hw/ide: Add the possibility to disable the CompactFlash device in the build
[qemu/ar7.git] / util / main-loop.c
bloba0386cfeb60c7325cdb5e5386f8156687ad4cfa1
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu/cutils.h"
28 #include "qemu/timer.h"
29 #include "sysemu/cpu-timers.h"
30 #include "sysemu/replay.h"
31 #include "qemu/main-loop.h"
32 #include "block/aio.h"
33 #include "block/thread-pool.h"
34 #include "qemu/error-report.h"
35 #include "qemu/queue.h"
36 #include "qom/object.h"
38 #ifndef _WIN32
39 #include <sys/wait.h>
40 #endif
42 #ifndef _WIN32
44 /* If we have signalfd, we mask out the signals we want to handle and then
45 * use signalfd to listen for them. We rely on whatever the current signal
46 * handler is to dispatch the signals when we receive them.
49 * Disable CFI checks.
50 * We are going to call a signal handler directly. Such handler may or may not
51 * have been defined in our binary, so there's no guarantee that the pointer
52 * used to set the handler is a cfi-valid pointer. Since the handlers are
53 * stored in kernel memory, changing the handler to an attacker-defined
54 * function requires being able to call a sigaction() syscall,
55 * which is not as easy as overwriting a pointer in memory.
57 QEMU_DISABLE_CFI
58 static void sigfd_handler(void *opaque)
60 int fd = (intptr_t)opaque;
61 struct qemu_signalfd_siginfo info;
62 struct sigaction action;
63 ssize_t len;
65 while (1) {
66 len = RETRY_ON_EINTR(read(fd, &info, sizeof(info)));
68 if (len == -1 && errno == EAGAIN) {
69 break;
72 if (len != sizeof(info)) {
73 error_report("read from sigfd returned %zd: %s", len,
74 g_strerror(errno));
75 return;
78 sigaction(info.ssi_signo, NULL, &action);
79 if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
80 sigaction_invoke(&action, &info);
81 } else if (action.sa_handler) {
82 action.sa_handler(info.ssi_signo);
87 static int qemu_signal_init(Error **errp)
89 int sigfd;
90 sigset_t set;
93 * SIG_IPI must be blocked in the main thread and must not be caught
94 * by sigwait() in the signal thread. Otherwise, the cpu thread will
95 * not catch it reliably.
97 sigemptyset(&set);
98 sigaddset(&set, SIG_IPI);
99 sigaddset(&set, SIGIO);
100 sigaddset(&set, SIGALRM);
101 sigaddset(&set, SIGBUS);
102 /* SIGINT cannot be handled via signalfd, so that ^C can be used
103 * to interrupt QEMU when it is being run under gdb. SIGHUP and
104 * SIGTERM are also handled asynchronously, even though it is not
105 * strictly necessary, because they use the same handler as SIGINT.
107 pthread_sigmask(SIG_BLOCK, &set, NULL);
109 sigdelset(&set, SIG_IPI);
110 sigfd = qemu_signalfd(&set);
111 if (sigfd == -1) {
112 error_setg_errno(errp, errno, "failed to create signalfd");
113 return -errno;
116 g_unix_set_fd_nonblocking(sigfd, true, NULL);
118 qemu_set_fd_handler(sigfd, sigfd_handler, NULL, (void *)(intptr_t)sigfd);
120 return 0;
123 #else /* _WIN32 */
125 static int qemu_signal_init(Error **errp)
127 return 0;
129 #endif
131 static AioContext *qemu_aio_context;
132 static QEMUBH *qemu_notify_bh;
134 static void notify_event_cb(void *opaque)
136 /* No need to do anything; this bottom half is only used to
137 * kick the kernel out of ppoll/poll/WaitForMultipleObjects.
141 AioContext *qemu_get_aio_context(void)
143 return qemu_aio_context;
146 void qemu_notify_event(void)
148 if (!qemu_aio_context) {
149 return;
151 qemu_bh_schedule(qemu_notify_bh);
154 static GArray *gpollfds;
156 int qemu_init_main_loop(Error **errp)
158 int ret;
159 GSource *src;
161 init_clocks(qemu_timer_notify_cb);
163 ret = qemu_signal_init(errp);
164 if (ret) {
165 return ret;
168 qemu_aio_context = aio_context_new(errp);
169 if (!qemu_aio_context) {
170 return -EMFILE;
172 qemu_set_current_aio_context(qemu_aio_context);
173 qemu_notify_bh = qemu_bh_new(notify_event_cb, NULL);
174 gpollfds = g_array_new(FALSE, FALSE, sizeof(GPollFD));
175 src = aio_get_g_source(qemu_aio_context);
176 g_source_set_name(src, "aio-context");
177 g_source_attach(src, NULL);
178 g_source_unref(src);
179 src = iohandler_get_g_source();
180 g_source_set_name(src, "io-handler");
181 g_source_attach(src, NULL);
182 g_source_unref(src);
183 return 0;
186 static void main_loop_update_params(EventLoopBase *base, Error **errp)
188 ERRP_GUARD();
190 if (!qemu_aio_context) {
191 error_setg(errp, "qemu aio context not ready");
192 return;
195 aio_context_set_aio_params(qemu_aio_context, base->aio_max_batch);
197 aio_context_set_thread_pool_params(qemu_aio_context, base->thread_pool_min,
198 base->thread_pool_max, errp);
201 MainLoop *mloop;
203 static void main_loop_init(EventLoopBase *base, Error **errp)
205 MainLoop *m = MAIN_LOOP(base);
207 if (mloop) {
208 error_setg(errp, "only one main-loop instance allowed");
209 return;
212 main_loop_update_params(base, errp);
214 mloop = m;
215 return;
218 static bool main_loop_can_be_deleted(EventLoopBase *base)
220 return false;
223 static void main_loop_class_init(ObjectClass *oc, void *class_data)
225 EventLoopBaseClass *bc = EVENT_LOOP_BASE_CLASS(oc);
227 bc->init = main_loop_init;
228 bc->update_params = main_loop_update_params;
229 bc->can_be_deleted = main_loop_can_be_deleted;
232 static const TypeInfo main_loop_info = {
233 .name = TYPE_MAIN_LOOP,
234 .parent = TYPE_EVENT_LOOP_BASE,
235 .class_init = main_loop_class_init,
236 .instance_size = sizeof(MainLoop),
239 static void main_loop_register_types(void)
241 type_register_static(&main_loop_info);
244 type_init(main_loop_register_types)
246 static int max_priority;
248 #ifndef _WIN32
249 static int glib_pollfds_idx;
250 static int glib_n_poll_fds;
252 static void glib_pollfds_fill(int64_t *cur_timeout)
254 GMainContext *context = g_main_context_default();
255 int timeout = 0;
256 int64_t timeout_ns;
257 int n;
259 g_main_context_prepare(context, &max_priority);
261 glib_pollfds_idx = gpollfds->len;
262 n = glib_n_poll_fds;
263 do {
264 GPollFD *pfds;
265 glib_n_poll_fds = n;
266 g_array_set_size(gpollfds, glib_pollfds_idx + glib_n_poll_fds);
267 pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx);
268 n = g_main_context_query(context, max_priority, &timeout, pfds,
269 glib_n_poll_fds);
270 } while (n != glib_n_poll_fds);
272 if (timeout < 0) {
273 timeout_ns = -1;
274 } else {
275 timeout_ns = (int64_t)timeout * (int64_t)SCALE_MS;
278 *cur_timeout = qemu_soonest_timeout(timeout_ns, *cur_timeout);
281 static void glib_pollfds_poll(void)
283 GMainContext *context = g_main_context_default();
284 GPollFD *pfds = &g_array_index(gpollfds, GPollFD, glib_pollfds_idx);
286 if (g_main_context_check(context, max_priority, pfds, glib_n_poll_fds)) {
287 g_main_context_dispatch(context);
291 #define MAX_MAIN_LOOP_SPIN (1000)
293 static int os_host_main_loop_wait(int64_t timeout)
295 GMainContext *context = g_main_context_default();
296 int ret;
298 g_main_context_acquire(context);
300 glib_pollfds_fill(&timeout);
302 bql_unlock();
303 replay_mutex_unlock();
305 ret = qemu_poll_ns((GPollFD *)gpollfds->data, gpollfds->len, timeout);
307 replay_mutex_lock();
308 bql_lock();
310 glib_pollfds_poll();
312 g_main_context_release(context);
314 return ret;
316 #else
317 /***********************************************************/
318 /* Polling handling */
320 typedef struct PollingEntry {
321 PollingFunc *func;
322 void *opaque;
323 struct PollingEntry *next;
324 } PollingEntry;
326 static PollingEntry *first_polling_entry;
328 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
330 PollingEntry **ppe, *pe;
331 pe = g_new0(PollingEntry, 1);
332 pe->func = func;
333 pe->opaque = opaque;
334 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
335 *ppe = pe;
336 return 0;
339 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
341 PollingEntry **ppe, *pe;
342 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
343 pe = *ppe;
344 if (pe->func == func && pe->opaque == opaque) {
345 *ppe = pe->next;
346 g_free(pe);
347 break;
352 /***********************************************************/
353 /* Wait objects support */
354 typedef struct WaitObjects {
355 int num;
356 int revents[MAXIMUM_WAIT_OBJECTS];
357 HANDLE events[MAXIMUM_WAIT_OBJECTS];
358 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS];
359 void *opaque[MAXIMUM_WAIT_OBJECTS];
360 } WaitObjects;
362 static WaitObjects wait_objects = {0};
364 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
366 int i;
367 WaitObjects *w = &wait_objects;
369 if (w->num >= MAXIMUM_WAIT_OBJECTS) {
370 return -1;
373 for (i = 0; i < w->num; i++) {
374 /* check if the same handle is added twice */
375 if (w->events[i] == handle) {
376 return -1;
380 w->events[w->num] = handle;
381 w->func[w->num] = func;
382 w->opaque[w->num] = opaque;
383 w->revents[w->num] = 0;
384 w->num++;
385 return 0;
388 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
390 int i, found;
391 WaitObjects *w = &wait_objects;
393 found = 0;
394 for (i = 0; i < w->num; i++) {
395 if (w->events[i] == handle) {
396 found = 1;
398 if (found && i < (MAXIMUM_WAIT_OBJECTS - 1)) {
399 w->events[i] = w->events[i + 1];
400 w->func[i] = w->func[i + 1];
401 w->opaque[i] = w->opaque[i + 1];
402 w->revents[i] = w->revents[i + 1];
405 if (found) {
406 w->num--;
410 static int pollfds_fill(GArray *pollfds, fd_set *rfds, fd_set *wfds,
411 fd_set *xfds)
413 int nfds = -1;
414 int i;
416 for (i = 0; i < pollfds->len; i++) {
417 GPollFD *pfd = &g_array_index(pollfds, GPollFD, i);
418 int fd = pfd->fd;
419 int events = pfd->events;
420 if (events & G_IO_IN) {
421 FD_SET(fd, rfds);
422 nfds = MAX(nfds, fd);
424 if (events & G_IO_OUT) {
425 FD_SET(fd, wfds);
426 nfds = MAX(nfds, fd);
428 if (events & G_IO_PRI) {
429 FD_SET(fd, xfds);
430 nfds = MAX(nfds, fd);
433 return nfds;
436 static void pollfds_poll(GArray *pollfds, int nfds, fd_set *rfds,
437 fd_set *wfds, fd_set *xfds)
439 int i;
441 for (i = 0; i < pollfds->len; i++) {
442 GPollFD *pfd = &g_array_index(pollfds, GPollFD, i);
443 int fd = pfd->fd;
444 int revents = 0;
446 if (FD_ISSET(fd, rfds)) {
447 revents |= G_IO_IN;
449 if (FD_ISSET(fd, wfds)) {
450 revents |= G_IO_OUT;
452 if (FD_ISSET(fd, xfds)) {
453 revents |= G_IO_PRI;
455 pfd->revents = revents & pfd->events;
459 static int os_host_main_loop_wait(int64_t timeout)
461 GMainContext *context = g_main_context_default();
462 GPollFD poll_fds[1024 * 2]; /* this is probably overkill */
463 int select_ret = 0;
464 int g_poll_ret, ret, i, n_poll_fds;
465 PollingEntry *pe;
466 WaitObjects *w = &wait_objects;
467 gint poll_timeout;
468 int64_t poll_timeout_ns;
469 static struct timeval tv0;
470 fd_set rfds, wfds, xfds;
471 int nfds;
473 g_main_context_acquire(context);
475 /* XXX: need to suppress polling by better using win32 events */
476 ret = 0;
477 for (pe = first_polling_entry; pe != NULL; pe = pe->next) {
478 ret |= pe->func(pe->opaque);
480 if (ret != 0) {
481 g_main_context_release(context);
482 return ret;
485 FD_ZERO(&rfds);
486 FD_ZERO(&wfds);
487 FD_ZERO(&xfds);
488 nfds = pollfds_fill(gpollfds, &rfds, &wfds, &xfds);
489 if (nfds >= 0) {
490 select_ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv0);
491 if (select_ret != 0) {
492 timeout = 0;
494 if (select_ret > 0) {
495 pollfds_poll(gpollfds, nfds, &rfds, &wfds, &xfds);
499 g_main_context_prepare(context, &max_priority);
500 n_poll_fds = g_main_context_query(context, max_priority, &poll_timeout,
501 poll_fds, ARRAY_SIZE(poll_fds));
502 g_assert(n_poll_fds + w->num <= ARRAY_SIZE(poll_fds));
504 for (i = 0; i < w->num; i++) {
505 poll_fds[n_poll_fds + i].fd = (DWORD_PTR)w->events[i];
506 poll_fds[n_poll_fds + i].events = G_IO_IN;
509 if (poll_timeout < 0) {
510 poll_timeout_ns = -1;
511 } else {
512 poll_timeout_ns = (int64_t)poll_timeout * (int64_t)SCALE_MS;
515 poll_timeout_ns = qemu_soonest_timeout(poll_timeout_ns, timeout);
517 bql_unlock();
519 replay_mutex_unlock();
521 g_poll_ret = qemu_poll_ns(poll_fds, n_poll_fds + w->num, poll_timeout_ns);
523 replay_mutex_lock();
525 bql_lock();
526 if (g_poll_ret > 0) {
527 for (i = 0; i < w->num; i++) {
528 w->revents[i] = poll_fds[n_poll_fds + i].revents;
530 for (i = 0; i < w->num; i++) {
531 if (w->revents[i] && w->func[i]) {
532 w->func[i](w->opaque[i]);
537 if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) {
538 g_main_context_dispatch(context);
541 g_main_context_release(context);
543 return select_ret || g_poll_ret;
545 #endif
547 static NotifierList main_loop_poll_notifiers =
548 NOTIFIER_LIST_INITIALIZER(main_loop_poll_notifiers);
550 void main_loop_poll_add_notifier(Notifier *notify)
552 notifier_list_add(&main_loop_poll_notifiers, notify);
555 void main_loop_poll_remove_notifier(Notifier *notify)
557 notifier_remove(notify);
560 void main_loop_wait(int nonblocking)
562 MainLoopPoll mlpoll = {
563 .state = MAIN_LOOP_POLL_FILL,
564 .timeout = UINT32_MAX,
565 .pollfds = gpollfds,
567 int ret;
568 int64_t timeout_ns;
570 if (nonblocking) {
571 mlpoll.timeout = 0;
574 /* poll any events */
575 g_array_set_size(gpollfds, 0); /* reset for new iteration */
576 /* XXX: separate device handlers from system ones */
577 notifier_list_notify(&main_loop_poll_notifiers, &mlpoll);
579 if (mlpoll.timeout == UINT32_MAX) {
580 timeout_ns = -1;
581 } else {
582 timeout_ns = (uint64_t)mlpoll.timeout * (int64_t)(SCALE_MS);
585 timeout_ns = qemu_soonest_timeout(timeout_ns,
586 timerlistgroup_deadline_ns(
587 &main_loop_tlg));
589 ret = os_host_main_loop_wait(timeout_ns);
590 mlpoll.state = ret < 0 ? MAIN_LOOP_POLL_ERR : MAIN_LOOP_POLL_OK;
591 notifier_list_notify(&main_loop_poll_notifiers, &mlpoll);
593 if (icount_enabled()) {
595 * CPU thread can infinitely wait for event after
596 * missing the warp
598 icount_start_warp_timer();
600 qemu_clock_run_all_timers();
603 /* Functions to operate on the main QEMU AioContext. */
605 QEMUBH *qemu_bh_new_full(QEMUBHFunc *cb, void *opaque, const char *name,
606 MemReentrancyGuard *reentrancy_guard)
608 return aio_bh_new_full(qemu_aio_context, cb, opaque, name,
609 reentrancy_guard);
613 * Functions to operate on the I/O handler AioContext.
614 * This context runs on top of main loop. We can't reuse qemu_aio_context
615 * because iohandlers mustn't be polled by aio_poll(qemu_aio_context).
617 static AioContext *iohandler_ctx;
619 static void iohandler_init(void)
621 if (!iohandler_ctx) {
622 iohandler_ctx = aio_context_new(&error_abort);
626 AioContext *iohandler_get_aio_context(void)
628 iohandler_init();
629 return iohandler_ctx;
632 GSource *iohandler_get_g_source(void)
634 iohandler_init();
635 return aio_get_g_source(iohandler_ctx);
638 void qemu_set_fd_handler(int fd,
639 IOHandler *fd_read,
640 IOHandler *fd_write,
641 void *opaque)
643 iohandler_init();
644 aio_set_fd_handler(iohandler_ctx, fd, fd_read, fd_write, NULL, NULL,
645 opaque);
648 void event_notifier_set_handler(EventNotifier *e,
649 EventNotifierHandler *handler)
651 iohandler_init();
652 aio_set_event_notifier(iohandler_ctx, e, handler, NULL, NULL);