migration/ram: Fix compilation with -Wshadow=local
[qemu/ar7.git] / migration / ram.c
blob024dedb6b182f55d868c93e311a48553b0f1734c
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "rdma.h"
63 #include "options.h"
64 #include "sysemu/dirtylimit.h"
65 #include "sysemu/kvm.h"
67 #include "hw/boards.h" /* for machine_dump_guest_core() */
69 #if defined(__linux__)
70 #include "qemu/userfaultfd.h"
71 #endif /* defined(__linux__) */
73 /***********************************************************/
74 /* ram save/restore */
77 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
78 * worked for pages that were filled with the same char. We switched
79 * it to only search for the zero value. And to avoid confusion with
80 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
83 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
85 #define RAM_SAVE_FLAG_FULL 0x01
86 #define RAM_SAVE_FLAG_ZERO 0x02
87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
88 #define RAM_SAVE_FLAG_PAGE 0x08
89 #define RAM_SAVE_FLAG_EOS 0x10
90 #define RAM_SAVE_FLAG_CONTINUE 0x20
91 #define RAM_SAVE_FLAG_XBZRLE 0x40
92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
93 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200
95 /* We can't use any flag that is bigger than 0x200 */
97 XBZRLECacheStats xbzrle_counters;
99 /* used by the search for pages to send */
100 struct PageSearchStatus {
101 /* The migration channel used for a specific host page */
102 QEMUFile *pss_channel;
103 /* Last block from where we have sent data */
104 RAMBlock *last_sent_block;
105 /* Current block being searched */
106 RAMBlock *block;
107 /* Current page to search from */
108 unsigned long page;
109 /* Set once we wrap around */
110 bool complete_round;
111 /* Whether we're sending a host page */
112 bool host_page_sending;
113 /* The start/end of current host page. Invalid if host_page_sending==false */
114 unsigned long host_page_start;
115 unsigned long host_page_end;
117 typedef struct PageSearchStatus PageSearchStatus;
119 /* struct contains XBZRLE cache and a static page
120 used by the compression */
121 static struct {
122 /* buffer used for XBZRLE encoding */
123 uint8_t *encoded_buf;
124 /* buffer for storing page content */
125 uint8_t *current_buf;
126 /* Cache for XBZRLE, Protected by lock. */
127 PageCache *cache;
128 QemuMutex lock;
129 /* it will store a page full of zeros */
130 uint8_t *zero_target_page;
131 /* buffer used for XBZRLE decoding */
132 uint8_t *decoded_buf;
133 } XBZRLE;
135 static void XBZRLE_cache_lock(void)
137 if (migrate_xbzrle()) {
138 qemu_mutex_lock(&XBZRLE.lock);
142 static void XBZRLE_cache_unlock(void)
144 if (migrate_xbzrle()) {
145 qemu_mutex_unlock(&XBZRLE.lock);
150 * xbzrle_cache_resize: resize the xbzrle cache
152 * This function is called from migrate_params_apply in main
153 * thread, possibly while a migration is in progress. A running
154 * migration may be using the cache and might finish during this call,
155 * hence changes to the cache are protected by XBZRLE.lock().
157 * Returns 0 for success or -1 for error
159 * @new_size: new cache size
160 * @errp: set *errp if the check failed, with reason
162 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
164 PageCache *new_cache;
165 int64_t ret = 0;
167 /* Check for truncation */
168 if (new_size != (size_t)new_size) {
169 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
170 "exceeding address space");
171 return -1;
174 if (new_size == migrate_xbzrle_cache_size()) {
175 /* nothing to do */
176 return 0;
179 XBZRLE_cache_lock();
181 if (XBZRLE.cache != NULL) {
182 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
183 if (!new_cache) {
184 ret = -1;
185 goto out;
188 cache_fini(XBZRLE.cache);
189 XBZRLE.cache = new_cache;
191 out:
192 XBZRLE_cache_unlock();
193 return ret;
196 static bool postcopy_preempt_active(void)
198 return migrate_postcopy_preempt() && migration_in_postcopy();
201 bool migrate_ram_is_ignored(RAMBlock *block)
203 return !qemu_ram_is_migratable(block) ||
204 (migrate_ignore_shared() && qemu_ram_is_shared(block)
205 && qemu_ram_is_named_file(block));
208 #undef RAMBLOCK_FOREACH
210 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
212 RAMBlock *block;
213 int ret = 0;
215 RCU_READ_LOCK_GUARD();
217 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
218 ret = func(block, opaque);
219 if (ret) {
220 break;
223 return ret;
226 static void ramblock_recv_map_init(void)
228 RAMBlock *rb;
230 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
231 assert(!rb->receivedmap);
232 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
236 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
238 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
239 rb->receivedmap);
242 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
244 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
247 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
249 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
252 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
253 size_t nr)
255 bitmap_set_atomic(rb->receivedmap,
256 ramblock_recv_bitmap_offset(host_addr, rb),
257 nr);
260 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
263 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
265 * Returns >0 if success with sent bytes, or <0 if error.
267 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
268 const char *block_name)
270 RAMBlock *block = qemu_ram_block_by_name(block_name);
271 unsigned long *le_bitmap, nbits;
272 uint64_t size;
274 if (!block) {
275 error_report("%s: invalid block name: %s", __func__, block_name);
276 return -1;
279 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
282 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
283 * machines we may need 4 more bytes for padding (see below
284 * comment). So extend it a bit before hand.
286 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
289 * Always use little endian when sending the bitmap. This is
290 * required that when source and destination VMs are not using the
291 * same endianness. (Note: big endian won't work.)
293 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
295 /* Size of the bitmap, in bytes */
296 size = DIV_ROUND_UP(nbits, 8);
299 * size is always aligned to 8 bytes for 64bit machines, but it
300 * may not be true for 32bit machines. We need this padding to
301 * make sure the migration can survive even between 32bit and
302 * 64bit machines.
304 size = ROUND_UP(size, 8);
306 qemu_put_be64(file, size);
307 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
309 * Mark as an end, in case the middle part is screwed up due to
310 * some "mysterious" reason.
312 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
313 qemu_fflush(file);
315 g_free(le_bitmap);
317 if (qemu_file_get_error(file)) {
318 return qemu_file_get_error(file);
321 return size + sizeof(size);
325 * An outstanding page request, on the source, having been received
326 * and queued
328 struct RAMSrcPageRequest {
329 RAMBlock *rb;
330 hwaddr offset;
331 hwaddr len;
333 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
336 /* State of RAM for migration */
337 struct RAMState {
339 * PageSearchStatus structures for the channels when send pages.
340 * Protected by the bitmap_mutex.
342 PageSearchStatus pss[RAM_CHANNEL_MAX];
343 /* UFFD file descriptor, used in 'write-tracking' migration */
344 int uffdio_fd;
345 /* total ram size in bytes */
346 uint64_t ram_bytes_total;
347 /* Last block that we have visited searching for dirty pages */
348 RAMBlock *last_seen_block;
349 /* Last dirty target page we have sent */
350 ram_addr_t last_page;
351 /* last ram version we have seen */
352 uint32_t last_version;
353 /* How many times we have dirty too many pages */
354 int dirty_rate_high_cnt;
355 /* these variables are used for bitmap sync */
356 /* last time we did a full bitmap_sync */
357 int64_t time_last_bitmap_sync;
358 /* bytes transferred at start_time */
359 uint64_t bytes_xfer_prev;
360 /* number of dirty pages since start_time */
361 uint64_t num_dirty_pages_period;
362 /* xbzrle misses since the beginning of the period */
363 uint64_t xbzrle_cache_miss_prev;
364 /* Amount of xbzrle pages since the beginning of the period */
365 uint64_t xbzrle_pages_prev;
366 /* Amount of xbzrle encoded bytes since the beginning of the period */
367 uint64_t xbzrle_bytes_prev;
368 /* Are we really using XBZRLE (e.g., after the first round). */
369 bool xbzrle_started;
370 /* Are we on the last stage of migration */
371 bool last_stage;
373 /* total handled target pages at the beginning of period */
374 uint64_t target_page_count_prev;
375 /* total handled target pages since start */
376 uint64_t target_page_count;
377 /* number of dirty bits in the bitmap */
378 uint64_t migration_dirty_pages;
380 * Protects:
381 * - dirty/clear bitmap
382 * - migration_dirty_pages
383 * - pss structures
385 QemuMutex bitmap_mutex;
386 /* The RAMBlock used in the last src_page_requests */
387 RAMBlock *last_req_rb;
388 /* Queue of outstanding page requests from the destination */
389 QemuMutex src_page_req_mutex;
390 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
393 * This is only used when postcopy is in recovery phase, to communicate
394 * between the migration thread and the return path thread on dirty
395 * bitmap synchronizations. This field is unused in other stages of
396 * RAM migration.
398 unsigned int postcopy_bmap_sync_requested;
400 typedef struct RAMState RAMState;
402 static RAMState *ram_state;
404 static NotifierWithReturnList precopy_notifier_list;
406 /* Whether postcopy has queued requests? */
407 static bool postcopy_has_request(RAMState *rs)
409 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
412 void precopy_infrastructure_init(void)
414 notifier_with_return_list_init(&precopy_notifier_list);
417 void precopy_add_notifier(NotifierWithReturn *n)
419 notifier_with_return_list_add(&precopy_notifier_list, n);
422 void precopy_remove_notifier(NotifierWithReturn *n)
424 notifier_with_return_remove(n);
427 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
429 PrecopyNotifyData pnd;
430 pnd.reason = reason;
431 pnd.errp = errp;
433 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
436 uint64_t ram_bytes_remaining(void)
438 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
442 void ram_transferred_add(uint64_t bytes)
444 if (runstate_is_running()) {
445 stat64_add(&mig_stats.precopy_bytes, bytes);
446 } else if (migration_in_postcopy()) {
447 stat64_add(&mig_stats.postcopy_bytes, bytes);
448 } else {
449 stat64_add(&mig_stats.downtime_bytes, bytes);
451 stat64_add(&mig_stats.transferred, bytes);
454 struct MigrationOps {
455 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
457 typedef struct MigrationOps MigrationOps;
459 MigrationOps *migration_ops;
461 static int ram_save_host_page_urgent(PageSearchStatus *pss);
463 /* NOTE: page is the PFN not real ram_addr_t. */
464 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
466 pss->block = rb;
467 pss->page = page;
468 pss->complete_round = false;
472 * Check whether two PSSs are actively sending the same page. Return true
473 * if it is, false otherwise.
475 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
477 return pss1->host_page_sending && pss2->host_page_sending &&
478 (pss1->host_page_start == pss2->host_page_start);
482 * save_page_header: write page header to wire
484 * If this is the 1st block, it also writes the block identification
486 * Returns the number of bytes written
488 * @pss: current PSS channel status
489 * @block: block that contains the page we want to send
490 * @offset: offset inside the block for the page
491 * in the lower bits, it contains flags
493 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
494 RAMBlock *block, ram_addr_t offset)
496 size_t size, len;
497 bool same_block = (block == pss->last_sent_block);
499 if (same_block) {
500 offset |= RAM_SAVE_FLAG_CONTINUE;
502 qemu_put_be64(f, offset);
503 size = 8;
505 if (!same_block) {
506 len = strlen(block->idstr);
507 qemu_put_byte(f, len);
508 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
509 size += 1 + len;
510 pss->last_sent_block = block;
512 return size;
516 * mig_throttle_guest_down: throttle down the guest
518 * Reduce amount of guest cpu execution to hopefully slow down memory
519 * writes. If guest dirty memory rate is reduced below the rate at
520 * which we can transfer pages to the destination then we should be
521 * able to complete migration. Some workloads dirty memory way too
522 * fast and will not effectively converge, even with auto-converge.
524 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
525 uint64_t bytes_dirty_threshold)
527 uint64_t pct_initial = migrate_cpu_throttle_initial();
528 uint64_t pct_increment = migrate_cpu_throttle_increment();
529 bool pct_tailslow = migrate_cpu_throttle_tailslow();
530 int pct_max = migrate_max_cpu_throttle();
532 uint64_t throttle_now = cpu_throttle_get_percentage();
533 uint64_t cpu_now, cpu_ideal, throttle_inc;
535 /* We have not started throttling yet. Let's start it. */
536 if (!cpu_throttle_active()) {
537 cpu_throttle_set(pct_initial);
538 } else {
539 /* Throttling already on, just increase the rate */
540 if (!pct_tailslow) {
541 throttle_inc = pct_increment;
542 } else {
543 /* Compute the ideal CPU percentage used by Guest, which may
544 * make the dirty rate match the dirty rate threshold. */
545 cpu_now = 100 - throttle_now;
546 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
547 bytes_dirty_period);
548 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
550 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
554 void mig_throttle_counter_reset(void)
556 RAMState *rs = ram_state;
558 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
559 rs->num_dirty_pages_period = 0;
560 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
564 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
566 * @current_addr: address for the zero page
568 * Update the xbzrle cache to reflect a page that's been sent as all 0.
569 * The important thing is that a stale (not-yet-0'd) page be replaced
570 * by the new data.
571 * As a bonus, if the page wasn't in the cache it gets added so that
572 * when a small write is made into the 0'd page it gets XBZRLE sent.
574 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
576 /* We don't care if this fails to allocate a new cache page
577 * as long as it updated an old one */
578 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
579 stat64_get(&mig_stats.dirty_sync_count));
582 #define ENCODING_FLAG_XBZRLE 0x1
585 * save_xbzrle_page: compress and send current page
587 * Returns: 1 means that we wrote the page
588 * 0 means that page is identical to the one already sent
589 * -1 means that xbzrle would be longer than normal
591 * @rs: current RAM state
592 * @pss: current PSS channel
593 * @current_data: pointer to the address of the page contents
594 * @current_addr: addr of the page
595 * @block: block that contains the page we want to send
596 * @offset: offset inside the block for the page
598 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
599 uint8_t **current_data, ram_addr_t current_addr,
600 RAMBlock *block, ram_addr_t offset)
602 int encoded_len = 0, bytes_xbzrle;
603 uint8_t *prev_cached_page;
604 QEMUFile *file = pss->pss_channel;
605 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
607 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
608 xbzrle_counters.cache_miss++;
609 if (!rs->last_stage) {
610 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
611 generation) == -1) {
612 return -1;
613 } else {
614 /* update *current_data when the page has been
615 inserted into cache */
616 *current_data = get_cached_data(XBZRLE.cache, current_addr);
619 return -1;
623 * Reaching here means the page has hit the xbzrle cache, no matter what
624 * encoding result it is (normal encoding, overflow or skipping the page),
625 * count the page as encoded. This is used to calculate the encoding rate.
627 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
628 * 2nd page turns out to be skipped (i.e. no new bytes written to the
629 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
630 * skipped page included. In this way, the encoding rate can tell if the
631 * guest page is good for xbzrle encoding.
633 xbzrle_counters.pages++;
634 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
636 /* save current buffer into memory */
637 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
639 /* XBZRLE encoding (if there is no overflow) */
640 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
641 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
642 TARGET_PAGE_SIZE);
645 * Update the cache contents, so that it corresponds to the data
646 * sent, in all cases except where we skip the page.
648 if (!rs->last_stage && encoded_len != 0) {
649 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
651 * In the case where we couldn't compress, ensure that the caller
652 * sends the data from the cache, since the guest might have
653 * changed the RAM since we copied it.
655 *current_data = prev_cached_page;
658 if (encoded_len == 0) {
659 trace_save_xbzrle_page_skipping();
660 return 0;
661 } else if (encoded_len == -1) {
662 trace_save_xbzrle_page_overflow();
663 xbzrle_counters.overflow++;
664 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
665 return -1;
668 /* Send XBZRLE based compressed page */
669 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
670 offset | RAM_SAVE_FLAG_XBZRLE);
671 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
672 qemu_put_be16(file, encoded_len);
673 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
674 bytes_xbzrle += encoded_len + 1 + 2;
676 * Like compressed_size (please see update_compress_thread_counts),
677 * the xbzrle encoded bytes don't count the 8 byte header with
678 * RAM_SAVE_FLAG_CONTINUE.
680 xbzrle_counters.bytes += bytes_xbzrle - 8;
681 ram_transferred_add(bytes_xbzrle);
683 return 1;
687 * pss_find_next_dirty: find the next dirty page of current ramblock
689 * This function updates pss->page to point to the next dirty page index
690 * within the ramblock to migrate, or the end of ramblock when nothing
691 * found. Note that when pss->host_page_sending==true it means we're
692 * during sending a host page, so we won't look for dirty page that is
693 * outside the host page boundary.
695 * @pss: the current page search status
697 static void pss_find_next_dirty(PageSearchStatus *pss)
699 RAMBlock *rb = pss->block;
700 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
701 unsigned long *bitmap = rb->bmap;
703 if (migrate_ram_is_ignored(rb)) {
704 /* Points directly to the end, so we know no dirty page */
705 pss->page = size;
706 return;
710 * If during sending a host page, only look for dirty pages within the
711 * current host page being send.
713 if (pss->host_page_sending) {
714 assert(pss->host_page_end);
715 size = MIN(size, pss->host_page_end);
718 pss->page = find_next_bit(bitmap, size, pss->page);
721 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
722 unsigned long page)
724 uint8_t shift;
725 hwaddr size, start;
727 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
728 return;
731 shift = rb->clear_bmap_shift;
733 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
734 * can make things easier sometimes since then start address
735 * of the small chunk will always be 64 pages aligned so the
736 * bitmap will always be aligned to unsigned long. We should
737 * even be able to remove this restriction but I'm simply
738 * keeping it.
740 assert(shift >= 6);
742 size = 1ULL << (TARGET_PAGE_BITS + shift);
743 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
744 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
745 memory_region_clear_dirty_bitmap(rb->mr, start, size);
748 static void
749 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
750 unsigned long start,
751 unsigned long npages)
753 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
754 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
755 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
758 * Clear pages from start to start + npages - 1, so the end boundary is
759 * exclusive.
761 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
762 migration_clear_memory_region_dirty_bitmap(rb, i);
767 * colo_bitmap_find_diry:find contiguous dirty pages from start
769 * Returns the page offset within memory region of the start of the contiguout
770 * dirty page
772 * @rs: current RAM state
773 * @rb: RAMBlock where to search for dirty pages
774 * @start: page where we start the search
775 * @num: the number of contiguous dirty pages
777 static inline
778 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
779 unsigned long start, unsigned long *num)
781 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
782 unsigned long *bitmap = rb->bmap;
783 unsigned long first, next;
785 *num = 0;
787 if (migrate_ram_is_ignored(rb)) {
788 return size;
791 first = find_next_bit(bitmap, size, start);
792 if (first >= size) {
793 return first;
795 next = find_next_zero_bit(bitmap, size, first + 1);
796 assert(next >= first);
797 *num = next - first;
798 return first;
801 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
802 RAMBlock *rb,
803 unsigned long page)
805 bool ret;
808 * Clear dirty bitmap if needed. This _must_ be called before we
809 * send any of the page in the chunk because we need to make sure
810 * we can capture further page content changes when we sync dirty
811 * log the next time. So as long as we are going to send any of
812 * the page in the chunk we clear the remote dirty bitmap for all.
813 * Clearing it earlier won't be a problem, but too late will.
815 migration_clear_memory_region_dirty_bitmap(rb, page);
817 ret = test_and_clear_bit(page, rb->bmap);
818 if (ret) {
819 rs->migration_dirty_pages--;
822 return ret;
825 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
826 void *opaque)
828 const hwaddr offset = section->offset_within_region;
829 const hwaddr size = int128_get64(section->size);
830 const unsigned long start = offset >> TARGET_PAGE_BITS;
831 const unsigned long npages = size >> TARGET_PAGE_BITS;
832 RAMBlock *rb = section->mr->ram_block;
833 uint64_t *cleared_bits = opaque;
836 * We don't grab ram_state->bitmap_mutex because we expect to run
837 * only when starting migration or during postcopy recovery where
838 * we don't have concurrent access.
840 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
841 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
843 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
844 bitmap_clear(rb->bmap, start, npages);
848 * Exclude all dirty pages from migration that fall into a discarded range as
849 * managed by a RamDiscardManager responsible for the mapped memory region of
850 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
852 * Discarded pages ("logically unplugged") have undefined content and must
853 * not get migrated, because even reading these pages for migration might
854 * result in undesired behavior.
856 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
858 * Note: The result is only stable while migrating (precopy/postcopy).
860 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
862 uint64_t cleared_bits = 0;
864 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
865 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
866 MemoryRegionSection section = {
867 .mr = rb->mr,
868 .offset_within_region = 0,
869 .size = int128_make64(qemu_ram_get_used_length(rb)),
872 ram_discard_manager_replay_discarded(rdm, &section,
873 dirty_bitmap_clear_section,
874 &cleared_bits);
876 return cleared_bits;
880 * Check if a host-page aligned page falls into a discarded range as managed by
881 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
883 * Note: The result is only stable while migrating (precopy/postcopy).
885 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
887 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
888 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
889 MemoryRegionSection section = {
890 .mr = rb->mr,
891 .offset_within_region = start,
892 .size = int128_make64(qemu_ram_pagesize(rb)),
895 return !ram_discard_manager_is_populated(rdm, &section);
897 return false;
900 /* Called with RCU critical section */
901 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
903 uint64_t new_dirty_pages =
904 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
906 rs->migration_dirty_pages += new_dirty_pages;
907 rs->num_dirty_pages_period += new_dirty_pages;
911 * ram_pagesize_summary: calculate all the pagesizes of a VM
913 * Returns a summary bitmap of the page sizes of all RAMBlocks
915 * For VMs with just normal pages this is equivalent to the host page
916 * size. If it's got some huge pages then it's the OR of all the
917 * different page sizes.
919 uint64_t ram_pagesize_summary(void)
921 RAMBlock *block;
922 uint64_t summary = 0;
924 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
925 summary |= block->page_size;
928 return summary;
931 uint64_t ram_get_total_transferred_pages(void)
933 return stat64_get(&mig_stats.normal_pages) +
934 stat64_get(&mig_stats.zero_pages) +
935 compress_ram_pages() + xbzrle_counters.pages;
938 static void migration_update_rates(RAMState *rs, int64_t end_time)
940 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
942 /* calculate period counters */
943 stat64_set(&mig_stats.dirty_pages_rate,
944 rs->num_dirty_pages_period * 1000 /
945 (end_time - rs->time_last_bitmap_sync));
947 if (!page_count) {
948 return;
951 if (migrate_xbzrle()) {
952 double encoded_size, unencoded_size;
954 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
955 rs->xbzrle_cache_miss_prev) / page_count;
956 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
957 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
958 TARGET_PAGE_SIZE;
959 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
960 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
961 xbzrle_counters.encoding_rate = 0;
962 } else {
963 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
965 rs->xbzrle_pages_prev = xbzrle_counters.pages;
966 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
968 compress_update_rates(page_count);
972 * Enable dirty-limit to throttle down the guest
974 static void migration_dirty_limit_guest(void)
977 * dirty page rate quota for all vCPUs fetched from
978 * migration parameter 'vcpu_dirty_limit'
980 static int64_t quota_dirtyrate;
981 MigrationState *s = migrate_get_current();
984 * If dirty limit already enabled and migration parameter
985 * vcpu-dirty-limit untouched.
987 if (dirtylimit_in_service() &&
988 quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
989 return;
992 quota_dirtyrate = s->parameters.vcpu_dirty_limit;
995 * Set all vCPU a quota dirtyrate, note that the second
996 * parameter will be ignored if setting all vCPU for the vm
998 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
999 trace_migration_dirty_limit_guest(quota_dirtyrate);
1002 static void migration_trigger_throttle(RAMState *rs)
1004 uint64_t threshold = migrate_throttle_trigger_threshold();
1005 uint64_t bytes_xfer_period =
1006 stat64_get(&mig_stats.transferred) - rs->bytes_xfer_prev;
1007 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1008 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1010 /* During block migration the auto-converge logic incorrectly detects
1011 * that ram migration makes no progress. Avoid this by disabling the
1012 * throttling logic during the bulk phase of block migration. */
1013 if (blk_mig_bulk_active()) {
1014 return;
1018 * The following detection logic can be refined later. For now:
1019 * Check to see if the ratio between dirtied bytes and the approx.
1020 * amount of bytes that just got transferred since the last time
1021 * we were in this routine reaches the threshold. If that happens
1022 * twice, start or increase throttling.
1024 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1025 (++rs->dirty_rate_high_cnt >= 2)) {
1026 rs->dirty_rate_high_cnt = 0;
1027 if (migrate_auto_converge()) {
1028 trace_migration_throttle();
1029 mig_throttle_guest_down(bytes_dirty_period,
1030 bytes_dirty_threshold);
1031 } else if (migrate_dirty_limit()) {
1032 migration_dirty_limit_guest();
1037 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1039 RAMBlock *block;
1040 int64_t end_time;
1042 stat64_add(&mig_stats.dirty_sync_count, 1);
1044 if (!rs->time_last_bitmap_sync) {
1045 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1048 trace_migration_bitmap_sync_start();
1049 memory_global_dirty_log_sync(last_stage);
1051 qemu_mutex_lock(&rs->bitmap_mutex);
1052 WITH_RCU_READ_LOCK_GUARD() {
1053 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1054 ramblock_sync_dirty_bitmap(rs, block);
1056 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1058 qemu_mutex_unlock(&rs->bitmap_mutex);
1060 memory_global_after_dirty_log_sync();
1061 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1063 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1065 /* more than 1 second = 1000 millisecons */
1066 if (end_time > rs->time_last_bitmap_sync + 1000) {
1067 migration_trigger_throttle(rs);
1069 migration_update_rates(rs, end_time);
1071 rs->target_page_count_prev = rs->target_page_count;
1073 /* reset period counters */
1074 rs->time_last_bitmap_sync = end_time;
1075 rs->num_dirty_pages_period = 0;
1076 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
1078 if (migrate_events()) {
1079 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1080 qapi_event_send_migration_pass(generation);
1084 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1086 Error *local_err = NULL;
1089 * The current notifier usage is just an optimization to migration, so we
1090 * don't stop the normal migration process in the error case.
1092 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1093 error_report_err(local_err);
1094 local_err = NULL;
1097 migration_bitmap_sync(rs, last_stage);
1099 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1100 error_report_err(local_err);
1104 void ram_release_page(const char *rbname, uint64_t offset)
1106 if (!migrate_release_ram() || !migration_in_postcopy()) {
1107 return;
1110 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1114 * save_zero_page: send the zero page to the stream
1116 * Returns the number of pages written.
1118 * @rs: current RAM state
1119 * @pss: current PSS channel
1120 * @offset: offset inside the block for the page
1122 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1123 ram_addr_t offset)
1125 uint8_t *p = pss->block->host + offset;
1126 QEMUFile *file = pss->pss_channel;
1127 int len = 0;
1129 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1130 return 0;
1133 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1134 qemu_put_byte(file, 0);
1135 len += 1;
1136 ram_release_page(pss->block->idstr, offset);
1138 stat64_add(&mig_stats.zero_pages, 1);
1139 ram_transferred_add(len);
1142 * Must let xbzrle know, otherwise a previous (now 0'd) cached
1143 * page would be stale.
1145 if (rs->xbzrle_started) {
1146 XBZRLE_cache_lock();
1147 xbzrle_cache_zero_page(pss->block->offset + offset);
1148 XBZRLE_cache_unlock();
1151 return len;
1155 * @pages: the number of pages written by the control path,
1156 * < 0 - error
1157 * > 0 - number of pages written
1159 * Return true if the pages has been saved, otherwise false is returned.
1161 static bool control_save_page(PageSearchStatus *pss,
1162 ram_addr_t offset, int *pages)
1164 int ret;
1166 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1167 TARGET_PAGE_SIZE);
1168 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1169 return false;
1172 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1173 *pages = 1;
1174 return true;
1176 *pages = ret;
1177 return true;
1181 * directly send the page to the stream
1183 * Returns the number of pages written.
1185 * @pss: current PSS channel
1186 * @block: block that contains the page we want to send
1187 * @offset: offset inside the block for the page
1188 * @buf: the page to be sent
1189 * @async: send to page asyncly
1191 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1192 ram_addr_t offset, uint8_t *buf, bool async)
1194 QEMUFile *file = pss->pss_channel;
1196 ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1197 offset | RAM_SAVE_FLAG_PAGE));
1198 if (async) {
1199 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1200 migrate_release_ram() &&
1201 migration_in_postcopy());
1202 } else {
1203 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1205 ram_transferred_add(TARGET_PAGE_SIZE);
1206 stat64_add(&mig_stats.normal_pages, 1);
1207 return 1;
1211 * ram_save_page: send the given page to the stream
1213 * Returns the number of pages written.
1214 * < 0 - error
1215 * >=0 - Number of pages written - this might legally be 0
1216 * if xbzrle noticed the page was the same.
1218 * @rs: current RAM state
1219 * @block: block that contains the page we want to send
1220 * @offset: offset inside the block for the page
1222 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1224 int pages = -1;
1225 uint8_t *p;
1226 bool send_async = true;
1227 RAMBlock *block = pss->block;
1228 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1229 ram_addr_t current_addr = block->offset + offset;
1231 p = block->host + offset;
1232 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1234 XBZRLE_cache_lock();
1235 if (rs->xbzrle_started && !migration_in_postcopy()) {
1236 pages = save_xbzrle_page(rs, pss, &p, current_addr,
1237 block, offset);
1238 if (!rs->last_stage) {
1239 /* Can't send this cached data async, since the cache page
1240 * might get updated before it gets to the wire
1242 send_async = false;
1246 /* XBZRLE overflow or normal page */
1247 if (pages == -1) {
1248 pages = save_normal_page(pss, block, offset, p, send_async);
1251 XBZRLE_cache_unlock();
1253 return pages;
1256 static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block,
1257 ram_addr_t offset)
1259 if (multifd_queue_page(file, block, offset) < 0) {
1260 return -1;
1262 stat64_add(&mig_stats.normal_pages, 1);
1264 return 1;
1267 int compress_send_queued_data(CompressParam *param)
1269 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1270 MigrationState *ms = migrate_get_current();
1271 QEMUFile *file = ms->to_dst_file;
1272 int len = 0;
1274 RAMBlock *block = param->block;
1275 ram_addr_t offset = param->offset;
1277 if (param->result == RES_NONE) {
1278 return 0;
1281 assert(block == pss->last_sent_block);
1283 if (param->result == RES_ZEROPAGE) {
1284 assert(qemu_file_buffer_empty(param->file));
1285 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1286 qemu_put_byte(file, 0);
1287 len += 1;
1288 ram_release_page(block->idstr, offset);
1289 } else if (param->result == RES_COMPRESS) {
1290 assert(!qemu_file_buffer_empty(param->file));
1291 len += save_page_header(pss, file, block,
1292 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1293 len += qemu_put_qemu_file(file, param->file);
1294 } else {
1295 abort();
1298 update_compress_thread_counts(param, len);
1300 return len;
1303 #define PAGE_ALL_CLEAN 0
1304 #define PAGE_TRY_AGAIN 1
1305 #define PAGE_DIRTY_FOUND 2
1307 * find_dirty_block: find the next dirty page and update any state
1308 * associated with the search process.
1310 * Returns:
1311 * <0: An error happened
1312 * PAGE_ALL_CLEAN: no dirty page found, give up
1313 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1314 * PAGE_DIRTY_FOUND: dirty page found
1316 * @rs: current RAM state
1317 * @pss: data about the state of the current dirty page scan
1318 * @again: set to false if the search has scanned the whole of RAM
1320 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1322 /* Update pss->page for the next dirty bit in ramblock */
1323 pss_find_next_dirty(pss);
1325 if (pss->complete_round && pss->block == rs->last_seen_block &&
1326 pss->page >= rs->last_page) {
1328 * We've been once around the RAM and haven't found anything.
1329 * Give up.
1331 return PAGE_ALL_CLEAN;
1333 if (!offset_in_ramblock(pss->block,
1334 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1335 /* Didn't find anything in this RAM Block */
1336 pss->page = 0;
1337 pss->block = QLIST_NEXT_RCU(pss->block, next);
1338 if (!pss->block) {
1339 if (migrate_multifd() &&
1340 !migrate_multifd_flush_after_each_section()) {
1341 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1342 int ret = multifd_send_sync_main(f);
1343 if (ret < 0) {
1344 return ret;
1346 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1347 qemu_fflush(f);
1350 * If memory migration starts over, we will meet a dirtied page
1351 * which may still exists in compression threads's ring, so we
1352 * should flush the compressed data to make sure the new page
1353 * is not overwritten by the old one in the destination.
1355 * Also If xbzrle is on, stop using the data compression at this
1356 * point. In theory, xbzrle can do better than compression.
1358 compress_flush_data();
1360 /* Hit the end of the list */
1361 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1362 /* Flag that we've looped */
1363 pss->complete_round = true;
1364 /* After the first round, enable XBZRLE. */
1365 if (migrate_xbzrle()) {
1366 rs->xbzrle_started = true;
1369 /* Didn't find anything this time, but try again on the new block */
1370 return PAGE_TRY_AGAIN;
1371 } else {
1372 /* We've found something */
1373 return PAGE_DIRTY_FOUND;
1378 * unqueue_page: gets a page of the queue
1380 * Helper for 'get_queued_page' - gets a page off the queue
1382 * Returns the block of the page (or NULL if none available)
1384 * @rs: current RAM state
1385 * @offset: used to return the offset within the RAMBlock
1387 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1389 struct RAMSrcPageRequest *entry;
1390 RAMBlock *block = NULL;
1392 if (!postcopy_has_request(rs)) {
1393 return NULL;
1396 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1399 * This should _never_ change even after we take the lock, because no one
1400 * should be taking anything off the request list other than us.
1402 assert(postcopy_has_request(rs));
1404 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1405 block = entry->rb;
1406 *offset = entry->offset;
1408 if (entry->len > TARGET_PAGE_SIZE) {
1409 entry->len -= TARGET_PAGE_SIZE;
1410 entry->offset += TARGET_PAGE_SIZE;
1411 } else {
1412 memory_region_unref(block->mr);
1413 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1414 g_free(entry);
1415 migration_consume_urgent_request();
1418 return block;
1421 #if defined(__linux__)
1423 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1424 * is found, return RAM block pointer and page offset
1426 * Returns pointer to the RAMBlock containing faulting page,
1427 * NULL if no write faults are pending
1429 * @rs: current RAM state
1430 * @offset: page offset from the beginning of the block
1432 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1434 struct uffd_msg uffd_msg;
1435 void *page_address;
1436 RAMBlock *block;
1437 int res;
1439 if (!migrate_background_snapshot()) {
1440 return NULL;
1443 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1444 if (res <= 0) {
1445 return NULL;
1448 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1449 block = qemu_ram_block_from_host(page_address, false, offset);
1450 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1451 return block;
1455 * ram_save_release_protection: release UFFD write protection after
1456 * a range of pages has been saved
1458 * @rs: current RAM state
1459 * @pss: page-search-status structure
1460 * @start_page: index of the first page in the range relative to pss->block
1462 * Returns 0 on success, negative value in case of an error
1464 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1465 unsigned long start_page)
1467 int res = 0;
1469 /* Check if page is from UFFD-managed region. */
1470 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1471 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1472 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1474 /* Flush async buffers before un-protect. */
1475 qemu_fflush(pss->pss_channel);
1476 /* Un-protect memory range. */
1477 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1478 false, false);
1481 return res;
1484 /* ram_write_tracking_available: check if kernel supports required UFFD features
1486 * Returns true if supports, false otherwise
1488 bool ram_write_tracking_available(void)
1490 uint64_t uffd_features;
1491 int res;
1493 res = uffd_query_features(&uffd_features);
1494 return (res == 0 &&
1495 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1498 /* ram_write_tracking_compatible: check if guest configuration is
1499 * compatible with 'write-tracking'
1501 * Returns true if compatible, false otherwise
1503 bool ram_write_tracking_compatible(void)
1505 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1506 int uffd_fd;
1507 RAMBlock *block;
1508 bool ret = false;
1510 /* Open UFFD file descriptor */
1511 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1512 if (uffd_fd < 0) {
1513 return false;
1516 RCU_READ_LOCK_GUARD();
1518 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1519 uint64_t uffd_ioctls;
1521 /* Nothing to do with read-only and MMIO-writable regions */
1522 if (block->mr->readonly || block->mr->rom_device) {
1523 continue;
1525 /* Try to register block memory via UFFD-IO to track writes */
1526 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1527 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1528 goto out;
1530 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1531 goto out;
1534 ret = true;
1536 out:
1537 uffd_close_fd(uffd_fd);
1538 return ret;
1541 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1542 ram_addr_t size)
1544 const ram_addr_t end = offset + size;
1547 * We read one byte of each page; this will preallocate page tables if
1548 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1549 * where no page was populated yet. This might require adaption when
1550 * supporting other mappings, like shmem.
1552 for (; offset < end; offset += block->page_size) {
1553 char tmp = *((char *)block->host + offset);
1555 /* Don't optimize the read out */
1556 asm volatile("" : "+r" (tmp));
1560 static inline int populate_read_section(MemoryRegionSection *section,
1561 void *opaque)
1563 const hwaddr size = int128_get64(section->size);
1564 hwaddr offset = section->offset_within_region;
1565 RAMBlock *block = section->mr->ram_block;
1567 populate_read_range(block, offset, size);
1568 return 0;
1572 * ram_block_populate_read: preallocate page tables and populate pages in the
1573 * RAM block by reading a byte of each page.
1575 * Since it's solely used for userfault_fd WP feature, here we just
1576 * hardcode page size to qemu_real_host_page_size.
1578 * @block: RAM block to populate
1580 static void ram_block_populate_read(RAMBlock *rb)
1583 * Skip populating all pages that fall into a discarded range as managed by
1584 * a RamDiscardManager responsible for the mapped memory region of the
1585 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1586 * must not get populated automatically. We don't have to track
1587 * modifications via userfaultfd WP reliably, because these pages will
1588 * not be part of the migration stream either way -- see
1589 * ramblock_dirty_bitmap_exclude_discarded_pages().
1591 * Note: The result is only stable while migrating (precopy/postcopy).
1593 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1594 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1595 MemoryRegionSection section = {
1596 .mr = rb->mr,
1597 .offset_within_region = 0,
1598 .size = rb->mr->size,
1601 ram_discard_manager_replay_populated(rdm, &section,
1602 populate_read_section, NULL);
1603 } else {
1604 populate_read_range(rb, 0, rb->used_length);
1609 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1611 void ram_write_tracking_prepare(void)
1613 RAMBlock *block;
1615 RCU_READ_LOCK_GUARD();
1617 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1618 /* Nothing to do with read-only and MMIO-writable regions */
1619 if (block->mr->readonly || block->mr->rom_device) {
1620 continue;
1624 * Populate pages of the RAM block before enabling userfault_fd
1625 * write protection.
1627 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1628 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1629 * pages with pte_none() entries in page table.
1631 ram_block_populate_read(block);
1635 static inline int uffd_protect_section(MemoryRegionSection *section,
1636 void *opaque)
1638 const hwaddr size = int128_get64(section->size);
1639 const hwaddr offset = section->offset_within_region;
1640 RAMBlock *rb = section->mr->ram_block;
1641 int uffd_fd = (uintptr_t)opaque;
1643 return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1644 false);
1647 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1649 assert(rb->flags & RAM_UF_WRITEPROTECT);
1651 /* See ram_block_populate_read() */
1652 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1653 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1654 MemoryRegionSection section = {
1655 .mr = rb->mr,
1656 .offset_within_region = 0,
1657 .size = rb->mr->size,
1660 return ram_discard_manager_replay_populated(rdm, &section,
1661 uffd_protect_section,
1662 (void *)(uintptr_t)uffd_fd);
1664 return uffd_change_protection(uffd_fd, rb->host,
1665 rb->used_length, true, false);
1669 * ram_write_tracking_start: start UFFD-WP memory tracking
1671 * Returns 0 for success or negative value in case of error
1673 int ram_write_tracking_start(void)
1675 int uffd_fd;
1676 RAMState *rs = ram_state;
1677 RAMBlock *block;
1679 /* Open UFFD file descriptor */
1680 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1681 if (uffd_fd < 0) {
1682 return uffd_fd;
1684 rs->uffdio_fd = uffd_fd;
1686 RCU_READ_LOCK_GUARD();
1688 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1689 /* Nothing to do with read-only and MMIO-writable regions */
1690 if (block->mr->readonly || block->mr->rom_device) {
1691 continue;
1694 /* Register block memory with UFFD to track writes */
1695 if (uffd_register_memory(rs->uffdio_fd, block->host,
1696 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1697 goto fail;
1699 block->flags |= RAM_UF_WRITEPROTECT;
1700 memory_region_ref(block->mr);
1702 /* Apply UFFD write protection to the block memory range */
1703 if (ram_block_uffd_protect(block, uffd_fd)) {
1704 goto fail;
1707 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1708 block->host, block->max_length);
1711 return 0;
1713 fail:
1714 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1716 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1717 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1718 continue;
1720 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1721 /* Cleanup flags and remove reference */
1722 block->flags &= ~RAM_UF_WRITEPROTECT;
1723 memory_region_unref(block->mr);
1726 uffd_close_fd(uffd_fd);
1727 rs->uffdio_fd = -1;
1728 return -1;
1732 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1734 void ram_write_tracking_stop(void)
1736 RAMState *rs = ram_state;
1737 RAMBlock *block;
1739 RCU_READ_LOCK_GUARD();
1741 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1742 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1743 continue;
1745 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1747 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1748 block->host, block->max_length);
1750 /* Cleanup flags and remove reference */
1751 block->flags &= ~RAM_UF_WRITEPROTECT;
1752 memory_region_unref(block->mr);
1755 /* Finally close UFFD file descriptor */
1756 uffd_close_fd(rs->uffdio_fd);
1757 rs->uffdio_fd = -1;
1760 #else
1761 /* No target OS support, stubs just fail or ignore */
1763 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1765 (void) rs;
1766 (void) offset;
1768 return NULL;
1771 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1772 unsigned long start_page)
1774 (void) rs;
1775 (void) pss;
1776 (void) start_page;
1778 return 0;
1781 bool ram_write_tracking_available(void)
1783 return false;
1786 bool ram_write_tracking_compatible(void)
1788 assert(0);
1789 return false;
1792 int ram_write_tracking_start(void)
1794 assert(0);
1795 return -1;
1798 void ram_write_tracking_stop(void)
1800 assert(0);
1802 #endif /* defined(__linux__) */
1805 * get_queued_page: unqueue a page from the postcopy requests
1807 * Skips pages that are already sent (!dirty)
1809 * Returns true if a queued page is found
1811 * @rs: current RAM state
1812 * @pss: data about the state of the current dirty page scan
1814 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1816 RAMBlock *block;
1817 ram_addr_t offset;
1818 bool dirty;
1820 do {
1821 block = unqueue_page(rs, &offset);
1823 * We're sending this page, and since it's postcopy nothing else
1824 * will dirty it, and we must make sure it doesn't get sent again
1825 * even if this queue request was received after the background
1826 * search already sent it.
1828 if (block) {
1829 unsigned long page;
1831 page = offset >> TARGET_PAGE_BITS;
1832 dirty = test_bit(page, block->bmap);
1833 if (!dirty) {
1834 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1835 page);
1836 } else {
1837 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1841 } while (block && !dirty);
1843 if (!block) {
1845 * Poll write faults too if background snapshot is enabled; that's
1846 * when we have vcpus got blocked by the write protected pages.
1848 block = poll_fault_page(rs, &offset);
1851 if (block) {
1853 * We want the background search to continue from the queued page
1854 * since the guest is likely to want other pages near to the page
1855 * it just requested.
1857 pss->block = block;
1858 pss->page = offset >> TARGET_PAGE_BITS;
1861 * This unqueued page would break the "one round" check, even is
1862 * really rare.
1864 pss->complete_round = false;
1867 return !!block;
1871 * migration_page_queue_free: drop any remaining pages in the ram
1872 * request queue
1874 * It should be empty at the end anyway, but in error cases there may
1875 * be some left. in case that there is any page left, we drop it.
1878 static void migration_page_queue_free(RAMState *rs)
1880 struct RAMSrcPageRequest *mspr, *next_mspr;
1881 /* This queue generally should be empty - but in the case of a failed
1882 * migration might have some droppings in.
1884 RCU_READ_LOCK_GUARD();
1885 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1886 memory_region_unref(mspr->rb->mr);
1887 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1888 g_free(mspr);
1893 * ram_save_queue_pages: queue the page for transmission
1895 * A request from postcopy destination for example.
1897 * Returns zero on success or negative on error
1899 * @rbname: Name of the RAMBLock of the request. NULL means the
1900 * same that last one.
1901 * @start: starting address from the start of the RAMBlock
1902 * @len: length (in bytes) to send
1904 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
1906 RAMBlock *ramblock;
1907 RAMState *rs = ram_state;
1909 stat64_add(&mig_stats.postcopy_requests, 1);
1910 RCU_READ_LOCK_GUARD();
1912 if (!rbname) {
1913 /* Reuse last RAMBlock */
1914 ramblock = rs->last_req_rb;
1916 if (!ramblock) {
1918 * Shouldn't happen, we can't reuse the last RAMBlock if
1919 * it's the 1st request.
1921 error_report("ram_save_queue_pages no previous block");
1922 return -1;
1924 } else {
1925 ramblock = qemu_ram_block_by_name(rbname);
1927 if (!ramblock) {
1928 /* We shouldn't be asked for a non-existent RAMBlock */
1929 error_report("ram_save_queue_pages no block '%s'", rbname);
1930 return -1;
1932 rs->last_req_rb = ramblock;
1934 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1935 if (!offset_in_ramblock(ramblock, start + len - 1)) {
1936 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1937 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1938 __func__, start, len, ramblock->used_length);
1939 return -1;
1943 * When with postcopy preempt, we send back the page directly in the
1944 * rp-return thread.
1946 if (postcopy_preempt_active()) {
1947 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1948 size_t page_size = qemu_ram_pagesize(ramblock);
1949 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1950 int ret = 0;
1952 qemu_mutex_lock(&rs->bitmap_mutex);
1954 pss_init(pss, ramblock, page_start);
1956 * Always use the preempt channel, and make sure it's there. It's
1957 * safe to access without lock, because when rp-thread is running
1958 * we should be the only one who operates on the qemufile
1960 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1961 assert(pss->pss_channel);
1964 * It must be either one or multiple of host page size. Just
1965 * assert; if something wrong we're mostly split brain anyway.
1967 assert(len % page_size == 0);
1968 while (len) {
1969 if (ram_save_host_page_urgent(pss)) {
1970 error_report("%s: ram_save_host_page_urgent() failed: "
1971 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
1972 __func__, ramblock->idstr, start);
1973 ret = -1;
1974 break;
1977 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
1978 * will automatically be moved and point to the next host page
1979 * we're going to send, so no need to update here.
1981 * Normally QEMU never sends >1 host page in requests, so
1982 * logically we don't even need that as the loop should only
1983 * run once, but just to be consistent.
1985 len -= page_size;
1987 qemu_mutex_unlock(&rs->bitmap_mutex);
1989 return ret;
1992 struct RAMSrcPageRequest *new_entry =
1993 g_new0(struct RAMSrcPageRequest, 1);
1994 new_entry->rb = ramblock;
1995 new_entry->offset = start;
1996 new_entry->len = len;
1998 memory_region_ref(ramblock->mr);
1999 qemu_mutex_lock(&rs->src_page_req_mutex);
2000 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2001 migration_make_urgent_request();
2002 qemu_mutex_unlock(&rs->src_page_req_mutex);
2004 return 0;
2008 * try to compress the page before posting it out, return true if the page
2009 * has been properly handled by compression, otherwise needs other
2010 * paths to handle it
2012 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2013 ram_addr_t offset)
2015 if (!migrate_compress()) {
2016 return false;
2020 * When starting the process of a new block, the first page of
2021 * the block should be sent out before other pages in the same
2022 * block, and all the pages in last block should have been sent
2023 * out, keeping this order is important, because the 'cont' flag
2024 * is used to avoid resending the block name.
2026 * We post the fist page as normal page as compression will take
2027 * much CPU resource.
2029 if (pss->block != pss->last_sent_block) {
2030 compress_flush_data();
2031 return false;
2034 return compress_page_with_multi_thread(pss->block, offset,
2035 compress_send_queued_data);
2039 * ram_save_target_page_legacy: save one target page
2041 * Returns the number of pages written
2043 * @rs: current RAM state
2044 * @pss: data about the page we want to send
2046 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2048 RAMBlock *block = pss->block;
2049 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2050 int res;
2052 if (control_save_page(pss, offset, &res)) {
2053 return res;
2056 if (save_compress_page(rs, pss, offset)) {
2057 return 1;
2060 if (save_zero_page(rs, pss, offset)) {
2061 return 1;
2065 * Do not use multifd in postcopy as one whole host page should be
2066 * placed. Meanwhile postcopy requires atomic update of pages, so even
2067 * if host page size == guest page size the dest guest during run may
2068 * still see partially copied pages which is data corruption.
2070 if (migrate_multifd() && !migration_in_postcopy()) {
2071 return ram_save_multifd_page(pss->pss_channel, block, offset);
2074 return ram_save_page(rs, pss);
2077 /* Should be called before sending a host page */
2078 static void pss_host_page_prepare(PageSearchStatus *pss)
2080 /* How many guest pages are there in one host page? */
2081 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2083 pss->host_page_sending = true;
2084 if (guest_pfns <= 1) {
2086 * This covers both when guest psize == host psize, or when guest
2087 * has larger psize than the host (guest_pfns==0).
2089 * For the latter, we always send one whole guest page per
2090 * iteration of the host page (example: an Alpha VM on x86 host
2091 * will have guest psize 8K while host psize 4K).
2093 pss->host_page_start = pss->page;
2094 pss->host_page_end = pss->page + 1;
2095 } else {
2097 * The host page spans over multiple guest pages, we send them
2098 * within the same host page iteration.
2100 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2101 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2106 * Whether the page pointed by PSS is within the host page being sent.
2107 * Must be called after a previous pss_host_page_prepare().
2109 static bool pss_within_range(PageSearchStatus *pss)
2111 ram_addr_t ram_addr;
2113 assert(pss->host_page_sending);
2115 /* Over host-page boundary? */
2116 if (pss->page >= pss->host_page_end) {
2117 return false;
2120 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2122 return offset_in_ramblock(pss->block, ram_addr);
2125 static void pss_host_page_finish(PageSearchStatus *pss)
2127 pss->host_page_sending = false;
2128 /* This is not needed, but just to reset it */
2129 pss->host_page_start = pss->host_page_end = 0;
2133 * Send an urgent host page specified by `pss'. Need to be called with
2134 * bitmap_mutex held.
2136 * Returns 0 if save host page succeeded, false otherwise.
2138 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2140 bool page_dirty, sent = false;
2141 RAMState *rs = ram_state;
2142 int ret = 0;
2144 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2145 pss_host_page_prepare(pss);
2148 * If precopy is sending the same page, let it be done in precopy, or
2149 * we could send the same page in two channels and none of them will
2150 * receive the whole page.
2152 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2153 trace_postcopy_preempt_hit(pss->block->idstr,
2154 pss->page << TARGET_PAGE_BITS);
2155 return 0;
2158 do {
2159 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2161 if (page_dirty) {
2162 /* Be strict to return code; it must be 1, or what else? */
2163 if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2164 error_report_once("%s: ram_save_target_page failed", __func__);
2165 ret = -1;
2166 goto out;
2168 sent = true;
2170 pss_find_next_dirty(pss);
2171 } while (pss_within_range(pss));
2172 out:
2173 pss_host_page_finish(pss);
2174 /* For urgent requests, flush immediately if sent */
2175 if (sent) {
2176 qemu_fflush(pss->pss_channel);
2178 return ret;
2182 * ram_save_host_page: save a whole host page
2184 * Starting at *offset send pages up to the end of the current host
2185 * page. It's valid for the initial offset to point into the middle of
2186 * a host page in which case the remainder of the hostpage is sent.
2187 * Only dirty target pages are sent. Note that the host page size may
2188 * be a huge page for this block.
2190 * The saving stops at the boundary of the used_length of the block
2191 * if the RAMBlock isn't a multiple of the host page size.
2193 * The caller must be with ram_state.bitmap_mutex held to call this
2194 * function. Note that this function can temporarily release the lock, but
2195 * when the function is returned it'll make sure the lock is still held.
2197 * Returns the number of pages written or negative on error
2199 * @rs: current RAM state
2200 * @pss: data about the page we want to send
2202 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2204 bool page_dirty, preempt_active = postcopy_preempt_active();
2205 int tmppages, pages = 0;
2206 size_t pagesize_bits =
2207 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2208 unsigned long start_page = pss->page;
2209 int res;
2211 if (migrate_ram_is_ignored(pss->block)) {
2212 error_report("block %s should not be migrated !", pss->block->idstr);
2213 return 0;
2216 /* Update host page boundary information */
2217 pss_host_page_prepare(pss);
2219 do {
2220 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2222 /* Check the pages is dirty and if it is send it */
2223 if (page_dirty) {
2225 * Properly yield the lock only in postcopy preempt mode
2226 * because both migration thread and rp-return thread can
2227 * operate on the bitmaps.
2229 if (preempt_active) {
2230 qemu_mutex_unlock(&rs->bitmap_mutex);
2232 tmppages = migration_ops->ram_save_target_page(rs, pss);
2233 if (tmppages >= 0) {
2234 pages += tmppages;
2236 * Allow rate limiting to happen in the middle of huge pages if
2237 * something is sent in the current iteration.
2239 if (pagesize_bits > 1 && tmppages > 0) {
2240 migration_rate_limit();
2243 if (preempt_active) {
2244 qemu_mutex_lock(&rs->bitmap_mutex);
2246 } else {
2247 tmppages = 0;
2250 if (tmppages < 0) {
2251 pss_host_page_finish(pss);
2252 return tmppages;
2255 pss_find_next_dirty(pss);
2256 } while (pss_within_range(pss));
2258 pss_host_page_finish(pss);
2260 res = ram_save_release_protection(rs, pss, start_page);
2261 return (res < 0 ? res : pages);
2265 * ram_find_and_save_block: finds a dirty page and sends it to f
2267 * Called within an RCU critical section.
2269 * Returns the number of pages written where zero means no dirty pages,
2270 * or negative on error
2272 * @rs: current RAM state
2274 * On systems where host-page-size > target-page-size it will send all the
2275 * pages in a host page that are dirty.
2277 static int ram_find_and_save_block(RAMState *rs)
2279 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2280 int pages = 0;
2282 /* No dirty page as there is zero RAM */
2283 if (!rs->ram_bytes_total) {
2284 return pages;
2288 * Always keep last_seen_block/last_page valid during this procedure,
2289 * because find_dirty_block() relies on these values (e.g., we compare
2290 * last_seen_block with pss.block to see whether we searched all the
2291 * ramblocks) to detect the completion of migration. Having NULL value
2292 * of last_seen_block can conditionally cause below loop to run forever.
2294 if (!rs->last_seen_block) {
2295 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2296 rs->last_page = 0;
2299 pss_init(pss, rs->last_seen_block, rs->last_page);
2301 while (true){
2302 if (!get_queued_page(rs, pss)) {
2303 /* priority queue empty, so just search for something dirty */
2304 int res = find_dirty_block(rs, pss);
2305 if (res != PAGE_DIRTY_FOUND) {
2306 if (res == PAGE_ALL_CLEAN) {
2307 break;
2308 } else if (res == PAGE_TRY_AGAIN) {
2309 continue;
2310 } else if (res < 0) {
2311 pages = res;
2312 break;
2316 pages = ram_save_host_page(rs, pss);
2317 if (pages) {
2318 break;
2322 rs->last_seen_block = pss->block;
2323 rs->last_page = pss->page;
2325 return pages;
2328 static uint64_t ram_bytes_total_with_ignored(void)
2330 RAMBlock *block;
2331 uint64_t total = 0;
2333 RCU_READ_LOCK_GUARD();
2335 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2336 total += block->used_length;
2338 return total;
2341 uint64_t ram_bytes_total(void)
2343 RAMBlock *block;
2344 uint64_t total = 0;
2346 RCU_READ_LOCK_GUARD();
2348 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2349 total += block->used_length;
2351 return total;
2354 static void xbzrle_load_setup(void)
2356 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2359 static void xbzrle_load_cleanup(void)
2361 g_free(XBZRLE.decoded_buf);
2362 XBZRLE.decoded_buf = NULL;
2365 static void ram_state_cleanup(RAMState **rsp)
2367 if (*rsp) {
2368 migration_page_queue_free(*rsp);
2369 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2370 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2371 g_free(*rsp);
2372 *rsp = NULL;
2376 static void xbzrle_cleanup(void)
2378 XBZRLE_cache_lock();
2379 if (XBZRLE.cache) {
2380 cache_fini(XBZRLE.cache);
2381 g_free(XBZRLE.encoded_buf);
2382 g_free(XBZRLE.current_buf);
2383 g_free(XBZRLE.zero_target_page);
2384 XBZRLE.cache = NULL;
2385 XBZRLE.encoded_buf = NULL;
2386 XBZRLE.current_buf = NULL;
2387 XBZRLE.zero_target_page = NULL;
2389 XBZRLE_cache_unlock();
2392 static void ram_save_cleanup(void *opaque)
2394 RAMState **rsp = opaque;
2395 RAMBlock *block;
2397 /* We don't use dirty log with background snapshots */
2398 if (!migrate_background_snapshot()) {
2399 /* caller have hold iothread lock or is in a bh, so there is
2400 * no writing race against the migration bitmap
2402 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2404 * do not stop dirty log without starting it, since
2405 * memory_global_dirty_log_stop will assert that
2406 * memory_global_dirty_log_start/stop used in pairs
2408 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2412 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2413 g_free(block->clear_bmap);
2414 block->clear_bmap = NULL;
2415 g_free(block->bmap);
2416 block->bmap = NULL;
2419 xbzrle_cleanup();
2420 compress_threads_save_cleanup();
2421 ram_state_cleanup(rsp);
2422 g_free(migration_ops);
2423 migration_ops = NULL;
2426 static void ram_state_reset(RAMState *rs)
2428 int i;
2430 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2431 rs->pss[i].last_sent_block = NULL;
2434 rs->last_seen_block = NULL;
2435 rs->last_page = 0;
2436 rs->last_version = ram_list.version;
2437 rs->xbzrle_started = false;
2440 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2442 /* **** functions for postcopy ***** */
2444 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2446 struct RAMBlock *block;
2448 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2449 unsigned long *bitmap = block->bmap;
2450 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2451 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2453 while (run_start < range) {
2454 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2455 ram_discard_range(block->idstr,
2456 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2457 ((ram_addr_t)(run_end - run_start))
2458 << TARGET_PAGE_BITS);
2459 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2465 * postcopy_send_discard_bm_ram: discard a RAMBlock
2467 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2469 * @ms: current migration state
2470 * @block: RAMBlock to discard
2472 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2474 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2475 unsigned long current;
2476 unsigned long *bitmap = block->bmap;
2478 for (current = 0; current < end; ) {
2479 unsigned long one = find_next_bit(bitmap, end, current);
2480 unsigned long zero, discard_length;
2482 if (one >= end) {
2483 break;
2486 zero = find_next_zero_bit(bitmap, end, one + 1);
2488 if (zero >= end) {
2489 discard_length = end - one;
2490 } else {
2491 discard_length = zero - one;
2493 postcopy_discard_send_range(ms, one, discard_length);
2494 current = one + discard_length;
2498 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2501 * postcopy_each_ram_send_discard: discard all RAMBlocks
2503 * Utility for the outgoing postcopy code.
2504 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2505 * passing it bitmap indexes and name.
2506 * (qemu_ram_foreach_block ends up passing unscaled lengths
2507 * which would mean postcopy code would have to deal with target page)
2509 * @ms: current migration state
2511 static void postcopy_each_ram_send_discard(MigrationState *ms)
2513 struct RAMBlock *block;
2515 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2516 postcopy_discard_send_init(ms, block->idstr);
2519 * Deal with TPS != HPS and huge pages. It discard any partially sent
2520 * host-page size chunks, mark any partially dirty host-page size
2521 * chunks as all dirty. In this case the host-page is the host-page
2522 * for the particular RAMBlock, i.e. it might be a huge page.
2524 postcopy_chunk_hostpages_pass(ms, block);
2527 * Postcopy sends chunks of bitmap over the wire, but it
2528 * just needs indexes at this point, avoids it having
2529 * target page specific code.
2531 postcopy_send_discard_bm_ram(ms, block);
2532 postcopy_discard_send_finish(ms);
2537 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2539 * Helper for postcopy_chunk_hostpages; it's called twice to
2540 * canonicalize the two bitmaps, that are similar, but one is
2541 * inverted.
2543 * Postcopy requires that all target pages in a hostpage are dirty or
2544 * clean, not a mix. This function canonicalizes the bitmaps.
2546 * @ms: current migration state
2547 * @block: block that contains the page we want to canonicalize
2549 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2551 RAMState *rs = ram_state;
2552 unsigned long *bitmap = block->bmap;
2553 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2554 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2555 unsigned long run_start;
2557 if (block->page_size == TARGET_PAGE_SIZE) {
2558 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2559 return;
2562 /* Find a dirty page */
2563 run_start = find_next_bit(bitmap, pages, 0);
2565 while (run_start < pages) {
2568 * If the start of this run of pages is in the middle of a host
2569 * page, then we need to fixup this host page.
2571 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2572 /* Find the end of this run */
2573 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2575 * If the end isn't at the start of a host page, then the
2576 * run doesn't finish at the end of a host page
2577 * and we need to discard.
2581 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2582 unsigned long page;
2583 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2584 host_ratio);
2585 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2587 /* Clean up the bitmap */
2588 for (page = fixup_start_addr;
2589 page < fixup_start_addr + host_ratio; page++) {
2591 * Remark them as dirty, updating the count for any pages
2592 * that weren't previously dirty.
2594 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2598 /* Find the next dirty page for the next iteration */
2599 run_start = find_next_bit(bitmap, pages, run_start);
2604 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2606 * Transmit the set of pages to be discarded after precopy to the target
2607 * these are pages that:
2608 * a) Have been previously transmitted but are now dirty again
2609 * b) Pages that have never been transmitted, this ensures that
2610 * any pages on the destination that have been mapped by background
2611 * tasks get discarded (transparent huge pages is the specific concern)
2612 * Hopefully this is pretty sparse
2614 * @ms: current migration state
2616 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2618 RAMState *rs = ram_state;
2620 RCU_READ_LOCK_GUARD();
2622 /* This should be our last sync, the src is now paused */
2623 migration_bitmap_sync(rs, false);
2625 /* Easiest way to make sure we don't resume in the middle of a host-page */
2626 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2627 rs->last_seen_block = NULL;
2628 rs->last_page = 0;
2630 postcopy_each_ram_send_discard(ms);
2632 trace_ram_postcopy_send_discard_bitmap();
2636 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2638 * Returns zero on success
2640 * @rbname: name of the RAMBlock of the request. NULL means the
2641 * same that last one.
2642 * @start: RAMBlock starting page
2643 * @length: RAMBlock size
2645 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2647 trace_ram_discard_range(rbname, start, length);
2649 RCU_READ_LOCK_GUARD();
2650 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2652 if (!rb) {
2653 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2654 return -1;
2658 * On source VM, we don't need to update the received bitmap since
2659 * we don't even have one.
2661 if (rb->receivedmap) {
2662 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2663 length >> qemu_target_page_bits());
2666 return ram_block_discard_range(rb, start, length);
2670 * For every allocation, we will try not to crash the VM if the
2671 * allocation failed.
2673 static int xbzrle_init(void)
2675 Error *local_err = NULL;
2677 if (!migrate_xbzrle()) {
2678 return 0;
2681 XBZRLE_cache_lock();
2683 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2684 if (!XBZRLE.zero_target_page) {
2685 error_report("%s: Error allocating zero page", __func__);
2686 goto err_out;
2689 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2690 TARGET_PAGE_SIZE, &local_err);
2691 if (!XBZRLE.cache) {
2692 error_report_err(local_err);
2693 goto free_zero_page;
2696 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2697 if (!XBZRLE.encoded_buf) {
2698 error_report("%s: Error allocating encoded_buf", __func__);
2699 goto free_cache;
2702 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2703 if (!XBZRLE.current_buf) {
2704 error_report("%s: Error allocating current_buf", __func__);
2705 goto free_encoded_buf;
2708 /* We are all good */
2709 XBZRLE_cache_unlock();
2710 return 0;
2712 free_encoded_buf:
2713 g_free(XBZRLE.encoded_buf);
2714 XBZRLE.encoded_buf = NULL;
2715 free_cache:
2716 cache_fini(XBZRLE.cache);
2717 XBZRLE.cache = NULL;
2718 free_zero_page:
2719 g_free(XBZRLE.zero_target_page);
2720 XBZRLE.zero_target_page = NULL;
2721 err_out:
2722 XBZRLE_cache_unlock();
2723 return -ENOMEM;
2726 static int ram_state_init(RAMState **rsp)
2728 *rsp = g_try_new0(RAMState, 1);
2730 if (!*rsp) {
2731 error_report("%s: Init ramstate fail", __func__);
2732 return -1;
2735 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2736 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2737 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2738 (*rsp)->ram_bytes_total = ram_bytes_total();
2741 * Count the total number of pages used by ram blocks not including any
2742 * gaps due to alignment or unplugs.
2743 * This must match with the initial values of dirty bitmap.
2745 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2746 ram_state_reset(*rsp);
2748 return 0;
2751 static void ram_list_init_bitmaps(void)
2753 MigrationState *ms = migrate_get_current();
2754 RAMBlock *block;
2755 unsigned long pages;
2756 uint8_t shift;
2758 /* Skip setting bitmap if there is no RAM */
2759 if (ram_bytes_total()) {
2760 shift = ms->clear_bitmap_shift;
2761 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2762 error_report("clear_bitmap_shift (%u) too big, using "
2763 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2764 shift = CLEAR_BITMAP_SHIFT_MAX;
2765 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2766 error_report("clear_bitmap_shift (%u) too small, using "
2767 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2768 shift = CLEAR_BITMAP_SHIFT_MIN;
2771 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2772 pages = block->max_length >> TARGET_PAGE_BITS;
2774 * The initial dirty bitmap for migration must be set with all
2775 * ones to make sure we'll migrate every guest RAM page to
2776 * destination.
2777 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2778 * new migration after a failed migration, ram_list.
2779 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2780 * guest memory.
2782 block->bmap = bitmap_new(pages);
2783 bitmap_set(block->bmap, 0, pages);
2784 block->clear_bmap_shift = shift;
2785 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2790 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2792 unsigned long pages;
2793 RAMBlock *rb;
2795 RCU_READ_LOCK_GUARD();
2797 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2798 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2799 rs->migration_dirty_pages -= pages;
2803 static void ram_init_bitmaps(RAMState *rs)
2805 qemu_mutex_lock_ramlist();
2807 WITH_RCU_READ_LOCK_GUARD() {
2808 ram_list_init_bitmaps();
2809 /* We don't use dirty log with background snapshots */
2810 if (!migrate_background_snapshot()) {
2811 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2812 migration_bitmap_sync_precopy(rs, false);
2815 qemu_mutex_unlock_ramlist();
2818 * After an eventual first bitmap sync, fixup the initial bitmap
2819 * containing all 1s to exclude any discarded pages from migration.
2821 migration_bitmap_clear_discarded_pages(rs);
2824 static int ram_init_all(RAMState **rsp)
2826 if (ram_state_init(rsp)) {
2827 return -1;
2830 if (xbzrle_init()) {
2831 ram_state_cleanup(rsp);
2832 return -1;
2835 ram_init_bitmaps(*rsp);
2837 return 0;
2840 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2842 RAMBlock *block;
2843 uint64_t pages = 0;
2846 * Postcopy is not using xbzrle/compression, so no need for that.
2847 * Also, since source are already halted, we don't need to care
2848 * about dirty page logging as well.
2851 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2852 pages += bitmap_count_one(block->bmap,
2853 block->used_length >> TARGET_PAGE_BITS);
2856 /* This may not be aligned with current bitmaps. Recalculate. */
2857 rs->migration_dirty_pages = pages;
2859 ram_state_reset(rs);
2861 /* Update RAMState cache of output QEMUFile */
2862 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2864 trace_ram_state_resume_prepare(pages);
2868 * This function clears bits of the free pages reported by the caller from the
2869 * migration dirty bitmap. @addr is the host address corresponding to the
2870 * start of the continuous guest free pages, and @len is the total bytes of
2871 * those pages.
2873 void qemu_guest_free_page_hint(void *addr, size_t len)
2875 RAMBlock *block;
2876 ram_addr_t offset;
2877 size_t used_len, start, npages;
2878 MigrationState *s = migrate_get_current();
2880 /* This function is currently expected to be used during live migration */
2881 if (!migration_is_setup_or_active(s->state)) {
2882 return;
2885 for (; len > 0; len -= used_len, addr += used_len) {
2886 block = qemu_ram_block_from_host(addr, false, &offset);
2887 if (unlikely(!block || offset >= block->used_length)) {
2889 * The implementation might not support RAMBlock resize during
2890 * live migration, but it could happen in theory with future
2891 * updates. So we add a check here to capture that case.
2893 error_report_once("%s unexpected error", __func__);
2894 return;
2897 if (len <= block->used_length - offset) {
2898 used_len = len;
2899 } else {
2900 used_len = block->used_length - offset;
2903 start = offset >> TARGET_PAGE_BITS;
2904 npages = used_len >> TARGET_PAGE_BITS;
2906 qemu_mutex_lock(&ram_state->bitmap_mutex);
2908 * The skipped free pages are equavalent to be sent from clear_bmap's
2909 * perspective, so clear the bits from the memory region bitmap which
2910 * are initially set. Otherwise those skipped pages will be sent in
2911 * the next round after syncing from the memory region bitmap.
2913 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2914 ram_state->migration_dirty_pages -=
2915 bitmap_count_one_with_offset(block->bmap, start, npages);
2916 bitmap_clear(block->bmap, start, npages);
2917 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2922 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2923 * long-running RCU critical section. When rcu-reclaims in the code
2924 * start to become numerous it will be necessary to reduce the
2925 * granularity of these critical sections.
2929 * ram_save_setup: Setup RAM for migration
2931 * Returns zero to indicate success and negative for error
2933 * @f: QEMUFile where to send the data
2934 * @opaque: RAMState pointer
2936 static int ram_save_setup(QEMUFile *f, void *opaque)
2938 RAMState **rsp = opaque;
2939 RAMBlock *block;
2940 int ret;
2942 if (compress_threads_save_setup()) {
2943 return -1;
2946 /* migration has already setup the bitmap, reuse it. */
2947 if (!migration_in_colo_state()) {
2948 if (ram_init_all(rsp) != 0) {
2949 compress_threads_save_cleanup();
2950 return -1;
2953 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
2955 WITH_RCU_READ_LOCK_GUARD() {
2956 qemu_put_be64(f, ram_bytes_total_with_ignored()
2957 | RAM_SAVE_FLAG_MEM_SIZE);
2959 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2960 qemu_put_byte(f, strlen(block->idstr));
2961 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2962 qemu_put_be64(f, block->used_length);
2963 if (migrate_postcopy_ram() && block->page_size !=
2964 qemu_host_page_size) {
2965 qemu_put_be64(f, block->page_size);
2967 if (migrate_ignore_shared()) {
2968 qemu_put_be64(f, block->mr->addr);
2973 ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
2974 if (ret < 0) {
2975 qemu_file_set_error(f, ret);
2978 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
2979 if (ret < 0) {
2980 qemu_file_set_error(f, ret);
2983 migration_ops = g_malloc0(sizeof(MigrationOps));
2984 migration_ops->ram_save_target_page = ram_save_target_page_legacy;
2986 qemu_mutex_unlock_iothread();
2987 ret = multifd_send_sync_main(f);
2988 qemu_mutex_lock_iothread();
2989 if (ret < 0) {
2990 return ret;
2993 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
2994 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
2997 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2998 qemu_fflush(f);
3000 return 0;
3004 * ram_save_iterate: iterative stage for migration
3006 * Returns zero to indicate success and negative for error
3008 * @f: QEMUFile where to send the data
3009 * @opaque: RAMState pointer
3011 static int ram_save_iterate(QEMUFile *f, void *opaque)
3013 RAMState **temp = opaque;
3014 RAMState *rs = *temp;
3015 int ret = 0;
3016 int i;
3017 int64_t t0;
3018 int done = 0;
3020 if (blk_mig_bulk_active()) {
3021 /* Avoid transferring ram during bulk phase of block migration as
3022 * the bulk phase will usually take a long time and transferring
3023 * ram updates during that time is pointless. */
3024 goto out;
3028 * We'll take this lock a little bit long, but it's okay for two reasons.
3029 * Firstly, the only possible other thread to take it is who calls
3030 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3031 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3032 * guarantees that we'll at least released it in a regular basis.
3034 qemu_mutex_lock(&rs->bitmap_mutex);
3035 WITH_RCU_READ_LOCK_GUARD() {
3036 if (ram_list.version != rs->last_version) {
3037 ram_state_reset(rs);
3040 /* Read version before ram_list.blocks */
3041 smp_rmb();
3043 ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3044 if (ret < 0) {
3045 qemu_file_set_error(f, ret);
3048 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3049 i = 0;
3050 while ((ret = migration_rate_exceeded(f)) == 0 ||
3051 postcopy_has_request(rs)) {
3052 int pages;
3054 if (qemu_file_get_error(f)) {
3055 break;
3058 pages = ram_find_and_save_block(rs);
3059 /* no more pages to sent */
3060 if (pages == 0) {
3061 done = 1;
3062 break;
3065 if (pages < 0) {
3066 qemu_file_set_error(f, pages);
3067 break;
3070 rs->target_page_count += pages;
3073 * During postcopy, it is necessary to make sure one whole host
3074 * page is sent in one chunk.
3076 if (migrate_postcopy_ram()) {
3077 compress_flush_data();
3081 * we want to check in the 1st loop, just in case it was the 1st
3082 * time and we had to sync the dirty bitmap.
3083 * qemu_clock_get_ns() is a bit expensive, so we only check each
3084 * some iterations
3086 if ((i & 63) == 0) {
3087 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3088 1000000;
3089 if (t1 > MAX_WAIT) {
3090 trace_ram_save_iterate_big_wait(t1, i);
3091 break;
3094 i++;
3097 qemu_mutex_unlock(&rs->bitmap_mutex);
3100 * Must occur before EOS (or any QEMUFile operation)
3101 * because of RDMA protocol.
3103 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3104 if (ret < 0) {
3105 qemu_file_set_error(f, ret);
3108 out:
3109 if (ret >= 0
3110 && migration_is_setup_or_active(migrate_get_current()->state)) {
3111 if (migrate_multifd() && migrate_multifd_flush_after_each_section()) {
3112 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3113 if (ret < 0) {
3114 return ret;
3118 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3119 qemu_fflush(f);
3120 ram_transferred_add(8);
3122 ret = qemu_file_get_error(f);
3124 if (ret < 0) {
3125 return ret;
3128 return done;
3132 * ram_save_complete: function called to send the remaining amount of ram
3134 * Returns zero to indicate success or negative on error
3136 * Called with iothread lock
3138 * @f: QEMUFile where to send the data
3139 * @opaque: RAMState pointer
3141 static int ram_save_complete(QEMUFile *f, void *opaque)
3143 RAMState **temp = opaque;
3144 RAMState *rs = *temp;
3145 int ret = 0;
3147 rs->last_stage = !migration_in_colo_state();
3149 WITH_RCU_READ_LOCK_GUARD() {
3150 int rdma_reg_ret;
3152 if (!migration_in_postcopy()) {
3153 migration_bitmap_sync_precopy(rs, true);
3156 ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3157 if (ret < 0) {
3158 qemu_file_set_error(f, ret);
3161 /* try transferring iterative blocks of memory */
3163 /* flush all remaining blocks regardless of rate limiting */
3164 qemu_mutex_lock(&rs->bitmap_mutex);
3165 while (true) {
3166 int pages;
3168 pages = ram_find_and_save_block(rs);
3169 /* no more blocks to sent */
3170 if (pages == 0) {
3171 break;
3173 if (pages < 0) {
3174 ret = pages;
3175 break;
3178 qemu_mutex_unlock(&rs->bitmap_mutex);
3180 compress_flush_data();
3182 rdma_reg_ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3183 if (rdma_reg_ret < 0) {
3184 qemu_file_set_error(f, rdma_reg_ret);
3188 if (ret < 0) {
3189 return ret;
3192 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3193 if (ret < 0) {
3194 return ret;
3197 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
3198 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3200 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3201 qemu_fflush(f);
3203 return 0;
3206 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3207 uint64_t *can_postcopy)
3209 RAMState **temp = opaque;
3210 RAMState *rs = *temp;
3212 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3214 if (migrate_postcopy_ram()) {
3215 /* We can do postcopy, and all the data is postcopiable */
3216 *can_postcopy += remaining_size;
3217 } else {
3218 *must_precopy += remaining_size;
3222 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3223 uint64_t *can_postcopy)
3225 MigrationState *s = migrate_get_current();
3226 RAMState **temp = opaque;
3227 RAMState *rs = *temp;
3229 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3231 if (!migration_in_postcopy() && remaining_size < s->threshold_size) {
3232 qemu_mutex_lock_iothread();
3233 WITH_RCU_READ_LOCK_GUARD() {
3234 migration_bitmap_sync_precopy(rs, false);
3236 qemu_mutex_unlock_iothread();
3237 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3240 if (migrate_postcopy_ram()) {
3241 /* We can do postcopy, and all the data is postcopiable */
3242 *can_postcopy += remaining_size;
3243 } else {
3244 *must_precopy += remaining_size;
3248 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3250 unsigned int xh_len;
3251 int xh_flags;
3252 uint8_t *loaded_data;
3254 /* extract RLE header */
3255 xh_flags = qemu_get_byte(f);
3256 xh_len = qemu_get_be16(f);
3258 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3259 error_report("Failed to load XBZRLE page - wrong compression!");
3260 return -1;
3263 if (xh_len > TARGET_PAGE_SIZE) {
3264 error_report("Failed to load XBZRLE page - len overflow!");
3265 return -1;
3267 loaded_data = XBZRLE.decoded_buf;
3268 /* load data and decode */
3269 /* it can change loaded_data to point to an internal buffer */
3270 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3272 /* decode RLE */
3273 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3274 TARGET_PAGE_SIZE) == -1) {
3275 error_report("Failed to load XBZRLE page - decode error!");
3276 return -1;
3279 return 0;
3283 * ram_block_from_stream: read a RAMBlock id from the migration stream
3285 * Must be called from within a rcu critical section.
3287 * Returns a pointer from within the RCU-protected ram_list.
3289 * @mis: the migration incoming state pointer
3290 * @f: QEMUFile where to read the data from
3291 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3292 * @channel: the channel we're using
3294 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3295 QEMUFile *f, int flags,
3296 int channel)
3298 RAMBlock *block = mis->last_recv_block[channel];
3299 char id[256];
3300 uint8_t len;
3302 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3303 if (!block) {
3304 error_report("Ack, bad migration stream!");
3305 return NULL;
3307 return block;
3310 len = qemu_get_byte(f);
3311 qemu_get_buffer(f, (uint8_t *)id, len);
3312 id[len] = 0;
3314 block = qemu_ram_block_by_name(id);
3315 if (!block) {
3316 error_report("Can't find block %s", id);
3317 return NULL;
3320 if (migrate_ram_is_ignored(block)) {
3321 error_report("block %s should not be migrated !", id);
3322 return NULL;
3325 mis->last_recv_block[channel] = block;
3327 return block;
3330 static inline void *host_from_ram_block_offset(RAMBlock *block,
3331 ram_addr_t offset)
3333 if (!offset_in_ramblock(block, offset)) {
3334 return NULL;
3337 return block->host + offset;
3340 static void *host_page_from_ram_block_offset(RAMBlock *block,
3341 ram_addr_t offset)
3343 /* Note: Explicitly no check against offset_in_ramblock(). */
3344 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3345 block->page_size);
3348 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3349 ram_addr_t offset)
3351 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3354 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3356 qemu_mutex_lock(&ram_state->bitmap_mutex);
3357 for (int i = 0; i < pages; i++) {
3358 ram_addr_t offset = normal[i];
3359 ram_state->migration_dirty_pages += !test_and_set_bit(
3360 offset >> TARGET_PAGE_BITS,
3361 block->bmap);
3363 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3366 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3367 ram_addr_t offset, bool record_bitmap)
3369 if (!offset_in_ramblock(block, offset)) {
3370 return NULL;
3372 if (!block->colo_cache) {
3373 error_report("%s: colo_cache is NULL in block :%s",
3374 __func__, block->idstr);
3375 return NULL;
3379 * During colo checkpoint, we need bitmap of these migrated pages.
3380 * It help us to decide which pages in ram cache should be flushed
3381 * into VM's RAM later.
3383 if (record_bitmap) {
3384 colo_record_bitmap(block, &offset, 1);
3386 return block->colo_cache + offset;
3390 * ram_handle_zero: handle the zero page case
3392 * If a page (or a whole RDMA chunk) has been
3393 * determined to be zero, then zap it.
3395 * @host: host address for the zero page
3396 * @ch: what the page is filled from. We only support zero
3397 * @size: size of the zero page
3399 void ram_handle_zero(void *host, uint64_t size)
3401 if (!buffer_is_zero(host, size)) {
3402 memset(host, 0, size);
3406 static void colo_init_ram_state(void)
3408 ram_state_init(&ram_state);
3412 * colo cache: this is for secondary VM, we cache the whole
3413 * memory of the secondary VM, it is need to hold the global lock
3414 * to call this helper.
3416 int colo_init_ram_cache(void)
3418 RAMBlock *block;
3420 WITH_RCU_READ_LOCK_GUARD() {
3421 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3422 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3423 NULL, false, false);
3424 if (!block->colo_cache) {
3425 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3426 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3427 block->used_length);
3428 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3429 if (block->colo_cache) {
3430 qemu_anon_ram_free(block->colo_cache, block->used_length);
3431 block->colo_cache = NULL;
3434 return -errno;
3436 if (!machine_dump_guest_core(current_machine)) {
3437 qemu_madvise(block->colo_cache, block->used_length,
3438 QEMU_MADV_DONTDUMP);
3444 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3445 * with to decide which page in cache should be flushed into SVM's RAM. Here
3446 * we use the same name 'ram_bitmap' as for migration.
3448 if (ram_bytes_total()) {
3449 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3450 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3451 block->bmap = bitmap_new(pages);
3455 colo_init_ram_state();
3456 return 0;
3459 /* TODO: duplicated with ram_init_bitmaps */
3460 void colo_incoming_start_dirty_log(void)
3462 RAMBlock *block = NULL;
3463 /* For memory_global_dirty_log_start below. */
3464 qemu_mutex_lock_iothread();
3465 qemu_mutex_lock_ramlist();
3467 memory_global_dirty_log_sync(false);
3468 WITH_RCU_READ_LOCK_GUARD() {
3469 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3470 ramblock_sync_dirty_bitmap(ram_state, block);
3471 /* Discard this dirty bitmap record */
3472 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3474 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3476 ram_state->migration_dirty_pages = 0;
3477 qemu_mutex_unlock_ramlist();
3478 qemu_mutex_unlock_iothread();
3481 /* It is need to hold the global lock to call this helper */
3482 void colo_release_ram_cache(void)
3484 RAMBlock *block;
3486 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3487 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3488 g_free(block->bmap);
3489 block->bmap = NULL;
3492 WITH_RCU_READ_LOCK_GUARD() {
3493 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3494 if (block->colo_cache) {
3495 qemu_anon_ram_free(block->colo_cache, block->used_length);
3496 block->colo_cache = NULL;
3500 ram_state_cleanup(&ram_state);
3504 * ram_load_setup: Setup RAM for migration incoming side
3506 * Returns zero to indicate success and negative for error
3508 * @f: QEMUFile where to receive the data
3509 * @opaque: RAMState pointer
3511 static int ram_load_setup(QEMUFile *f, void *opaque)
3513 xbzrle_load_setup();
3514 ramblock_recv_map_init();
3516 return 0;
3519 static int ram_load_cleanup(void *opaque)
3521 RAMBlock *rb;
3523 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3524 qemu_ram_block_writeback(rb);
3527 xbzrle_load_cleanup();
3529 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3530 g_free(rb->receivedmap);
3531 rb->receivedmap = NULL;
3534 return 0;
3538 * ram_postcopy_incoming_init: allocate postcopy data structures
3540 * Returns 0 for success and negative if there was one error
3542 * @mis: current migration incoming state
3544 * Allocate data structures etc needed by incoming migration with
3545 * postcopy-ram. postcopy-ram's similarly names
3546 * postcopy_ram_incoming_init does the work.
3548 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3550 return postcopy_ram_incoming_init(mis);
3554 * ram_load_postcopy: load a page in postcopy case
3556 * Returns 0 for success or -errno in case of error
3558 * Called in postcopy mode by ram_load().
3559 * rcu_read_lock is taken prior to this being called.
3561 * @f: QEMUFile where to send the data
3562 * @channel: the channel to use for loading
3564 int ram_load_postcopy(QEMUFile *f, int channel)
3566 int flags = 0, ret = 0;
3567 bool place_needed = false;
3568 bool matches_target_page_size = false;
3569 MigrationIncomingState *mis = migration_incoming_get_current();
3570 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3572 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3573 ram_addr_t addr;
3574 void *page_buffer = NULL;
3575 void *place_source = NULL;
3576 RAMBlock *block = NULL;
3577 uint8_t ch;
3578 int len;
3580 addr = qemu_get_be64(f);
3583 * If qemu file error, we should stop here, and then "addr"
3584 * may be invalid
3586 ret = qemu_file_get_error(f);
3587 if (ret) {
3588 break;
3591 flags = addr & ~TARGET_PAGE_MASK;
3592 addr &= TARGET_PAGE_MASK;
3594 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3595 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3596 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3597 block = ram_block_from_stream(mis, f, flags, channel);
3598 if (!block) {
3599 ret = -EINVAL;
3600 break;
3604 * Relying on used_length is racy and can result in false positives.
3605 * We might place pages beyond used_length in case RAM was shrunk
3606 * while in postcopy, which is fine - trying to place via
3607 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3609 if (!block->host || addr >= block->postcopy_length) {
3610 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3611 ret = -EINVAL;
3612 break;
3614 tmp_page->target_pages++;
3615 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3617 * Postcopy requires that we place whole host pages atomically;
3618 * these may be huge pages for RAMBlocks that are backed by
3619 * hugetlbfs.
3620 * To make it atomic, the data is read into a temporary page
3621 * that's moved into place later.
3622 * The migration protocol uses, possibly smaller, target-pages
3623 * however the source ensures it always sends all the components
3624 * of a host page in one chunk.
3626 page_buffer = tmp_page->tmp_huge_page +
3627 host_page_offset_from_ram_block_offset(block, addr);
3628 /* If all TP are zero then we can optimise the place */
3629 if (tmp_page->target_pages == 1) {
3630 tmp_page->host_addr =
3631 host_page_from_ram_block_offset(block, addr);
3632 } else if (tmp_page->host_addr !=
3633 host_page_from_ram_block_offset(block, addr)) {
3634 /* not the 1st TP within the HP */
3635 error_report("Non-same host page detected on channel %d: "
3636 "Target host page %p, received host page %p "
3637 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3638 channel, tmp_page->host_addr,
3639 host_page_from_ram_block_offset(block, addr),
3640 block->idstr, addr, tmp_page->target_pages);
3641 ret = -EINVAL;
3642 break;
3646 * If it's the last part of a host page then we place the host
3647 * page
3649 if (tmp_page->target_pages ==
3650 (block->page_size / TARGET_PAGE_SIZE)) {
3651 place_needed = true;
3653 place_source = tmp_page->tmp_huge_page;
3656 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3657 case RAM_SAVE_FLAG_ZERO:
3658 ch = qemu_get_byte(f);
3659 if (ch != 0) {
3660 error_report("Found a zero page with value %d", ch);
3661 ret = -EINVAL;
3662 break;
3665 * Can skip to set page_buffer when
3666 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3668 if (!matches_target_page_size) {
3669 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3671 break;
3673 case RAM_SAVE_FLAG_PAGE:
3674 tmp_page->all_zero = false;
3675 if (!matches_target_page_size) {
3676 /* For huge pages, we always use temporary buffer */
3677 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3678 } else {
3680 * For small pages that matches target page size, we
3681 * avoid the qemu_file copy. Instead we directly use
3682 * the buffer of QEMUFile to place the page. Note: we
3683 * cannot do any QEMUFile operation before using that
3684 * buffer to make sure the buffer is valid when
3685 * placing the page.
3687 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3688 TARGET_PAGE_SIZE);
3690 break;
3691 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3692 tmp_page->all_zero = false;
3693 len = qemu_get_be32(f);
3694 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3695 error_report("Invalid compressed data length: %d", len);
3696 ret = -EINVAL;
3697 break;
3699 decompress_data_with_multi_threads(f, page_buffer, len);
3700 break;
3701 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3702 multifd_recv_sync_main();
3703 break;
3704 case RAM_SAVE_FLAG_EOS:
3705 /* normal exit */
3706 if (migrate_multifd() &&
3707 migrate_multifd_flush_after_each_section()) {
3708 multifd_recv_sync_main();
3710 break;
3711 default:
3712 error_report("Unknown combination of migration flags: 0x%x"
3713 " (postcopy mode)", flags);
3714 ret = -EINVAL;
3715 break;
3718 /* Got the whole host page, wait for decompress before placing. */
3719 if (place_needed) {
3720 ret |= wait_for_decompress_done();
3723 /* Detect for any possible file errors */
3724 if (!ret && qemu_file_get_error(f)) {
3725 ret = qemu_file_get_error(f);
3728 if (!ret && place_needed) {
3729 if (tmp_page->all_zero) {
3730 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3731 } else {
3732 ret = postcopy_place_page(mis, tmp_page->host_addr,
3733 place_source, block);
3735 place_needed = false;
3736 postcopy_temp_page_reset(tmp_page);
3740 return ret;
3743 static bool postcopy_is_running(void)
3745 PostcopyState ps = postcopy_state_get();
3746 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3750 * Flush content of RAM cache into SVM's memory.
3751 * Only flush the pages that be dirtied by PVM or SVM or both.
3753 void colo_flush_ram_cache(void)
3755 RAMBlock *block = NULL;
3756 void *dst_host;
3757 void *src_host;
3758 unsigned long offset = 0;
3760 memory_global_dirty_log_sync(false);
3761 qemu_mutex_lock(&ram_state->bitmap_mutex);
3762 WITH_RCU_READ_LOCK_GUARD() {
3763 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3764 ramblock_sync_dirty_bitmap(ram_state, block);
3768 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3769 WITH_RCU_READ_LOCK_GUARD() {
3770 block = QLIST_FIRST_RCU(&ram_list.blocks);
3772 while (block) {
3773 unsigned long num = 0;
3775 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3776 if (!offset_in_ramblock(block,
3777 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3778 offset = 0;
3779 num = 0;
3780 block = QLIST_NEXT_RCU(block, next);
3781 } else {
3782 unsigned long i = 0;
3784 for (i = 0; i < num; i++) {
3785 migration_bitmap_clear_dirty(ram_state, block, offset + i);
3787 dst_host = block->host
3788 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3789 src_host = block->colo_cache
3790 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3791 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3792 offset += num;
3796 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3797 trace_colo_flush_ram_cache_end();
3800 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
3802 int ret = 0;
3803 /* ADVISE is earlier, it shows the source has the postcopy capability on */
3804 bool postcopy_advised = migration_incoming_postcopy_advised();
3806 assert(block);
3808 if (!qemu_ram_is_migratable(block)) {
3809 error_report("block %s should not be migrated !", block->idstr);
3810 return -EINVAL;
3813 if (length != block->used_length) {
3814 Error *local_err = NULL;
3816 ret = qemu_ram_resize(block, length, &local_err);
3817 if (local_err) {
3818 error_report_err(local_err);
3819 return ret;
3822 /* For postcopy we need to check hugepage sizes match */
3823 if (postcopy_advised && migrate_postcopy_ram() &&
3824 block->page_size != qemu_host_page_size) {
3825 uint64_t remote_page_size = qemu_get_be64(f);
3826 if (remote_page_size != block->page_size) {
3827 error_report("Mismatched RAM page size %s "
3828 "(local) %zd != %" PRId64, block->idstr,
3829 block->page_size, remote_page_size);
3830 return -EINVAL;
3833 if (migrate_ignore_shared()) {
3834 hwaddr addr = qemu_get_be64(f);
3835 if (migrate_ram_is_ignored(block) &&
3836 block->mr->addr != addr) {
3837 error_report("Mismatched GPAs for block %s "
3838 "%" PRId64 "!= %" PRId64, block->idstr,
3839 (uint64_t)addr, (uint64_t)block->mr->addr);
3840 return -EINVAL;
3843 ret = rdma_block_notification_handle(f, block->idstr);
3844 if (ret < 0) {
3845 qemu_file_set_error(f, ret);
3848 return ret;
3851 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
3853 int ret = 0;
3855 /* Synchronize RAM block list */
3856 while (!ret && total_ram_bytes) {
3857 RAMBlock *block;
3858 char id[256];
3859 ram_addr_t length;
3860 int len = qemu_get_byte(f);
3862 qemu_get_buffer(f, (uint8_t *)id, len);
3863 id[len] = 0;
3864 length = qemu_get_be64(f);
3866 block = qemu_ram_block_by_name(id);
3867 if (block) {
3868 ret = parse_ramblock(f, block, length);
3869 } else {
3870 error_report("Unknown ramblock \"%s\", cannot accept "
3871 "migration", id);
3872 ret = -EINVAL;
3874 total_ram_bytes -= length;
3877 return ret;
3881 * ram_load_precopy: load pages in precopy case
3883 * Returns 0 for success or -errno in case of error
3885 * Called in precopy mode by ram_load().
3886 * rcu_read_lock is taken prior to this being called.
3888 * @f: QEMUFile where to send the data
3890 static int ram_load_precopy(QEMUFile *f)
3892 MigrationIncomingState *mis = migration_incoming_get_current();
3893 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
3895 if (!migrate_compress()) {
3896 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3899 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3900 ram_addr_t addr;
3901 void *host = NULL, *host_bak = NULL;
3902 uint8_t ch;
3905 * Yield periodically to let main loop run, but an iteration of
3906 * the main loop is expensive, so do it each some iterations
3908 if ((i & 32767) == 0 && qemu_in_coroutine()) {
3909 aio_co_schedule(qemu_get_current_aio_context(),
3910 qemu_coroutine_self());
3911 qemu_coroutine_yield();
3913 i++;
3915 addr = qemu_get_be64(f);
3916 flags = addr & ~TARGET_PAGE_MASK;
3917 addr &= TARGET_PAGE_MASK;
3919 if (flags & invalid_flags) {
3920 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3921 error_report("Received an unexpected compressed page");
3924 ret = -EINVAL;
3925 break;
3928 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3929 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3930 RAMBlock *block = ram_block_from_stream(mis, f, flags,
3931 RAM_CHANNEL_PRECOPY);
3933 host = host_from_ram_block_offset(block, addr);
3935 * After going into COLO stage, we should not load the page
3936 * into SVM's memory directly, we put them into colo_cache firstly.
3937 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3938 * Previously, we copied all these memory in preparing stage of COLO
3939 * while we need to stop VM, which is a time-consuming process.
3940 * Here we optimize it by a trick, back-up every page while in
3941 * migration process while COLO is enabled, though it affects the
3942 * speed of the migration, but it obviously reduce the downtime of
3943 * back-up all SVM'S memory in COLO preparing stage.
3945 if (migration_incoming_colo_enabled()) {
3946 if (migration_incoming_in_colo_state()) {
3947 /* In COLO stage, put all pages into cache temporarily */
3948 host = colo_cache_from_block_offset(block, addr, true);
3949 } else {
3951 * In migration stage but before COLO stage,
3952 * Put all pages into both cache and SVM's memory.
3954 host_bak = colo_cache_from_block_offset(block, addr, false);
3957 if (!host) {
3958 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3959 ret = -EINVAL;
3960 break;
3962 if (!migration_incoming_in_colo_state()) {
3963 ramblock_recv_bitmap_set(block, host);
3966 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3969 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3970 case RAM_SAVE_FLAG_MEM_SIZE:
3971 ret = parse_ramblocks(f, addr);
3972 break;
3974 case RAM_SAVE_FLAG_ZERO:
3975 ch = qemu_get_byte(f);
3976 if (ch != 0) {
3977 error_report("Found a zero page with value %d", ch);
3978 ret = -EINVAL;
3979 break;
3981 ram_handle_zero(host, TARGET_PAGE_SIZE);
3982 break;
3984 case RAM_SAVE_FLAG_PAGE:
3985 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
3986 break;
3988 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3989 len = qemu_get_be32(f);
3990 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3991 error_report("Invalid compressed data length: %d", len);
3992 ret = -EINVAL;
3993 break;
3995 decompress_data_with_multi_threads(f, host, len);
3996 break;
3998 case RAM_SAVE_FLAG_XBZRLE:
3999 if (load_xbzrle(f, addr, host) < 0) {
4000 error_report("Failed to decompress XBZRLE page at "
4001 RAM_ADDR_FMT, addr);
4002 ret = -EINVAL;
4003 break;
4005 break;
4006 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4007 multifd_recv_sync_main();
4008 break;
4009 case RAM_SAVE_FLAG_EOS:
4010 /* normal exit */
4011 if (migrate_multifd() &&
4012 migrate_multifd_flush_after_each_section()) {
4013 multifd_recv_sync_main();
4015 break;
4016 case RAM_SAVE_FLAG_HOOK:
4017 ret = rdma_registration_handle(f);
4018 if (ret < 0) {
4019 qemu_file_set_error(f, ret);
4021 break;
4022 default:
4023 error_report("Unknown combination of migration flags: 0x%x", flags);
4024 ret = -EINVAL;
4026 if (!ret) {
4027 ret = qemu_file_get_error(f);
4029 if (!ret && host_bak) {
4030 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4034 ret |= wait_for_decompress_done();
4035 return ret;
4038 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4040 int ret = 0;
4041 static uint64_t seq_iter;
4043 * If system is running in postcopy mode, page inserts to host memory must
4044 * be atomic
4046 bool postcopy_running = postcopy_is_running();
4048 seq_iter++;
4050 if (version_id != 4) {
4051 return -EINVAL;
4055 * This RCU critical section can be very long running.
4056 * When RCU reclaims in the code start to become numerous,
4057 * it will be necessary to reduce the granularity of this
4058 * critical section.
4060 WITH_RCU_READ_LOCK_GUARD() {
4061 if (postcopy_running) {
4063 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4064 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4065 * service fast page faults.
4067 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4068 } else {
4069 ret = ram_load_precopy(f);
4072 trace_ram_load_complete(ret, seq_iter);
4074 return ret;
4077 static bool ram_has_postcopy(void *opaque)
4079 RAMBlock *rb;
4080 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4081 if (ramblock_is_pmem(rb)) {
4082 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4083 "is not supported now!", rb->idstr, rb->host);
4084 return false;
4088 return migrate_postcopy_ram();
4091 /* Sync all the dirty bitmap with destination VM. */
4092 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4094 RAMBlock *block;
4095 QEMUFile *file = s->to_dst_file;
4097 trace_ram_dirty_bitmap_sync_start();
4099 qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4100 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4101 qemu_savevm_send_recv_bitmap(file, block->idstr);
4102 trace_ram_dirty_bitmap_request(block->idstr);
4103 qatomic_inc(&rs->postcopy_bmap_sync_requested);
4106 trace_ram_dirty_bitmap_sync_wait();
4108 /* Wait until all the ramblocks' dirty bitmap synced */
4109 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4110 migration_rp_wait(s);
4113 trace_ram_dirty_bitmap_sync_complete();
4115 return 0;
4119 * Read the received bitmap, revert it as the initial dirty bitmap.
4120 * This is only used when the postcopy migration is paused but wants
4121 * to resume from a middle point.
4123 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4125 int ret = -EINVAL;
4126 /* from_dst_file is always valid because we're within rp_thread */
4127 QEMUFile *file = s->rp_state.from_dst_file;
4128 g_autofree unsigned long *le_bitmap = NULL;
4129 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4130 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4131 uint64_t size, end_mark;
4132 RAMState *rs = ram_state;
4134 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4136 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4137 error_report("%s: incorrect state %s", __func__,
4138 MigrationStatus_str(s->state));
4139 return -EINVAL;
4143 * Note: see comments in ramblock_recv_bitmap_send() on why we
4144 * need the endianness conversion, and the paddings.
4146 local_size = ROUND_UP(local_size, 8);
4148 /* Add paddings */
4149 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4151 size = qemu_get_be64(file);
4153 /* The size of the bitmap should match with our ramblock */
4154 if (size != local_size) {
4155 error_report("%s: ramblock '%s' bitmap size mismatch "
4156 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4157 block->idstr, size, local_size);
4158 return -EINVAL;
4161 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4162 end_mark = qemu_get_be64(file);
4164 ret = qemu_file_get_error(file);
4165 if (ret || size != local_size) {
4166 error_report("%s: read bitmap failed for ramblock '%s': %d"
4167 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4168 __func__, block->idstr, ret, local_size, size);
4169 return -EIO;
4172 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4173 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
4174 __func__, block->idstr, end_mark);
4175 return -EINVAL;
4179 * Endianness conversion. We are during postcopy (though paused).
4180 * The dirty bitmap won't change. We can directly modify it.
4182 bitmap_from_le(block->bmap, le_bitmap, nbits);
4185 * What we received is "received bitmap". Revert it as the initial
4186 * dirty bitmap for this ramblock.
4188 bitmap_complement(block->bmap, block->bmap, nbits);
4190 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4191 ramblock_dirty_bitmap_clear_discarded_pages(block);
4193 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4194 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4196 qatomic_dec(&rs->postcopy_bmap_sync_requested);
4199 * We succeeded to sync bitmap for current ramblock. Always kick the
4200 * migration thread to check whether all requested bitmaps are
4201 * reloaded. NOTE: it's racy to only kick when requested==0, because
4202 * we don't know whether the migration thread may still be increasing
4203 * it.
4205 migration_rp_kick(s);
4207 return 0;
4210 static int ram_resume_prepare(MigrationState *s, void *opaque)
4212 RAMState *rs = *(RAMState **)opaque;
4213 int ret;
4215 ret = ram_dirty_bitmap_sync_all(s, rs);
4216 if (ret) {
4217 return ret;
4220 ram_state_resume_prepare(rs, s->to_dst_file);
4222 return 0;
4225 void postcopy_preempt_shutdown_file(MigrationState *s)
4227 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4228 qemu_fflush(s->postcopy_qemufile_src);
4231 static SaveVMHandlers savevm_ram_handlers = {
4232 .save_setup = ram_save_setup,
4233 .save_live_iterate = ram_save_iterate,
4234 .save_live_complete_postcopy = ram_save_complete,
4235 .save_live_complete_precopy = ram_save_complete,
4236 .has_postcopy = ram_has_postcopy,
4237 .state_pending_exact = ram_state_pending_exact,
4238 .state_pending_estimate = ram_state_pending_estimate,
4239 .load_state = ram_load,
4240 .save_cleanup = ram_save_cleanup,
4241 .load_setup = ram_load_setup,
4242 .load_cleanup = ram_load_cleanup,
4243 .resume_prepare = ram_resume_prepare,
4246 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4247 size_t old_size, size_t new_size)
4249 PostcopyState ps = postcopy_state_get();
4250 ram_addr_t offset;
4251 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4252 Error *err = NULL;
4254 if (!rb) {
4255 error_report("RAM block not found");
4256 return;
4259 if (migrate_ram_is_ignored(rb)) {
4260 return;
4263 if (!migration_is_idle()) {
4265 * Precopy code on the source cannot deal with the size of RAM blocks
4266 * changing at random points in time - especially after sending the
4267 * RAM block sizes in the migration stream, they must no longer change.
4268 * Abort and indicate a proper reason.
4270 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4271 migration_cancel(err);
4272 error_free(err);
4275 switch (ps) {
4276 case POSTCOPY_INCOMING_ADVISE:
4278 * Update what ram_postcopy_incoming_init()->init_range() does at the
4279 * time postcopy was advised. Syncing RAM blocks with the source will
4280 * result in RAM resizes.
4282 if (old_size < new_size) {
4283 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4284 error_report("RAM block '%s' discard of resized RAM failed",
4285 rb->idstr);
4288 rb->postcopy_length = new_size;
4289 break;
4290 case POSTCOPY_INCOMING_NONE:
4291 case POSTCOPY_INCOMING_RUNNING:
4292 case POSTCOPY_INCOMING_END:
4294 * Once our guest is running, postcopy does no longer care about
4295 * resizes. When growing, the new memory was not available on the
4296 * source, no handler needed.
4298 break;
4299 default:
4300 error_report("RAM block '%s' resized during postcopy state: %d",
4301 rb->idstr, ps);
4302 exit(-1);
4306 static RAMBlockNotifier ram_mig_ram_notifier = {
4307 .ram_block_resized = ram_mig_ram_block_resized,
4310 void ram_mig_init(void)
4312 qemu_mutex_init(&XBZRLE.lock);
4313 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4314 ram_block_notifier_add(&ram_mig_ram_notifier);