcnt > 1) {
2152 if (acb->aiocb_info->get_aio_context) {
2153 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2154 } else if (acb->bs) {
2155 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2156 * assert that we're not using an I/O thread. Thread-safe
2157 * code should use bdrv_aio_cancel_async exclusively.
2159 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2160 aio_poll(bdrv_get_aio_context(acb->bs), true);
2161 } else {
2162 abort();
2165 qemu_aio_unref(acb);
2168 /* Async version of aio cancel. The caller is not blocked if the acb implements
2169 * cancel_async, otherwise we do nothing and let the request normally complete.
2170 * In either case the completion callback must be called. */
2171 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2173 if (acb->aiocb_info->cancel_async) {
2174 acb->aiocb_info->cancel_async(acb);
2178 /**************************************************************/
2179 /* Coroutine block device emulation */
2181 typedef struct FlushCo {
2182 BlockDriverState *bs;
2183 int ret;
2184 } FlushCo;
2187 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2189 FlushCo *rwco = opaque;
2191 rwco->ret = bdrv_co_flush(rwco->bs);
2194 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2196 int current_gen;
2197 int ret = 0;
2199 bdrv_inc_in_flight(bs);
2201 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2202 bdrv_is_sg(bs)) {
2203 goto early_exit;
2206 qemu_co_mutex_lock(&bs->reqs_lock);
2207 current_gen = atomic_read(&bs->write_gen);
2209 /* Wait until any previous flushes are completed */
2210 while (bs->active_flush_req) {
2211 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2214 /* Flushes reach this point in nondecreasing current_gen order. */
2215 bs->active_flush_req = true;
2216 qemu_co_mutex_unlock(&bs->reqs_lock);
2218 /* Write back all layers by calling one driver function */
2219 if (bs->drv->bdrv_co_flush) {
2220 ret = bs->drv->bdrv_co_flush(bs);
2221 goto out;
2224 /* Write back cached data to the OS even with cache=unsafe */
2225 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2226 if (bs->drv->bdrv_co_flush_to_os) {
2227 ret = bs->drv->bdrv_co_flush_to_os(bs);
2228 if (ret < 0) {
2229 goto out;
2233 /* But don't actually force it to the disk with cache=unsafe */
2234 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2235 goto flush_parent;
2238 /* Check if we really need to flush anything */
2239 if (bs->flushed_gen == current_gen) {
2240 goto flush_parent;
2243 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2244 if (bs->drv->bdrv_co_flush_to_disk) {
2245 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2246 } else if (bs->drv->bdrv_aio_flush) {
2247 BlockAIOCB *acb;
2248 CoroutineIOCompletion co = {
2249 .coroutine = qemu_coroutine_self(),
2252 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2253 if (acb == NULL) {
2254 ret = -EIO;
2255 } else {
2256 qemu_coroutine_yield();
2257 ret = co.ret;
2259 } else {
2261 * Some block drivers always operate in either writethrough or unsafe
2262 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2263 * know how the server works (because the behaviour is hardcoded or
2264 * depends on server-side configuration), so we can't ensure that
2265 * everything is safe on disk. Returning an error doesn't work because
2266 * that would break guests even if the server operates in writethrough
2267 * mode.
2269 * Let's hope the user knows what he's doing.
2271 ret = 0;
2274 if (ret < 0) {
2275 goto out;
2278 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2279 * in the case of cache=unsafe, so there are no useless flushes.
2281 flush_parent:
2282 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2283 out:
2284 /* Notify any pending flushes that we have completed */
2285 if (ret == 0) {
2286 bs->flushed_gen = current_gen;
2289 qemu_co_mutex_lock(&bs->reqs_lock);
2290 bs->active_flush_req = false;
2291 /* Return value is ignored - it's ok if wait queue is empty */
2292 qemu_co_queue_next(&bs->flush_queue);
2293 qemu_co_mutex_unlock(&bs->reqs_lock);
2295 early_exit:
2296 bdrv_dec_in_flight(bs);
2297 return ret;
2300 int bdrv_flush(BlockDriverState *bs)
2302 Coroutine *co;
2303 FlushCo flush_co = {
2304 .bs = bs,
2305 .ret = NOT_DONE,
2308 if (qemu_in_coroutine()) {
2309 /* Fast-path if already in coroutine context */
2310 bdrv_flush_co_entry(&flush_co);
2311 } else {
2312 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2313 bdrv_coroutine_enter(bs, co);
2314 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2317 return flush_co.ret;
2320 typedef struct DiscardCo {
2321 BlockDriverState *bs;
2322 int64_t offset;
2323 int bytes;
2324 int ret;
2325 } DiscardCo;
2326 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2328 DiscardCo *rwco = opaque;
2330 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2333 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2334 int bytes)
2336 BdrvTrackedRequest req;
2337 int max_pdiscard, ret;
2338 int head, tail, align;
2340 if (!bs->drv) {
2341 return -ENOMEDIUM;
2344 if (bdrv_has_readonly_bitmaps(bs)) {
2345 return -EPERM;
2348 ret = bdrv_check_byte_request(bs, offset, bytes);
2349 if (ret < 0) {
2350 return ret;
2351 } else if (bs->read_only) {
2352 return -EPERM;
2354 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2356 /* Do nothing if disabled. */
2357 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2358 return 0;
2361 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2362 return 0;
2365 /* Discard is advisory, but some devices track and coalesce
2366 * unaligned requests, so we must pass everything down rather than
2367 * round here. Still, most devices will just silently ignore
2368 * unaligned requests (by returning -ENOTSUP), so we must fragment
2369 * the request accordingly. */
2370 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2371 assert(align % bs->bl.request_alignment == 0);
2372 head = offset % align;
2373 tail = (offset + bytes) % align;
2375 bdrv_inc_in_flight(bs);
2376 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2378 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2379 if (ret < 0) {
2380 goto out;
2383 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2384 align);
2385 assert(max_pdiscard >= bs->bl.request_alignment);
2387 while (bytes > 0) {
2388 int num = bytes;
2390 if (head) {
2391 /* Make small requests to get to alignment boundaries. */
2392 num = MIN(bytes, align - head);
2393 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2394 num %= bs->bl.request_alignment;
2396 head = (head + num) % align;
2397 assert(num < max_pdiscard);
2398 } else if (tail) {
2399 if (num > align) {
2400 /* Shorten the request to the last aligned cluster. */
2401 num -= tail;
2402 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2403 tail > bs->bl.request_alignment) {
2404 tail %= bs->bl.request_alignment;
2405 num -= tail;
2408 /* limit request size */
2409 if (num > max_pdiscard) {
2410 num = max_pdiscard;
2413 if (bs->drv->bdrv_co_pdiscard) {
2414 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2415 } else {
2416 BlockAIOCB *acb;
2417 CoroutineIOCompletion co = {
2418 .coroutine = qemu_coroutine_self(),
2421 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2422 bdrv_co_io_em_complete, &co);
2423 if (acb == NULL) {
2424 ret = -EIO;
2425 goto out;
2426 } else {
2427 qemu_coroutine_yield();
2428 ret = co.ret;
2431 if (ret && ret != -ENOTSUP) {
2432 goto out;
2435 offset += num;
2436 bytes -= num;
2438 ret = 0;
2439 out:
2440 atomic_inc(&bs->write_gen);
2441 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2442 req.bytes >> BDRV_SECTOR_BITS);
2443 tracked_request_end(&req);
2444 bdrv_dec_in_flight(bs);
2445 return ret;
2448 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2450 Coroutine *co;
2451 DiscardCo rwco = {
2452 .bs = bs,
2453 .offset = offset,
2454 .bytes = bytes,
2455 .ret = NOT_DONE,
2458 if (qemu_in_coroutine()) {
2459 /* Fast-path if already in coroutine context */
2460 bdrv_pdiscard_co_entry(&rwco);
2461 } else {
2462 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2463 bdrv_coroutine_enter(bs, co);
2464 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2467 return rwco.ret;
2470 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2472 BlockDriver *drv = bs->drv;
2473 CoroutineIOCompletion co = {
2474 .coroutine = qemu_coroutine_self(),
2476 BlockAIOCB *acb;
2478 bdrv_inc_in_flight(bs);
2479 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2480 co.ret = -ENOTSUP;
2481 goto out;
2484 if (drv->bdrv_co_ioctl) {
2485 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2486 } else {
2487 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2488 if (!acb) {
2489 co.ret = -ENOTSUP;
2490 goto out;
2492 qemu_coroutine_yield();
2494 out:
2495 bdrv_dec_in_flight(bs);
2496 return co.ret;
2499 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2501 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2504 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2506 return memset(qemu_blockalign(bs, size), 0, size);
2509 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2511 size_t align = bdrv_opt_mem_align(bs);
2513 /* Ensure that NULL is never returned on success */
2514 assert(align > 0);
2515 if (size == 0) {
2516 size = align;
2519 return qemu_try_memalign(align, size);
2522 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2524 void *mem = qemu_try_blockalign(bs, size);
2526 if (mem) {
2527 memset(mem, 0, size);
2530 return mem;
2534 * Check if all memory in this vector is sector aligned.
2536 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2538 int i;
2539 size_t alignment = bdrv_min_mem_align(bs);
2541 for (i = 0; i < qiov->niov; i++) {
2542 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2543 return false;
2545 if (qiov->iov[i].iov_len % alignment) {
2546 return false;
2550 return true;
2553 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2554 NotifierWithReturn *notifier)
2556 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2559 void bdrv_io_plug(BlockDriverState *bs)
2561 BdrvChild *child;
2563 QLIST_FOREACH(child, &bs->children, next) {
2564 bdrv_io_plug(child->bs);
2567 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2568 BlockDriver *drv = bs->drv;
2569 if (drv && drv->bdrv_io_plug) {
2570 drv->bdrv_io_plug(bs);
2575 void bdrv_io_unplug(BlockDriverState *bs)
2577 BdrvChild *child;
2579 assert(bs->io_plugged);
2580 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2581 BlockDriver *drv = bs->drv;
2582 if (drv && drv->bdrv_io_unplug) {
2583 drv->bdrv_io_unplug(bs);
2587 QLIST_FOREACH(child, &bs->children, next) {
2588 bdrv_io_unplug(child->bs);