migration: ram: Switch to ram block writeback
[qemu/ar7.git] / hw / arm / boot.c
blob8fb4a63606f47ea27b5962e0203730d58d617b78
1 /*
2 * ARM kernel loader.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu-common.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include <libfdt.h>
15 #include "hw/arm/boot.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "hw/boards.h"
21 #include "sysemu/reset.h"
22 #include "hw/loader.h"
23 #include "elf.h"
24 #include "sysemu/device_tree.h"
25 #include "qemu/config-file.h"
26 #include "qemu/option.h"
27 #include "exec/address-spaces.h"
28 #include "qemu/units.h"
30 /* Kernel boot protocol is specified in the kernel docs
31 * Documentation/arm/Booting and Documentation/arm64/booting.txt
32 * They have different preferred image load offsets from system RAM base.
34 #define KERNEL_ARGS_ADDR 0x100
35 #define KERNEL_NOLOAD_ADDR 0x02000000
36 #define KERNEL_LOAD_ADDR 0x00010000
37 #define KERNEL64_LOAD_ADDR 0x00080000
39 #define ARM64_TEXT_OFFSET_OFFSET 8
40 #define ARM64_MAGIC_OFFSET 56
42 #define BOOTLOADER_MAX_SIZE (4 * KiB)
44 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
45 const struct arm_boot_info *info)
47 /* Return the address space to use for bootloader reads and writes.
48 * We prefer the secure address space if the CPU has it and we're
49 * going to boot the guest into it.
51 int asidx;
52 CPUState *cs = CPU(cpu);
54 if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
55 asidx = ARMASIdx_S;
56 } else {
57 asidx = ARMASIdx_NS;
60 return cpu_get_address_space(cs, asidx);
63 typedef enum {
64 FIXUP_NONE = 0, /* do nothing */
65 FIXUP_TERMINATOR, /* end of insns */
66 FIXUP_BOARDID, /* overwrite with board ID number */
67 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
68 FIXUP_ARGPTR_LO, /* overwrite with pointer to kernel args */
69 FIXUP_ARGPTR_HI, /* overwrite with pointer to kernel args (high half) */
70 FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
71 FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
72 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
73 FIXUP_BOOTREG, /* overwrite with boot register address */
74 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
75 FIXUP_MAX,
76 } FixupType;
78 typedef struct ARMInsnFixup {
79 uint32_t insn;
80 FixupType fixup;
81 } ARMInsnFixup;
83 static const ARMInsnFixup bootloader_aarch64[] = {
84 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
85 { 0xaa1f03e1 }, /* mov x1, xzr */
86 { 0xaa1f03e2 }, /* mov x2, xzr */
87 { 0xaa1f03e3 }, /* mov x3, xzr */
88 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
89 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
90 { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
91 { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
92 { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
93 { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
94 { 0, FIXUP_TERMINATOR }
97 /* A very small bootloader: call the board-setup code (if needed),
98 * set r0-r2, then jump to the kernel.
99 * If we're not calling boot setup code then we don't copy across
100 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
103 static const ARMInsnFixup bootloader[] = {
104 { 0xe28fe004 }, /* add lr, pc, #4 */
105 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
106 { 0, FIXUP_BOARD_SETUP },
107 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
108 { 0xe3a00000 }, /* mov r0, #0 */
109 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
110 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
111 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
112 { 0, FIXUP_BOARDID },
113 { 0, FIXUP_ARGPTR_LO },
114 { 0, FIXUP_ENTRYPOINT_LO },
115 { 0, FIXUP_TERMINATOR }
118 /* Handling for secondary CPU boot in a multicore system.
119 * Unlike the uniprocessor/primary CPU boot, this is platform
120 * dependent. The default code here is based on the secondary
121 * CPU boot protocol used on realview/vexpress boards, with
122 * some parameterisation to increase its flexibility.
123 * QEMU platform models for which this code is not appropriate
124 * should override write_secondary_boot and secondary_cpu_reset_hook
125 * instead.
127 * This code enables the interrupt controllers for the secondary
128 * CPUs and then puts all the secondary CPUs into a loop waiting
129 * for an interprocessor interrupt and polling a configurable
130 * location for the kernel secondary CPU entry point.
132 #define DSB_INSN 0xf57ff04f
133 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
135 static const ARMInsnFixup smpboot[] = {
136 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
137 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
138 { 0xe3a01001 }, /* mov r1, #1 */
139 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
140 { 0xe3a010ff }, /* mov r1, #0xff */
141 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
142 { 0, FIXUP_DSB }, /* dsb */
143 { 0xe320f003 }, /* wfi */
144 { 0xe5901000 }, /* ldr r1, [r0] */
145 { 0xe1110001 }, /* tst r1, r1 */
146 { 0x0afffffb }, /* beq <wfi> */
147 { 0xe12fff11 }, /* bx r1 */
148 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
149 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
150 { 0, FIXUP_TERMINATOR }
153 static void write_bootloader(const char *name, hwaddr addr,
154 const ARMInsnFixup *insns, uint32_t *fixupcontext,
155 AddressSpace *as)
157 /* Fix up the specified bootloader fragment and write it into
158 * guest memory using rom_add_blob_fixed(). fixupcontext is
159 * an array giving the values to write in for the fixup types
160 * which write a value into the code array.
162 int i, len;
163 uint32_t *code;
165 len = 0;
166 while (insns[len].fixup != FIXUP_TERMINATOR) {
167 len++;
170 code = g_new0(uint32_t, len);
172 for (i = 0; i < len; i++) {
173 uint32_t insn = insns[i].insn;
174 FixupType fixup = insns[i].fixup;
176 switch (fixup) {
177 case FIXUP_NONE:
178 break;
179 case FIXUP_BOARDID:
180 case FIXUP_BOARD_SETUP:
181 case FIXUP_ARGPTR_LO:
182 case FIXUP_ARGPTR_HI:
183 case FIXUP_ENTRYPOINT_LO:
184 case FIXUP_ENTRYPOINT_HI:
185 case FIXUP_GIC_CPU_IF:
186 case FIXUP_BOOTREG:
187 case FIXUP_DSB:
188 insn = fixupcontext[fixup];
189 break;
190 default:
191 abort();
193 code[i] = tswap32(insn);
196 assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
198 rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
200 g_free(code);
203 static void default_write_secondary(ARMCPU *cpu,
204 const struct arm_boot_info *info)
206 uint32_t fixupcontext[FIXUP_MAX];
207 AddressSpace *as = arm_boot_address_space(cpu, info);
209 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
210 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
211 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
212 fixupcontext[FIXUP_DSB] = DSB_INSN;
213 } else {
214 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
217 write_bootloader("smpboot", info->smp_loader_start,
218 smpboot, fixupcontext, as);
221 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
222 const struct arm_boot_info *info,
223 hwaddr mvbar_addr)
225 AddressSpace *as = arm_boot_address_space(cpu, info);
226 int n;
227 uint32_t mvbar_blob[] = {
228 /* mvbar_addr: secure monitor vectors
229 * Default unimplemented and unused vectors to spin. Makes it
230 * easier to debug (as opposed to the CPU running away).
232 0xeafffffe, /* (spin) */
233 0xeafffffe, /* (spin) */
234 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
235 0xeafffffe, /* (spin) */
236 0xeafffffe, /* (spin) */
237 0xeafffffe, /* (spin) */
238 0xeafffffe, /* (spin) */
239 0xeafffffe, /* (spin) */
241 uint32_t board_setup_blob[] = {
242 /* board setup addr */
243 0xee110f51, /* mrc p15, 0, r0, c1, c1, 2 ;read NSACR */
244 0xe3800b03, /* orr r0, #0xc00 ;set CP11, CP10 */
245 0xee010f51, /* mcr p15, 0, r0, c1, c1, 2 ;write NSACR */
246 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
247 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
248 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
249 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
250 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
251 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
252 0xe1600070, /* smc #0 ;call monitor to flush SCR */
253 0xe1a0f001, /* mov pc, r1 ;return */
256 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
257 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
259 /* check that these blobs don't overlap */
260 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
261 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
263 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
264 mvbar_blob[n] = tswap32(mvbar_blob[n]);
266 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
267 mvbar_addr, as);
269 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
270 board_setup_blob[n] = tswap32(board_setup_blob[n]);
272 rom_add_blob_fixed_as("board-setup", board_setup_blob,
273 sizeof(board_setup_blob), info->board_setup_addr, as);
276 static void default_reset_secondary(ARMCPU *cpu,
277 const struct arm_boot_info *info)
279 AddressSpace *as = arm_boot_address_space(cpu, info);
280 CPUState *cs = CPU(cpu);
282 address_space_stl_notdirty(as, info->smp_bootreg_addr,
283 0, MEMTXATTRS_UNSPECIFIED, NULL);
284 cpu_set_pc(cs, info->smp_loader_start);
287 static inline bool have_dtb(const struct arm_boot_info *info)
289 return info->dtb_filename || info->get_dtb;
292 #define WRITE_WORD(p, value) do { \
293 address_space_stl_notdirty(as, p, value, \
294 MEMTXATTRS_UNSPECIFIED, NULL); \
295 p += 4; \
296 } while (0)
298 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
300 int initrd_size = info->initrd_size;
301 hwaddr base = info->loader_start;
302 hwaddr p;
304 p = base + KERNEL_ARGS_ADDR;
305 /* ATAG_CORE */
306 WRITE_WORD(p, 5);
307 WRITE_WORD(p, 0x54410001);
308 WRITE_WORD(p, 1);
309 WRITE_WORD(p, 0x1000);
310 WRITE_WORD(p, 0);
311 /* ATAG_MEM */
312 /* TODO: handle multiple chips on one ATAG list */
313 WRITE_WORD(p, 4);
314 WRITE_WORD(p, 0x54410002);
315 WRITE_WORD(p, info->ram_size);
316 WRITE_WORD(p, info->loader_start);
317 if (initrd_size) {
318 /* ATAG_INITRD2 */
319 WRITE_WORD(p, 4);
320 WRITE_WORD(p, 0x54420005);
321 WRITE_WORD(p, info->initrd_start);
322 WRITE_WORD(p, initrd_size);
324 if (info->kernel_cmdline && *info->kernel_cmdline) {
325 /* ATAG_CMDLINE */
326 int cmdline_size;
328 cmdline_size = strlen(info->kernel_cmdline);
329 address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
330 (const uint8_t *)info->kernel_cmdline,
331 cmdline_size + 1);
332 cmdline_size = (cmdline_size >> 2) + 1;
333 WRITE_WORD(p, cmdline_size + 2);
334 WRITE_WORD(p, 0x54410009);
335 p += cmdline_size * 4;
337 if (info->atag_board) {
338 /* ATAG_BOARD */
339 int atag_board_len;
340 uint8_t atag_board_buf[0x1000];
342 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
343 WRITE_WORD(p, (atag_board_len + 8) >> 2);
344 WRITE_WORD(p, 0x414f4d50);
345 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
346 atag_board_buf, atag_board_len);
347 p += atag_board_len;
349 /* ATAG_END */
350 WRITE_WORD(p, 0);
351 WRITE_WORD(p, 0);
354 static void set_kernel_args_old(const struct arm_boot_info *info,
355 AddressSpace *as)
357 hwaddr p;
358 const char *s;
359 int initrd_size = info->initrd_size;
360 hwaddr base = info->loader_start;
362 /* see linux/include/asm-arm/setup.h */
363 p = base + KERNEL_ARGS_ADDR;
364 /* page_size */
365 WRITE_WORD(p, 4096);
366 /* nr_pages */
367 WRITE_WORD(p, info->ram_size / 4096);
368 /* ramdisk_size */
369 WRITE_WORD(p, 0);
370 #define FLAG_READONLY 1
371 #define FLAG_RDLOAD 4
372 #define FLAG_RDPROMPT 8
373 /* flags */
374 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
375 /* rootdev */
376 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
377 /* video_num_cols */
378 WRITE_WORD(p, 0);
379 /* video_num_rows */
380 WRITE_WORD(p, 0);
381 /* video_x */
382 WRITE_WORD(p, 0);
383 /* video_y */
384 WRITE_WORD(p, 0);
385 /* memc_control_reg */
386 WRITE_WORD(p, 0);
387 /* unsigned char sounddefault */
388 /* unsigned char adfsdrives */
389 /* unsigned char bytes_per_char_h */
390 /* unsigned char bytes_per_char_v */
391 WRITE_WORD(p, 0);
392 /* pages_in_bank[4] */
393 WRITE_WORD(p, 0);
394 WRITE_WORD(p, 0);
395 WRITE_WORD(p, 0);
396 WRITE_WORD(p, 0);
397 /* pages_in_vram */
398 WRITE_WORD(p, 0);
399 /* initrd_start */
400 if (initrd_size) {
401 WRITE_WORD(p, info->initrd_start);
402 } else {
403 WRITE_WORD(p, 0);
405 /* initrd_size */
406 WRITE_WORD(p, initrd_size);
407 /* rd_start */
408 WRITE_WORD(p, 0);
409 /* system_rev */
410 WRITE_WORD(p, 0);
411 /* system_serial_low */
412 WRITE_WORD(p, 0);
413 /* system_serial_high */
414 WRITE_WORD(p, 0);
415 /* mem_fclk_21285 */
416 WRITE_WORD(p, 0);
417 /* zero unused fields */
418 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
419 WRITE_WORD(p, 0);
421 s = info->kernel_cmdline;
422 if (s) {
423 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
424 (const uint8_t *)s, strlen(s) + 1);
425 } else {
426 WRITE_WORD(p, 0);
430 static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
431 uint32_t scells, hwaddr mem_len,
432 int numa_node_id)
434 char *nodename;
435 int ret;
437 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
438 qemu_fdt_add_subnode(fdt, nodename);
439 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
440 ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
441 scells, mem_len);
442 if (ret < 0) {
443 goto out;
446 /* only set the NUMA ID if it is specified */
447 if (numa_node_id >= 0) {
448 ret = qemu_fdt_setprop_cell(fdt, nodename,
449 "numa-node-id", numa_node_id);
451 out:
452 g_free(nodename);
453 return ret;
456 static void fdt_add_psci_node(void *fdt)
458 uint32_t cpu_suspend_fn;
459 uint32_t cpu_off_fn;
460 uint32_t cpu_on_fn;
461 uint32_t migrate_fn;
462 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
463 const char *psci_method;
464 int64_t psci_conduit;
465 int rc;
467 psci_conduit = object_property_get_int(OBJECT(armcpu),
468 "psci-conduit",
469 &error_abort);
470 switch (psci_conduit) {
471 case QEMU_PSCI_CONDUIT_DISABLED:
472 return;
473 case QEMU_PSCI_CONDUIT_HVC:
474 psci_method = "hvc";
475 break;
476 case QEMU_PSCI_CONDUIT_SMC:
477 psci_method = "smc";
478 break;
479 default:
480 g_assert_not_reached();
484 * If /psci node is present in provided DTB, assume that no fixup
485 * is necessary and all PSCI configuration should be taken as-is
487 rc = fdt_path_offset(fdt, "/psci");
488 if (rc >= 0) {
489 return;
492 qemu_fdt_add_subnode(fdt, "/psci");
493 if (armcpu->psci_version == 2) {
494 const char comp[] = "arm,psci-0.2\0arm,psci";
495 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
497 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
498 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
499 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
500 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
501 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
502 } else {
503 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
504 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
505 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
507 } else {
508 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
510 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
511 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
512 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
513 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
516 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
517 * to the instruction that should be used to invoke PSCI functions.
518 * However, the device tree binding uses 'method' instead, so that is
519 * what we should use here.
521 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
523 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
524 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
525 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
526 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
529 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
530 hwaddr addr_limit, AddressSpace *as, MachineState *ms)
532 void *fdt = NULL;
533 int size, rc, n = 0;
534 uint32_t acells, scells;
535 unsigned int i;
536 hwaddr mem_base, mem_len;
537 char **node_path;
538 Error *err = NULL;
540 if (binfo->dtb_filename) {
541 char *filename;
542 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
543 if (!filename) {
544 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
545 goto fail;
548 fdt = load_device_tree(filename, &size);
549 if (!fdt) {
550 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
551 g_free(filename);
552 goto fail;
554 g_free(filename);
555 } else {
556 fdt = binfo->get_dtb(binfo, &size);
557 if (!fdt) {
558 fprintf(stderr, "Board was unable to create a dtb blob\n");
559 goto fail;
563 if (addr_limit > addr && size > (addr_limit - addr)) {
564 /* Installing the device tree blob at addr would exceed addr_limit.
565 * Whether this constitutes failure is up to the caller to decide,
566 * so just return 0 as size, i.e., no error.
568 g_free(fdt);
569 return 0;
572 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
573 NULL, &error_fatal);
574 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
575 NULL, &error_fatal);
576 if (acells == 0 || scells == 0) {
577 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
578 goto fail;
581 if (scells < 2 && binfo->ram_size >= 4 * GiB) {
582 /* This is user error so deserves a friendlier error message
583 * than the failure of setprop_sized_cells would provide
585 fprintf(stderr, "qemu: dtb file not compatible with "
586 "RAM size > 4GB\n");
587 goto fail;
590 /* nop all root nodes matching /memory or /memory@unit-address */
591 node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
592 if (err) {
593 error_report_err(err);
594 goto fail;
596 while (node_path[n]) {
597 if (g_str_has_prefix(node_path[n], "/memory")) {
598 qemu_fdt_nop_node(fdt, node_path[n]);
600 n++;
602 g_strfreev(node_path);
604 if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
605 mem_base = binfo->loader_start;
606 for (i = 0; i < ms->numa_state->num_nodes; i++) {
607 mem_len = ms->numa_state->nodes[i].node_mem;
608 rc = fdt_add_memory_node(fdt, acells, mem_base,
609 scells, mem_len, i);
610 if (rc < 0) {
611 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
612 mem_base);
613 goto fail;
616 mem_base += mem_len;
618 } else {
619 rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
620 scells, binfo->ram_size, -1);
621 if (rc < 0) {
622 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
623 binfo->loader_start);
624 goto fail;
628 rc = fdt_path_offset(fdt, "/chosen");
629 if (rc < 0) {
630 qemu_fdt_add_subnode(fdt, "/chosen");
633 if (ms->kernel_cmdline && *ms->kernel_cmdline) {
634 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
635 ms->kernel_cmdline);
636 if (rc < 0) {
637 fprintf(stderr, "couldn't set /chosen/bootargs\n");
638 goto fail;
642 if (binfo->initrd_size) {
643 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
644 binfo->initrd_start);
645 if (rc < 0) {
646 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
647 goto fail;
650 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
651 binfo->initrd_start + binfo->initrd_size);
652 if (rc < 0) {
653 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
654 goto fail;
658 fdt_add_psci_node(fdt);
660 if (binfo->modify_dtb) {
661 binfo->modify_dtb(binfo, fdt);
664 qemu_fdt_dumpdtb(fdt, size);
666 /* Put the DTB into the memory map as a ROM image: this will ensure
667 * the DTB is copied again upon reset, even if addr points into RAM.
669 rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
671 g_free(fdt);
673 return size;
675 fail:
676 g_free(fdt);
677 return -1;
680 static void do_cpu_reset(void *opaque)
682 ARMCPU *cpu = opaque;
683 CPUState *cs = CPU(cpu);
684 CPUARMState *env = &cpu->env;
685 const struct arm_boot_info *info = env->boot_info;
687 cpu_reset(cs);
688 if (info) {
689 if (!info->is_linux) {
690 int i;
691 /* Jump to the entry point. */
692 uint64_t entry = info->entry;
694 switch (info->endianness) {
695 case ARM_ENDIANNESS_LE:
696 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
697 for (i = 1; i < 4; ++i) {
698 env->cp15.sctlr_el[i] &= ~SCTLR_EE;
700 env->uncached_cpsr &= ~CPSR_E;
701 break;
702 case ARM_ENDIANNESS_BE8:
703 env->cp15.sctlr_el[1] |= SCTLR_E0E;
704 for (i = 1; i < 4; ++i) {
705 env->cp15.sctlr_el[i] |= SCTLR_EE;
707 env->uncached_cpsr |= CPSR_E;
708 break;
709 case ARM_ENDIANNESS_BE32:
710 env->cp15.sctlr_el[1] |= SCTLR_B;
711 break;
712 case ARM_ENDIANNESS_UNKNOWN:
713 break; /* Board's decision */
714 default:
715 g_assert_not_reached();
718 cpu_set_pc(cs, entry);
719 } else {
720 /* If we are booting Linux then we need to check whether we are
721 * booting into secure or non-secure state and adjust the state
722 * accordingly. Out of reset, ARM is defined to be in secure state
723 * (SCR.NS = 0), we change that here if non-secure boot has been
724 * requested.
726 if (arm_feature(env, ARM_FEATURE_EL3)) {
727 /* AArch64 is defined to come out of reset into EL3 if enabled.
728 * If we are booting Linux then we need to adjust our EL as
729 * Linux expects us to be in EL2 or EL1. AArch32 resets into
730 * SVC, which Linux expects, so no privilege/exception level to
731 * adjust.
733 if (env->aarch64) {
734 env->cp15.scr_el3 |= SCR_RW;
735 if (arm_feature(env, ARM_FEATURE_EL2)) {
736 env->cp15.hcr_el2 |= HCR_RW;
737 env->pstate = PSTATE_MODE_EL2h;
738 } else {
739 env->pstate = PSTATE_MODE_EL1h;
741 /* AArch64 kernels never boot in secure mode */
742 assert(!info->secure_boot);
743 /* This hook is only supported for AArch32 currently:
744 * bootloader_aarch64[] will not call the hook, and
745 * the code above has already dropped us into EL2 or EL1.
747 assert(!info->secure_board_setup);
750 if (arm_feature(env, ARM_FEATURE_EL2)) {
751 /* If we have EL2 then Linux expects the HVC insn to work */
752 env->cp15.scr_el3 |= SCR_HCE;
755 /* Set to non-secure if not a secure boot */
756 if (!info->secure_boot &&
757 (cs != first_cpu || !info->secure_board_setup)) {
758 /* Linux expects non-secure state */
759 env->cp15.scr_el3 |= SCR_NS;
760 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
761 env->cp15.nsacr |= 3 << 10;
765 if (!env->aarch64 && !info->secure_boot &&
766 arm_feature(env, ARM_FEATURE_EL2)) {
768 * This is an AArch32 boot not to Secure state, and
769 * we have Hyp mode available, so boot the kernel into
770 * Hyp mode. This is not how the CPU comes out of reset,
771 * so we need to manually put it there.
773 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
776 if (cs == first_cpu) {
777 AddressSpace *as = arm_boot_address_space(cpu, info);
779 cpu_set_pc(cs, info->loader_start);
781 if (!have_dtb(info)) {
782 if (old_param) {
783 set_kernel_args_old(info, as);
784 } else {
785 set_kernel_args(info, as);
788 } else {
789 info->secondary_cpu_reset_hook(cpu, info);
792 arm_rebuild_hflags(env);
797 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
798 * by key.
799 * @fw_cfg: The firmware config instance to store the data in.
800 * @size_key: The firmware config key to store the size of the loaded
801 * data under, with fw_cfg_add_i32().
802 * @data_key: The firmware config key to store the loaded data under,
803 * with fw_cfg_add_bytes().
804 * @image_name: The name of the image file to load. If it is NULL, the
805 * function returns without doing anything.
806 * @try_decompress: Whether the image should be decompressed (gunzipped) before
807 * adding it to fw_cfg. If decompression fails, the image is
808 * loaded as-is.
810 * In case of failure, the function prints an error message to stderr and the
811 * process exits with status 1.
813 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
814 uint16_t data_key, const char *image_name,
815 bool try_decompress)
817 size_t size = -1;
818 uint8_t *data;
820 if (image_name == NULL) {
821 return;
824 if (try_decompress) {
825 size = load_image_gzipped_buffer(image_name,
826 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
829 if (size == (size_t)-1) {
830 gchar *contents;
831 gsize length;
833 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
834 error_report("failed to load \"%s\"", image_name);
835 exit(1);
837 size = length;
838 data = (uint8_t *)contents;
841 fw_cfg_add_i32(fw_cfg, size_key, size);
842 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
845 static int do_arm_linux_init(Object *obj, void *opaque)
847 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
848 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
849 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
850 struct arm_boot_info *info = opaque;
852 if (albifc->arm_linux_init) {
853 albifc->arm_linux_init(albif, info->secure_boot);
856 return 0;
859 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
860 uint64_t *lowaddr, uint64_t *highaddr,
861 int elf_machine, AddressSpace *as)
863 bool elf_is64;
864 union {
865 Elf32_Ehdr h32;
866 Elf64_Ehdr h64;
867 } elf_header;
868 int data_swab = 0;
869 bool big_endian;
870 int64_t ret = -1;
871 Error *err = NULL;
874 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
875 if (err) {
876 error_free(err);
877 return ret;
880 if (elf_is64) {
881 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
882 info->endianness = big_endian ? ARM_ENDIANNESS_BE8
883 : ARM_ENDIANNESS_LE;
884 } else {
885 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
886 if (big_endian) {
887 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
888 info->endianness = ARM_ENDIANNESS_BE8;
889 } else {
890 info->endianness = ARM_ENDIANNESS_BE32;
891 /* In BE32, the CPU has a different view of the per-byte
892 * address map than the rest of the system. BE32 ELF files
893 * are organised such that they can be programmed through
894 * the CPU's per-word byte-reversed view of the world. QEMU
895 * however loads ELF files independently of the CPU. So
896 * tell the ELF loader to byte reverse the data for us.
898 data_swab = 2;
900 } else {
901 info->endianness = ARM_ENDIANNESS_LE;
905 ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
906 pentry, lowaddr, highaddr, big_endian, elf_machine,
907 1, data_swab, as);
908 if (ret <= 0) {
909 /* The header loaded but the image didn't */
910 exit(1);
913 return ret;
916 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
917 hwaddr *entry, AddressSpace *as)
919 hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
920 uint64_t kernel_size = 0;
921 uint8_t *buffer;
922 int size;
924 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
925 size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
926 &buffer);
928 if (size < 0) {
929 gsize len;
931 /* Load as raw file otherwise */
932 if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
933 return -1;
935 size = len;
938 /* check the arm64 magic header value -- very old kernels may not have it */
939 if (size > ARM64_MAGIC_OFFSET + 4 &&
940 memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
941 uint64_t hdrvals[2];
943 /* The arm64 Image header has text_offset and image_size fields at 8 and
944 * 16 bytes into the Image header, respectively. The text_offset field
945 * is only valid if the image_size is non-zero.
947 memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
949 kernel_size = le64_to_cpu(hdrvals[1]);
951 if (kernel_size != 0) {
952 kernel_load_offset = le64_to_cpu(hdrvals[0]);
955 * We write our startup "bootloader" at the very bottom of RAM,
956 * so that bit can't be used for the image. Luckily the Image
957 * format specification is that the image requests only an offset
958 * from a 2MB boundary, not an absolute load address. So if the
959 * image requests an offset that might mean it overlaps with the
960 * bootloader, we can just load it starting at 2MB+offset rather
961 * than 0MB + offset.
963 if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
964 kernel_load_offset += 2 * MiB;
970 * Kernels before v3.17 don't populate the image_size field, and
971 * raw images have no header. For those our best guess at the size
972 * is the size of the Image file itself.
974 if (kernel_size == 0) {
975 kernel_size = size;
978 *entry = mem_base + kernel_load_offset;
979 rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
981 g_free(buffer);
983 return kernel_size;
986 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
987 struct arm_boot_info *info)
989 /* Set up for a direct boot of a kernel image file. */
990 CPUState *cs;
991 AddressSpace *as = arm_boot_address_space(cpu, info);
992 int kernel_size;
993 int initrd_size;
994 int is_linux = 0;
995 uint64_t elf_entry;
996 /* Addresses of first byte used and first byte not used by the image */
997 uint64_t image_low_addr = 0, image_high_addr = 0;
998 int elf_machine;
999 hwaddr entry;
1000 static const ARMInsnFixup *primary_loader;
1001 uint64_t ram_end = info->loader_start + info->ram_size;
1003 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1004 primary_loader = bootloader_aarch64;
1005 elf_machine = EM_AARCH64;
1006 } else {
1007 primary_loader = bootloader;
1008 if (!info->write_board_setup) {
1009 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1011 elf_machine = EM_ARM;
1014 if (!info->secondary_cpu_reset_hook) {
1015 info->secondary_cpu_reset_hook = default_reset_secondary;
1017 if (!info->write_secondary_boot) {
1018 info->write_secondary_boot = default_write_secondary;
1021 if (info->nb_cpus == 0)
1022 info->nb_cpus = 1;
1024 /* Assume that raw images are linux kernels, and ELF images are not. */
1025 kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1026 &image_high_addr, elf_machine, as);
1027 if (kernel_size > 0 && have_dtb(info)) {
1029 * If there is still some room left at the base of RAM, try and put
1030 * the DTB there like we do for images loaded with -bios or -pflash.
1032 if (image_low_addr > info->loader_start
1033 || image_high_addr < info->loader_start) {
1035 * Set image_low_addr as address limit for arm_load_dtb if it may be
1036 * pointing into RAM, otherwise pass '0' (no limit)
1038 if (image_low_addr < info->loader_start) {
1039 image_low_addr = 0;
1041 info->dtb_start = info->loader_start;
1042 info->dtb_limit = image_low_addr;
1045 entry = elf_entry;
1046 if (kernel_size < 0) {
1047 uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1048 kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1049 &is_linux, NULL, NULL, as);
1050 if (kernel_size >= 0) {
1051 image_low_addr = loadaddr;
1052 image_high_addr = image_low_addr + kernel_size;
1055 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1056 kernel_size = load_aarch64_image(info->kernel_filename,
1057 info->loader_start, &entry, as);
1058 is_linux = 1;
1059 if (kernel_size >= 0) {
1060 image_low_addr = entry;
1061 image_high_addr = image_low_addr + kernel_size;
1063 } else if (kernel_size < 0) {
1064 /* 32-bit ARM */
1065 entry = info->loader_start + KERNEL_LOAD_ADDR;
1066 kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1067 ram_end - KERNEL_LOAD_ADDR, as);
1068 is_linux = 1;
1069 if (kernel_size >= 0) {
1070 image_low_addr = entry;
1071 image_high_addr = image_low_addr + kernel_size;
1074 if (kernel_size < 0) {
1075 error_report("could not load kernel '%s'", info->kernel_filename);
1076 exit(1);
1079 if (kernel_size > info->ram_size) {
1080 error_report("kernel '%s' is too large to fit in RAM "
1081 "(kernel size %d, RAM size %" PRId64 ")",
1082 info->kernel_filename, kernel_size, info->ram_size);
1083 exit(1);
1086 info->entry = entry;
1089 * We want to put the initrd far enough into RAM that when the
1090 * kernel is uncompressed it will not clobber the initrd. However
1091 * on boards without much RAM we must ensure that we still leave
1092 * enough room for a decent sized initrd, and on boards with large
1093 * amounts of RAM we must avoid the initrd being so far up in RAM
1094 * that it is outside lowmem and inaccessible to the kernel.
1095 * So for boards with less than 256MB of RAM we put the initrd
1096 * halfway into RAM, and for boards with 256MB of RAM or more we put
1097 * the initrd at 128MB.
1098 * We also refuse to put the initrd somewhere that will definitely
1099 * overlay the kernel we just loaded, though for kernel formats which
1100 * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1101 * we might still make a bad choice here.
1103 info->initrd_start = info->loader_start +
1104 MIN(info->ram_size / 2, 128 * MiB);
1105 if (image_high_addr) {
1106 info->initrd_start = MAX(info->initrd_start, image_high_addr);
1108 info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1110 if (is_linux) {
1111 uint32_t fixupcontext[FIXUP_MAX];
1113 if (info->initrd_filename) {
1115 if (info->initrd_start >= ram_end) {
1116 error_report("not enough space after kernel to load initrd");
1117 exit(1);
1120 initrd_size = load_ramdisk_as(info->initrd_filename,
1121 info->initrd_start,
1122 ram_end - info->initrd_start, as);
1123 if (initrd_size < 0) {
1124 initrd_size = load_image_targphys_as(info->initrd_filename,
1125 info->initrd_start,
1126 ram_end -
1127 info->initrd_start,
1128 as);
1130 if (initrd_size < 0) {
1131 error_report("could not load initrd '%s'",
1132 info->initrd_filename);
1133 exit(1);
1135 if (info->initrd_start + initrd_size > ram_end) {
1136 error_report("could not load initrd '%s': "
1137 "too big to fit into RAM after the kernel",
1138 info->initrd_filename);
1139 exit(1);
1141 } else {
1142 initrd_size = 0;
1144 info->initrd_size = initrd_size;
1146 fixupcontext[FIXUP_BOARDID] = info->board_id;
1147 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1150 * for device tree boot, we pass the DTB directly in r2. Otherwise
1151 * we point to the kernel args.
1153 if (have_dtb(info)) {
1154 hwaddr align;
1156 if (elf_machine == EM_AARCH64) {
1158 * Some AArch64 kernels on early bootup map the fdt region as
1160 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1162 * Let's play safe and prealign it to 2MB to give us some space.
1164 align = 2 * MiB;
1165 } else {
1167 * Some 32bit kernels will trash anything in the 4K page the
1168 * initrd ends in, so make sure the DTB isn't caught up in that.
1170 align = 4 * KiB;
1173 /* Place the DTB after the initrd in memory with alignment. */
1174 info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1175 align);
1176 if (info->dtb_start >= ram_end) {
1177 error_report("Not enough space for DTB after kernel/initrd");
1178 exit(1);
1180 fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1181 fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1182 } else {
1183 fixupcontext[FIXUP_ARGPTR_LO] =
1184 info->loader_start + KERNEL_ARGS_ADDR;
1185 fixupcontext[FIXUP_ARGPTR_HI] =
1186 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1187 if (info->ram_size >= 4 * GiB) {
1188 error_report("RAM size must be less than 4GB to boot"
1189 " Linux kernel using ATAGS (try passing a device tree"
1190 " using -dtb)");
1191 exit(1);
1194 fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1195 fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1197 write_bootloader("bootloader", info->loader_start,
1198 primary_loader, fixupcontext, as);
1200 if (info->nb_cpus > 1) {
1201 info->write_secondary_boot(cpu, info);
1203 if (info->write_board_setup) {
1204 info->write_board_setup(cpu, info);
1208 * Notify devices which need to fake up firmware initialization
1209 * that we're doing a direct kernel boot.
1211 object_child_foreach_recursive(object_get_root(),
1212 do_arm_linux_init, info);
1214 info->is_linux = is_linux;
1216 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1217 ARM_CPU(cs)->env.boot_info = info;
1221 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1223 /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1225 if (have_dtb(info)) {
1227 * If we have a device tree blob, but no kernel to supply it to (or
1228 * the kernel is supposed to be loaded by the bootloader), copy the
1229 * DTB to the base of RAM for the bootloader to pick up.
1231 info->dtb_start = info->loader_start;
1234 if (info->kernel_filename) {
1235 FWCfgState *fw_cfg;
1236 bool try_decompressing_kernel;
1238 fw_cfg = fw_cfg_find();
1239 try_decompressing_kernel = arm_feature(&cpu->env,
1240 ARM_FEATURE_AARCH64);
1243 * Expose the kernel, the command line, and the initrd in fw_cfg.
1244 * We don't process them here at all, it's all left to the
1245 * firmware.
1247 load_image_to_fw_cfg(fw_cfg,
1248 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1249 info->kernel_filename,
1250 try_decompressing_kernel);
1251 load_image_to_fw_cfg(fw_cfg,
1252 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1253 info->initrd_filename, false);
1255 if (info->kernel_cmdline) {
1256 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1257 strlen(info->kernel_cmdline) + 1);
1258 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1259 info->kernel_cmdline);
1264 * We will start from address 0 (typically a boot ROM image) in the
1265 * same way as hardware. Leave env->boot_info NULL, so that
1266 * do_cpu_reset() knows it does not need to alter the PC on reset.
1270 void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
1272 CPUState *cs;
1273 AddressSpace *as = arm_boot_address_space(cpu, info);
1276 * CPU objects (unlike devices) are not automatically reset on system
1277 * reset, so we must always register a handler to do so. If we're
1278 * actually loading a kernel, the handler is also responsible for
1279 * arranging that we start it correctly.
1281 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1282 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1286 * The board code is not supposed to set secure_board_setup unless
1287 * running its code in secure mode is actually possible, and KVM
1288 * doesn't support secure.
1290 assert(!(info->secure_board_setup && kvm_enabled()));
1291 info->kernel_filename = ms->kernel_filename;
1292 info->kernel_cmdline = ms->kernel_cmdline;
1293 info->initrd_filename = ms->initrd_filename;
1294 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
1295 info->dtb_limit = 0;
1297 /* Load the kernel. */
1298 if (!info->kernel_filename || info->firmware_loaded) {
1299 arm_setup_firmware_boot(cpu, info);
1300 } else {
1301 arm_setup_direct_kernel_boot(cpu, info);
1304 if (!info->skip_dtb_autoload && have_dtb(info)) {
1305 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
1306 exit(1);
1311 static const TypeInfo arm_linux_boot_if_info = {
1312 .name = TYPE_ARM_LINUX_BOOT_IF,
1313 .parent = TYPE_INTERFACE,
1314 .class_size = sizeof(ARMLinuxBootIfClass),
1317 static void arm_linux_boot_register_types(void)
1319 type_register_static(&arm_linux_boot_if_info);
1322 type_init(arm_linux_boot_register_types)