vhost-user-blk: set config ops before vhost-user init
[qemu/ar7.git] / linux-user / elfload.c
blob23e34957f915b8de2f7b2f0fb2a0a8ec2ba89947
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
45 * Personality types.
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 /* this flag is uneffective under linux too, should be deleted */
82 #ifndef MAP_DENYWRITE
83 #define MAP_DENYWRITE 0
84 #endif
86 /* should probably go in elf.h */
87 #ifndef ELIBBAD
88 #define ELIBBAD 80
89 #endif
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA ELFDATA2MSB
93 #else
94 #define ELF_DATA ELFDATA2LSB
95 #endif
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong target_elf_greg_t;
99 #define tswapreg(ptr) tswap64(ptr)
100 #else
101 typedef abi_ulong target_elf_greg_t;
102 #define tswapreg(ptr) tswapal(ptr)
103 #endif
105 #ifdef USE_UID16
106 typedef abi_ushort target_uid_t;
107 typedef abi_ushort target_gid_t;
108 #else
109 typedef abi_uint target_uid_t;
110 typedef abi_uint target_gid_t;
111 #endif
112 typedef abi_int target_pid_t;
114 #ifdef TARGET_I386
116 #define ELF_PLATFORM get_elf_platform()
118 static const char *get_elf_platform(void)
120 static char elf_platform[] = "i386";
121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
129 #define ELF_HWCAP get_elf_hwcap()
131 static uint32_t get_elf_hwcap(void)
133 X86CPU *cpu = X86_CPU(thread_cpu);
135 return cpu->env.features[FEAT_1_EDX];
138 #ifdef TARGET_X86_64
139 #define ELF_START_MMAP 0x2aaaaab000ULL
141 #define ELF_CLASS ELFCLASS64
142 #define ELF_ARCH EM_X86_64
144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
151 #define ELF_NREG 27
152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
159 * See linux kernel: arch/x86/include/asm/elf.h
161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
192 #else
194 #define ELF_START_MMAP 0x80000000
197 * This is used to ensure we don't load something for the wrong architecture.
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
202 * These are used to set parameters in the core dumps.
204 #define ELF_CLASS ELFCLASS32
205 #define ELF_ARCH EM_386
207 static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
223 #define ELF_NREG 17
224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
231 * See linux kernel: arch/x86/include/asm/elf.h
233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
253 #endif
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE 4096
258 #endif
260 #ifdef TARGET_ARM
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
265 #define ELF_START_MMAP 0x80000000
267 #define ELF_ARCH EM_ARM
268 #define ELF_CLASS ELFCLASS32
270 static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
273 abi_long stack = infop->start_stack;
274 memset(regs, 0, sizeof(*regs));
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
282 /* FIXME - what to for failure of get_user()? */
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
285 /* XXX: it seems that r0 is zeroed after ! */
286 regs->uregs[0] = 0;
287 /* For uClinux PIC binaries. */
288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289 regs->uregs[10] = infop->start_data;
292 #define ELF_NREG 18
293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE 4096
321 enum
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
347 enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
355 /* The commpage only exists for 32 bit kernels */
357 /* Return 1 if the proposed guest space is suitable for the guest.
358 * Return 0 if the proposed guest space isn't suitable, but another
359 * address space should be tried.
360 * Return -1 if there is no way the proposed guest space can be
361 * valid regardless of the base.
362 * The guest code may leave a page mapped and populate it if the
363 * address is suitable.
365 static int init_guest_commpage(unsigned long guest_base,
366 unsigned long guest_size)
368 unsigned long real_start, test_page_addr;
370 /* We need to check that we can force a fault on access to the
371 * commpage at 0xffff0fxx
373 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
375 /* If the commpage lies within the already allocated guest space,
376 * then there is no way we can allocate it.
378 * You may be thinking that that this check is redundant because
379 * we already validated the guest size against MAX_RESERVED_VA;
380 * but if qemu_host_page_mask is unusually large, then
381 * test_page_addr may be lower.
383 if (test_page_addr >= guest_base
384 && test_page_addr < (guest_base + guest_size)) {
385 return -1;
388 /* Note it needs to be writeable to let us initialise it */
389 real_start = (unsigned long)
390 mmap((void *)test_page_addr, qemu_host_page_size,
391 PROT_READ | PROT_WRITE,
392 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
394 /* If we can't map it then try another address */
395 if (real_start == -1ul) {
396 return 0;
399 if (real_start != test_page_addr) {
400 /* OS didn't put the page where we asked - unmap and reject */
401 munmap((void *)real_start, qemu_host_page_size);
402 return 0;
405 /* Leave the page mapped
406 * Populate it (mmap should have left it all 0'd)
409 /* Kernel helper versions */
410 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
412 /* Now it's populated make it RO */
413 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
414 perror("Protecting guest commpage");
415 exit(-1);
418 return 1; /* All good */
421 #define ELF_HWCAP get_elf_hwcap()
422 #define ELF_HWCAP2 get_elf_hwcap2()
424 static uint32_t get_elf_hwcap(void)
426 ARMCPU *cpu = ARM_CPU(thread_cpu);
427 uint32_t hwcaps = 0;
429 hwcaps |= ARM_HWCAP_ARM_SWP;
430 hwcaps |= ARM_HWCAP_ARM_HALF;
431 hwcaps |= ARM_HWCAP_ARM_THUMB;
432 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
434 /* probe for the extra features */
435 #define GET_FEATURE(feat, hwcap) \
436 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
437 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
438 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
439 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
440 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
441 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
442 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
443 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
444 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
445 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
446 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
447 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
448 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
449 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
450 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
451 * to our VFP_FP16 feature bit.
453 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
454 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
456 return hwcaps;
459 static uint32_t get_elf_hwcap2(void)
461 ARMCPU *cpu = ARM_CPU(thread_cpu);
462 uint32_t hwcaps = 0;
464 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
465 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
466 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
467 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
468 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
469 return hwcaps;
472 #undef GET_FEATURE
474 #else
475 /* 64 bit ARM definitions */
476 #define ELF_START_MMAP 0x80000000
478 #define ELF_ARCH EM_AARCH64
479 #define ELF_CLASS ELFCLASS64
480 #define ELF_PLATFORM "aarch64"
482 static inline void init_thread(struct target_pt_regs *regs,
483 struct image_info *infop)
485 abi_long stack = infop->start_stack;
486 memset(regs, 0, sizeof(*regs));
488 regs->pc = infop->entry & ~0x3ULL;
489 regs->sp = stack;
492 #define ELF_NREG 34
493 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
495 static void elf_core_copy_regs(target_elf_gregset_t *regs,
496 const CPUARMState *env)
498 int i;
500 for (i = 0; i < 32; i++) {
501 (*regs)[i] = tswapreg(env->xregs[i]);
503 (*regs)[32] = tswapreg(env->pc);
504 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
507 #define USE_ELF_CORE_DUMP
508 #define ELF_EXEC_PAGESIZE 4096
510 enum {
511 ARM_HWCAP_A64_FP = 1 << 0,
512 ARM_HWCAP_A64_ASIMD = 1 << 1,
513 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
514 ARM_HWCAP_A64_AES = 1 << 3,
515 ARM_HWCAP_A64_PMULL = 1 << 4,
516 ARM_HWCAP_A64_SHA1 = 1 << 5,
517 ARM_HWCAP_A64_SHA2 = 1 << 6,
518 ARM_HWCAP_A64_CRC32 = 1 << 7,
519 ARM_HWCAP_A64_ATOMICS = 1 << 8,
520 ARM_HWCAP_A64_FPHP = 1 << 9,
521 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
522 ARM_HWCAP_A64_CPUID = 1 << 11,
523 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
524 ARM_HWCAP_A64_JSCVT = 1 << 13,
525 ARM_HWCAP_A64_FCMA = 1 << 14,
526 ARM_HWCAP_A64_LRCPC = 1 << 15,
527 ARM_HWCAP_A64_DCPOP = 1 << 16,
528 ARM_HWCAP_A64_SHA3 = 1 << 17,
529 ARM_HWCAP_A64_SM3 = 1 << 18,
530 ARM_HWCAP_A64_SM4 = 1 << 19,
531 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
532 ARM_HWCAP_A64_SHA512 = 1 << 21,
533 ARM_HWCAP_A64_SVE = 1 << 22,
536 #define ELF_HWCAP get_elf_hwcap()
538 static uint32_t get_elf_hwcap(void)
540 ARMCPU *cpu = ARM_CPU(thread_cpu);
541 uint32_t hwcaps = 0;
543 hwcaps |= ARM_HWCAP_A64_FP;
544 hwcaps |= ARM_HWCAP_A64_ASIMD;
546 /* probe for the extra features */
547 #define GET_FEATURE(feat, hwcap) \
548 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
549 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
550 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
551 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
552 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
553 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
554 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
555 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
556 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
557 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
558 GET_FEATURE(ARM_FEATURE_V8_FP16,
559 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
560 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
561 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
562 #undef GET_FEATURE
564 return hwcaps;
567 #endif /* not TARGET_AARCH64 */
568 #endif /* TARGET_ARM */
570 #ifdef TARGET_SPARC
571 #ifdef TARGET_SPARC64
573 #define ELF_START_MMAP 0x80000000
574 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
575 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
576 #ifndef TARGET_ABI32
577 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
578 #else
579 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
580 #endif
582 #define ELF_CLASS ELFCLASS64
583 #define ELF_ARCH EM_SPARCV9
585 #define STACK_BIAS 2047
587 static inline void init_thread(struct target_pt_regs *regs,
588 struct image_info *infop)
590 #ifndef TARGET_ABI32
591 regs->tstate = 0;
592 #endif
593 regs->pc = infop->entry;
594 regs->npc = regs->pc + 4;
595 regs->y = 0;
596 #ifdef TARGET_ABI32
597 regs->u_regs[14] = infop->start_stack - 16 * 4;
598 #else
599 if (personality(infop->personality) == PER_LINUX32)
600 regs->u_regs[14] = infop->start_stack - 16 * 4;
601 else
602 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
603 #endif
606 #else
607 #define ELF_START_MMAP 0x80000000
608 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
609 | HWCAP_SPARC_MULDIV)
611 #define ELF_CLASS ELFCLASS32
612 #define ELF_ARCH EM_SPARC
614 static inline void init_thread(struct target_pt_regs *regs,
615 struct image_info *infop)
617 regs->psr = 0;
618 regs->pc = infop->entry;
619 regs->npc = regs->pc + 4;
620 regs->y = 0;
621 regs->u_regs[14] = infop->start_stack - 16 * 4;
624 #endif
625 #endif
627 #ifdef TARGET_PPC
629 #define ELF_MACHINE PPC_ELF_MACHINE
630 #define ELF_START_MMAP 0x80000000
632 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
634 #define elf_check_arch(x) ( (x) == EM_PPC64 )
636 #define ELF_CLASS ELFCLASS64
638 #else
640 #define ELF_CLASS ELFCLASS32
642 #endif
644 #define ELF_ARCH EM_PPC
646 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
647 See arch/powerpc/include/asm/cputable.h. */
648 enum {
649 QEMU_PPC_FEATURE_32 = 0x80000000,
650 QEMU_PPC_FEATURE_64 = 0x40000000,
651 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
652 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
653 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
654 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
655 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
656 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
657 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
658 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
659 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
660 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
661 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
662 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
663 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
664 QEMU_PPC_FEATURE_CELL = 0x00010000,
665 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
666 QEMU_PPC_FEATURE_SMT = 0x00004000,
667 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
668 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
669 QEMU_PPC_FEATURE_PA6T = 0x00000800,
670 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
671 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
672 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
673 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
674 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
676 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
677 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
679 /* Feature definitions in AT_HWCAP2. */
680 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
681 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
682 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
683 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
684 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
685 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
688 #define ELF_HWCAP get_elf_hwcap()
690 static uint32_t get_elf_hwcap(void)
692 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
693 uint32_t features = 0;
695 /* We don't have to be terribly complete here; the high points are
696 Altivec/FP/SPE support. Anything else is just a bonus. */
697 #define GET_FEATURE(flag, feature) \
698 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
699 #define GET_FEATURE2(flags, feature) \
700 do { \
701 if ((cpu->env.insns_flags2 & flags) == flags) { \
702 features |= feature; \
704 } while (0)
705 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
706 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
707 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
708 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
709 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
710 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
711 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
712 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
713 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
714 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
715 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
716 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
717 QEMU_PPC_FEATURE_ARCH_2_06);
718 #undef GET_FEATURE
719 #undef GET_FEATURE2
721 return features;
724 #define ELF_HWCAP2 get_elf_hwcap2()
726 static uint32_t get_elf_hwcap2(void)
728 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
729 uint32_t features = 0;
731 #define GET_FEATURE(flag, feature) \
732 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
733 #define GET_FEATURE2(flag, feature) \
734 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
736 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
737 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
738 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
739 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
741 #undef GET_FEATURE
742 #undef GET_FEATURE2
744 return features;
748 * The requirements here are:
749 * - keep the final alignment of sp (sp & 0xf)
750 * - make sure the 32-bit value at the first 16 byte aligned position of
751 * AUXV is greater than 16 for glibc compatibility.
752 * AT_IGNOREPPC is used for that.
753 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
754 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
756 #define DLINFO_ARCH_ITEMS 5
757 #define ARCH_DLINFO \
758 do { \
759 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
760 /* \
761 * Handle glibc compatibility: these magic entries must \
762 * be at the lowest addresses in the final auxv. \
763 */ \
764 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
765 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
766 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
767 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
768 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
769 } while (0)
771 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
773 _regs->gpr[1] = infop->start_stack;
774 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
775 if (get_ppc64_abi(infop) < 2) {
776 uint64_t val;
777 get_user_u64(val, infop->entry + 8);
778 _regs->gpr[2] = val + infop->load_bias;
779 get_user_u64(val, infop->entry);
780 infop->entry = val + infop->load_bias;
781 } else {
782 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
784 #endif
785 _regs->nip = infop->entry;
788 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
789 #define ELF_NREG 48
790 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
792 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
794 int i;
795 target_ulong ccr = 0;
797 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
798 (*regs)[i] = tswapreg(env->gpr[i]);
801 (*regs)[32] = tswapreg(env->nip);
802 (*regs)[33] = tswapreg(env->msr);
803 (*regs)[35] = tswapreg(env->ctr);
804 (*regs)[36] = tswapreg(env->lr);
805 (*regs)[37] = tswapreg(env->xer);
807 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
808 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
810 (*regs)[38] = tswapreg(ccr);
813 #define USE_ELF_CORE_DUMP
814 #define ELF_EXEC_PAGESIZE 4096
816 #endif
818 #ifdef TARGET_MIPS
820 #define ELF_START_MMAP 0x80000000
822 #ifdef TARGET_MIPS64
823 #define ELF_CLASS ELFCLASS64
824 #else
825 #define ELF_CLASS ELFCLASS32
826 #endif
827 #define ELF_ARCH EM_MIPS
829 static inline void init_thread(struct target_pt_regs *regs,
830 struct image_info *infop)
832 regs->cp0_status = 2 << CP0St_KSU;
833 regs->cp0_epc = infop->entry;
834 regs->regs[29] = infop->start_stack;
837 /* See linux kernel: arch/mips/include/asm/elf.h. */
838 #define ELF_NREG 45
839 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
841 /* See linux kernel: arch/mips/include/asm/reg.h. */
842 enum {
843 #ifdef TARGET_MIPS64
844 TARGET_EF_R0 = 0,
845 #else
846 TARGET_EF_R0 = 6,
847 #endif
848 TARGET_EF_R26 = TARGET_EF_R0 + 26,
849 TARGET_EF_R27 = TARGET_EF_R0 + 27,
850 TARGET_EF_LO = TARGET_EF_R0 + 32,
851 TARGET_EF_HI = TARGET_EF_R0 + 33,
852 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
853 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
854 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
855 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
858 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
859 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
861 int i;
863 for (i = 0; i < TARGET_EF_R0; i++) {
864 (*regs)[i] = 0;
866 (*regs)[TARGET_EF_R0] = 0;
868 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
869 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
872 (*regs)[TARGET_EF_R26] = 0;
873 (*regs)[TARGET_EF_R27] = 0;
874 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
875 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
876 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
877 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
878 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
879 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
882 #define USE_ELF_CORE_DUMP
883 #define ELF_EXEC_PAGESIZE 4096
885 #endif /* TARGET_MIPS */
887 #ifdef TARGET_MICROBLAZE
889 #define ELF_START_MMAP 0x80000000
891 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
893 #define ELF_CLASS ELFCLASS32
894 #define ELF_ARCH EM_MICROBLAZE
896 static inline void init_thread(struct target_pt_regs *regs,
897 struct image_info *infop)
899 regs->pc = infop->entry;
900 regs->r1 = infop->start_stack;
904 #define ELF_EXEC_PAGESIZE 4096
906 #define USE_ELF_CORE_DUMP
907 #define ELF_NREG 38
908 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
910 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
911 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
913 int i, pos = 0;
915 for (i = 0; i < 32; i++) {
916 (*regs)[pos++] = tswapreg(env->regs[i]);
919 for (i = 0; i < 6; i++) {
920 (*regs)[pos++] = tswapreg(env->sregs[i]);
924 #endif /* TARGET_MICROBLAZE */
926 #ifdef TARGET_NIOS2
928 #define ELF_START_MMAP 0x80000000
930 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
932 #define ELF_CLASS ELFCLASS32
933 #define ELF_ARCH EM_ALTERA_NIOS2
935 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
937 regs->ea = infop->entry;
938 regs->sp = infop->start_stack;
939 regs->estatus = 0x3;
942 #define ELF_EXEC_PAGESIZE 4096
944 #define USE_ELF_CORE_DUMP
945 #define ELF_NREG 49
946 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
948 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
949 static void elf_core_copy_regs(target_elf_gregset_t *regs,
950 const CPUNios2State *env)
952 int i;
954 (*regs)[0] = -1;
955 for (i = 1; i < 8; i++) /* r0-r7 */
956 (*regs)[i] = tswapreg(env->regs[i + 7]);
958 for (i = 8; i < 16; i++) /* r8-r15 */
959 (*regs)[i] = tswapreg(env->regs[i - 8]);
961 for (i = 16; i < 24; i++) /* r16-r23 */
962 (*regs)[i] = tswapreg(env->regs[i + 7]);
963 (*regs)[24] = -1; /* R_ET */
964 (*regs)[25] = -1; /* R_BT */
965 (*regs)[26] = tswapreg(env->regs[R_GP]);
966 (*regs)[27] = tswapreg(env->regs[R_SP]);
967 (*regs)[28] = tswapreg(env->regs[R_FP]);
968 (*regs)[29] = tswapreg(env->regs[R_EA]);
969 (*regs)[30] = -1; /* R_SSTATUS */
970 (*regs)[31] = tswapreg(env->regs[R_RA]);
972 (*regs)[32] = tswapreg(env->regs[R_PC]);
974 (*regs)[33] = -1; /* R_STATUS */
975 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
977 for (i = 35; i < 49; i++) /* ... */
978 (*regs)[i] = -1;
981 #endif /* TARGET_NIOS2 */
983 #ifdef TARGET_OPENRISC
985 #define ELF_START_MMAP 0x08000000
987 #define ELF_ARCH EM_OPENRISC
988 #define ELF_CLASS ELFCLASS32
989 #define ELF_DATA ELFDATA2MSB
991 static inline void init_thread(struct target_pt_regs *regs,
992 struct image_info *infop)
994 regs->pc = infop->entry;
995 regs->gpr[1] = infop->start_stack;
998 #define USE_ELF_CORE_DUMP
999 #define ELF_EXEC_PAGESIZE 8192
1001 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1002 #define ELF_NREG 34 /* gprs and pc, sr */
1003 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1005 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1006 const CPUOpenRISCState *env)
1008 int i;
1010 for (i = 0; i < 32; i++) {
1011 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1013 (*regs)[32] = tswapreg(env->pc);
1014 (*regs)[33] = tswapreg(cpu_get_sr(env));
1016 #define ELF_HWCAP 0
1017 #define ELF_PLATFORM NULL
1019 #endif /* TARGET_OPENRISC */
1021 #ifdef TARGET_SH4
1023 #define ELF_START_MMAP 0x80000000
1025 #define ELF_CLASS ELFCLASS32
1026 #define ELF_ARCH EM_SH
1028 static inline void init_thread(struct target_pt_regs *regs,
1029 struct image_info *infop)
1031 /* Check other registers XXXXX */
1032 regs->pc = infop->entry;
1033 regs->regs[15] = infop->start_stack;
1036 /* See linux kernel: arch/sh/include/asm/elf.h. */
1037 #define ELF_NREG 23
1038 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1040 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1041 enum {
1042 TARGET_REG_PC = 16,
1043 TARGET_REG_PR = 17,
1044 TARGET_REG_SR = 18,
1045 TARGET_REG_GBR = 19,
1046 TARGET_REG_MACH = 20,
1047 TARGET_REG_MACL = 21,
1048 TARGET_REG_SYSCALL = 22
1051 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1052 const CPUSH4State *env)
1054 int i;
1056 for (i = 0; i < 16; i++) {
1057 (*regs)[i] = tswapreg(env->gregs[i]);
1060 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1061 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1062 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1063 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1064 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1065 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1066 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1069 #define USE_ELF_CORE_DUMP
1070 #define ELF_EXEC_PAGESIZE 4096
1072 enum {
1073 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1074 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1075 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1076 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1077 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1078 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1079 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1080 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1081 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1082 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1085 #define ELF_HWCAP get_elf_hwcap()
1087 static uint32_t get_elf_hwcap(void)
1089 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1090 uint32_t hwcap = 0;
1092 hwcap |= SH_CPU_HAS_FPU;
1094 if (cpu->env.features & SH_FEATURE_SH4A) {
1095 hwcap |= SH_CPU_HAS_LLSC;
1098 return hwcap;
1101 #endif
1103 #ifdef TARGET_CRIS
1105 #define ELF_START_MMAP 0x80000000
1107 #define ELF_CLASS ELFCLASS32
1108 #define ELF_ARCH EM_CRIS
1110 static inline void init_thread(struct target_pt_regs *regs,
1111 struct image_info *infop)
1113 regs->erp = infop->entry;
1116 #define ELF_EXEC_PAGESIZE 8192
1118 #endif
1120 #ifdef TARGET_M68K
1122 #define ELF_START_MMAP 0x80000000
1124 #define ELF_CLASS ELFCLASS32
1125 #define ELF_ARCH EM_68K
1127 /* ??? Does this need to do anything?
1128 #define ELF_PLAT_INIT(_r) */
1130 static inline void init_thread(struct target_pt_regs *regs,
1131 struct image_info *infop)
1133 regs->usp = infop->start_stack;
1134 regs->sr = 0;
1135 regs->pc = infop->entry;
1138 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1139 #define ELF_NREG 20
1140 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1142 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1144 (*regs)[0] = tswapreg(env->dregs[1]);
1145 (*regs)[1] = tswapreg(env->dregs[2]);
1146 (*regs)[2] = tswapreg(env->dregs[3]);
1147 (*regs)[3] = tswapreg(env->dregs[4]);
1148 (*regs)[4] = tswapreg(env->dregs[5]);
1149 (*regs)[5] = tswapreg(env->dregs[6]);
1150 (*regs)[6] = tswapreg(env->dregs[7]);
1151 (*regs)[7] = tswapreg(env->aregs[0]);
1152 (*regs)[8] = tswapreg(env->aregs[1]);
1153 (*regs)[9] = tswapreg(env->aregs[2]);
1154 (*regs)[10] = tswapreg(env->aregs[3]);
1155 (*regs)[11] = tswapreg(env->aregs[4]);
1156 (*regs)[12] = tswapreg(env->aregs[5]);
1157 (*regs)[13] = tswapreg(env->aregs[6]);
1158 (*regs)[14] = tswapreg(env->dregs[0]);
1159 (*regs)[15] = tswapreg(env->aregs[7]);
1160 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1161 (*regs)[17] = tswapreg(env->sr);
1162 (*regs)[18] = tswapreg(env->pc);
1163 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1166 #define USE_ELF_CORE_DUMP
1167 #define ELF_EXEC_PAGESIZE 8192
1169 #endif
1171 #ifdef TARGET_ALPHA
1173 #define ELF_START_MMAP (0x30000000000ULL)
1175 #define ELF_CLASS ELFCLASS64
1176 #define ELF_ARCH EM_ALPHA
1178 static inline void init_thread(struct target_pt_regs *regs,
1179 struct image_info *infop)
1181 regs->pc = infop->entry;
1182 regs->ps = 8;
1183 regs->usp = infop->start_stack;
1186 #define ELF_EXEC_PAGESIZE 8192
1188 #endif /* TARGET_ALPHA */
1190 #ifdef TARGET_S390X
1192 #define ELF_START_MMAP (0x20000000000ULL)
1194 #define ELF_CLASS ELFCLASS64
1195 #define ELF_DATA ELFDATA2MSB
1196 #define ELF_ARCH EM_S390
1198 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1200 regs->psw.addr = infop->entry;
1201 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1202 regs->gprs[15] = infop->start_stack;
1205 #endif /* TARGET_S390X */
1207 #ifdef TARGET_TILEGX
1209 /* 42 bits real used address, a half for user mode */
1210 #define ELF_START_MMAP (0x00000020000000000ULL)
1212 #define elf_check_arch(x) ((x) == EM_TILEGX)
1214 #define ELF_CLASS ELFCLASS64
1215 #define ELF_DATA ELFDATA2LSB
1216 #define ELF_ARCH EM_TILEGX
1218 static inline void init_thread(struct target_pt_regs *regs,
1219 struct image_info *infop)
1221 regs->pc = infop->entry;
1222 regs->sp = infop->start_stack;
1226 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1228 #endif /* TARGET_TILEGX */
1230 #ifdef TARGET_RISCV
1232 #define ELF_START_MMAP 0x80000000
1233 #define ELF_ARCH EM_RISCV
1235 #ifdef TARGET_RISCV32
1236 #define ELF_CLASS ELFCLASS32
1237 #else
1238 #define ELF_CLASS ELFCLASS64
1239 #endif
1241 static inline void init_thread(struct target_pt_regs *regs,
1242 struct image_info *infop)
1244 regs->sepc = infop->entry;
1245 regs->sp = infop->start_stack;
1248 #define ELF_EXEC_PAGESIZE 4096
1250 #endif /* TARGET_RISCV */
1252 #ifdef TARGET_HPPA
1254 #define ELF_START_MMAP 0x80000000
1255 #define ELF_CLASS ELFCLASS32
1256 #define ELF_ARCH EM_PARISC
1257 #define ELF_PLATFORM "PARISC"
1258 #define STACK_GROWS_DOWN 0
1259 #define STACK_ALIGNMENT 64
1261 static inline void init_thread(struct target_pt_regs *regs,
1262 struct image_info *infop)
1264 regs->iaoq[0] = infop->entry;
1265 regs->iaoq[1] = infop->entry + 4;
1266 regs->gr[23] = 0;
1267 regs->gr[24] = infop->arg_start;
1268 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1269 /* The top-of-stack contains a linkage buffer. */
1270 regs->gr[30] = infop->start_stack + 64;
1271 regs->gr[31] = infop->entry;
1274 #endif /* TARGET_HPPA */
1276 #ifdef TARGET_XTENSA
1278 #define ELF_START_MMAP 0x20000000
1280 #define ELF_CLASS ELFCLASS32
1281 #define ELF_ARCH EM_XTENSA
1283 static inline void init_thread(struct target_pt_regs *regs,
1284 struct image_info *infop)
1286 regs->windowbase = 0;
1287 regs->windowstart = 1;
1288 regs->areg[1] = infop->start_stack;
1289 regs->pc = infop->entry;
1292 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1293 #define ELF_NREG 128
1294 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1296 enum {
1297 TARGET_REG_PC,
1298 TARGET_REG_PS,
1299 TARGET_REG_LBEG,
1300 TARGET_REG_LEND,
1301 TARGET_REG_LCOUNT,
1302 TARGET_REG_SAR,
1303 TARGET_REG_WINDOWSTART,
1304 TARGET_REG_WINDOWBASE,
1305 TARGET_REG_THREADPTR,
1306 TARGET_REG_AR0 = 64,
1309 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1310 const CPUXtensaState *env)
1312 unsigned i;
1314 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1315 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1316 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1317 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1318 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1319 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1320 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1321 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1322 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1323 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1324 for (i = 0; i < env->config->nareg; ++i) {
1325 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1329 #define USE_ELF_CORE_DUMP
1330 #define ELF_EXEC_PAGESIZE 4096
1332 #endif /* TARGET_XTENSA */
1334 #ifndef ELF_PLATFORM
1335 #define ELF_PLATFORM (NULL)
1336 #endif
1338 #ifndef ELF_MACHINE
1339 #define ELF_MACHINE ELF_ARCH
1340 #endif
1342 #ifndef elf_check_arch
1343 #define elf_check_arch(x) ((x) == ELF_ARCH)
1344 #endif
1346 #ifndef ELF_HWCAP
1347 #define ELF_HWCAP 0
1348 #endif
1350 #ifndef STACK_GROWS_DOWN
1351 #define STACK_GROWS_DOWN 1
1352 #endif
1354 #ifndef STACK_ALIGNMENT
1355 #define STACK_ALIGNMENT 16
1356 #endif
1358 #ifdef TARGET_ABI32
1359 #undef ELF_CLASS
1360 #define ELF_CLASS ELFCLASS32
1361 #undef bswaptls
1362 #define bswaptls(ptr) bswap32s(ptr)
1363 #endif
1365 #include "elf.h"
1367 struct exec
1369 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1370 unsigned int a_text; /* length of text, in bytes */
1371 unsigned int a_data; /* length of data, in bytes */
1372 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1373 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1374 unsigned int a_entry; /* start address */
1375 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1376 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1380 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1381 #define OMAGIC 0407
1382 #define NMAGIC 0410
1383 #define ZMAGIC 0413
1384 #define QMAGIC 0314
1386 /* Necessary parameters */
1387 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1388 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1389 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1390 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1392 #define DLINFO_ITEMS 15
1394 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1396 memcpy(to, from, n);
1399 #ifdef BSWAP_NEEDED
1400 static void bswap_ehdr(struct elfhdr *ehdr)
1402 bswap16s(&ehdr->e_type); /* Object file type */
1403 bswap16s(&ehdr->e_machine); /* Architecture */
1404 bswap32s(&ehdr->e_version); /* Object file version */
1405 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1406 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1407 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1408 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1409 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1410 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1411 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1412 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1413 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1414 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1417 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1419 int i;
1420 for (i = 0; i < phnum; ++i, ++phdr) {
1421 bswap32s(&phdr->p_type); /* Segment type */
1422 bswap32s(&phdr->p_flags); /* Segment flags */
1423 bswaptls(&phdr->p_offset); /* Segment file offset */
1424 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1425 bswaptls(&phdr->p_paddr); /* Segment physical address */
1426 bswaptls(&phdr->p_filesz); /* Segment size in file */
1427 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1428 bswaptls(&phdr->p_align); /* Segment alignment */
1432 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1434 int i;
1435 for (i = 0; i < shnum; ++i, ++shdr) {
1436 bswap32s(&shdr->sh_name);
1437 bswap32s(&shdr->sh_type);
1438 bswaptls(&shdr->sh_flags);
1439 bswaptls(&shdr->sh_addr);
1440 bswaptls(&shdr->sh_offset);
1441 bswaptls(&shdr->sh_size);
1442 bswap32s(&shdr->sh_link);
1443 bswap32s(&shdr->sh_info);
1444 bswaptls(&shdr->sh_addralign);
1445 bswaptls(&shdr->sh_entsize);
1449 static void bswap_sym(struct elf_sym *sym)
1451 bswap32s(&sym->st_name);
1452 bswaptls(&sym->st_value);
1453 bswaptls(&sym->st_size);
1454 bswap16s(&sym->st_shndx);
1456 #else
1457 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1458 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1459 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1460 static inline void bswap_sym(struct elf_sym *sym) { }
1461 #endif
1463 #ifdef USE_ELF_CORE_DUMP
1464 static int elf_core_dump(int, const CPUArchState *);
1465 #endif /* USE_ELF_CORE_DUMP */
1466 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1468 /* Verify the portions of EHDR within E_IDENT for the target.
1469 This can be performed before bswapping the entire header. */
1470 static bool elf_check_ident(struct elfhdr *ehdr)
1472 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1473 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1474 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1475 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1476 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1477 && ehdr->e_ident[EI_DATA] == ELF_DATA
1478 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1481 /* Verify the portions of EHDR outside of E_IDENT for the target.
1482 This has to wait until after bswapping the header. */
1483 static bool elf_check_ehdr(struct elfhdr *ehdr)
1485 return (elf_check_arch(ehdr->e_machine)
1486 && ehdr->e_ehsize == sizeof(struct elfhdr)
1487 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1488 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1492 * 'copy_elf_strings()' copies argument/envelope strings from user
1493 * memory to free pages in kernel mem. These are in a format ready
1494 * to be put directly into the top of new user memory.
1497 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1498 abi_ulong p, abi_ulong stack_limit)
1500 char *tmp;
1501 int len, i;
1502 abi_ulong top = p;
1504 if (!p) {
1505 return 0; /* bullet-proofing */
1508 if (STACK_GROWS_DOWN) {
1509 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1510 for (i = argc - 1; i >= 0; --i) {
1511 tmp = argv[i];
1512 if (!tmp) {
1513 fprintf(stderr, "VFS: argc is wrong");
1514 exit(-1);
1516 len = strlen(tmp) + 1;
1517 tmp += len;
1519 if (len > (p - stack_limit)) {
1520 return 0;
1522 while (len) {
1523 int bytes_to_copy = (len > offset) ? offset : len;
1524 tmp -= bytes_to_copy;
1525 p -= bytes_to_copy;
1526 offset -= bytes_to_copy;
1527 len -= bytes_to_copy;
1529 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1531 if (offset == 0) {
1532 memcpy_to_target(p, scratch, top - p);
1533 top = p;
1534 offset = TARGET_PAGE_SIZE;
1538 if (p != top) {
1539 memcpy_to_target(p, scratch + offset, top - p);
1541 } else {
1542 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1543 for (i = 0; i < argc; ++i) {
1544 tmp = argv[i];
1545 if (!tmp) {
1546 fprintf(stderr, "VFS: argc is wrong");
1547 exit(-1);
1549 len = strlen(tmp) + 1;
1550 if (len > (stack_limit - p)) {
1551 return 0;
1553 while (len) {
1554 int bytes_to_copy = (len > remaining) ? remaining : len;
1556 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1558 tmp += bytes_to_copy;
1559 remaining -= bytes_to_copy;
1560 p += bytes_to_copy;
1561 len -= bytes_to_copy;
1563 if (remaining == 0) {
1564 memcpy_to_target(top, scratch, p - top);
1565 top = p;
1566 remaining = TARGET_PAGE_SIZE;
1570 if (p != top) {
1571 memcpy_to_target(top, scratch, p - top);
1575 return p;
1578 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1579 * argument/environment space. Newer kernels (>2.6.33) allow more,
1580 * dependent on stack size, but guarantee at least 32 pages for
1581 * backwards compatibility.
1583 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1585 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1586 struct image_info *info)
1588 abi_ulong size, error, guard;
1590 size = guest_stack_size;
1591 if (size < STACK_LOWER_LIMIT) {
1592 size = STACK_LOWER_LIMIT;
1594 guard = TARGET_PAGE_SIZE;
1595 if (guard < qemu_real_host_page_size) {
1596 guard = qemu_real_host_page_size;
1599 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1600 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1601 if (error == -1) {
1602 perror("mmap stack");
1603 exit(-1);
1606 /* We reserve one extra page at the top of the stack as guard. */
1607 if (STACK_GROWS_DOWN) {
1608 target_mprotect(error, guard, PROT_NONE);
1609 info->stack_limit = error + guard;
1610 return info->stack_limit + size - sizeof(void *);
1611 } else {
1612 target_mprotect(error + size, guard, PROT_NONE);
1613 info->stack_limit = error + size;
1614 return error;
1618 /* Map and zero the bss. We need to explicitly zero any fractional pages
1619 after the data section (i.e. bss). */
1620 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1622 uintptr_t host_start, host_map_start, host_end;
1624 last_bss = TARGET_PAGE_ALIGN(last_bss);
1626 /* ??? There is confusion between qemu_real_host_page_size and
1627 qemu_host_page_size here and elsewhere in target_mmap, which
1628 may lead to the end of the data section mapping from the file
1629 not being mapped. At least there was an explicit test and
1630 comment for that here, suggesting that "the file size must
1631 be known". The comment probably pre-dates the introduction
1632 of the fstat system call in target_mmap which does in fact
1633 find out the size. What isn't clear is if the workaround
1634 here is still actually needed. For now, continue with it,
1635 but merge it with the "normal" mmap that would allocate the bss. */
1637 host_start = (uintptr_t) g2h(elf_bss);
1638 host_end = (uintptr_t) g2h(last_bss);
1639 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1641 if (host_map_start < host_end) {
1642 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1643 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1644 if (p == MAP_FAILED) {
1645 perror("cannot mmap brk");
1646 exit(-1);
1650 /* Ensure that the bss page(s) are valid */
1651 if ((page_get_flags(last_bss-1) & prot) != prot) {
1652 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1655 if (host_start < host_map_start) {
1656 memset((void *)host_start, 0, host_map_start - host_start);
1660 #ifdef CONFIG_USE_FDPIC
1661 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1663 uint16_t n;
1664 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1666 /* elf32_fdpic_loadseg */
1667 n = info->nsegs;
1668 while (n--) {
1669 sp -= 12;
1670 put_user_u32(loadsegs[n].addr, sp+0);
1671 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1672 put_user_u32(loadsegs[n].p_memsz, sp+8);
1675 /* elf32_fdpic_loadmap */
1676 sp -= 4;
1677 put_user_u16(0, sp+0); /* version */
1678 put_user_u16(info->nsegs, sp+2); /* nsegs */
1680 info->personality = PER_LINUX_FDPIC;
1681 info->loadmap_addr = sp;
1683 return sp;
1685 #endif
1687 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1688 struct elfhdr *exec,
1689 struct image_info *info,
1690 struct image_info *interp_info)
1692 abi_ulong sp;
1693 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1694 int size;
1695 int i;
1696 abi_ulong u_rand_bytes;
1697 uint8_t k_rand_bytes[16];
1698 abi_ulong u_platform;
1699 const char *k_platform;
1700 const int n = sizeof(elf_addr_t);
1702 sp = p;
1704 #ifdef CONFIG_USE_FDPIC
1705 /* Needs to be before we load the env/argc/... */
1706 if (elf_is_fdpic(exec)) {
1707 /* Need 4 byte alignment for these structs */
1708 sp &= ~3;
1709 sp = loader_build_fdpic_loadmap(info, sp);
1710 info->other_info = interp_info;
1711 if (interp_info) {
1712 interp_info->other_info = info;
1713 sp = loader_build_fdpic_loadmap(interp_info, sp);
1716 #endif
1718 u_platform = 0;
1719 k_platform = ELF_PLATFORM;
1720 if (k_platform) {
1721 size_t len = strlen(k_platform) + 1;
1722 if (STACK_GROWS_DOWN) {
1723 sp -= (len + n - 1) & ~(n - 1);
1724 u_platform = sp;
1725 /* FIXME - check return value of memcpy_to_target() for failure */
1726 memcpy_to_target(sp, k_platform, len);
1727 } else {
1728 memcpy_to_target(sp, k_platform, len);
1729 u_platform = sp;
1730 sp += len + 1;
1734 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1735 * the argv and envp pointers.
1737 if (STACK_GROWS_DOWN) {
1738 sp = QEMU_ALIGN_DOWN(sp, 16);
1739 } else {
1740 sp = QEMU_ALIGN_UP(sp, 16);
1744 * Generate 16 random bytes for userspace PRNG seeding (not
1745 * cryptically secure but it's not the aim of QEMU).
1747 for (i = 0; i < 16; i++) {
1748 k_rand_bytes[i] = rand();
1750 if (STACK_GROWS_DOWN) {
1751 sp -= 16;
1752 u_rand_bytes = sp;
1753 /* FIXME - check return value of memcpy_to_target() for failure */
1754 memcpy_to_target(sp, k_rand_bytes, 16);
1755 } else {
1756 memcpy_to_target(sp, k_rand_bytes, 16);
1757 u_rand_bytes = sp;
1758 sp += 16;
1761 size = (DLINFO_ITEMS + 1) * 2;
1762 if (k_platform)
1763 size += 2;
1764 #ifdef DLINFO_ARCH_ITEMS
1765 size += DLINFO_ARCH_ITEMS * 2;
1766 #endif
1767 #ifdef ELF_HWCAP2
1768 size += 2;
1769 #endif
1770 info->auxv_len = size * n;
1772 size += envc + argc + 2;
1773 size += 1; /* argc itself */
1774 size *= n;
1776 /* Allocate space and finalize stack alignment for entry now. */
1777 if (STACK_GROWS_DOWN) {
1778 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1779 sp = u_argc;
1780 } else {
1781 u_argc = sp;
1782 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1785 u_argv = u_argc + n;
1786 u_envp = u_argv + (argc + 1) * n;
1787 u_auxv = u_envp + (envc + 1) * n;
1788 info->saved_auxv = u_auxv;
1789 info->arg_start = u_argv;
1790 info->arg_end = u_argv + argc * n;
1792 /* This is correct because Linux defines
1793 * elf_addr_t as Elf32_Off / Elf64_Off
1795 #define NEW_AUX_ENT(id, val) do { \
1796 put_user_ual(id, u_auxv); u_auxv += n; \
1797 put_user_ual(val, u_auxv); u_auxv += n; \
1798 } while(0)
1800 #ifdef ARCH_DLINFO
1802 * ARCH_DLINFO must come first so platform specific code can enforce
1803 * special alignment requirements on the AUXV if necessary (eg. PPC).
1805 ARCH_DLINFO;
1806 #endif
1807 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1808 * on info->auxv_len will trigger.
1810 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1811 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1812 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1813 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1814 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1815 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1816 NEW_AUX_ENT(AT_ENTRY, info->entry);
1817 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1818 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1819 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1820 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1821 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1822 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1823 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1824 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1826 #ifdef ELF_HWCAP2
1827 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1828 #endif
1830 if (u_platform) {
1831 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1833 NEW_AUX_ENT (AT_NULL, 0);
1834 #undef NEW_AUX_ENT
1836 /* Check that our initial calculation of the auxv length matches how much
1837 * we actually put into it.
1839 assert(info->auxv_len == u_auxv - info->saved_auxv);
1841 put_user_ual(argc, u_argc);
1843 p = info->arg_strings;
1844 for (i = 0; i < argc; ++i) {
1845 put_user_ual(p, u_argv);
1846 u_argv += n;
1847 p += target_strlen(p) + 1;
1849 put_user_ual(0, u_argv);
1851 p = info->env_strings;
1852 for (i = 0; i < envc; ++i) {
1853 put_user_ual(p, u_envp);
1854 u_envp += n;
1855 p += target_strlen(p) + 1;
1857 put_user_ual(0, u_envp);
1859 return sp;
1862 unsigned long init_guest_space(unsigned long host_start,
1863 unsigned long host_size,
1864 unsigned long guest_start,
1865 bool fixed)
1867 unsigned long current_start, aligned_start;
1868 int flags;
1870 assert(host_start || host_size);
1872 /* If just a starting address is given, then just verify that
1873 * address. */
1874 if (host_start && !host_size) {
1875 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1876 if (init_guest_commpage(host_start, host_size) != 1) {
1877 return (unsigned long)-1;
1879 #endif
1880 return host_start;
1883 /* Setup the initial flags and start address. */
1884 current_start = host_start & qemu_host_page_mask;
1885 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1886 if (fixed) {
1887 flags |= MAP_FIXED;
1890 /* Otherwise, a non-zero size region of memory needs to be mapped
1891 * and validated. */
1893 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1894 /* On 32-bit ARM, we need to map not just the usable memory, but
1895 * also the commpage. Try to find a suitable place by allocating
1896 * a big chunk for all of it. If host_start, then the naive
1897 * strategy probably does good enough.
1899 if (!host_start) {
1900 unsigned long guest_full_size, host_full_size, real_start;
1902 guest_full_size =
1903 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1904 host_full_size = guest_full_size - guest_start;
1905 real_start = (unsigned long)
1906 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1907 if (real_start == (unsigned long)-1) {
1908 if (host_size < host_full_size - qemu_host_page_size) {
1909 /* We failed to map a continous segment, but we're
1910 * allowed to have a gap between the usable memory and
1911 * the commpage where other things can be mapped.
1912 * This sparseness gives us more flexibility to find
1913 * an address range.
1915 goto naive;
1917 return (unsigned long)-1;
1919 munmap((void *)real_start, host_full_size);
1920 if (real_start & ~qemu_host_page_mask) {
1921 /* The same thing again, but with an extra qemu_host_page_size
1922 * so that we can shift around alignment.
1924 unsigned long real_size = host_full_size + qemu_host_page_size;
1925 real_start = (unsigned long)
1926 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
1927 if (real_start == (unsigned long)-1) {
1928 if (host_size < host_full_size - qemu_host_page_size) {
1929 goto naive;
1931 return (unsigned long)-1;
1933 munmap((void *)real_start, real_size);
1934 real_start = HOST_PAGE_ALIGN(real_start);
1936 current_start = real_start;
1938 naive:
1939 #endif
1941 while (1) {
1942 unsigned long real_start, real_size, aligned_size;
1943 aligned_size = real_size = host_size;
1945 /* Do not use mmap_find_vma here because that is limited to the
1946 * guest address space. We are going to make the
1947 * guest address space fit whatever we're given.
1949 real_start = (unsigned long)
1950 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1951 if (real_start == (unsigned long)-1) {
1952 return (unsigned long)-1;
1955 /* Check to see if the address is valid. */
1956 if (host_start && real_start != current_start) {
1957 goto try_again;
1960 /* Ensure the address is properly aligned. */
1961 if (real_start & ~qemu_host_page_mask) {
1962 /* Ideally, we adjust like
1964 * pages: [ ][ ][ ][ ][ ]
1965 * old: [ real ]
1966 * [ aligned ]
1967 * new: [ real ]
1968 * [ aligned ]
1970 * But if there is something else mapped right after it,
1971 * then obviously it won't have room to grow, and the
1972 * kernel will put the new larger real someplace else with
1973 * unknown alignment (if we made it to here, then
1974 * fixed=false). Which is why we grow real by a full page
1975 * size, instead of by part of one; so that even if we get
1976 * moved, we can still guarantee alignment. But this does
1977 * mean that there is a padding of < 1 page both before
1978 * and after the aligned range; the "after" could could
1979 * cause problems for ARM emulation where it could butt in
1980 * to where we need to put the commpage.
1982 munmap((void *)real_start, host_size);
1983 real_size = aligned_size + qemu_host_page_size;
1984 real_start = (unsigned long)
1985 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1986 if (real_start == (unsigned long)-1) {
1987 return (unsigned long)-1;
1989 aligned_start = HOST_PAGE_ALIGN(real_start);
1990 } else {
1991 aligned_start = real_start;
1994 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1995 /* On 32-bit ARM, we need to also be able to map the commpage. */
1996 int valid = init_guest_commpage(aligned_start - guest_start,
1997 aligned_size + guest_start);
1998 if (valid == -1) {
1999 munmap((void *)real_start, real_size);
2000 return (unsigned long)-1;
2001 } else if (valid == 0) {
2002 goto try_again;
2004 #endif
2006 /* If nothing has said `return -1` or `goto try_again` yet,
2007 * then the address we have is good.
2009 break;
2011 try_again:
2012 /* That address didn't work. Unmap and try a different one.
2013 * The address the host picked because is typically right at
2014 * the top of the host address space and leaves the guest with
2015 * no usable address space. Resort to a linear search. We
2016 * already compensated for mmap_min_addr, so this should not
2017 * happen often. Probably means we got unlucky and host
2018 * address space randomization put a shared library somewhere
2019 * inconvenient.
2021 * This is probably a good strategy if host_start, but is
2022 * probably a bad strategy if not, which means we got here
2023 * because of trouble with ARM commpage setup.
2025 munmap((void *)real_start, real_size);
2026 current_start += qemu_host_page_size;
2027 if (host_start == current_start) {
2028 /* Theoretically possible if host doesn't have any suitably
2029 * aligned areas. Normally the first mmap will fail.
2031 return (unsigned long)-1;
2035 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2037 return aligned_start;
2040 static void probe_guest_base(const char *image_name,
2041 abi_ulong loaddr, abi_ulong hiaddr)
2043 /* Probe for a suitable guest base address, if the user has not set
2044 * it explicitly, and set guest_base appropriately.
2045 * In case of error we will print a suitable message and exit.
2047 const char *errmsg;
2048 if (!have_guest_base && !reserved_va) {
2049 unsigned long host_start, real_start, host_size;
2051 /* Round addresses to page boundaries. */
2052 loaddr &= qemu_host_page_mask;
2053 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2055 if (loaddr < mmap_min_addr) {
2056 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2057 } else {
2058 host_start = loaddr;
2059 if (host_start != loaddr) {
2060 errmsg = "Address overflow loading ELF binary";
2061 goto exit_errmsg;
2064 host_size = hiaddr - loaddr;
2066 /* Setup the initial guest memory space with ranges gleaned from
2067 * the ELF image that is being loaded.
2069 real_start = init_guest_space(host_start, host_size, loaddr, false);
2070 if (real_start == (unsigned long)-1) {
2071 errmsg = "Unable to find space for application";
2072 goto exit_errmsg;
2074 guest_base = real_start - loaddr;
2076 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2077 TARGET_ABI_FMT_lx " to 0x%lx\n",
2078 loaddr, real_start);
2080 return;
2082 exit_errmsg:
2083 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2084 exit(-1);
2088 /* Load an ELF image into the address space.
2090 IMAGE_NAME is the filename of the image, to use in error messages.
2091 IMAGE_FD is the open file descriptor for the image.
2093 BPRM_BUF is a copy of the beginning of the file; this of course
2094 contains the elf file header at offset 0. It is assumed that this
2095 buffer is sufficiently aligned to present no problems to the host
2096 in accessing data at aligned offsets within the buffer.
2098 On return: INFO values will be filled in, as necessary or available. */
2100 static void load_elf_image(const char *image_name, int image_fd,
2101 struct image_info *info, char **pinterp_name,
2102 char bprm_buf[BPRM_BUF_SIZE])
2104 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2105 struct elf_phdr *phdr;
2106 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2107 int i, retval;
2108 const char *errmsg;
2110 /* First of all, some simple consistency checks */
2111 errmsg = "Invalid ELF image for this architecture";
2112 if (!elf_check_ident(ehdr)) {
2113 goto exit_errmsg;
2115 bswap_ehdr(ehdr);
2116 if (!elf_check_ehdr(ehdr)) {
2117 goto exit_errmsg;
2120 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2121 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2122 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2123 } else {
2124 phdr = (struct elf_phdr *) alloca(i);
2125 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2126 if (retval != i) {
2127 goto exit_read;
2130 bswap_phdr(phdr, ehdr->e_phnum);
2132 #ifdef CONFIG_USE_FDPIC
2133 info->nsegs = 0;
2134 info->pt_dynamic_addr = 0;
2135 #endif
2137 mmap_lock();
2139 /* Find the maximum size of the image and allocate an appropriate
2140 amount of memory to handle that. */
2141 loaddr = -1, hiaddr = 0;
2142 for (i = 0; i < ehdr->e_phnum; ++i) {
2143 if (phdr[i].p_type == PT_LOAD) {
2144 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2145 if (a < loaddr) {
2146 loaddr = a;
2148 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2149 if (a > hiaddr) {
2150 hiaddr = a;
2152 #ifdef CONFIG_USE_FDPIC
2153 ++info->nsegs;
2154 #endif
2158 load_addr = loaddr;
2159 if (ehdr->e_type == ET_DYN) {
2160 /* The image indicates that it can be loaded anywhere. Find a
2161 location that can hold the memory space required. If the
2162 image is pre-linked, LOADDR will be non-zero. Since we do
2163 not supply MAP_FIXED here we'll use that address if and
2164 only if it remains available. */
2165 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2166 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2167 -1, 0);
2168 if (load_addr == -1) {
2169 goto exit_perror;
2171 } else if (pinterp_name != NULL) {
2172 /* This is the main executable. Make sure that the low
2173 address does not conflict with MMAP_MIN_ADDR or the
2174 QEMU application itself. */
2175 probe_guest_base(image_name, loaddr, hiaddr);
2177 load_bias = load_addr - loaddr;
2179 #ifdef CONFIG_USE_FDPIC
2181 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2182 g_malloc(sizeof(*loadsegs) * info->nsegs);
2184 for (i = 0; i < ehdr->e_phnum; ++i) {
2185 switch (phdr[i].p_type) {
2186 case PT_DYNAMIC:
2187 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2188 break;
2189 case PT_LOAD:
2190 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2191 loadsegs->p_vaddr = phdr[i].p_vaddr;
2192 loadsegs->p_memsz = phdr[i].p_memsz;
2193 ++loadsegs;
2194 break;
2198 #endif
2200 info->load_bias = load_bias;
2201 info->load_addr = load_addr;
2202 info->entry = ehdr->e_entry + load_bias;
2203 info->start_code = -1;
2204 info->end_code = 0;
2205 info->start_data = -1;
2206 info->end_data = 0;
2207 info->brk = 0;
2208 info->elf_flags = ehdr->e_flags;
2210 for (i = 0; i < ehdr->e_phnum; i++) {
2211 struct elf_phdr *eppnt = phdr + i;
2212 if (eppnt->p_type == PT_LOAD) {
2213 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2214 int elf_prot = 0;
2216 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2217 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2218 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2220 vaddr = load_bias + eppnt->p_vaddr;
2221 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2222 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2224 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2225 elf_prot, MAP_PRIVATE | MAP_FIXED,
2226 image_fd, eppnt->p_offset - vaddr_po);
2227 if (error == -1) {
2228 goto exit_perror;
2231 vaddr_ef = vaddr + eppnt->p_filesz;
2232 vaddr_em = vaddr + eppnt->p_memsz;
2234 /* If the load segment requests extra zeros (e.g. bss), map it. */
2235 if (vaddr_ef < vaddr_em) {
2236 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2239 /* Find the full program boundaries. */
2240 if (elf_prot & PROT_EXEC) {
2241 if (vaddr < info->start_code) {
2242 info->start_code = vaddr;
2244 if (vaddr_ef > info->end_code) {
2245 info->end_code = vaddr_ef;
2248 if (elf_prot & PROT_WRITE) {
2249 if (vaddr < info->start_data) {
2250 info->start_data = vaddr;
2252 if (vaddr_ef > info->end_data) {
2253 info->end_data = vaddr_ef;
2255 if (vaddr_em > info->brk) {
2256 info->brk = vaddr_em;
2259 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2260 char *interp_name;
2262 if (*pinterp_name) {
2263 errmsg = "Multiple PT_INTERP entries";
2264 goto exit_errmsg;
2266 interp_name = malloc(eppnt->p_filesz);
2267 if (!interp_name) {
2268 goto exit_perror;
2271 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2272 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2273 eppnt->p_filesz);
2274 } else {
2275 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2276 eppnt->p_offset);
2277 if (retval != eppnt->p_filesz) {
2278 goto exit_perror;
2281 if (interp_name[eppnt->p_filesz - 1] != 0) {
2282 errmsg = "Invalid PT_INTERP entry";
2283 goto exit_errmsg;
2285 *pinterp_name = interp_name;
2289 if (info->end_data == 0) {
2290 info->start_data = info->end_code;
2291 info->end_data = info->end_code;
2292 info->brk = info->end_code;
2295 if (qemu_log_enabled()) {
2296 load_symbols(ehdr, image_fd, load_bias);
2299 mmap_unlock();
2301 close(image_fd);
2302 return;
2304 exit_read:
2305 if (retval >= 0) {
2306 errmsg = "Incomplete read of file header";
2307 goto exit_errmsg;
2309 exit_perror:
2310 errmsg = strerror(errno);
2311 exit_errmsg:
2312 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2313 exit(-1);
2316 static void load_elf_interp(const char *filename, struct image_info *info,
2317 char bprm_buf[BPRM_BUF_SIZE])
2319 int fd, retval;
2321 fd = open(path(filename), O_RDONLY);
2322 if (fd < 0) {
2323 goto exit_perror;
2326 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2327 if (retval < 0) {
2328 goto exit_perror;
2330 if (retval < BPRM_BUF_SIZE) {
2331 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2334 load_elf_image(filename, fd, info, NULL, bprm_buf);
2335 return;
2337 exit_perror:
2338 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2339 exit(-1);
2342 static int symfind(const void *s0, const void *s1)
2344 target_ulong addr = *(target_ulong *)s0;
2345 struct elf_sym *sym = (struct elf_sym *)s1;
2346 int result = 0;
2347 if (addr < sym->st_value) {
2348 result = -1;
2349 } else if (addr >= sym->st_value + sym->st_size) {
2350 result = 1;
2352 return result;
2355 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2357 #if ELF_CLASS == ELFCLASS32
2358 struct elf_sym *syms = s->disas_symtab.elf32;
2359 #else
2360 struct elf_sym *syms = s->disas_symtab.elf64;
2361 #endif
2363 // binary search
2364 struct elf_sym *sym;
2366 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2367 if (sym != NULL) {
2368 return s->disas_strtab + sym->st_name;
2371 return "";
2374 /* FIXME: This should use elf_ops.h */
2375 static int symcmp(const void *s0, const void *s1)
2377 struct elf_sym *sym0 = (struct elf_sym *)s0;
2378 struct elf_sym *sym1 = (struct elf_sym *)s1;
2379 return (sym0->st_value < sym1->st_value)
2380 ? -1
2381 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2384 /* Best attempt to load symbols from this ELF object. */
2385 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2387 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2388 uint64_t segsz;
2389 struct elf_shdr *shdr;
2390 char *strings = NULL;
2391 struct syminfo *s = NULL;
2392 struct elf_sym *new_syms, *syms = NULL;
2394 shnum = hdr->e_shnum;
2395 i = shnum * sizeof(struct elf_shdr);
2396 shdr = (struct elf_shdr *)alloca(i);
2397 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2398 return;
2401 bswap_shdr(shdr, shnum);
2402 for (i = 0; i < shnum; ++i) {
2403 if (shdr[i].sh_type == SHT_SYMTAB) {
2404 sym_idx = i;
2405 str_idx = shdr[i].sh_link;
2406 goto found;
2410 /* There will be no symbol table if the file was stripped. */
2411 return;
2413 found:
2414 /* Now know where the strtab and symtab are. Snarf them. */
2415 s = g_try_new(struct syminfo, 1);
2416 if (!s) {
2417 goto give_up;
2420 segsz = shdr[str_idx].sh_size;
2421 s->disas_strtab = strings = g_try_malloc(segsz);
2422 if (!strings ||
2423 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2424 goto give_up;
2427 segsz = shdr[sym_idx].sh_size;
2428 syms = g_try_malloc(segsz);
2429 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2430 goto give_up;
2433 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2434 /* Implausibly large symbol table: give up rather than ploughing
2435 * on with the number of symbols calculation overflowing
2437 goto give_up;
2439 nsyms = segsz / sizeof(struct elf_sym);
2440 for (i = 0; i < nsyms; ) {
2441 bswap_sym(syms + i);
2442 /* Throw away entries which we do not need. */
2443 if (syms[i].st_shndx == SHN_UNDEF
2444 || syms[i].st_shndx >= SHN_LORESERVE
2445 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2446 if (i < --nsyms) {
2447 syms[i] = syms[nsyms];
2449 } else {
2450 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2451 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2452 syms[i].st_value &= ~(target_ulong)1;
2453 #endif
2454 syms[i].st_value += load_bias;
2455 i++;
2459 /* No "useful" symbol. */
2460 if (nsyms == 0) {
2461 goto give_up;
2464 /* Attempt to free the storage associated with the local symbols
2465 that we threw away. Whether or not this has any effect on the
2466 memory allocation depends on the malloc implementation and how
2467 many symbols we managed to discard. */
2468 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2469 if (new_syms == NULL) {
2470 goto give_up;
2472 syms = new_syms;
2474 qsort(syms, nsyms, sizeof(*syms), symcmp);
2476 s->disas_num_syms = nsyms;
2477 #if ELF_CLASS == ELFCLASS32
2478 s->disas_symtab.elf32 = syms;
2479 #else
2480 s->disas_symtab.elf64 = syms;
2481 #endif
2482 s->lookup_symbol = lookup_symbolxx;
2483 s->next = syminfos;
2484 syminfos = s;
2486 return;
2488 give_up:
2489 g_free(s);
2490 g_free(strings);
2491 g_free(syms);
2494 uint32_t get_elf_eflags(int fd)
2496 struct elfhdr ehdr;
2497 off_t offset;
2498 int ret;
2500 /* Read ELF header */
2501 offset = lseek(fd, 0, SEEK_SET);
2502 if (offset == (off_t) -1) {
2503 return 0;
2505 ret = read(fd, &ehdr, sizeof(ehdr));
2506 if (ret < sizeof(ehdr)) {
2507 return 0;
2509 offset = lseek(fd, offset, SEEK_SET);
2510 if (offset == (off_t) -1) {
2511 return 0;
2514 /* Check ELF signature */
2515 if (!elf_check_ident(&ehdr)) {
2516 return 0;
2519 /* check header */
2520 bswap_ehdr(&ehdr);
2521 if (!elf_check_ehdr(&ehdr)) {
2522 return 0;
2525 /* return architecture id */
2526 return ehdr.e_flags;
2529 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2531 struct image_info interp_info;
2532 struct elfhdr elf_ex;
2533 char *elf_interpreter = NULL;
2534 char *scratch;
2536 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2538 load_elf_image(bprm->filename, bprm->fd, info,
2539 &elf_interpreter, bprm->buf);
2541 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2542 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2543 when we load the interpreter. */
2544 elf_ex = *(struct elfhdr *)bprm->buf;
2546 /* Do this so that we can load the interpreter, if need be. We will
2547 change some of these later */
2548 bprm->p = setup_arg_pages(bprm, info);
2550 scratch = g_new0(char, TARGET_PAGE_SIZE);
2551 if (STACK_GROWS_DOWN) {
2552 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2553 bprm->p, info->stack_limit);
2554 info->file_string = bprm->p;
2555 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2556 bprm->p, info->stack_limit);
2557 info->env_strings = bprm->p;
2558 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2559 bprm->p, info->stack_limit);
2560 info->arg_strings = bprm->p;
2561 } else {
2562 info->arg_strings = bprm->p;
2563 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2564 bprm->p, info->stack_limit);
2565 info->env_strings = bprm->p;
2566 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2567 bprm->p, info->stack_limit);
2568 info->file_string = bprm->p;
2569 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2570 bprm->p, info->stack_limit);
2573 g_free(scratch);
2575 if (!bprm->p) {
2576 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2577 exit(-1);
2580 if (elf_interpreter) {
2581 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2583 /* If the program interpreter is one of these two, then assume
2584 an iBCS2 image. Otherwise assume a native linux image. */
2586 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2587 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2588 info->personality = PER_SVR4;
2590 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2591 and some applications "depend" upon this behavior. Since
2592 we do not have the power to recompile these, we emulate
2593 the SVr4 behavior. Sigh. */
2594 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2595 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2599 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2600 info, (elf_interpreter ? &interp_info : NULL));
2601 info->start_stack = bprm->p;
2603 /* If we have an interpreter, set that as the program's entry point.
2604 Copy the load_bias as well, to help PPC64 interpret the entry
2605 point as a function descriptor. Do this after creating elf tables
2606 so that we copy the original program entry point into the AUXV. */
2607 if (elf_interpreter) {
2608 info->load_bias = interp_info.load_bias;
2609 info->entry = interp_info.entry;
2610 free(elf_interpreter);
2613 #ifdef USE_ELF_CORE_DUMP
2614 bprm->core_dump = &elf_core_dump;
2615 #endif
2617 return 0;
2620 #ifdef USE_ELF_CORE_DUMP
2622 * Definitions to generate Intel SVR4-like core files.
2623 * These mostly have the same names as the SVR4 types with "target_elf_"
2624 * tacked on the front to prevent clashes with linux definitions,
2625 * and the typedef forms have been avoided. This is mostly like
2626 * the SVR4 structure, but more Linuxy, with things that Linux does
2627 * not support and which gdb doesn't really use excluded.
2629 * Fields we don't dump (their contents is zero) in linux-user qemu
2630 * are marked with XXX.
2632 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2634 * Porting ELF coredump for target is (quite) simple process. First you
2635 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2636 * the target resides):
2638 * #define USE_ELF_CORE_DUMP
2640 * Next you define type of register set used for dumping. ELF specification
2641 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2643 * typedef <target_regtype> target_elf_greg_t;
2644 * #define ELF_NREG <number of registers>
2645 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2647 * Last step is to implement target specific function that copies registers
2648 * from given cpu into just specified register set. Prototype is:
2650 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2651 * const CPUArchState *env);
2653 * Parameters:
2654 * regs - copy register values into here (allocated and zeroed by caller)
2655 * env - copy registers from here
2657 * Example for ARM target is provided in this file.
2660 /* An ELF note in memory */
2661 struct memelfnote {
2662 const char *name;
2663 size_t namesz;
2664 size_t namesz_rounded;
2665 int type;
2666 size_t datasz;
2667 size_t datasz_rounded;
2668 void *data;
2669 size_t notesz;
2672 struct target_elf_siginfo {
2673 abi_int si_signo; /* signal number */
2674 abi_int si_code; /* extra code */
2675 abi_int si_errno; /* errno */
2678 struct target_elf_prstatus {
2679 struct target_elf_siginfo pr_info; /* Info associated with signal */
2680 abi_short pr_cursig; /* Current signal */
2681 abi_ulong pr_sigpend; /* XXX */
2682 abi_ulong pr_sighold; /* XXX */
2683 target_pid_t pr_pid;
2684 target_pid_t pr_ppid;
2685 target_pid_t pr_pgrp;
2686 target_pid_t pr_sid;
2687 struct target_timeval pr_utime; /* XXX User time */
2688 struct target_timeval pr_stime; /* XXX System time */
2689 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2690 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2691 target_elf_gregset_t pr_reg; /* GP registers */
2692 abi_int pr_fpvalid; /* XXX */
2695 #define ELF_PRARGSZ (80) /* Number of chars for args */
2697 struct target_elf_prpsinfo {
2698 char pr_state; /* numeric process state */
2699 char pr_sname; /* char for pr_state */
2700 char pr_zomb; /* zombie */
2701 char pr_nice; /* nice val */
2702 abi_ulong pr_flag; /* flags */
2703 target_uid_t pr_uid;
2704 target_gid_t pr_gid;
2705 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2706 /* Lots missing */
2707 char pr_fname[16]; /* filename of executable */
2708 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2711 /* Here is the structure in which status of each thread is captured. */
2712 struct elf_thread_status {
2713 QTAILQ_ENTRY(elf_thread_status) ets_link;
2714 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2715 #if 0
2716 elf_fpregset_t fpu; /* NT_PRFPREG */
2717 struct task_struct *thread;
2718 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2719 #endif
2720 struct memelfnote notes[1];
2721 int num_notes;
2724 struct elf_note_info {
2725 struct memelfnote *notes;
2726 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2727 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2729 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2730 #if 0
2732 * Current version of ELF coredump doesn't support
2733 * dumping fp regs etc.
2735 elf_fpregset_t *fpu;
2736 elf_fpxregset_t *xfpu;
2737 int thread_status_size;
2738 #endif
2739 int notes_size;
2740 int numnote;
2743 struct vm_area_struct {
2744 target_ulong vma_start; /* start vaddr of memory region */
2745 target_ulong vma_end; /* end vaddr of memory region */
2746 abi_ulong vma_flags; /* protection etc. flags for the region */
2747 QTAILQ_ENTRY(vm_area_struct) vma_link;
2750 struct mm_struct {
2751 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2752 int mm_count; /* number of mappings */
2755 static struct mm_struct *vma_init(void);
2756 static void vma_delete(struct mm_struct *);
2757 static int vma_add_mapping(struct mm_struct *, target_ulong,
2758 target_ulong, abi_ulong);
2759 static int vma_get_mapping_count(const struct mm_struct *);
2760 static struct vm_area_struct *vma_first(const struct mm_struct *);
2761 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2762 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2763 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2764 unsigned long flags);
2766 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2767 static void fill_note(struct memelfnote *, const char *, int,
2768 unsigned int, void *);
2769 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2770 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2771 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2772 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2773 static size_t note_size(const struct memelfnote *);
2774 static void free_note_info(struct elf_note_info *);
2775 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2776 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2777 static int core_dump_filename(const TaskState *, char *, size_t);
2779 static int dump_write(int, const void *, size_t);
2780 static int write_note(struct memelfnote *, int);
2781 static int write_note_info(struct elf_note_info *, int);
2783 #ifdef BSWAP_NEEDED
2784 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2786 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2787 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2788 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2789 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2790 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2791 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2792 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2793 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2794 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2795 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2796 /* cpu times are not filled, so we skip them */
2797 /* regs should be in correct format already */
2798 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2801 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2803 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2804 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2805 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2806 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2807 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2808 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2809 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2812 static void bswap_note(struct elf_note *en)
2814 bswap32s(&en->n_namesz);
2815 bswap32s(&en->n_descsz);
2816 bswap32s(&en->n_type);
2818 #else
2819 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2820 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2821 static inline void bswap_note(struct elf_note *en) { }
2822 #endif /* BSWAP_NEEDED */
2825 * Minimal support for linux memory regions. These are needed
2826 * when we are finding out what memory exactly belongs to
2827 * emulated process. No locks needed here, as long as
2828 * thread that received the signal is stopped.
2831 static struct mm_struct *vma_init(void)
2833 struct mm_struct *mm;
2835 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2836 return (NULL);
2838 mm->mm_count = 0;
2839 QTAILQ_INIT(&mm->mm_mmap);
2841 return (mm);
2844 static void vma_delete(struct mm_struct *mm)
2846 struct vm_area_struct *vma;
2848 while ((vma = vma_first(mm)) != NULL) {
2849 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2850 g_free(vma);
2852 g_free(mm);
2855 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2856 target_ulong end, abi_ulong flags)
2858 struct vm_area_struct *vma;
2860 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2861 return (-1);
2863 vma->vma_start = start;
2864 vma->vma_end = end;
2865 vma->vma_flags = flags;
2867 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2868 mm->mm_count++;
2870 return (0);
2873 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2875 return (QTAILQ_FIRST(&mm->mm_mmap));
2878 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2880 return (QTAILQ_NEXT(vma, vma_link));
2883 static int vma_get_mapping_count(const struct mm_struct *mm)
2885 return (mm->mm_count);
2889 * Calculate file (dump) size of given memory region.
2891 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2893 /* if we cannot even read the first page, skip it */
2894 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2895 return (0);
2898 * Usually we don't dump executable pages as they contain
2899 * non-writable code that debugger can read directly from
2900 * target library etc. However, thread stacks are marked
2901 * also executable so we read in first page of given region
2902 * and check whether it contains elf header. If there is
2903 * no elf header, we dump it.
2905 if (vma->vma_flags & PROT_EXEC) {
2906 char page[TARGET_PAGE_SIZE];
2908 copy_from_user(page, vma->vma_start, sizeof (page));
2909 if ((page[EI_MAG0] == ELFMAG0) &&
2910 (page[EI_MAG1] == ELFMAG1) &&
2911 (page[EI_MAG2] == ELFMAG2) &&
2912 (page[EI_MAG3] == ELFMAG3)) {
2914 * Mappings are possibly from ELF binary. Don't dump
2915 * them.
2917 return (0);
2921 return (vma->vma_end - vma->vma_start);
2924 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2925 unsigned long flags)
2927 struct mm_struct *mm = (struct mm_struct *)priv;
2929 vma_add_mapping(mm, start, end, flags);
2930 return (0);
2933 static void fill_note(struct memelfnote *note, const char *name, int type,
2934 unsigned int sz, void *data)
2936 unsigned int namesz;
2938 namesz = strlen(name) + 1;
2939 note->name = name;
2940 note->namesz = namesz;
2941 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2942 note->type = type;
2943 note->datasz = sz;
2944 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2946 note->data = data;
2949 * We calculate rounded up note size here as specified by
2950 * ELF document.
2952 note->notesz = sizeof (struct elf_note) +
2953 note->namesz_rounded + note->datasz_rounded;
2956 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2957 uint32_t flags)
2959 (void) memset(elf, 0, sizeof(*elf));
2961 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2962 elf->e_ident[EI_CLASS] = ELF_CLASS;
2963 elf->e_ident[EI_DATA] = ELF_DATA;
2964 elf->e_ident[EI_VERSION] = EV_CURRENT;
2965 elf->e_ident[EI_OSABI] = ELF_OSABI;
2967 elf->e_type = ET_CORE;
2968 elf->e_machine = machine;
2969 elf->e_version = EV_CURRENT;
2970 elf->e_phoff = sizeof(struct elfhdr);
2971 elf->e_flags = flags;
2972 elf->e_ehsize = sizeof(struct elfhdr);
2973 elf->e_phentsize = sizeof(struct elf_phdr);
2974 elf->e_phnum = segs;
2976 bswap_ehdr(elf);
2979 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2981 phdr->p_type = PT_NOTE;
2982 phdr->p_offset = offset;
2983 phdr->p_vaddr = 0;
2984 phdr->p_paddr = 0;
2985 phdr->p_filesz = sz;
2986 phdr->p_memsz = 0;
2987 phdr->p_flags = 0;
2988 phdr->p_align = 0;
2990 bswap_phdr(phdr, 1);
2993 static size_t note_size(const struct memelfnote *note)
2995 return (note->notesz);
2998 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2999 const TaskState *ts, int signr)
3001 (void) memset(prstatus, 0, sizeof (*prstatus));
3002 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3003 prstatus->pr_pid = ts->ts_tid;
3004 prstatus->pr_ppid = getppid();
3005 prstatus->pr_pgrp = getpgrp();
3006 prstatus->pr_sid = getsid(0);
3008 bswap_prstatus(prstatus);
3011 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3013 char *base_filename;
3014 unsigned int i, len;
3016 (void) memset(psinfo, 0, sizeof (*psinfo));
3018 len = ts->info->arg_end - ts->info->arg_start;
3019 if (len >= ELF_PRARGSZ)
3020 len = ELF_PRARGSZ - 1;
3021 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3022 return -EFAULT;
3023 for (i = 0; i < len; i++)
3024 if (psinfo->pr_psargs[i] == 0)
3025 psinfo->pr_psargs[i] = ' ';
3026 psinfo->pr_psargs[len] = 0;
3028 psinfo->pr_pid = getpid();
3029 psinfo->pr_ppid = getppid();
3030 psinfo->pr_pgrp = getpgrp();
3031 psinfo->pr_sid = getsid(0);
3032 psinfo->pr_uid = getuid();
3033 psinfo->pr_gid = getgid();
3035 base_filename = g_path_get_basename(ts->bprm->filename);
3037 * Using strncpy here is fine: at max-length,
3038 * this field is not NUL-terminated.
3040 (void) strncpy(psinfo->pr_fname, base_filename,
3041 sizeof(psinfo->pr_fname));
3043 g_free(base_filename);
3044 bswap_psinfo(psinfo);
3045 return (0);
3048 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3050 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3051 elf_addr_t orig_auxv = auxv;
3052 void *ptr;
3053 int len = ts->info->auxv_len;
3056 * Auxiliary vector is stored in target process stack. It contains
3057 * {type, value} pairs that we need to dump into note. This is not
3058 * strictly necessary but we do it here for sake of completeness.
3061 /* read in whole auxv vector and copy it to memelfnote */
3062 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3063 if (ptr != NULL) {
3064 fill_note(note, "CORE", NT_AUXV, len, ptr);
3065 unlock_user(ptr, auxv, len);
3070 * Constructs name of coredump file. We have following convention
3071 * for the name:
3072 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3074 * Returns 0 in case of success, -1 otherwise (errno is set).
3076 static int core_dump_filename(const TaskState *ts, char *buf,
3077 size_t bufsize)
3079 char timestamp[64];
3080 char *base_filename = NULL;
3081 struct timeval tv;
3082 struct tm tm;
3084 assert(bufsize >= PATH_MAX);
3086 if (gettimeofday(&tv, NULL) < 0) {
3087 (void) fprintf(stderr, "unable to get current timestamp: %s",
3088 strerror(errno));
3089 return (-1);
3092 base_filename = g_path_get_basename(ts->bprm->filename);
3093 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3094 localtime_r(&tv.tv_sec, &tm));
3095 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3096 base_filename, timestamp, (int)getpid());
3097 g_free(base_filename);
3099 return (0);
3102 static int dump_write(int fd, const void *ptr, size_t size)
3104 const char *bufp = (const char *)ptr;
3105 ssize_t bytes_written, bytes_left;
3106 struct rlimit dumpsize;
3107 off_t pos;
3109 bytes_written = 0;
3110 getrlimit(RLIMIT_CORE, &dumpsize);
3111 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3112 if (errno == ESPIPE) { /* not a seekable stream */
3113 bytes_left = size;
3114 } else {
3115 return pos;
3117 } else {
3118 if (dumpsize.rlim_cur <= pos) {
3119 return -1;
3120 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3121 bytes_left = size;
3122 } else {
3123 size_t limit_left=dumpsize.rlim_cur - pos;
3124 bytes_left = limit_left >= size ? size : limit_left ;
3129 * In normal conditions, single write(2) should do but
3130 * in case of socket etc. this mechanism is more portable.
3132 do {
3133 bytes_written = write(fd, bufp, bytes_left);
3134 if (bytes_written < 0) {
3135 if (errno == EINTR)
3136 continue;
3137 return (-1);
3138 } else if (bytes_written == 0) { /* eof */
3139 return (-1);
3141 bufp += bytes_written;
3142 bytes_left -= bytes_written;
3143 } while (bytes_left > 0);
3145 return (0);
3148 static int write_note(struct memelfnote *men, int fd)
3150 struct elf_note en;
3152 en.n_namesz = men->namesz;
3153 en.n_type = men->type;
3154 en.n_descsz = men->datasz;
3156 bswap_note(&en);
3158 if (dump_write(fd, &en, sizeof(en)) != 0)
3159 return (-1);
3160 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3161 return (-1);
3162 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3163 return (-1);
3165 return (0);
3168 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3170 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3171 TaskState *ts = (TaskState *)cpu->opaque;
3172 struct elf_thread_status *ets;
3174 ets = g_malloc0(sizeof (*ets));
3175 ets->num_notes = 1; /* only prstatus is dumped */
3176 fill_prstatus(&ets->prstatus, ts, 0);
3177 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3178 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3179 &ets->prstatus);
3181 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3183 info->notes_size += note_size(&ets->notes[0]);
3186 static void init_note_info(struct elf_note_info *info)
3188 /* Initialize the elf_note_info structure so that it is at
3189 * least safe to call free_note_info() on it. Must be
3190 * called before calling fill_note_info().
3192 memset(info, 0, sizeof (*info));
3193 QTAILQ_INIT(&info->thread_list);
3196 static int fill_note_info(struct elf_note_info *info,
3197 long signr, const CPUArchState *env)
3199 #define NUMNOTES 3
3200 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3201 TaskState *ts = (TaskState *)cpu->opaque;
3202 int i;
3204 info->notes = g_new0(struct memelfnote, NUMNOTES);
3205 if (info->notes == NULL)
3206 return (-ENOMEM);
3207 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3208 if (info->prstatus == NULL)
3209 return (-ENOMEM);
3210 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3211 if (info->prstatus == NULL)
3212 return (-ENOMEM);
3215 * First fill in status (and registers) of current thread
3216 * including process info & aux vector.
3218 fill_prstatus(info->prstatus, ts, signr);
3219 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3220 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3221 sizeof (*info->prstatus), info->prstatus);
3222 fill_psinfo(info->psinfo, ts);
3223 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3224 sizeof (*info->psinfo), info->psinfo);
3225 fill_auxv_note(&info->notes[2], ts);
3226 info->numnote = 3;
3228 info->notes_size = 0;
3229 for (i = 0; i < info->numnote; i++)
3230 info->notes_size += note_size(&info->notes[i]);
3232 /* read and fill status of all threads */
3233 cpu_list_lock();
3234 CPU_FOREACH(cpu) {
3235 if (cpu == thread_cpu) {
3236 continue;
3238 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3240 cpu_list_unlock();
3242 return (0);
3245 static void free_note_info(struct elf_note_info *info)
3247 struct elf_thread_status *ets;
3249 while (!QTAILQ_EMPTY(&info->thread_list)) {
3250 ets = QTAILQ_FIRST(&info->thread_list);
3251 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3252 g_free(ets);
3255 g_free(info->prstatus);
3256 g_free(info->psinfo);
3257 g_free(info->notes);
3260 static int write_note_info(struct elf_note_info *info, int fd)
3262 struct elf_thread_status *ets;
3263 int i, error = 0;
3265 /* write prstatus, psinfo and auxv for current thread */
3266 for (i = 0; i < info->numnote; i++)
3267 if ((error = write_note(&info->notes[i], fd)) != 0)
3268 return (error);
3270 /* write prstatus for each thread */
3271 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3272 if ((error = write_note(&ets->notes[0], fd)) != 0)
3273 return (error);
3276 return (0);
3280 * Write out ELF coredump.
3282 * See documentation of ELF object file format in:
3283 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3285 * Coredump format in linux is following:
3287 * 0 +----------------------+ \
3288 * | ELF header | ET_CORE |
3289 * +----------------------+ |
3290 * | ELF program headers | |--- headers
3291 * | - NOTE section | |
3292 * | - PT_LOAD sections | |
3293 * +----------------------+ /
3294 * | NOTEs: |
3295 * | - NT_PRSTATUS |
3296 * | - NT_PRSINFO |
3297 * | - NT_AUXV |
3298 * +----------------------+ <-- aligned to target page
3299 * | Process memory dump |
3300 * : :
3301 * . .
3302 * : :
3303 * | |
3304 * +----------------------+
3306 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3307 * NT_PRSINFO -> struct elf_prpsinfo
3308 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3310 * Format follows System V format as close as possible. Current
3311 * version limitations are as follows:
3312 * - no floating point registers are dumped
3314 * Function returns 0 in case of success, negative errno otherwise.
3316 * TODO: make this work also during runtime: it should be
3317 * possible to force coredump from running process and then
3318 * continue processing. For example qemu could set up SIGUSR2
3319 * handler (provided that target process haven't registered
3320 * handler for that) that does the dump when signal is received.
3322 static int elf_core_dump(int signr, const CPUArchState *env)
3324 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3325 const TaskState *ts = (const TaskState *)cpu->opaque;
3326 struct vm_area_struct *vma = NULL;
3327 char corefile[PATH_MAX];
3328 struct elf_note_info info;
3329 struct elfhdr elf;
3330 struct elf_phdr phdr;
3331 struct rlimit dumpsize;
3332 struct mm_struct *mm = NULL;
3333 off_t offset = 0, data_offset = 0;
3334 int segs = 0;
3335 int fd = -1;
3337 init_note_info(&info);
3339 errno = 0;
3340 getrlimit(RLIMIT_CORE, &dumpsize);
3341 if (dumpsize.rlim_cur == 0)
3342 return 0;
3344 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3345 return (-errno);
3347 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3348 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3349 return (-errno);
3352 * Walk through target process memory mappings and
3353 * set up structure containing this information. After
3354 * this point vma_xxx functions can be used.
3356 if ((mm = vma_init()) == NULL)
3357 goto out;
3359 walk_memory_regions(mm, vma_walker);
3360 segs = vma_get_mapping_count(mm);
3363 * Construct valid coredump ELF header. We also
3364 * add one more segment for notes.
3366 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3367 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3368 goto out;
3370 /* fill in the in-memory version of notes */
3371 if (fill_note_info(&info, signr, env) < 0)
3372 goto out;
3374 offset += sizeof (elf); /* elf header */
3375 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3377 /* write out notes program header */
3378 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3380 offset += info.notes_size;
3381 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3382 goto out;
3385 * ELF specification wants data to start at page boundary so
3386 * we align it here.
3388 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3391 * Write program headers for memory regions mapped in
3392 * the target process.
3394 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3395 (void) memset(&phdr, 0, sizeof (phdr));
3397 phdr.p_type = PT_LOAD;
3398 phdr.p_offset = offset;
3399 phdr.p_vaddr = vma->vma_start;
3400 phdr.p_paddr = 0;
3401 phdr.p_filesz = vma_dump_size(vma);
3402 offset += phdr.p_filesz;
3403 phdr.p_memsz = vma->vma_end - vma->vma_start;
3404 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3405 if (vma->vma_flags & PROT_WRITE)
3406 phdr.p_flags |= PF_W;
3407 if (vma->vma_flags & PROT_EXEC)
3408 phdr.p_flags |= PF_X;
3409 phdr.p_align = ELF_EXEC_PAGESIZE;
3411 bswap_phdr(&phdr, 1);
3412 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3413 goto out;
3418 * Next we write notes just after program headers. No
3419 * alignment needed here.
3421 if (write_note_info(&info, fd) < 0)
3422 goto out;
3424 /* align data to page boundary */
3425 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3426 goto out;
3429 * Finally we can dump process memory into corefile as well.
3431 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3432 abi_ulong addr;
3433 abi_ulong end;
3435 end = vma->vma_start + vma_dump_size(vma);
3437 for (addr = vma->vma_start; addr < end;
3438 addr += TARGET_PAGE_SIZE) {
3439 char page[TARGET_PAGE_SIZE];
3440 int error;
3443 * Read in page from target process memory and
3444 * write it to coredump file.
3446 error = copy_from_user(page, addr, sizeof (page));
3447 if (error != 0) {
3448 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3449 addr);
3450 errno = -error;
3451 goto out;
3453 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3454 goto out;
3458 out:
3459 free_note_info(&info);
3460 if (mm != NULL)
3461 vma_delete(mm);
3462 (void) close(fd);
3464 if (errno != 0)
3465 return (-errno);
3466 return (0);
3468 #endif /* USE_ELF_CORE_DUMP */
3470 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3472 init_thread(regs, infop);