2 * MIPS emulation helpers for qemu.
4 * Copyright (c) 2004-2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "host-utils.h"
25 /*****************************************************************************/
26 /* Exceptions processing helpers */
28 void helper_raise_exception_err (uint32_t exception
, int error_code
)
31 if (exception
< 0x100)
32 qemu_log("%s: %d %d\n", __func__
, exception
, error_code
);
34 env
->exception_index
= exception
;
35 env
->error_code
= error_code
;
39 void helper_raise_exception (uint32_t exception
)
41 helper_raise_exception_err(exception
, 0);
44 void helper_interrupt_restart (void)
46 if (!(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
47 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
48 !(env
->hflags
& MIPS_HFLAG_DM
) &&
49 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
50 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
)) {
51 env
->CP0_Cause
&= ~(0x1f << CP0Ca_EC
);
52 helper_raise_exception(EXCP_EXT_INTERRUPT
);
56 #if !defined(CONFIG_USER_ONLY)
57 static void do_restore_state (void *pc_ptr
)
60 unsigned long pc
= (unsigned long) pc_ptr
;
64 cpu_restore_state (tb
, env
, pc
, NULL
);
69 #if defined(CONFIG_USER_ONLY)
70 #define HELPER_LD(name, insn, type) \
71 static inline type do_##name(target_ulong addr, int mem_idx) \
73 return (type) insn##_raw(addr); \
76 #define HELPER_LD(name, insn, type) \
77 static inline type do_##name(target_ulong addr, int mem_idx) \
81 case 0: return (type) insn##_kernel(addr); break; \
82 case 1: return (type) insn##_super(addr); break; \
84 case 2: return (type) insn##_user(addr); break; \
88 HELPER_LD(lbu
, ldub
, uint8_t)
89 HELPER_LD(lw
, ldl
, int32_t)
91 HELPER_LD(ld
, ldq
, int64_t)
95 #if defined(CONFIG_USER_ONLY)
96 #define HELPER_ST(name, insn, type) \
97 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
99 insn##_raw(addr, val); \
102 #define HELPER_ST(name, insn, type) \
103 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
107 case 0: insn##_kernel(addr, val); break; \
108 case 1: insn##_super(addr, val); break; \
110 case 2: insn##_user(addr, val); break; \
114 HELPER_ST(sb
, stb
, uint8_t)
115 HELPER_ST(sw
, stl
, uint32_t)
117 HELPER_ST(sd
, stq
, uint64_t)
121 target_ulong
helper_clo (target_ulong arg1
)
126 target_ulong
helper_clz (target_ulong arg1
)
131 #if defined(TARGET_MIPS64)
132 target_ulong
helper_dclo (target_ulong arg1
)
137 target_ulong
helper_dclz (target_ulong arg1
)
141 #endif /* TARGET_MIPS64 */
143 /* 64 bits arithmetic for 32 bits hosts */
144 static inline uint64_t get_HILO (void)
146 return ((uint64_t)(env
->active_tc
.HI
[0]) << 32) | (uint32_t)env
->active_tc
.LO
[0];
149 static inline void set_HILO (uint64_t HILO
)
151 env
->active_tc
.LO
[0] = (int32_t)HILO
;
152 env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
155 static inline void set_HIT0_LO (target_ulong arg1
, uint64_t HILO
)
157 env
->active_tc
.LO
[0] = (int32_t)(HILO
& 0xFFFFFFFF);
158 arg1
= env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
161 static inline void set_HI_LOT0 (target_ulong arg1
, uint64_t HILO
)
163 arg1
= env
->active_tc
.LO
[0] = (int32_t)(HILO
& 0xFFFFFFFF);
164 env
->active_tc
.HI
[0] = (int32_t)(HILO
>> 32);
167 /* Multiplication variants of the vr54xx. */
168 target_ulong
helper_muls (target_ulong arg1
, target_ulong arg2
)
170 set_HI_LOT0(arg1
, 0 - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
175 target_ulong
helper_mulsu (target_ulong arg1
, target_ulong arg2
)
177 set_HI_LOT0(arg1
, 0 - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
182 target_ulong
helper_macc (target_ulong arg1
, target_ulong arg2
)
184 set_HI_LOT0(arg1
, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
189 target_ulong
helper_macchi (target_ulong arg1
, target_ulong arg2
)
191 set_HIT0_LO(arg1
, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
196 target_ulong
helper_maccu (target_ulong arg1
, target_ulong arg2
)
198 set_HI_LOT0(arg1
, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
203 target_ulong
helper_macchiu (target_ulong arg1
, target_ulong arg2
)
205 set_HIT0_LO(arg1
, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
210 target_ulong
helper_msac (target_ulong arg1
, target_ulong arg2
)
212 set_HI_LOT0(arg1
, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
217 target_ulong
helper_msachi (target_ulong arg1
, target_ulong arg2
)
219 set_HIT0_LO(arg1
, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
224 target_ulong
helper_msacu (target_ulong arg1
, target_ulong arg2
)
226 set_HI_LOT0(arg1
, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
231 target_ulong
helper_msachiu (target_ulong arg1
, target_ulong arg2
)
233 set_HIT0_LO(arg1
, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
238 target_ulong
helper_mulhi (target_ulong arg1
, target_ulong arg2
)
240 set_HIT0_LO(arg1
, (int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
);
245 target_ulong
helper_mulhiu (target_ulong arg1
, target_ulong arg2
)
247 set_HIT0_LO(arg1
, (uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
);
252 target_ulong
helper_mulshi (target_ulong arg1
, target_ulong arg2
)
254 set_HIT0_LO(arg1
, 0 - ((int64_t)(int32_t)arg1
* (int64_t)(int32_t)arg2
));
259 target_ulong
helper_mulshiu (target_ulong arg1
, target_ulong arg2
)
261 set_HIT0_LO(arg1
, 0 - ((uint64_t)(uint32_t)arg1
* (uint64_t)(uint32_t)arg2
));
267 void helper_dmult (target_ulong arg1
, target_ulong arg2
)
269 muls64(&(env
->active_tc
.LO
[0]), &(env
->active_tc
.HI
[0]), arg1
, arg2
);
272 void helper_dmultu (target_ulong arg1
, target_ulong arg2
)
274 mulu64(&(env
->active_tc
.LO
[0]), &(env
->active_tc
.HI
[0]), arg1
, arg2
);
278 #ifndef CONFIG_USER_ONLY
279 #define HELPER_LD_ATOMIC(name, insn) \
280 target_ulong helper_##name(target_ulong arg, int mem_idx) \
282 env->lladdr = do_translate_address(env, arg, 0); \
283 env->llval = do_##insn(arg, mem_idx); \
286 HELPER_LD_ATOMIC(ll
, lw
)
288 HELPER_LD_ATOMIC(lld
, ld
)
290 #undef HELPER_LD_ATOMIC
292 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
293 target_ulong helper_##name(target_ulong arg1, target_ulong arg2, int mem_idx) \
297 if (arg2 & almask) { \
298 env->CP0_BadVAddr = arg2; \
299 helper_raise_exception(EXCP_AdES); \
301 if (do_translate_address(env, arg2, 1) == env->lladdr) { \
302 tmp = do_##ld_insn(arg2, mem_idx); \
303 if (tmp == env->llval) { \
304 do_##st_insn(arg2, arg1, mem_idx); \
310 HELPER_ST_ATOMIC(sc
, lw
, sw
, 0x3)
312 HELPER_ST_ATOMIC(scd
, ld
, sd
, 0x7)
314 #undef HELPER_ST_ATOMIC
317 #ifdef TARGET_WORDS_BIGENDIAN
318 #define GET_LMASK(v) ((v) & 3)
319 #define GET_OFFSET(addr, offset) (addr + (offset))
321 #define GET_LMASK(v) (((v) & 3) ^ 3)
322 #define GET_OFFSET(addr, offset) (addr - (offset))
325 target_ulong
helper_lwl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
329 tmp
= do_lbu(arg2
, mem_idx
);
330 arg1
= (arg1
& 0x00FFFFFF) | (tmp
<< 24);
332 if (GET_LMASK(arg2
) <= 2) {
333 tmp
= do_lbu(GET_OFFSET(arg2
, 1), mem_idx
);
334 arg1
= (arg1
& 0xFF00FFFF) | (tmp
<< 16);
337 if (GET_LMASK(arg2
) <= 1) {
338 tmp
= do_lbu(GET_OFFSET(arg2
, 2), mem_idx
);
339 arg1
= (arg1
& 0xFFFF00FF) | (tmp
<< 8);
342 if (GET_LMASK(arg2
) == 0) {
343 tmp
= do_lbu(GET_OFFSET(arg2
, 3), mem_idx
);
344 arg1
= (arg1
& 0xFFFFFF00) | tmp
;
346 return (int32_t)arg1
;
349 target_ulong
helper_lwr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
353 tmp
= do_lbu(arg2
, mem_idx
);
354 arg1
= (arg1
& 0xFFFFFF00) | tmp
;
356 if (GET_LMASK(arg2
) >= 1) {
357 tmp
= do_lbu(GET_OFFSET(arg2
, -1), mem_idx
);
358 arg1
= (arg1
& 0xFFFF00FF) | (tmp
<< 8);
361 if (GET_LMASK(arg2
) >= 2) {
362 tmp
= do_lbu(GET_OFFSET(arg2
, -2), mem_idx
);
363 arg1
= (arg1
& 0xFF00FFFF) | (tmp
<< 16);
366 if (GET_LMASK(arg2
) == 3) {
367 tmp
= do_lbu(GET_OFFSET(arg2
, -3), mem_idx
);
368 arg1
= (arg1
& 0x00FFFFFF) | (tmp
<< 24);
370 return (int32_t)arg1
;
373 void helper_swl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
375 do_sb(arg2
, (uint8_t)(arg1
>> 24), mem_idx
);
377 if (GET_LMASK(arg2
) <= 2)
378 do_sb(GET_OFFSET(arg2
, 1), (uint8_t)(arg1
>> 16), mem_idx
);
380 if (GET_LMASK(arg2
) <= 1)
381 do_sb(GET_OFFSET(arg2
, 2), (uint8_t)(arg1
>> 8), mem_idx
);
383 if (GET_LMASK(arg2
) == 0)
384 do_sb(GET_OFFSET(arg2
, 3), (uint8_t)arg1
, mem_idx
);
387 void helper_swr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
389 do_sb(arg2
, (uint8_t)arg1
, mem_idx
);
391 if (GET_LMASK(arg2
) >= 1)
392 do_sb(GET_OFFSET(arg2
, -1), (uint8_t)(arg1
>> 8), mem_idx
);
394 if (GET_LMASK(arg2
) >= 2)
395 do_sb(GET_OFFSET(arg2
, -2), (uint8_t)(arg1
>> 16), mem_idx
);
397 if (GET_LMASK(arg2
) == 3)
398 do_sb(GET_OFFSET(arg2
, -3), (uint8_t)(arg1
>> 24), mem_idx
);
401 #if defined(TARGET_MIPS64)
402 /* "half" load and stores. We must do the memory access inline,
403 or fault handling won't work. */
405 #ifdef TARGET_WORDS_BIGENDIAN
406 #define GET_LMASK64(v) ((v) & 7)
408 #define GET_LMASK64(v) (((v) & 7) ^ 7)
411 target_ulong
helper_ldl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
415 tmp
= do_lbu(arg2
, mem_idx
);
416 arg1
= (arg1
& 0x00FFFFFFFFFFFFFFULL
) | (tmp
<< 56);
418 if (GET_LMASK64(arg2
) <= 6) {
419 tmp
= do_lbu(GET_OFFSET(arg2
, 1), mem_idx
);
420 arg1
= (arg1
& 0xFF00FFFFFFFFFFFFULL
) | (tmp
<< 48);
423 if (GET_LMASK64(arg2
) <= 5) {
424 tmp
= do_lbu(GET_OFFSET(arg2
, 2), mem_idx
);
425 arg1
= (arg1
& 0xFFFF00FFFFFFFFFFULL
) | (tmp
<< 40);
428 if (GET_LMASK64(arg2
) <= 4) {
429 tmp
= do_lbu(GET_OFFSET(arg2
, 3), mem_idx
);
430 arg1
= (arg1
& 0xFFFFFF00FFFFFFFFULL
) | (tmp
<< 32);
433 if (GET_LMASK64(arg2
) <= 3) {
434 tmp
= do_lbu(GET_OFFSET(arg2
, 4), mem_idx
);
435 arg1
= (arg1
& 0xFFFFFFFF00FFFFFFULL
) | (tmp
<< 24);
438 if (GET_LMASK64(arg2
) <= 2) {
439 tmp
= do_lbu(GET_OFFSET(arg2
, 5), mem_idx
);
440 arg1
= (arg1
& 0xFFFFFFFFFF00FFFFULL
) | (tmp
<< 16);
443 if (GET_LMASK64(arg2
) <= 1) {
444 tmp
= do_lbu(GET_OFFSET(arg2
, 6), mem_idx
);
445 arg1
= (arg1
& 0xFFFFFFFFFFFF00FFULL
) | (tmp
<< 8);
448 if (GET_LMASK64(arg2
) == 0) {
449 tmp
= do_lbu(GET_OFFSET(arg2
, 7), mem_idx
);
450 arg1
= (arg1
& 0xFFFFFFFFFFFFFF00ULL
) | tmp
;
456 target_ulong
helper_ldr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
460 tmp
= do_lbu(arg2
, mem_idx
);
461 arg1
= (arg1
& 0xFFFFFFFFFFFFFF00ULL
) | tmp
;
463 if (GET_LMASK64(arg2
) >= 1) {
464 tmp
= do_lbu(GET_OFFSET(arg2
, -1), mem_idx
);
465 arg1
= (arg1
& 0xFFFFFFFFFFFF00FFULL
) | (tmp
<< 8);
468 if (GET_LMASK64(arg2
) >= 2) {
469 tmp
= do_lbu(GET_OFFSET(arg2
, -2), mem_idx
);
470 arg1
= (arg1
& 0xFFFFFFFFFF00FFFFULL
) | (tmp
<< 16);
473 if (GET_LMASK64(arg2
) >= 3) {
474 tmp
= do_lbu(GET_OFFSET(arg2
, -3), mem_idx
);
475 arg1
= (arg1
& 0xFFFFFFFF00FFFFFFULL
) | (tmp
<< 24);
478 if (GET_LMASK64(arg2
) >= 4) {
479 tmp
= do_lbu(GET_OFFSET(arg2
, -4), mem_idx
);
480 arg1
= (arg1
& 0xFFFFFF00FFFFFFFFULL
) | (tmp
<< 32);
483 if (GET_LMASK64(arg2
) >= 5) {
484 tmp
= do_lbu(GET_OFFSET(arg2
, -5), mem_idx
);
485 arg1
= (arg1
& 0xFFFF00FFFFFFFFFFULL
) | (tmp
<< 40);
488 if (GET_LMASK64(arg2
) >= 6) {
489 tmp
= do_lbu(GET_OFFSET(arg2
, -6), mem_idx
);
490 arg1
= (arg1
& 0xFF00FFFFFFFFFFFFULL
) | (tmp
<< 48);
493 if (GET_LMASK64(arg2
) == 7) {
494 tmp
= do_lbu(GET_OFFSET(arg2
, -7), mem_idx
);
495 arg1
= (arg1
& 0x00FFFFFFFFFFFFFFULL
) | (tmp
<< 56);
501 void helper_sdl(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
503 do_sb(arg2
, (uint8_t)(arg1
>> 56), mem_idx
);
505 if (GET_LMASK64(arg2
) <= 6)
506 do_sb(GET_OFFSET(arg2
, 1), (uint8_t)(arg1
>> 48), mem_idx
);
508 if (GET_LMASK64(arg2
) <= 5)
509 do_sb(GET_OFFSET(arg2
, 2), (uint8_t)(arg1
>> 40), mem_idx
);
511 if (GET_LMASK64(arg2
) <= 4)
512 do_sb(GET_OFFSET(arg2
, 3), (uint8_t)(arg1
>> 32), mem_idx
);
514 if (GET_LMASK64(arg2
) <= 3)
515 do_sb(GET_OFFSET(arg2
, 4), (uint8_t)(arg1
>> 24), mem_idx
);
517 if (GET_LMASK64(arg2
) <= 2)
518 do_sb(GET_OFFSET(arg2
, 5), (uint8_t)(arg1
>> 16), mem_idx
);
520 if (GET_LMASK64(arg2
) <= 1)
521 do_sb(GET_OFFSET(arg2
, 6), (uint8_t)(arg1
>> 8), mem_idx
);
523 if (GET_LMASK64(arg2
) <= 0)
524 do_sb(GET_OFFSET(arg2
, 7), (uint8_t)arg1
, mem_idx
);
527 void helper_sdr(target_ulong arg1
, target_ulong arg2
, int mem_idx
)
529 do_sb(arg2
, (uint8_t)arg1
, mem_idx
);
531 if (GET_LMASK64(arg2
) >= 1)
532 do_sb(GET_OFFSET(arg2
, -1), (uint8_t)(arg1
>> 8), mem_idx
);
534 if (GET_LMASK64(arg2
) >= 2)
535 do_sb(GET_OFFSET(arg2
, -2), (uint8_t)(arg1
>> 16), mem_idx
);
537 if (GET_LMASK64(arg2
) >= 3)
538 do_sb(GET_OFFSET(arg2
, -3), (uint8_t)(arg1
>> 24), mem_idx
);
540 if (GET_LMASK64(arg2
) >= 4)
541 do_sb(GET_OFFSET(arg2
, -4), (uint8_t)(arg1
>> 32), mem_idx
);
543 if (GET_LMASK64(arg2
) >= 5)
544 do_sb(GET_OFFSET(arg2
, -5), (uint8_t)(arg1
>> 40), mem_idx
);
546 if (GET_LMASK64(arg2
) >= 6)
547 do_sb(GET_OFFSET(arg2
, -6), (uint8_t)(arg1
>> 48), mem_idx
);
549 if (GET_LMASK64(arg2
) == 7)
550 do_sb(GET_OFFSET(arg2
, -7), (uint8_t)(arg1
>> 56), mem_idx
);
552 #endif /* TARGET_MIPS64 */
554 #ifndef CONFIG_USER_ONLY
556 target_ulong
helper_mfc0_mvpcontrol (void)
558 return env
->mvp
->CP0_MVPControl
;
561 target_ulong
helper_mfc0_mvpconf0 (void)
563 return env
->mvp
->CP0_MVPConf0
;
566 target_ulong
helper_mfc0_mvpconf1 (void)
568 return env
->mvp
->CP0_MVPConf1
;
571 target_ulong
helper_mfc0_random (void)
573 return (int32_t)cpu_mips_get_random(env
);
576 target_ulong
helper_mfc0_tcstatus (void)
578 return env
->active_tc
.CP0_TCStatus
;
581 target_ulong
helper_mftc0_tcstatus(void)
583 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
585 if (other_tc
== env
->current_tc
)
586 return env
->active_tc
.CP0_TCStatus
;
588 return env
->tcs
[other_tc
].CP0_TCStatus
;
591 target_ulong
helper_mfc0_tcbind (void)
593 return env
->active_tc
.CP0_TCBind
;
596 target_ulong
helper_mftc0_tcbind(void)
598 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
600 if (other_tc
== env
->current_tc
)
601 return env
->active_tc
.CP0_TCBind
;
603 return env
->tcs
[other_tc
].CP0_TCBind
;
606 target_ulong
helper_mfc0_tcrestart (void)
608 return env
->active_tc
.PC
;
611 target_ulong
helper_mftc0_tcrestart(void)
613 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
615 if (other_tc
== env
->current_tc
)
616 return env
->active_tc
.PC
;
618 return env
->tcs
[other_tc
].PC
;
621 target_ulong
helper_mfc0_tchalt (void)
623 return env
->active_tc
.CP0_TCHalt
;
626 target_ulong
helper_mftc0_tchalt(void)
628 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
630 if (other_tc
== env
->current_tc
)
631 return env
->active_tc
.CP0_TCHalt
;
633 return env
->tcs
[other_tc
].CP0_TCHalt
;
636 target_ulong
helper_mfc0_tccontext (void)
638 return env
->active_tc
.CP0_TCContext
;
641 target_ulong
helper_mftc0_tccontext(void)
643 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
645 if (other_tc
== env
->current_tc
)
646 return env
->active_tc
.CP0_TCContext
;
648 return env
->tcs
[other_tc
].CP0_TCContext
;
651 target_ulong
helper_mfc0_tcschedule (void)
653 return env
->active_tc
.CP0_TCSchedule
;
656 target_ulong
helper_mftc0_tcschedule(void)
658 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
660 if (other_tc
== env
->current_tc
)
661 return env
->active_tc
.CP0_TCSchedule
;
663 return env
->tcs
[other_tc
].CP0_TCSchedule
;
666 target_ulong
helper_mfc0_tcschefback (void)
668 return env
->active_tc
.CP0_TCScheFBack
;
671 target_ulong
helper_mftc0_tcschefback(void)
673 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
675 if (other_tc
== env
->current_tc
)
676 return env
->active_tc
.CP0_TCScheFBack
;
678 return env
->tcs
[other_tc
].CP0_TCScheFBack
;
681 target_ulong
helper_mfc0_count (void)
683 return (int32_t)cpu_mips_get_count(env
);
686 target_ulong
helper_mftc0_entryhi(void)
688 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
691 if (other_tc
== env
->current_tc
)
692 tcstatus
= env
->active_tc
.CP0_TCStatus
;
694 tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
696 return (env
->CP0_EntryHi
& ~0xff) | (tcstatus
& 0xff);
699 target_ulong
helper_mftc0_status(void)
701 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
705 if (other_tc
== env
->current_tc
)
706 tcstatus
= env
->active_tc
.CP0_TCStatus
;
708 tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
710 t0
= env
->CP0_Status
& ~0xf1000018;
711 t0
|= tcstatus
& (0xf << CP0TCSt_TCU0
);
712 t0
|= (tcstatus
& (1 << CP0TCSt_TMX
)) >> (CP0TCSt_TMX
- CP0St_MX
);
713 t0
|= (tcstatus
& (0x3 << CP0TCSt_TKSU
)) >> (CP0TCSt_TKSU
- CP0St_KSU
);
718 target_ulong
helper_mfc0_lladdr (void)
720 return (int32_t)(env
->lladdr
>> env
->CP0_LLAddr_shift
);
723 target_ulong
helper_mfc0_watchlo (uint32_t sel
)
725 return (int32_t)env
->CP0_WatchLo
[sel
];
728 target_ulong
helper_mfc0_watchhi (uint32_t sel
)
730 return env
->CP0_WatchHi
[sel
];
733 target_ulong
helper_mfc0_debug (void)
735 target_ulong t0
= env
->CP0_Debug
;
736 if (env
->hflags
& MIPS_HFLAG_DM
)
742 target_ulong
helper_mftc0_debug(void)
744 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
747 if (other_tc
== env
->current_tc
)
748 tcstatus
= env
->active_tc
.CP0_Debug_tcstatus
;
750 tcstatus
= env
->tcs
[other_tc
].CP0_Debug_tcstatus
;
752 /* XXX: Might be wrong, check with EJTAG spec. */
753 return (env
->CP0_Debug
& ~((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
))) |
754 (tcstatus
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
)));
757 #if defined(TARGET_MIPS64)
758 target_ulong
helper_dmfc0_tcrestart (void)
760 return env
->active_tc
.PC
;
763 target_ulong
helper_dmfc0_tchalt (void)
765 return env
->active_tc
.CP0_TCHalt
;
768 target_ulong
helper_dmfc0_tccontext (void)
770 return env
->active_tc
.CP0_TCContext
;
773 target_ulong
helper_dmfc0_tcschedule (void)
775 return env
->active_tc
.CP0_TCSchedule
;
778 target_ulong
helper_dmfc0_tcschefback (void)
780 return env
->active_tc
.CP0_TCScheFBack
;
783 target_ulong
helper_dmfc0_lladdr (void)
785 return env
->lladdr
>> env
->CP0_LLAddr_shift
;
788 target_ulong
helper_dmfc0_watchlo (uint32_t sel
)
790 return env
->CP0_WatchLo
[sel
];
792 #endif /* TARGET_MIPS64 */
794 void helper_mtc0_index (target_ulong arg1
)
797 unsigned int tmp
= env
->tlb
->nb_tlb
;
803 env
->CP0_Index
= (env
->CP0_Index
& 0x80000000) | (arg1
& (num
- 1));
806 void helper_mtc0_mvpcontrol (target_ulong arg1
)
811 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_MVP
))
812 mask
|= (1 << CP0MVPCo_CPA
) | (1 << CP0MVPCo_VPC
) |
814 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
815 mask
|= (1 << CP0MVPCo_STLB
);
816 newval
= (env
->mvp
->CP0_MVPControl
& ~mask
) | (arg1
& mask
);
818 // TODO: Enable/disable shared TLB, enable/disable VPEs.
820 env
->mvp
->CP0_MVPControl
= newval
;
823 void helper_mtc0_vpecontrol (target_ulong arg1
)
828 mask
= (1 << CP0VPECo_YSI
) | (1 << CP0VPECo_GSI
) |
829 (1 << CP0VPECo_TE
) | (0xff << CP0VPECo_TargTC
);
830 newval
= (env
->CP0_VPEControl
& ~mask
) | (arg1
& mask
);
832 /* Yield scheduler intercept not implemented. */
833 /* Gating storage scheduler intercept not implemented. */
835 // TODO: Enable/disable TCs.
837 env
->CP0_VPEControl
= newval
;
840 void helper_mtc0_vpeconf0 (target_ulong arg1
)
845 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_MVP
)) {
846 if (env
->CP0_VPEConf0
& (1 << CP0VPEC0_VPA
))
847 mask
|= (0xff << CP0VPEC0_XTC
);
848 mask
|= (1 << CP0VPEC0_MVP
) | (1 << CP0VPEC0_VPA
);
850 newval
= (env
->CP0_VPEConf0
& ~mask
) | (arg1
& mask
);
852 // TODO: TC exclusive handling due to ERL/EXL.
854 env
->CP0_VPEConf0
= newval
;
857 void helper_mtc0_vpeconf1 (target_ulong arg1
)
862 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
863 mask
|= (0xff << CP0VPEC1_NCX
) | (0xff << CP0VPEC1_NCP2
) |
864 (0xff << CP0VPEC1_NCP1
);
865 newval
= (env
->CP0_VPEConf1
& ~mask
) | (arg1
& mask
);
867 /* UDI not implemented. */
868 /* CP2 not implemented. */
870 // TODO: Handle FPU (CP1) binding.
872 env
->CP0_VPEConf1
= newval
;
875 void helper_mtc0_yqmask (target_ulong arg1
)
877 /* Yield qualifier inputs not implemented. */
878 env
->CP0_YQMask
= 0x00000000;
881 void helper_mtc0_vpeopt (target_ulong arg1
)
883 env
->CP0_VPEOpt
= arg1
& 0x0000ffff;
886 void helper_mtc0_entrylo0 (target_ulong arg1
)
888 /* Large physaddr (PABITS) not implemented */
889 /* 1k pages not implemented */
890 env
->CP0_EntryLo0
= arg1
& 0x3FFFFFFF;
893 void helper_mtc0_tcstatus (target_ulong arg1
)
895 uint32_t mask
= env
->CP0_TCStatus_rw_bitmask
;
898 newval
= (env
->active_tc
.CP0_TCStatus
& ~mask
) | (arg1
& mask
);
900 // TODO: Sync with CP0_Status.
902 env
->active_tc
.CP0_TCStatus
= newval
;
905 void helper_mttc0_tcstatus (target_ulong arg1
)
907 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
909 // TODO: Sync with CP0_Status.
911 if (other_tc
== env
->current_tc
)
912 env
->active_tc
.CP0_TCStatus
= arg1
;
914 env
->tcs
[other_tc
].CP0_TCStatus
= arg1
;
917 void helper_mtc0_tcbind (target_ulong arg1
)
919 uint32_t mask
= (1 << CP0TCBd_TBE
);
922 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
923 mask
|= (1 << CP0TCBd_CurVPE
);
924 newval
= (env
->active_tc
.CP0_TCBind
& ~mask
) | (arg1
& mask
);
925 env
->active_tc
.CP0_TCBind
= newval
;
928 void helper_mttc0_tcbind (target_ulong arg1
)
930 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
931 uint32_t mask
= (1 << CP0TCBd_TBE
);
934 if (env
->mvp
->CP0_MVPControl
& (1 << CP0MVPCo_VPC
))
935 mask
|= (1 << CP0TCBd_CurVPE
);
936 if (other_tc
== env
->current_tc
) {
937 newval
= (env
->active_tc
.CP0_TCBind
& ~mask
) | (arg1
& mask
);
938 env
->active_tc
.CP0_TCBind
= newval
;
940 newval
= (env
->tcs
[other_tc
].CP0_TCBind
& ~mask
) | (arg1
& mask
);
941 env
->tcs
[other_tc
].CP0_TCBind
= newval
;
945 void helper_mtc0_tcrestart (target_ulong arg1
)
947 env
->active_tc
.PC
= arg1
;
948 env
->active_tc
.CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
950 /* MIPS16 not implemented. */
953 void helper_mttc0_tcrestart (target_ulong arg1
)
955 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
957 if (other_tc
== env
->current_tc
) {
958 env
->active_tc
.PC
= arg1
;
959 env
->active_tc
.CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
961 /* MIPS16 not implemented. */
963 env
->tcs
[other_tc
].PC
= arg1
;
964 env
->tcs
[other_tc
].CP0_TCStatus
&= ~(1 << CP0TCSt_TDS
);
966 /* MIPS16 not implemented. */
970 void helper_mtc0_tchalt (target_ulong arg1
)
972 env
->active_tc
.CP0_TCHalt
= arg1
& 0x1;
974 // TODO: Halt TC / Restart (if allocated+active) TC.
977 void helper_mttc0_tchalt (target_ulong arg1
)
979 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
981 // TODO: Halt TC / Restart (if allocated+active) TC.
983 if (other_tc
== env
->current_tc
)
984 env
->active_tc
.CP0_TCHalt
= arg1
;
986 env
->tcs
[other_tc
].CP0_TCHalt
= arg1
;
989 void helper_mtc0_tccontext (target_ulong arg1
)
991 env
->active_tc
.CP0_TCContext
= arg1
;
994 void helper_mttc0_tccontext (target_ulong arg1
)
996 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
998 if (other_tc
== env
->current_tc
)
999 env
->active_tc
.CP0_TCContext
= arg1
;
1001 env
->tcs
[other_tc
].CP0_TCContext
= arg1
;
1004 void helper_mtc0_tcschedule (target_ulong arg1
)
1006 env
->active_tc
.CP0_TCSchedule
= arg1
;
1009 void helper_mttc0_tcschedule (target_ulong arg1
)
1011 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1013 if (other_tc
== env
->current_tc
)
1014 env
->active_tc
.CP0_TCSchedule
= arg1
;
1016 env
->tcs
[other_tc
].CP0_TCSchedule
= arg1
;
1019 void helper_mtc0_tcschefback (target_ulong arg1
)
1021 env
->active_tc
.CP0_TCScheFBack
= arg1
;
1024 void helper_mttc0_tcschefback (target_ulong arg1
)
1026 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1028 if (other_tc
== env
->current_tc
)
1029 env
->active_tc
.CP0_TCScheFBack
= arg1
;
1031 env
->tcs
[other_tc
].CP0_TCScheFBack
= arg1
;
1034 void helper_mtc0_entrylo1 (target_ulong arg1
)
1036 /* Large physaddr (PABITS) not implemented */
1037 /* 1k pages not implemented */
1038 env
->CP0_EntryLo1
= arg1
& 0x3FFFFFFF;
1041 void helper_mtc0_context (target_ulong arg1
)
1043 env
->CP0_Context
= (env
->CP0_Context
& 0x007FFFFF) | (arg1
& ~0x007FFFFF);
1046 void helper_mtc0_pagemask (target_ulong arg1
)
1048 /* 1k pages not implemented */
1049 env
->CP0_PageMask
= arg1
& (0x1FFFFFFF & (TARGET_PAGE_MASK
<< 1));
1052 void helper_mtc0_pagegrain (target_ulong arg1
)
1054 /* SmartMIPS not implemented */
1055 /* Large physaddr (PABITS) not implemented */
1056 /* 1k pages not implemented */
1057 env
->CP0_PageGrain
= 0;
1060 void helper_mtc0_wired (target_ulong arg1
)
1062 env
->CP0_Wired
= arg1
% env
->tlb
->nb_tlb
;
1065 void helper_mtc0_srsconf0 (target_ulong arg1
)
1067 env
->CP0_SRSConf0
|= arg1
& env
->CP0_SRSConf0_rw_bitmask
;
1070 void helper_mtc0_srsconf1 (target_ulong arg1
)
1072 env
->CP0_SRSConf1
|= arg1
& env
->CP0_SRSConf1_rw_bitmask
;
1075 void helper_mtc0_srsconf2 (target_ulong arg1
)
1077 env
->CP0_SRSConf2
|= arg1
& env
->CP0_SRSConf2_rw_bitmask
;
1080 void helper_mtc0_srsconf3 (target_ulong arg1
)
1082 env
->CP0_SRSConf3
|= arg1
& env
->CP0_SRSConf3_rw_bitmask
;
1085 void helper_mtc0_srsconf4 (target_ulong arg1
)
1087 env
->CP0_SRSConf4
|= arg1
& env
->CP0_SRSConf4_rw_bitmask
;
1090 void helper_mtc0_hwrena (target_ulong arg1
)
1092 env
->CP0_HWREna
= arg1
& 0x0000000F;
1095 void helper_mtc0_count (target_ulong arg1
)
1097 cpu_mips_store_count(env
, arg1
);
1100 void helper_mtc0_entryhi (target_ulong arg1
)
1102 target_ulong old
, val
;
1104 /* 1k pages not implemented */
1105 val
= arg1
& ((TARGET_PAGE_MASK
<< 1) | 0xFF);
1106 #if defined(TARGET_MIPS64)
1107 val
&= env
->SEGMask
;
1109 old
= env
->CP0_EntryHi
;
1110 env
->CP0_EntryHi
= val
;
1111 if (env
->CP0_Config3
& (1 << CP0C3_MT
)) {
1112 uint32_t tcst
= env
->active_tc
.CP0_TCStatus
& ~0xff;
1113 env
->active_tc
.CP0_TCStatus
= tcst
| (val
& 0xff);
1115 /* If the ASID changes, flush qemu's TLB. */
1116 if ((old
& 0xFF) != (val
& 0xFF))
1117 cpu_mips_tlb_flush(env
, 1);
1120 void helper_mttc0_entryhi(target_ulong arg1
)
1122 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1125 env
->CP0_EntryHi
= (env
->CP0_EntryHi
& 0xff) | (arg1
& ~0xff);
1126 if (other_tc
== env
->current_tc
) {
1127 tcstatus
= (env
->active_tc
.CP0_TCStatus
& ~0xff) | (arg1
& 0xff);
1128 env
->active_tc
.CP0_TCStatus
= tcstatus
;
1130 tcstatus
= (env
->tcs
[other_tc
].CP0_TCStatus
& ~0xff) | (arg1
& 0xff);
1131 env
->tcs
[other_tc
].CP0_TCStatus
= tcstatus
;
1135 void helper_mtc0_compare (target_ulong arg1
)
1137 cpu_mips_store_compare(env
, arg1
);
1140 void helper_mtc0_status (target_ulong arg1
)
1143 uint32_t mask
= env
->CP0_Status_rw_bitmask
;
1146 old
= env
->CP0_Status
;
1147 env
->CP0_Status
= (env
->CP0_Status
& ~mask
) | val
;
1148 compute_hflags(env
);
1149 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
1150 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1151 old
, old
& env
->CP0_Cause
& CP0Ca_IP_mask
,
1152 val
, val
& env
->CP0_Cause
& CP0Ca_IP_mask
,
1154 switch (env
->hflags
& MIPS_HFLAG_KSU
) {
1155 case MIPS_HFLAG_UM
: qemu_log(", UM\n"); break;
1156 case MIPS_HFLAG_SM
: qemu_log(", SM\n"); break;
1157 case MIPS_HFLAG_KM
: qemu_log("\n"); break;
1158 default: cpu_abort(env
, "Invalid MMU mode!\n"); break;
1161 cpu_mips_update_irq(env
);
1164 void helper_mttc0_status(target_ulong arg1
)
1166 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1167 int32_t tcstatus
= env
->tcs
[other_tc
].CP0_TCStatus
;
1169 env
->CP0_Status
= arg1
& ~0xf1000018;
1170 tcstatus
= (tcstatus
& ~(0xf << CP0TCSt_TCU0
)) | (arg1
& (0xf << CP0St_CU0
));
1171 tcstatus
= (tcstatus
& ~(1 << CP0TCSt_TMX
)) | ((arg1
& (1 << CP0St_MX
)) << (CP0TCSt_TMX
- CP0St_MX
));
1172 tcstatus
= (tcstatus
& ~(0x3 << CP0TCSt_TKSU
)) | ((arg1
& (0x3 << CP0St_KSU
)) << (CP0TCSt_TKSU
- CP0St_KSU
));
1173 if (other_tc
== env
->current_tc
)
1174 env
->active_tc
.CP0_TCStatus
= tcstatus
;
1176 env
->tcs
[other_tc
].CP0_TCStatus
= tcstatus
;
1179 void helper_mtc0_intctl (target_ulong arg1
)
1181 /* vectored interrupts not implemented, no performance counters. */
1182 env
->CP0_IntCtl
= (env
->CP0_IntCtl
& ~0x000002e0) | (arg1
& 0x000002e0);
1185 void helper_mtc0_srsctl (target_ulong arg1
)
1187 uint32_t mask
= (0xf << CP0SRSCtl_ESS
) | (0xf << CP0SRSCtl_PSS
);
1188 env
->CP0_SRSCtl
= (env
->CP0_SRSCtl
& ~mask
) | (arg1
& mask
);
1191 void helper_mtc0_cause (target_ulong arg1
)
1193 uint32_t mask
= 0x00C00300;
1194 uint32_t old
= env
->CP0_Cause
;
1196 if (env
->insn_flags
& ISA_MIPS32R2
)
1197 mask
|= 1 << CP0Ca_DC
;
1199 env
->CP0_Cause
= (env
->CP0_Cause
& ~mask
) | (arg1
& mask
);
1201 if ((old
^ env
->CP0_Cause
) & (1 << CP0Ca_DC
)) {
1202 if (env
->CP0_Cause
& (1 << CP0Ca_DC
))
1203 cpu_mips_stop_count(env
);
1205 cpu_mips_start_count(env
);
1208 /* Handle the software interrupt as an hardware one, as they
1210 if (arg1
& CP0Ca_IP_mask
) {
1211 cpu_mips_update_irq(env
);
1215 void helper_mtc0_ebase (target_ulong arg1
)
1217 /* vectored interrupts not implemented */
1218 /* Multi-CPU not implemented */
1219 env
->CP0_EBase
= 0x80000000 | (arg1
& 0x3FFFF000);
1222 void helper_mtc0_config0 (target_ulong arg1
)
1224 env
->CP0_Config0
= (env
->CP0_Config0
& 0x81FFFFF8) | (arg1
& 0x00000007);
1227 void helper_mtc0_config2 (target_ulong arg1
)
1229 /* tertiary/secondary caches not implemented */
1230 env
->CP0_Config2
= (env
->CP0_Config2
& 0x8FFF0FFF);
1233 void helper_mtc0_lladdr (target_ulong arg1
)
1235 target_long mask
= env
->CP0_LLAddr_rw_bitmask
;
1236 arg1
= arg1
<< env
->CP0_LLAddr_shift
;
1237 env
->lladdr
= (env
->lladdr
& ~mask
) | (arg1
& mask
);
1240 void helper_mtc0_watchlo (target_ulong arg1
, uint32_t sel
)
1242 /* Watch exceptions for instructions, data loads, data stores
1244 env
->CP0_WatchLo
[sel
] = (arg1
& ~0x7);
1247 void helper_mtc0_watchhi (target_ulong arg1
, uint32_t sel
)
1249 env
->CP0_WatchHi
[sel
] = (arg1
& 0x40FF0FF8);
1250 env
->CP0_WatchHi
[sel
] &= ~(env
->CP0_WatchHi
[sel
] & arg1
& 0x7);
1253 void helper_mtc0_xcontext (target_ulong arg1
)
1255 target_ulong mask
= (1ULL << (env
->SEGBITS
- 7)) - 1;
1256 env
->CP0_XContext
= (env
->CP0_XContext
& mask
) | (arg1
& ~mask
);
1259 void helper_mtc0_framemask (target_ulong arg1
)
1261 env
->CP0_Framemask
= arg1
; /* XXX */
1264 void helper_mtc0_debug (target_ulong arg1
)
1266 env
->CP0_Debug
= (env
->CP0_Debug
& 0x8C03FC1F) | (arg1
& 0x13300120);
1267 if (arg1
& (1 << CP0DB_DM
))
1268 env
->hflags
|= MIPS_HFLAG_DM
;
1270 env
->hflags
&= ~MIPS_HFLAG_DM
;
1273 void helper_mttc0_debug(target_ulong arg1
)
1275 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1276 uint32_t val
= arg1
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
));
1278 /* XXX: Might be wrong, check with EJTAG spec. */
1279 if (other_tc
== env
->current_tc
)
1280 env
->active_tc
.CP0_Debug_tcstatus
= val
;
1282 env
->tcs
[other_tc
].CP0_Debug_tcstatus
= val
;
1283 env
->CP0_Debug
= (env
->CP0_Debug
& ((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
))) |
1284 (arg1
& ~((1 << CP0DB_SSt
) | (1 << CP0DB_Halt
)));
1287 void helper_mtc0_performance0 (target_ulong arg1
)
1289 env
->CP0_Performance0
= arg1
& 0x000007ff;
1292 void helper_mtc0_taglo (target_ulong arg1
)
1294 env
->CP0_TagLo
= arg1
& 0xFFFFFCF6;
1297 void helper_mtc0_datalo (target_ulong arg1
)
1299 env
->CP0_DataLo
= arg1
; /* XXX */
1302 void helper_mtc0_taghi (target_ulong arg1
)
1304 env
->CP0_TagHi
= arg1
; /* XXX */
1307 void helper_mtc0_datahi (target_ulong arg1
)
1309 env
->CP0_DataHi
= arg1
; /* XXX */
1312 /* MIPS MT functions */
1313 target_ulong
helper_mftgpr(uint32_t sel
)
1315 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1317 if (other_tc
== env
->current_tc
)
1318 return env
->active_tc
.gpr
[sel
];
1320 return env
->tcs
[other_tc
].gpr
[sel
];
1323 target_ulong
helper_mftlo(uint32_t sel
)
1325 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1327 if (other_tc
== env
->current_tc
)
1328 return env
->active_tc
.LO
[sel
];
1330 return env
->tcs
[other_tc
].LO
[sel
];
1333 target_ulong
helper_mfthi(uint32_t sel
)
1335 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1337 if (other_tc
== env
->current_tc
)
1338 return env
->active_tc
.HI
[sel
];
1340 return env
->tcs
[other_tc
].HI
[sel
];
1343 target_ulong
helper_mftacx(uint32_t sel
)
1345 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1347 if (other_tc
== env
->current_tc
)
1348 return env
->active_tc
.ACX
[sel
];
1350 return env
->tcs
[other_tc
].ACX
[sel
];
1353 target_ulong
helper_mftdsp(void)
1355 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1357 if (other_tc
== env
->current_tc
)
1358 return env
->active_tc
.DSPControl
;
1360 return env
->tcs
[other_tc
].DSPControl
;
1363 void helper_mttgpr(target_ulong arg1
, uint32_t sel
)
1365 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1367 if (other_tc
== env
->current_tc
)
1368 env
->active_tc
.gpr
[sel
] = arg1
;
1370 env
->tcs
[other_tc
].gpr
[sel
] = arg1
;
1373 void helper_mttlo(target_ulong arg1
, uint32_t sel
)
1375 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1377 if (other_tc
== env
->current_tc
)
1378 env
->active_tc
.LO
[sel
] = arg1
;
1380 env
->tcs
[other_tc
].LO
[sel
] = arg1
;
1383 void helper_mtthi(target_ulong arg1
, uint32_t sel
)
1385 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1387 if (other_tc
== env
->current_tc
)
1388 env
->active_tc
.HI
[sel
] = arg1
;
1390 env
->tcs
[other_tc
].HI
[sel
] = arg1
;
1393 void helper_mttacx(target_ulong arg1
, uint32_t sel
)
1395 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1397 if (other_tc
== env
->current_tc
)
1398 env
->active_tc
.ACX
[sel
] = arg1
;
1400 env
->tcs
[other_tc
].ACX
[sel
] = arg1
;
1403 void helper_mttdsp(target_ulong arg1
)
1405 int other_tc
= env
->CP0_VPEControl
& (0xff << CP0VPECo_TargTC
);
1407 if (other_tc
== env
->current_tc
)
1408 env
->active_tc
.DSPControl
= arg1
;
1410 env
->tcs
[other_tc
].DSPControl
= arg1
;
1413 /* MIPS MT functions */
1414 target_ulong
helper_dmt(target_ulong arg1
)
1423 target_ulong
helper_emt(target_ulong arg1
)
1432 target_ulong
helper_dvpe(target_ulong arg1
)
1441 target_ulong
helper_evpe(target_ulong arg1
)
1449 #endif /* !CONFIG_USER_ONLY */
1451 void helper_fork(target_ulong arg1
, target_ulong arg2
)
1453 // arg1 = rt, arg2 = rs
1455 // TODO: store to TC register
1458 target_ulong
helper_yield(target_ulong arg1
)
1461 /* No scheduling policy implemented. */
1463 if (env
->CP0_VPEControl
& (1 << CP0VPECo_YSI
) &&
1464 env
->active_tc
.CP0_TCStatus
& (1 << CP0TCSt_DT
)) {
1465 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1466 env
->CP0_VPEControl
|= 4 << CP0VPECo_EXCPT
;
1467 helper_raise_exception(EXCP_THREAD
);
1470 } else if (arg1
== 0) {
1471 if (0 /* TODO: TC underflow */) {
1472 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1473 helper_raise_exception(EXCP_THREAD
);
1475 // TODO: Deallocate TC
1477 } else if (arg1
> 0) {
1478 /* Yield qualifier inputs not implemented. */
1479 env
->CP0_VPEControl
&= ~(0x7 << CP0VPECo_EXCPT
);
1480 env
->CP0_VPEControl
|= 2 << CP0VPECo_EXCPT
;
1481 helper_raise_exception(EXCP_THREAD
);
1483 return env
->CP0_YQMask
;
1486 #ifndef CONFIG_USER_ONLY
1487 /* TLB management */
1488 void cpu_mips_tlb_flush (CPUState
*env
, int flush_global
)
1490 /* Flush qemu's TLB and discard all shadowed entries. */
1491 tlb_flush (env
, flush_global
);
1492 env
->tlb
->tlb_in_use
= env
->tlb
->nb_tlb
;
1495 static void r4k_mips_tlb_flush_extra (CPUState
*env
, int first
)
1497 /* Discard entries from env->tlb[first] onwards. */
1498 while (env
->tlb
->tlb_in_use
> first
) {
1499 r4k_invalidate_tlb(env
, --env
->tlb
->tlb_in_use
, 0);
1503 static void r4k_fill_tlb (int idx
)
1507 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1508 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[idx
];
1509 tlb
->VPN
= env
->CP0_EntryHi
& (TARGET_PAGE_MASK
<< 1);
1510 #if defined(TARGET_MIPS64)
1511 tlb
->VPN
&= env
->SEGMask
;
1513 tlb
->ASID
= env
->CP0_EntryHi
& 0xFF;
1514 tlb
->PageMask
= env
->CP0_PageMask
;
1515 tlb
->G
= env
->CP0_EntryLo0
& env
->CP0_EntryLo1
& 1;
1516 tlb
->V0
= (env
->CP0_EntryLo0
& 2) != 0;
1517 tlb
->D0
= (env
->CP0_EntryLo0
& 4) != 0;
1518 tlb
->C0
= (env
->CP0_EntryLo0
>> 3) & 0x7;
1519 tlb
->PFN
[0] = (env
->CP0_EntryLo0
>> 6) << 12;
1520 tlb
->V1
= (env
->CP0_EntryLo1
& 2) != 0;
1521 tlb
->D1
= (env
->CP0_EntryLo1
& 4) != 0;
1522 tlb
->C1
= (env
->CP0_EntryLo1
>> 3) & 0x7;
1523 tlb
->PFN
[1] = (env
->CP0_EntryLo1
>> 6) << 12;
1526 void r4k_helper_tlbwi (void)
1530 idx
= (env
->CP0_Index
& ~0x80000000) % env
->tlb
->nb_tlb
;
1532 /* Discard cached TLB entries. We could avoid doing this if the
1533 tlbwi is just upgrading access permissions on the current entry;
1534 that might be a further win. */
1535 r4k_mips_tlb_flush_extra (env
, env
->tlb
->nb_tlb
);
1537 r4k_invalidate_tlb(env
, idx
, 0);
1541 void r4k_helper_tlbwr (void)
1543 int r
= cpu_mips_get_random(env
);
1545 r4k_invalidate_tlb(env
, r
, 1);
1549 void r4k_helper_tlbp (void)
1558 ASID
= env
->CP0_EntryHi
& 0xFF;
1559 for (i
= 0; i
< env
->tlb
->nb_tlb
; i
++) {
1560 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[i
];
1561 /* 1k pages are not supported. */
1562 mask
= tlb
->PageMask
| ~(TARGET_PAGE_MASK
<< 1);
1563 tag
= env
->CP0_EntryHi
& ~mask
;
1564 VPN
= tlb
->VPN
& ~mask
;
1565 /* Check ASID, virtual page number & size */
1566 if ((tlb
->G
== 1 || tlb
->ASID
== ASID
) && VPN
== tag
) {
1572 if (i
== env
->tlb
->nb_tlb
) {
1573 /* No match. Discard any shadow entries, if any of them match. */
1574 for (i
= env
->tlb
->nb_tlb
; i
< env
->tlb
->tlb_in_use
; i
++) {
1575 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[i
];
1576 /* 1k pages are not supported. */
1577 mask
= tlb
->PageMask
| ~(TARGET_PAGE_MASK
<< 1);
1578 tag
= env
->CP0_EntryHi
& ~mask
;
1579 VPN
= tlb
->VPN
& ~mask
;
1580 /* Check ASID, virtual page number & size */
1581 if ((tlb
->G
== 1 || tlb
->ASID
== ASID
) && VPN
== tag
) {
1582 r4k_mips_tlb_flush_extra (env
, i
);
1587 env
->CP0_Index
|= 0x80000000;
1591 void r4k_helper_tlbr (void)
1597 ASID
= env
->CP0_EntryHi
& 0xFF;
1598 idx
= (env
->CP0_Index
& ~0x80000000) % env
->tlb
->nb_tlb
;
1599 tlb
= &env
->tlb
->mmu
.r4k
.tlb
[idx
];
1601 /* If this will change the current ASID, flush qemu's TLB. */
1602 if (ASID
!= tlb
->ASID
)
1603 cpu_mips_tlb_flush (env
, 1);
1605 r4k_mips_tlb_flush_extra(env
, env
->tlb
->nb_tlb
);
1607 env
->CP0_EntryHi
= tlb
->VPN
| tlb
->ASID
;
1608 env
->CP0_PageMask
= tlb
->PageMask
;
1609 env
->CP0_EntryLo0
= tlb
->G
| (tlb
->V0
<< 1) | (tlb
->D0
<< 2) |
1610 (tlb
->C0
<< 3) | (tlb
->PFN
[0] >> 6);
1611 env
->CP0_EntryLo1
= tlb
->G
| (tlb
->V1
<< 1) | (tlb
->D1
<< 2) |
1612 (tlb
->C1
<< 3) | (tlb
->PFN
[1] >> 6);
1615 void helper_tlbwi(void)
1617 env
->tlb
->helper_tlbwi();
1620 void helper_tlbwr(void)
1622 env
->tlb
->helper_tlbwr();
1625 void helper_tlbp(void)
1627 env
->tlb
->helper_tlbp();
1630 void helper_tlbr(void)
1632 env
->tlb
->helper_tlbr();
1636 target_ulong
helper_di (void)
1638 target_ulong t0
= env
->CP0_Status
;
1640 env
->CP0_Status
= t0
& ~(1 << CP0St_IE
);
1641 cpu_mips_update_irq(env
);
1646 target_ulong
helper_ei (void)
1648 target_ulong t0
= env
->CP0_Status
;
1650 env
->CP0_Status
= t0
| (1 << CP0St_IE
);
1651 cpu_mips_update_irq(env
);
1656 static void debug_pre_eret (void)
1658 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
1659 qemu_log("ERET: PC " TARGET_FMT_lx
" EPC " TARGET_FMT_lx
,
1660 env
->active_tc
.PC
, env
->CP0_EPC
);
1661 if (env
->CP0_Status
& (1 << CP0St_ERL
))
1662 qemu_log(" ErrorEPC " TARGET_FMT_lx
, env
->CP0_ErrorEPC
);
1663 if (env
->hflags
& MIPS_HFLAG_DM
)
1664 qemu_log(" DEPC " TARGET_FMT_lx
, env
->CP0_DEPC
);
1669 static void debug_post_eret (void)
1671 if (qemu_loglevel_mask(CPU_LOG_EXEC
)) {
1672 qemu_log(" => PC " TARGET_FMT_lx
" EPC " TARGET_FMT_lx
,
1673 env
->active_tc
.PC
, env
->CP0_EPC
);
1674 if (env
->CP0_Status
& (1 << CP0St_ERL
))
1675 qemu_log(" ErrorEPC " TARGET_FMT_lx
, env
->CP0_ErrorEPC
);
1676 if (env
->hflags
& MIPS_HFLAG_DM
)
1677 qemu_log(" DEPC " TARGET_FMT_lx
, env
->CP0_DEPC
);
1678 switch (env
->hflags
& MIPS_HFLAG_KSU
) {
1679 case MIPS_HFLAG_UM
: qemu_log(", UM\n"); break;
1680 case MIPS_HFLAG_SM
: qemu_log(", SM\n"); break;
1681 case MIPS_HFLAG_KM
: qemu_log("\n"); break;
1682 default: cpu_abort(env
, "Invalid MMU mode!\n"); break;
1687 static void set_pc (target_ulong error_pc
)
1689 env
->active_tc
.PC
= error_pc
& ~(target_ulong
)1;
1691 env
->hflags
|= MIPS_HFLAG_M16
;
1693 env
->hflags
&= ~(MIPS_HFLAG_M16
);
1697 void helper_eret (void)
1700 if (env
->CP0_Status
& (1 << CP0St_ERL
)) {
1701 set_pc(env
->CP0_ErrorEPC
);
1702 env
->CP0_Status
&= ~(1 << CP0St_ERL
);
1704 set_pc(env
->CP0_EPC
);
1705 env
->CP0_Status
&= ~(1 << CP0St_EXL
);
1707 compute_hflags(env
);
1712 void helper_deret (void)
1715 set_pc(env
->CP0_DEPC
);
1717 env
->hflags
&= MIPS_HFLAG_DM
;
1718 compute_hflags(env
);
1722 #endif /* !CONFIG_USER_ONLY */
1724 target_ulong
helper_rdhwr_cpunum(void)
1726 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1727 (env
->CP0_HWREna
& (1 << 0)))
1728 return env
->CP0_EBase
& 0x3ff;
1730 helper_raise_exception(EXCP_RI
);
1735 target_ulong
helper_rdhwr_synci_step(void)
1737 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1738 (env
->CP0_HWREna
& (1 << 1)))
1739 return env
->SYNCI_Step
;
1741 helper_raise_exception(EXCP_RI
);
1746 target_ulong
helper_rdhwr_cc(void)
1748 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1749 (env
->CP0_HWREna
& (1 << 2)))
1750 return env
->CP0_Count
;
1752 helper_raise_exception(EXCP_RI
);
1757 target_ulong
helper_rdhwr_ccres(void)
1759 if ((env
->hflags
& MIPS_HFLAG_CP0
) ||
1760 (env
->CP0_HWREna
& (1 << 3)))
1763 helper_raise_exception(EXCP_RI
);
1768 void helper_pmon (int function
)
1772 case 2: /* TODO: char inbyte(int waitflag); */
1773 if (env
->active_tc
.gpr
[4] == 0)
1774 env
->active_tc
.gpr
[2] = -1;
1776 case 11: /* TODO: char inbyte (void); */
1777 env
->active_tc
.gpr
[2] = -1;
1781 printf("%c", (char)(env
->active_tc
.gpr
[4] & 0xFF));
1787 unsigned char *fmt
= (void *)(unsigned long)env
->active_tc
.gpr
[4];
1794 void helper_wait (void)
1797 helper_raise_exception(EXCP_HLT
);
1800 #if !defined(CONFIG_USER_ONLY)
1802 static void do_unaligned_access (target_ulong addr
, int is_write
, int is_user
, void *retaddr
);
1804 #define MMUSUFFIX _mmu
1805 #define ALIGNED_ONLY
1808 #include "softmmu_template.h"
1811 #include "softmmu_template.h"
1814 #include "softmmu_template.h"
1817 #include "softmmu_template.h"
1819 static void do_unaligned_access (target_ulong addr
, int is_write
, int is_user
, void *retaddr
)
1821 env
->CP0_BadVAddr
= addr
;
1822 do_restore_state (retaddr
);
1823 helper_raise_exception ((is_write
== 1) ? EXCP_AdES
: EXCP_AdEL
);
1826 void tlb_fill (target_ulong addr
, int is_write
, int mmu_idx
, void *retaddr
)
1828 TranslationBlock
*tb
;
1829 CPUState
*saved_env
;
1833 /* XXX: hack to restore env in all cases, even if not called from
1836 env
= cpu_single_env
;
1837 ret
= cpu_mips_handle_mmu_fault(env
, addr
, is_write
, mmu_idx
, 1);
1840 /* now we have a real cpu fault */
1841 pc
= (unsigned long)retaddr
;
1842 tb
= tb_find_pc(pc
);
1844 /* the PC is inside the translated code. It means that we have
1845 a virtual CPU fault */
1846 cpu_restore_state(tb
, env
, pc
, NULL
);
1849 helper_raise_exception_err(env
->exception_index
, env
->error_code
);
1854 void do_unassigned_access(target_phys_addr_t addr
, int is_write
, int is_exec
,
1855 int unused
, int size
)
1858 helper_raise_exception(EXCP_IBE
);
1860 helper_raise_exception(EXCP_DBE
);
1862 #endif /* !CONFIG_USER_ONLY */
1864 /* Complex FPU operations which may need stack space. */
1866 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
1867 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
1868 #define FLOAT_TWO32 make_float32(1 << 30)
1869 #define FLOAT_TWO64 make_float64(1ULL << 62)
1870 #define FLOAT_QNAN32 0x7fbfffff
1871 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
1872 #define FLOAT_SNAN32 0x7fffffff
1873 #define FLOAT_SNAN64 0x7fffffffffffffffULL
1875 /* convert MIPS rounding mode in FCR31 to IEEE library */
1876 static unsigned int ieee_rm
[] = {
1877 float_round_nearest_even
,
1878 float_round_to_zero
,
1883 #define RESTORE_ROUNDING_MODE \
1884 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1886 #define RESTORE_FLUSH_MODE \
1887 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
1889 target_ulong
helper_cfc1 (uint32_t reg
)
1895 arg1
= (int32_t)env
->active_fpu
.fcr0
;
1898 arg1
= ((env
->active_fpu
.fcr31
>> 24) & 0xfe) | ((env
->active_fpu
.fcr31
>> 23) & 0x1);
1901 arg1
= env
->active_fpu
.fcr31
& 0x0003f07c;
1904 arg1
= (env
->active_fpu
.fcr31
& 0x00000f83) | ((env
->active_fpu
.fcr31
>> 22) & 0x4);
1907 arg1
= (int32_t)env
->active_fpu
.fcr31
;
1914 void helper_ctc1 (target_ulong arg1
, uint32_t reg
)
1918 if (arg1
& 0xffffff00)
1920 env
->active_fpu
.fcr31
= (env
->active_fpu
.fcr31
& 0x017fffff) | ((arg1
& 0xfe) << 24) |
1921 ((arg1
& 0x1) << 23);
1924 if (arg1
& 0x007c0000)
1926 env
->active_fpu
.fcr31
= (env
->active_fpu
.fcr31
& 0xfffc0f83) | (arg1
& 0x0003f07c);
1929 if (arg1
& 0x007c0000)
1931 env
->active_fpu
.fcr31
= (env
->active_fpu
.fcr31
& 0xfefff07c) | (arg1
& 0x00000f83) |
1932 ((arg1
& 0x4) << 22);
1935 if (arg1
& 0x007c0000)
1937 env
->active_fpu
.fcr31
= arg1
;
1942 /* set rounding mode */
1943 RESTORE_ROUNDING_MODE
;
1944 /* set flush-to-zero mode */
1946 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
1947 if ((GET_FP_ENABLE(env
->active_fpu
.fcr31
) | 0x20) & GET_FP_CAUSE(env
->active_fpu
.fcr31
))
1948 helper_raise_exception(EXCP_FPE
);
1951 static inline char ieee_ex_to_mips(char xcpt
)
1953 return (xcpt
& float_flag_inexact
) >> 5 |
1954 (xcpt
& float_flag_underflow
) >> 3 |
1955 (xcpt
& float_flag_overflow
) >> 1 |
1956 (xcpt
& float_flag_divbyzero
) << 1 |
1957 (xcpt
& float_flag_invalid
) << 4;
1960 static inline char mips_ex_to_ieee(char xcpt
)
1962 return (xcpt
& FP_INEXACT
) << 5 |
1963 (xcpt
& FP_UNDERFLOW
) << 3 |
1964 (xcpt
& FP_OVERFLOW
) << 1 |
1965 (xcpt
& FP_DIV0
) >> 1 |
1966 (xcpt
& FP_INVALID
) >> 4;
1969 static inline void update_fcr31(void)
1971 int tmp
= ieee_ex_to_mips(get_float_exception_flags(&env
->active_fpu
.fp_status
));
1973 SET_FP_CAUSE(env
->active_fpu
.fcr31
, tmp
);
1974 if (GET_FP_ENABLE(env
->active_fpu
.fcr31
) & tmp
)
1975 helper_raise_exception(EXCP_FPE
);
1977 UPDATE_FP_FLAGS(env
->active_fpu
.fcr31
, tmp
);
1981 Single precition routines have a "s" suffix, double precision a
1982 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
1983 paired single lower "pl", paired single upper "pu". */
1985 /* unary operations, modifying fp status */
1986 uint64_t helper_float_sqrt_d(uint64_t fdt0
)
1988 return float64_sqrt(fdt0
, &env
->active_fpu
.fp_status
);
1991 uint32_t helper_float_sqrt_s(uint32_t fst0
)
1993 return float32_sqrt(fst0
, &env
->active_fpu
.fp_status
);
1996 uint64_t helper_float_cvtd_s(uint32_t fst0
)
2000 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2001 fdt2
= float32_to_float64(fst0
, &env
->active_fpu
.fp_status
);
2006 uint64_t helper_float_cvtd_w(uint32_t wt0
)
2010 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2011 fdt2
= int32_to_float64(wt0
, &env
->active_fpu
.fp_status
);
2016 uint64_t helper_float_cvtd_l(uint64_t dt0
)
2020 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2021 fdt2
= int64_to_float64(dt0
, &env
->active_fpu
.fp_status
);
2026 uint64_t helper_float_cvtl_d(uint64_t fdt0
)
2030 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2031 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2033 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2038 uint64_t helper_float_cvtl_s(uint32_t fst0
)
2042 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2043 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2045 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2050 uint64_t helper_float_cvtps_pw(uint64_t dt0
)
2055 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2056 fst2
= int32_to_float32(dt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2057 fsth2
= int32_to_float32(dt0
>> 32, &env
->active_fpu
.fp_status
);
2059 return ((uint64_t)fsth2
<< 32) | fst2
;
2062 uint64_t helper_float_cvtpw_ps(uint64_t fdt0
)
2067 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2068 wt2
= float32_to_int32(fdt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2069 wth2
= float32_to_int32(fdt0
>> 32, &env
->active_fpu
.fp_status
);
2071 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
)) {
2073 wth2
= FLOAT_SNAN32
;
2075 return ((uint64_t)wth2
<< 32) | wt2
;
2078 uint32_t helper_float_cvts_d(uint64_t fdt0
)
2082 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2083 fst2
= float64_to_float32(fdt0
, &env
->active_fpu
.fp_status
);
2088 uint32_t helper_float_cvts_w(uint32_t wt0
)
2092 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2093 fst2
= int32_to_float32(wt0
, &env
->active_fpu
.fp_status
);
2098 uint32_t helper_float_cvts_l(uint64_t dt0
)
2102 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2103 fst2
= int64_to_float32(dt0
, &env
->active_fpu
.fp_status
);
2108 uint32_t helper_float_cvts_pl(uint32_t wt0
)
2112 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2118 uint32_t helper_float_cvts_pu(uint32_t wth0
)
2122 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2128 uint32_t helper_float_cvtw_s(uint32_t fst0
)
2132 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2133 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2135 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2140 uint32_t helper_float_cvtw_d(uint64_t fdt0
)
2144 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2145 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2147 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2152 uint64_t helper_float_roundl_d(uint64_t fdt0
)
2156 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2157 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2158 RESTORE_ROUNDING_MODE
;
2160 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2165 uint64_t helper_float_roundl_s(uint32_t fst0
)
2169 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2170 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2171 RESTORE_ROUNDING_MODE
;
2173 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2178 uint32_t helper_float_roundw_d(uint64_t fdt0
)
2182 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2183 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2184 RESTORE_ROUNDING_MODE
;
2186 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2191 uint32_t helper_float_roundw_s(uint32_t fst0
)
2195 set_float_rounding_mode(float_round_nearest_even
, &env
->active_fpu
.fp_status
);
2196 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2197 RESTORE_ROUNDING_MODE
;
2199 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2204 uint64_t helper_float_truncl_d(uint64_t fdt0
)
2208 dt2
= float64_to_int64_round_to_zero(fdt0
, &env
->active_fpu
.fp_status
);
2210 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2215 uint64_t helper_float_truncl_s(uint32_t fst0
)
2219 dt2
= float32_to_int64_round_to_zero(fst0
, &env
->active_fpu
.fp_status
);
2221 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2226 uint32_t helper_float_truncw_d(uint64_t fdt0
)
2230 wt2
= float64_to_int32_round_to_zero(fdt0
, &env
->active_fpu
.fp_status
);
2232 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2237 uint32_t helper_float_truncw_s(uint32_t fst0
)
2241 wt2
= float32_to_int32_round_to_zero(fst0
, &env
->active_fpu
.fp_status
);
2243 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2248 uint64_t helper_float_ceill_d(uint64_t fdt0
)
2252 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2253 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2254 RESTORE_ROUNDING_MODE
;
2256 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2261 uint64_t helper_float_ceill_s(uint32_t fst0
)
2265 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2266 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2267 RESTORE_ROUNDING_MODE
;
2269 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2274 uint32_t helper_float_ceilw_d(uint64_t fdt0
)
2278 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2279 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2280 RESTORE_ROUNDING_MODE
;
2282 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2287 uint32_t helper_float_ceilw_s(uint32_t fst0
)
2291 set_float_rounding_mode(float_round_up
, &env
->active_fpu
.fp_status
);
2292 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2293 RESTORE_ROUNDING_MODE
;
2295 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2300 uint64_t helper_float_floorl_d(uint64_t fdt0
)
2304 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2305 dt2
= float64_to_int64(fdt0
, &env
->active_fpu
.fp_status
);
2306 RESTORE_ROUNDING_MODE
;
2308 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2313 uint64_t helper_float_floorl_s(uint32_t fst0
)
2317 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2318 dt2
= float32_to_int64(fst0
, &env
->active_fpu
.fp_status
);
2319 RESTORE_ROUNDING_MODE
;
2321 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2326 uint32_t helper_float_floorw_d(uint64_t fdt0
)
2330 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2331 wt2
= float64_to_int32(fdt0
, &env
->active_fpu
.fp_status
);
2332 RESTORE_ROUNDING_MODE
;
2334 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2339 uint32_t helper_float_floorw_s(uint32_t fst0
)
2343 set_float_rounding_mode(float_round_down
, &env
->active_fpu
.fp_status
);
2344 wt2
= float32_to_int32(fst0
, &env
->active_fpu
.fp_status
);
2345 RESTORE_ROUNDING_MODE
;
2347 if (GET_FP_CAUSE(env
->active_fpu
.fcr31
) & (FP_OVERFLOW
| FP_INVALID
))
2352 /* unary operations, not modifying fp status */
2353 #define FLOAT_UNOP(name) \
2354 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2356 return float64_ ## name(fdt0); \
2358 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2360 return float32_ ## name(fst0); \
2362 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2367 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2368 wth0 = float32_ ## name(fdt0 >> 32); \
2369 return ((uint64_t)wth0 << 32) | wt0; \
2375 /* MIPS specific unary operations */
2376 uint64_t helper_float_recip_d(uint64_t fdt0
)
2380 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2381 fdt2
= float64_div(FLOAT_ONE64
, fdt0
, &env
->active_fpu
.fp_status
);
2386 uint32_t helper_float_recip_s(uint32_t fst0
)
2390 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2391 fst2
= float32_div(FLOAT_ONE32
, fst0
, &env
->active_fpu
.fp_status
);
2396 uint64_t helper_float_rsqrt_d(uint64_t fdt0
)
2400 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2401 fdt2
= float64_sqrt(fdt0
, &env
->active_fpu
.fp_status
);
2402 fdt2
= float64_div(FLOAT_ONE64
, fdt2
, &env
->active_fpu
.fp_status
);
2407 uint32_t helper_float_rsqrt_s(uint32_t fst0
)
2411 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2412 fst2
= float32_sqrt(fst0
, &env
->active_fpu
.fp_status
);
2413 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->active_fpu
.fp_status
);
2418 uint64_t helper_float_recip1_d(uint64_t fdt0
)
2422 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2423 fdt2
= float64_div(FLOAT_ONE64
, fdt0
, &env
->active_fpu
.fp_status
);
2428 uint32_t helper_float_recip1_s(uint32_t fst0
)
2432 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2433 fst2
= float32_div(FLOAT_ONE32
, fst0
, &env
->active_fpu
.fp_status
);
2438 uint64_t helper_float_recip1_ps(uint64_t fdt0
)
2443 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2444 fst2
= float32_div(FLOAT_ONE32
, fdt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2445 fsth2
= float32_div(FLOAT_ONE32
, fdt0
>> 32, &env
->active_fpu
.fp_status
);
2447 return ((uint64_t)fsth2
<< 32) | fst2
;
2450 uint64_t helper_float_rsqrt1_d(uint64_t fdt0
)
2454 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2455 fdt2
= float64_sqrt(fdt0
, &env
->active_fpu
.fp_status
);
2456 fdt2
= float64_div(FLOAT_ONE64
, fdt2
, &env
->active_fpu
.fp_status
);
2461 uint32_t helper_float_rsqrt1_s(uint32_t fst0
)
2465 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2466 fst2
= float32_sqrt(fst0
, &env
->active_fpu
.fp_status
);
2467 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->active_fpu
.fp_status
);
2472 uint64_t helper_float_rsqrt1_ps(uint64_t fdt0
)
2477 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2478 fst2
= float32_sqrt(fdt0
& 0XFFFFFFFF, &env
->active_fpu
.fp_status
);
2479 fsth2
= float32_sqrt(fdt0
>> 32, &env
->active_fpu
.fp_status
);
2480 fst2
= float32_div(FLOAT_ONE32
, fst2
, &env
->active_fpu
.fp_status
);
2481 fsth2
= float32_div(FLOAT_ONE32
, fsth2
, &env
->active_fpu
.fp_status
);
2483 return ((uint64_t)fsth2
<< 32) | fst2
;
2486 #define FLOAT_OP(name, p) void helper_float_##name##_##p(void)
2488 /* binary operations */
2489 #define FLOAT_BINOP(name) \
2490 uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2494 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2495 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2497 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2498 dt2 = FLOAT_QNAN64; \
2502 uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2506 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2507 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2509 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2510 wt2 = FLOAT_QNAN32; \
2514 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2516 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2517 uint32_t fsth0 = fdt0 >> 32; \
2518 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2519 uint32_t fsth1 = fdt1 >> 32; \
2523 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2524 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2525 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2527 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
2528 wt2 = FLOAT_QNAN32; \
2529 wth2 = FLOAT_QNAN32; \
2531 return ((uint64_t)wth2 << 32) | wt2; \
2540 /* ternary operations */
2541 #define FLOAT_TERNOP(name1, name2) \
2542 uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2545 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2546 return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2549 uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2552 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2553 return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2556 uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2559 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2560 uint32_t fsth0 = fdt0 >> 32; \
2561 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2562 uint32_t fsth1 = fdt1 >> 32; \
2563 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2564 uint32_t fsth2 = fdt2 >> 32; \
2566 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2567 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2568 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2569 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2570 return ((uint64_t)fsth2 << 32) | fst2; \
2573 FLOAT_TERNOP(mul
, add
)
2574 FLOAT_TERNOP(mul
, sub
)
2577 /* negated ternary operations */
2578 #define FLOAT_NTERNOP(name1, name2) \
2579 uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2582 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2583 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2584 return float64_chs(fdt2); \
2587 uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2590 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2591 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2592 return float32_chs(fst2); \
2595 uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2598 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2599 uint32_t fsth0 = fdt0 >> 32; \
2600 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2601 uint32_t fsth1 = fdt1 >> 32; \
2602 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2603 uint32_t fsth2 = fdt2 >> 32; \
2605 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2606 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2607 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2608 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2609 fst2 = float32_chs(fst2); \
2610 fsth2 = float32_chs(fsth2); \
2611 return ((uint64_t)fsth2 << 32) | fst2; \
2614 FLOAT_NTERNOP(mul
, add
)
2615 FLOAT_NTERNOP(mul
, sub
)
2616 #undef FLOAT_NTERNOP
2618 /* MIPS specific binary operations */
2619 uint64_t helper_float_recip2_d(uint64_t fdt0
, uint64_t fdt2
)
2621 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2622 fdt2
= float64_mul(fdt0
, fdt2
, &env
->active_fpu
.fp_status
);
2623 fdt2
= float64_chs(float64_sub(fdt2
, FLOAT_ONE64
, &env
->active_fpu
.fp_status
));
2628 uint32_t helper_float_recip2_s(uint32_t fst0
, uint32_t fst2
)
2630 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2631 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2632 fst2
= float32_chs(float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
));
2637 uint64_t helper_float_recip2_ps(uint64_t fdt0
, uint64_t fdt2
)
2639 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2640 uint32_t fsth0
= fdt0
>> 32;
2641 uint32_t fst2
= fdt2
& 0XFFFFFFFF;
2642 uint32_t fsth2
= fdt2
>> 32;
2644 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2645 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2646 fsth2
= float32_mul(fsth0
, fsth2
, &env
->active_fpu
.fp_status
);
2647 fst2
= float32_chs(float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
));
2648 fsth2
= float32_chs(float32_sub(fsth2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
));
2650 return ((uint64_t)fsth2
<< 32) | fst2
;
2653 uint64_t helper_float_rsqrt2_d(uint64_t fdt0
, uint64_t fdt2
)
2655 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2656 fdt2
= float64_mul(fdt0
, fdt2
, &env
->active_fpu
.fp_status
);
2657 fdt2
= float64_sub(fdt2
, FLOAT_ONE64
, &env
->active_fpu
.fp_status
);
2658 fdt2
= float64_chs(float64_div(fdt2
, FLOAT_TWO64
, &env
->active_fpu
.fp_status
));
2663 uint32_t helper_float_rsqrt2_s(uint32_t fst0
, uint32_t fst2
)
2665 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2666 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2667 fst2
= float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
);
2668 fst2
= float32_chs(float32_div(fst2
, FLOAT_TWO32
, &env
->active_fpu
.fp_status
));
2673 uint64_t helper_float_rsqrt2_ps(uint64_t fdt0
, uint64_t fdt2
)
2675 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2676 uint32_t fsth0
= fdt0
>> 32;
2677 uint32_t fst2
= fdt2
& 0XFFFFFFFF;
2678 uint32_t fsth2
= fdt2
>> 32;
2680 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2681 fst2
= float32_mul(fst0
, fst2
, &env
->active_fpu
.fp_status
);
2682 fsth2
= float32_mul(fsth0
, fsth2
, &env
->active_fpu
.fp_status
);
2683 fst2
= float32_sub(fst2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
);
2684 fsth2
= float32_sub(fsth2
, FLOAT_ONE32
, &env
->active_fpu
.fp_status
);
2685 fst2
= float32_chs(float32_div(fst2
, FLOAT_TWO32
, &env
->active_fpu
.fp_status
));
2686 fsth2
= float32_chs(float32_div(fsth2
, FLOAT_TWO32
, &env
->active_fpu
.fp_status
));
2688 return ((uint64_t)fsth2
<< 32) | fst2
;
2691 uint64_t helper_float_addr_ps(uint64_t fdt0
, uint64_t fdt1
)
2693 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2694 uint32_t fsth0
= fdt0
>> 32;
2695 uint32_t fst1
= fdt1
& 0XFFFFFFFF;
2696 uint32_t fsth1
= fdt1
>> 32;
2700 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2701 fst2
= float32_add (fst0
, fsth0
, &env
->active_fpu
.fp_status
);
2702 fsth2
= float32_add (fst1
, fsth1
, &env
->active_fpu
.fp_status
);
2704 return ((uint64_t)fsth2
<< 32) | fst2
;
2707 uint64_t helper_float_mulr_ps(uint64_t fdt0
, uint64_t fdt1
)
2709 uint32_t fst0
= fdt0
& 0XFFFFFFFF;
2710 uint32_t fsth0
= fdt0
>> 32;
2711 uint32_t fst1
= fdt1
& 0XFFFFFFFF;
2712 uint32_t fsth1
= fdt1
>> 32;
2716 set_float_exception_flags(0, &env
->active_fpu
.fp_status
);
2717 fst2
= float32_mul (fst0
, fsth0
, &env
->active_fpu
.fp_status
);
2718 fsth2
= float32_mul (fst1
, fsth1
, &env
->active_fpu
.fp_status
);
2720 return ((uint64_t)fsth2
<< 32) | fst2
;
2723 /* compare operations */
2724 #define FOP_COND_D(op, cond) \
2725 void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2730 SET_FP_COND(cc, env->active_fpu); \
2732 CLEAR_FP_COND(cc, env->active_fpu); \
2734 void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2737 fdt0 = float64_abs(fdt0); \
2738 fdt1 = float64_abs(fdt1); \
2742 SET_FP_COND(cc, env->active_fpu); \
2744 CLEAR_FP_COND(cc, env->active_fpu); \
2747 static int float64_is_unordered(int sig
, float64 a
, float64 b STATUS_PARAM
)
2749 if (float64_is_signaling_nan(a
) ||
2750 float64_is_signaling_nan(b
) ||
2751 (sig
&& (float64_is_nan(a
) || float64_is_nan(b
)))) {
2752 float_raise(float_flag_invalid
, status
);
2754 } else if (float64_is_nan(a
) || float64_is_nan(b
)) {
2761 /* NOTE: the comma operator will make "cond" to eval to false,
2762 * but float*_is_unordered() is still called. */
2763 FOP_COND_D(f
, (float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
), 0))
2764 FOP_COND_D(un
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
))
2765 FOP_COND_D(eq
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2766 FOP_COND_D(ueq
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2767 FOP_COND_D(olt
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2768 FOP_COND_D(ult
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2769 FOP_COND_D(ole
, !float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2770 FOP_COND_D(ule
, float64_is_unordered(0, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2771 /* NOTE: the comma operator will make "cond" to eval to false,
2772 * but float*_is_unordered() is still called. */
2773 FOP_COND_D(sf
, (float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
), 0))
2774 FOP_COND_D(ngle
,float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
))
2775 FOP_COND_D(seq
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2776 FOP_COND_D(ngl
, float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_eq(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2777 FOP_COND_D(lt
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2778 FOP_COND_D(nge
, float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_lt(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2779 FOP_COND_D(le
, !float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) && float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2780 FOP_COND_D(ngt
, float64_is_unordered(1, fdt1
, fdt0
, &env
->active_fpu
.fp_status
) || float64_le(fdt0
, fdt1
, &env
->active_fpu
.fp_status
))
2782 #define FOP_COND_S(op, cond) \
2783 void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2788 SET_FP_COND(cc, env->active_fpu); \
2790 CLEAR_FP_COND(cc, env->active_fpu); \
2792 void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2795 fst0 = float32_abs(fst0); \
2796 fst1 = float32_abs(fst1); \
2800 SET_FP_COND(cc, env->active_fpu); \
2802 CLEAR_FP_COND(cc, env->active_fpu); \
2805 static flag
float32_is_unordered(int sig
, float32 a
, float32 b STATUS_PARAM
)
2807 if (float32_is_signaling_nan(a
) ||
2808 float32_is_signaling_nan(b
) ||
2809 (sig
&& (float32_is_nan(a
) || float32_is_nan(b
)))) {
2810 float_raise(float_flag_invalid
, status
);
2812 } else if (float32_is_nan(a
) || float32_is_nan(b
)) {
2819 /* NOTE: the comma operator will make "cond" to eval to false,
2820 * but float*_is_unordered() is still called. */
2821 FOP_COND_S(f
, (float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0))
2822 FOP_COND_S(un
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
))
2823 FOP_COND_S(eq
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2824 FOP_COND_S(ueq
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2825 FOP_COND_S(olt
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2826 FOP_COND_S(ult
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2827 FOP_COND_S(ole
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2828 FOP_COND_S(ule
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2829 /* NOTE: the comma operator will make "cond" to eval to false,
2830 * but float*_is_unordered() is still called. */
2831 FOP_COND_S(sf
, (float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0))
2832 FOP_COND_S(ngle
,float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
))
2833 FOP_COND_S(seq
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2834 FOP_COND_S(ngl
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2835 FOP_COND_S(lt
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2836 FOP_COND_S(nge
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2837 FOP_COND_S(le
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2838 FOP_COND_S(ngt
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
))
2840 #define FOP_COND_PS(op, condl, condh) \
2841 void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2843 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2844 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2845 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2846 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2852 SET_FP_COND(cc, env->active_fpu); \
2854 CLEAR_FP_COND(cc, env->active_fpu); \
2856 SET_FP_COND(cc + 1, env->active_fpu); \
2858 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2860 void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2862 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2863 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2864 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2865 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2871 SET_FP_COND(cc, env->active_fpu); \
2873 CLEAR_FP_COND(cc, env->active_fpu); \
2875 SET_FP_COND(cc + 1, env->active_fpu); \
2877 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2880 /* NOTE: the comma operator will make "cond" to eval to false,
2881 * but float*_is_unordered() is still called. */
2882 FOP_COND_PS(f
, (float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0),
2883 (float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
), 0))
2884 FOP_COND_PS(un
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
),
2885 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
))
2886 FOP_COND_PS(eq
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2887 !float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2888 FOP_COND_PS(ueq
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2889 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2890 FOP_COND_PS(olt
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2891 !float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2892 FOP_COND_PS(ult
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2893 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2894 FOP_COND_PS(ole
, !float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2895 !float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2896 FOP_COND_PS(ule
, float32_is_unordered(0, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2897 float32_is_unordered(0, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2898 /* NOTE: the comma operator will make "cond" to eval to false,
2899 * but float*_is_unordered() is still called. */
2900 FOP_COND_PS(sf
, (float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
), 0),
2901 (float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
), 0))
2902 FOP_COND_PS(ngle
,float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
),
2903 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
))
2904 FOP_COND_PS(seq
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2905 !float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2906 FOP_COND_PS(ngl
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_eq(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2907 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_eq(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2908 FOP_COND_PS(lt
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2909 !float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2910 FOP_COND_PS(nge
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_lt(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2911 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_lt(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2912 FOP_COND_PS(le
, !float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) && float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2913 !float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) && float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))
2914 FOP_COND_PS(ngt
, float32_is_unordered(1, fst1
, fst0
, &env
->active_fpu
.fp_status
) || float32_le(fst0
, fst1
, &env
->active_fpu
.fp_status
),
2915 float32_is_unordered(1, fsth1
, fsth0
, &env
->active_fpu
.fp_status
) || float32_le(fsth0
, fsth1
, &env
->active_fpu
.fp_status
))