migration: ram: Switch to ram block writeback
[qemu/ar7.git] / target / hppa / op_helper.c
blobf0516e81f12d69f6bb7d7734b05437f11c051a9f
1 /*
2 * Helpers for HPPA instructions.
4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "exec/cpu_ldst.h"
25 #include "qemu/timer.h"
26 #include "sysemu/runstate.h"
27 #include "fpu/softfloat.h"
28 #include "trace.h"
30 void QEMU_NORETURN HELPER(excp)(CPUHPPAState *env, int excp)
32 CPUState *cs = env_cpu(env);
34 cs->exception_index = excp;
35 cpu_loop_exit(cs);
38 void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra)
40 CPUState *cs = env_cpu(env);
42 cs->exception_index = excp;
43 cpu_loop_exit_restore(cs, ra);
46 void HELPER(tsv)(CPUHPPAState *env, target_ureg cond)
48 if (unlikely((target_sreg)cond < 0)) {
49 hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC());
53 void HELPER(tcond)(CPUHPPAState *env, target_ureg cond)
55 if (unlikely(cond)) {
56 hppa_dynamic_excp(env, EXCP_COND, GETPC());
60 static void atomic_store_3(CPUHPPAState *env, target_ulong addr, uint32_t val,
61 uint32_t mask, uintptr_t ra)
63 #ifdef CONFIG_USER_ONLY
64 uint32_t old, new, cmp;
66 uint32_t *haddr = g2h(addr - 1);
67 old = *haddr;
68 while (1) {
69 new = (old & ~mask) | (val & mask);
70 cmp = atomic_cmpxchg(haddr, old, new);
71 if (cmp == old) {
72 return;
74 old = cmp;
76 #else
77 /* FIXME -- we can do better. */
78 cpu_loop_exit_atomic(env_cpu(env), ra);
79 #endif
82 static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val,
83 bool parallel, uintptr_t ra)
85 switch (addr & 3) {
86 case 3:
87 cpu_stb_data_ra(env, addr, val, ra);
88 break;
89 case 2:
90 cpu_stw_data_ra(env, addr, val, ra);
91 break;
92 case 1:
93 /* The 3 byte store must appear atomic. */
94 if (parallel) {
95 atomic_store_3(env, addr, val, 0x00ffffffu, ra);
96 } else {
97 cpu_stb_data_ra(env, addr, val >> 16, ra);
98 cpu_stw_data_ra(env, addr + 1, val, ra);
100 break;
101 default:
102 cpu_stl_data_ra(env, addr, val, ra);
103 break;
107 void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val)
109 do_stby_b(env, addr, val, false, GETPC());
112 void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr,
113 target_ureg val)
115 do_stby_b(env, addr, val, true, GETPC());
118 static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val,
119 bool parallel, uintptr_t ra)
121 switch (addr & 3) {
122 case 3:
123 /* The 3 byte store must appear atomic. */
124 if (parallel) {
125 atomic_store_3(env, addr - 3, val, 0xffffff00u, ra);
126 } else {
127 cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
128 cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
130 break;
131 case 2:
132 cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
133 break;
134 case 1:
135 cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
136 break;
137 default:
138 /* Nothing is stored, but protection is checked and the
139 cacheline is marked dirty. */
140 probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
141 break;
145 void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val)
147 do_stby_e(env, addr, val, false, GETPC());
150 void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr,
151 target_ureg val)
153 do_stby_e(env, addr, val, true, GETPC());
156 target_ureg HELPER(probe)(CPUHPPAState *env, target_ulong addr,
157 uint32_t level, uint32_t want)
159 #ifdef CONFIG_USER_ONLY
160 return page_check_range(addr, 1, want);
161 #else
162 int prot, excp;
163 hwaddr phys;
165 trace_hppa_tlb_probe(addr, level, want);
166 /* Fail if the requested privilege level is higher than current. */
167 if (level < (env->iaoq_f & 3)) {
168 return 0;
171 excp = hppa_get_physical_address(env, addr, level, 0, &phys, &prot);
172 if (excp >= 0) {
173 if (env->psw & PSW_Q) {
174 /* ??? Needs tweaking for hppa64. */
175 env->cr[CR_IOR] = addr;
176 env->cr[CR_ISR] = addr >> 32;
178 if (excp == EXCP_DTLB_MISS) {
179 excp = EXCP_NA_DTLB_MISS;
181 hppa_dynamic_excp(env, excp, GETPC());
183 return (want & prot) != 0;
184 #endif
187 void HELPER(loaded_fr0)(CPUHPPAState *env)
189 uint32_t shadow = env->fr[0] >> 32;
190 int rm, d;
192 env->fr0_shadow = shadow;
194 switch (extract32(shadow, 9, 2)) {
195 default:
196 rm = float_round_nearest_even;
197 break;
198 case 1:
199 rm = float_round_to_zero;
200 break;
201 case 2:
202 rm = float_round_up;
203 break;
204 case 3:
205 rm = float_round_down;
206 break;
208 set_float_rounding_mode(rm, &env->fp_status);
210 d = extract32(shadow, 5, 1);
211 set_flush_to_zero(d, &env->fp_status);
212 set_flush_inputs_to_zero(d, &env->fp_status);
215 void cpu_hppa_loaded_fr0(CPUHPPAState *env)
217 helper_loaded_fr0(env);
220 #define CONVERT_BIT(X, SRC, DST) \
221 ((SRC) > (DST) \
222 ? (X) / ((SRC) / (DST)) & (DST) \
223 : ((X) & (SRC)) * ((DST) / (SRC)))
225 static void update_fr0_op(CPUHPPAState *env, uintptr_t ra)
227 uint32_t soft_exp = get_float_exception_flags(&env->fp_status);
228 uint32_t hard_exp = 0;
229 uint32_t shadow = env->fr0_shadow;
231 if (likely(soft_exp == 0)) {
232 env->fr[0] = (uint64_t)shadow << 32;
233 return;
235 set_float_exception_flags(0, &env->fp_status);
237 hard_exp |= CONVERT_BIT(soft_exp, float_flag_inexact, 1u << 0);
238 hard_exp |= CONVERT_BIT(soft_exp, float_flag_underflow, 1u << 1);
239 hard_exp |= CONVERT_BIT(soft_exp, float_flag_overflow, 1u << 2);
240 hard_exp |= CONVERT_BIT(soft_exp, float_flag_divbyzero, 1u << 3);
241 hard_exp |= CONVERT_BIT(soft_exp, float_flag_invalid, 1u << 4);
242 shadow |= hard_exp << (32 - 5);
243 env->fr0_shadow = shadow;
244 env->fr[0] = (uint64_t)shadow << 32;
246 if (hard_exp & shadow) {
247 hppa_dynamic_excp(env, EXCP_ASSIST, ra);
251 float32 HELPER(fsqrt_s)(CPUHPPAState *env, float32 arg)
253 float32 ret = float32_sqrt(arg, &env->fp_status);
254 update_fr0_op(env, GETPC());
255 return ret;
258 float32 HELPER(frnd_s)(CPUHPPAState *env, float32 arg)
260 float32 ret = float32_round_to_int(arg, &env->fp_status);
261 update_fr0_op(env, GETPC());
262 return ret;
265 float32 HELPER(fadd_s)(CPUHPPAState *env, float32 a, float32 b)
267 float32 ret = float32_add(a, b, &env->fp_status);
268 update_fr0_op(env, GETPC());
269 return ret;
272 float32 HELPER(fsub_s)(CPUHPPAState *env, float32 a, float32 b)
274 float32 ret = float32_sub(a, b, &env->fp_status);
275 update_fr0_op(env, GETPC());
276 return ret;
279 float32 HELPER(fmpy_s)(CPUHPPAState *env, float32 a, float32 b)
281 float32 ret = float32_mul(a, b, &env->fp_status);
282 update_fr0_op(env, GETPC());
283 return ret;
286 float32 HELPER(fdiv_s)(CPUHPPAState *env, float32 a, float32 b)
288 float32 ret = float32_div(a, b, &env->fp_status);
289 update_fr0_op(env, GETPC());
290 return ret;
293 float64 HELPER(fsqrt_d)(CPUHPPAState *env, float64 arg)
295 float64 ret = float64_sqrt(arg, &env->fp_status);
296 update_fr0_op(env, GETPC());
297 return ret;
300 float64 HELPER(frnd_d)(CPUHPPAState *env, float64 arg)
302 float64 ret = float64_round_to_int(arg, &env->fp_status);
303 update_fr0_op(env, GETPC());
304 return ret;
307 float64 HELPER(fadd_d)(CPUHPPAState *env, float64 a, float64 b)
309 float64 ret = float64_add(a, b, &env->fp_status);
310 update_fr0_op(env, GETPC());
311 return ret;
314 float64 HELPER(fsub_d)(CPUHPPAState *env, float64 a, float64 b)
316 float64 ret = float64_sub(a, b, &env->fp_status);
317 update_fr0_op(env, GETPC());
318 return ret;
321 float64 HELPER(fmpy_d)(CPUHPPAState *env, float64 a, float64 b)
323 float64 ret = float64_mul(a, b, &env->fp_status);
324 update_fr0_op(env, GETPC());
325 return ret;
328 float64 HELPER(fdiv_d)(CPUHPPAState *env, float64 a, float64 b)
330 float64 ret = float64_div(a, b, &env->fp_status);
331 update_fr0_op(env, GETPC());
332 return ret;
335 float64 HELPER(fcnv_s_d)(CPUHPPAState *env, float32 arg)
337 float64 ret = float32_to_float64(arg, &env->fp_status);
338 update_fr0_op(env, GETPC());
339 return ret;
342 float32 HELPER(fcnv_d_s)(CPUHPPAState *env, float64 arg)
344 float32 ret = float64_to_float32(arg, &env->fp_status);
345 update_fr0_op(env, GETPC());
346 return ret;
349 float32 HELPER(fcnv_w_s)(CPUHPPAState *env, int32_t arg)
351 float32 ret = int32_to_float32(arg, &env->fp_status);
352 update_fr0_op(env, GETPC());
353 return ret;
356 float32 HELPER(fcnv_dw_s)(CPUHPPAState *env, int64_t arg)
358 float32 ret = int64_to_float32(arg, &env->fp_status);
359 update_fr0_op(env, GETPC());
360 return ret;
363 float64 HELPER(fcnv_w_d)(CPUHPPAState *env, int32_t arg)
365 float64 ret = int32_to_float64(arg, &env->fp_status);
366 update_fr0_op(env, GETPC());
367 return ret;
370 float64 HELPER(fcnv_dw_d)(CPUHPPAState *env, int64_t arg)
372 float64 ret = int64_to_float64(arg, &env->fp_status);
373 update_fr0_op(env, GETPC());
374 return ret;
377 int32_t HELPER(fcnv_s_w)(CPUHPPAState *env, float32 arg)
379 int32_t ret = float32_to_int32(arg, &env->fp_status);
380 update_fr0_op(env, GETPC());
381 return ret;
384 int32_t HELPER(fcnv_d_w)(CPUHPPAState *env, float64 arg)
386 int32_t ret = float64_to_int32(arg, &env->fp_status);
387 update_fr0_op(env, GETPC());
388 return ret;
391 int64_t HELPER(fcnv_s_dw)(CPUHPPAState *env, float32 arg)
393 int64_t ret = float32_to_int64(arg, &env->fp_status);
394 update_fr0_op(env, GETPC());
395 return ret;
398 int64_t HELPER(fcnv_d_dw)(CPUHPPAState *env, float64 arg)
400 int64_t ret = float64_to_int64(arg, &env->fp_status);
401 update_fr0_op(env, GETPC());
402 return ret;
405 int32_t HELPER(fcnv_t_s_w)(CPUHPPAState *env, float32 arg)
407 int32_t ret = float32_to_int32_round_to_zero(arg, &env->fp_status);
408 update_fr0_op(env, GETPC());
409 return ret;
412 int32_t HELPER(fcnv_t_d_w)(CPUHPPAState *env, float64 arg)
414 int32_t ret = float64_to_int32_round_to_zero(arg, &env->fp_status);
415 update_fr0_op(env, GETPC());
416 return ret;
419 int64_t HELPER(fcnv_t_s_dw)(CPUHPPAState *env, float32 arg)
421 int64_t ret = float32_to_int64_round_to_zero(arg, &env->fp_status);
422 update_fr0_op(env, GETPC());
423 return ret;
426 int64_t HELPER(fcnv_t_d_dw)(CPUHPPAState *env, float64 arg)
428 int64_t ret = float64_to_int64_round_to_zero(arg, &env->fp_status);
429 update_fr0_op(env, GETPC());
430 return ret;
433 float32 HELPER(fcnv_uw_s)(CPUHPPAState *env, uint32_t arg)
435 float32 ret = uint32_to_float32(arg, &env->fp_status);
436 update_fr0_op(env, GETPC());
437 return ret;
440 float32 HELPER(fcnv_udw_s)(CPUHPPAState *env, uint64_t arg)
442 float32 ret = uint64_to_float32(arg, &env->fp_status);
443 update_fr0_op(env, GETPC());
444 return ret;
447 float64 HELPER(fcnv_uw_d)(CPUHPPAState *env, uint32_t arg)
449 float64 ret = uint32_to_float64(arg, &env->fp_status);
450 update_fr0_op(env, GETPC());
451 return ret;
454 float64 HELPER(fcnv_udw_d)(CPUHPPAState *env, uint64_t arg)
456 float64 ret = uint64_to_float64(arg, &env->fp_status);
457 update_fr0_op(env, GETPC());
458 return ret;
461 uint32_t HELPER(fcnv_s_uw)(CPUHPPAState *env, float32 arg)
463 uint32_t ret = float32_to_uint32(arg, &env->fp_status);
464 update_fr0_op(env, GETPC());
465 return ret;
468 uint32_t HELPER(fcnv_d_uw)(CPUHPPAState *env, float64 arg)
470 uint32_t ret = float64_to_uint32(arg, &env->fp_status);
471 update_fr0_op(env, GETPC());
472 return ret;
475 uint64_t HELPER(fcnv_s_udw)(CPUHPPAState *env, float32 arg)
477 uint64_t ret = float32_to_uint64(arg, &env->fp_status);
478 update_fr0_op(env, GETPC());
479 return ret;
482 uint64_t HELPER(fcnv_d_udw)(CPUHPPAState *env, float64 arg)
484 uint64_t ret = float64_to_uint64(arg, &env->fp_status);
485 update_fr0_op(env, GETPC());
486 return ret;
489 uint32_t HELPER(fcnv_t_s_uw)(CPUHPPAState *env, float32 arg)
491 uint32_t ret = float32_to_uint32_round_to_zero(arg, &env->fp_status);
492 update_fr0_op(env, GETPC());
493 return ret;
496 uint32_t HELPER(fcnv_t_d_uw)(CPUHPPAState *env, float64 arg)
498 uint32_t ret = float64_to_uint32_round_to_zero(arg, &env->fp_status);
499 update_fr0_op(env, GETPC());
500 return ret;
503 uint64_t HELPER(fcnv_t_s_udw)(CPUHPPAState *env, float32 arg)
505 uint64_t ret = float32_to_uint64_round_to_zero(arg, &env->fp_status);
506 update_fr0_op(env, GETPC());
507 return ret;
510 uint64_t HELPER(fcnv_t_d_udw)(CPUHPPAState *env, float64 arg)
512 uint64_t ret = float64_to_uint64_round_to_zero(arg, &env->fp_status);
513 update_fr0_op(env, GETPC());
514 return ret;
517 static void update_fr0_cmp(CPUHPPAState *env, uint32_t y, uint32_t c, int r)
519 uint32_t shadow = env->fr0_shadow;
521 switch (r) {
522 case float_relation_greater:
523 c = extract32(c, 4, 1);
524 break;
525 case float_relation_less:
526 c = extract32(c, 3, 1);
527 break;
528 case float_relation_equal:
529 c = extract32(c, 2, 1);
530 break;
531 case float_relation_unordered:
532 c = extract32(c, 1, 1);
533 break;
534 default:
535 g_assert_not_reached();
538 if (y) {
539 /* targeted comparison */
540 /* set fpsr[ca[y - 1]] to current compare */
541 shadow = deposit32(shadow, 21 - (y - 1), 1, c);
542 } else {
543 /* queued comparison */
544 /* shift cq right by one place */
545 shadow = deposit32(shadow, 11, 10, extract32(shadow, 12, 10));
546 /* move fpsr[c] to fpsr[cq[0]] */
547 shadow = deposit32(shadow, 21, 1, extract32(shadow, 26, 1));
548 /* set fpsr[c] to current compare */
549 shadow = deposit32(shadow, 26, 1, c);
552 env->fr0_shadow = shadow;
553 env->fr[0] = (uint64_t)shadow << 32;
556 void HELPER(fcmp_s)(CPUHPPAState *env, float32 a, float32 b,
557 uint32_t y, uint32_t c)
559 int r;
560 if (c & 1) {
561 r = float32_compare(a, b, &env->fp_status);
562 } else {
563 r = float32_compare_quiet(a, b, &env->fp_status);
565 update_fr0_op(env, GETPC());
566 update_fr0_cmp(env, y, c, r);
569 void HELPER(fcmp_d)(CPUHPPAState *env, float64 a, float64 b,
570 uint32_t y, uint32_t c)
572 int r;
573 if (c & 1) {
574 r = float64_compare(a, b, &env->fp_status);
575 } else {
576 r = float64_compare_quiet(a, b, &env->fp_status);
578 update_fr0_op(env, GETPC());
579 update_fr0_cmp(env, y, c, r);
582 float32 HELPER(fmpyfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
584 float32 ret = float32_muladd(a, b, c, 0, &env->fp_status);
585 update_fr0_op(env, GETPC());
586 return ret;
589 float32 HELPER(fmpynfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
591 float32 ret = float32_muladd(a, b, c, float_muladd_negate_product,
592 &env->fp_status);
593 update_fr0_op(env, GETPC());
594 return ret;
597 float64 HELPER(fmpyfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
599 float64 ret = float64_muladd(a, b, c, 0, &env->fp_status);
600 update_fr0_op(env, GETPC());
601 return ret;
604 float64 HELPER(fmpynfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
606 float64 ret = float64_muladd(a, b, c, float_muladd_negate_product,
607 &env->fp_status);
608 update_fr0_op(env, GETPC());
609 return ret;
612 target_ureg HELPER(read_interval_timer)(void)
614 #ifdef CONFIG_USER_ONLY
615 /* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist.
616 Just pass through the host cpu clock ticks. */
617 return cpu_get_host_ticks();
618 #else
619 /* In system mode we have access to a decent high-resolution clock.
620 In order to make OS-level time accounting work with the cr16,
621 present it with a well-timed clock fixed at 250MHz. */
622 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2;
623 #endif
626 #ifndef CONFIG_USER_ONLY
627 void HELPER(write_interval_timer)(CPUHPPAState *env, target_ureg val)
629 HPPACPU *cpu = env_archcpu(env);
630 uint64_t current = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
631 uint64_t timeout;
633 /* Even in 64-bit mode, the comparator is always 32-bit. But the
634 value we expose to the guest is 1/4 of the speed of the clock,
635 so moosh in 34 bits. */
636 timeout = deposit64(current, 0, 34, (uint64_t)val << 2);
638 /* If the mooshing puts the clock in the past, advance to next round. */
639 if (timeout < current + 1000) {
640 timeout += 1ULL << 34;
643 cpu->env.cr[CR_IT] = timeout;
644 timer_mod(cpu->alarm_timer, timeout);
647 void HELPER(halt)(CPUHPPAState *env)
649 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
650 helper_excp(env, EXCP_HLT);
653 void HELPER(reset)(CPUHPPAState *env)
655 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
656 helper_excp(env, EXCP_HLT);
659 target_ureg HELPER(swap_system_mask)(CPUHPPAState *env, target_ureg nsm)
661 target_ulong psw = env->psw;
663 * Setting the PSW Q bit to 1, if it was not already 1, is an
664 * undefined operation.
666 * However, HP-UX 10.20 does this with the SSM instruction.
667 * Tested this on HP9000/712 and HP9000/785/C3750 and both
668 * machines set the Q bit from 0 to 1 without an exception,
669 * so let this go without comment.
671 env->psw = (psw & ~PSW_SM) | (nsm & PSW_SM);
672 return psw & PSW_SM;
675 void HELPER(rfi)(CPUHPPAState *env)
677 env->iasq_f = (uint64_t)env->cr[CR_IIASQ] << 32;
678 env->iasq_b = (uint64_t)env->cr_back[0] << 32;
679 env->iaoq_f = env->cr[CR_IIAOQ];
680 env->iaoq_b = env->cr_back[1];
681 cpu_hppa_put_psw(env, env->cr[CR_IPSW]);
684 void HELPER(rfi_r)(CPUHPPAState *env)
686 env->gr[1] = env->shadow[0];
687 env->gr[8] = env->shadow[1];
688 env->gr[9] = env->shadow[2];
689 env->gr[16] = env->shadow[3];
690 env->gr[17] = env->shadow[4];
691 env->gr[24] = env->shadow[5];
692 env->gr[25] = env->shadow[6];
693 helper_rfi(env);
695 #endif