4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/queue.h"
30 #include <sys/mount.h>
32 #include <sys/fsuid.h>
33 #include <sys/personality.h>
34 #include <sys/prctl.h>
35 #include <sys/resource.h>
37 #include <linux/capability.h>
39 #include <sys/timex.h>
40 #include <sys/socket.h>
41 #include <linux/sockios.h>
45 #include <sys/times.h>
48 #include <sys/statfs.h>
50 #include <sys/sysinfo.h>
51 #include <sys/signalfd.h>
52 //#include <sys/user.h>
53 #include <netinet/ip.h>
54 #include <netinet/tcp.h>
55 #include <linux/wireless.h>
56 #include <linux/icmp.h>
57 #include <linux/icmpv6.h>
58 #include <linux/errqueue.h>
59 #include <linux/random.h>
61 #include <sys/timerfd.h>
64 #include <sys/eventfd.h>
67 #include <sys/epoll.h>
70 #include "qemu/xattr.h"
72 #ifdef CONFIG_SENDFILE
73 #include <sys/sendfile.h>
76 #define termios host_termios
77 #define winsize host_winsize
78 #define termio host_termio
79 #define sgttyb host_sgttyb /* same as target */
80 #define tchars host_tchars /* same as target */
81 #define ltchars host_ltchars /* same as target */
83 #include <linux/termios.h>
84 #include <linux/unistd.h>
85 #include <linux/cdrom.h>
86 #include <linux/hdreg.h>
87 #include <linux/soundcard.h>
89 #include <linux/mtio.h>
91 #if defined(CONFIG_FIEMAP)
92 #include <linux/fiemap.h>
95 #if defined(CONFIG_USBFS)
96 #include <linux/usbdevice_fs.h>
97 #include <linux/usb/ch9.h>
100 #include <linux/dm-ioctl.h>
101 #include <linux/reboot.h>
102 #include <linux/route.h>
103 #include <linux/filter.h>
104 #include <linux/blkpg.h>
105 #include <netpacket/packet.h>
106 #include <linux/netlink.h>
107 #include <linux/if_alg.h>
108 #include "linux_loop.h"
112 #include "qemu/guest-random.h"
113 #include "qapi/error.h"
114 #include "fd-trans.h"
117 #define CLONE_IO 0x80000000 /* Clone io context */
120 /* We can't directly call the host clone syscall, because this will
121 * badly confuse libc (breaking mutexes, for example). So we must
122 * divide clone flags into:
123 * * flag combinations that look like pthread_create()
124 * * flag combinations that look like fork()
125 * * flags we can implement within QEMU itself
126 * * flags we can't support and will return an error for
128 /* For thread creation, all these flags must be present; for
129 * fork, none must be present.
131 #define CLONE_THREAD_FLAGS \
132 (CLONE_VM | CLONE_FS | CLONE_FILES | \
133 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
135 /* These flags are ignored:
136 * CLONE_DETACHED is now ignored by the kernel;
137 * CLONE_IO is just an optimisation hint to the I/O scheduler
139 #define CLONE_IGNORED_FLAGS \
140 (CLONE_DETACHED | CLONE_IO)
142 /* Flags for fork which we can implement within QEMU itself */
143 #define CLONE_OPTIONAL_FORK_FLAGS \
144 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
145 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
147 /* Flags for thread creation which we can implement within QEMU itself */
148 #define CLONE_OPTIONAL_THREAD_FLAGS \
149 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
150 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
152 #define CLONE_INVALID_FORK_FLAGS \
153 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
155 #define CLONE_INVALID_THREAD_FLAGS \
156 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
157 CLONE_IGNORED_FLAGS))
159 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
160 * have almost all been allocated. We cannot support any of
161 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
162 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
163 * The checks against the invalid thread masks above will catch these.
164 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
167 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
168 * once. This exercises the codepaths for restart.
170 //#define DEBUG_ERESTARTSYS
172 //#include <linux/msdos_fs.h>
173 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
174 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
184 #define _syscall0(type,name) \
185 static type name (void) \
187 return syscall(__NR_##name); \
190 #define _syscall1(type,name,type1,arg1) \
191 static type name (type1 arg1) \
193 return syscall(__NR_##name, arg1); \
196 #define _syscall2(type,name,type1,arg1,type2,arg2) \
197 static type name (type1 arg1,type2 arg2) \
199 return syscall(__NR_##name, arg1, arg2); \
202 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
203 static type name (type1 arg1,type2 arg2,type3 arg3) \
205 return syscall(__NR_##name, arg1, arg2, arg3); \
208 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
209 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
211 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
214 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
216 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
218 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
222 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
223 type5,arg5,type6,arg6) \
224 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
227 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
231 #define __NR_sys_uname __NR_uname
232 #define __NR_sys_getcwd1 __NR_getcwd
233 #define __NR_sys_getdents __NR_getdents
234 #define __NR_sys_getdents64 __NR_getdents64
235 #define __NR_sys_getpriority __NR_getpriority
236 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
237 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
238 #define __NR_sys_syslog __NR_syslog
239 #define __NR_sys_futex __NR_futex
240 #define __NR_sys_inotify_init __NR_inotify_init
241 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
242 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
243 #define __NR_sys_statx __NR_statx
245 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
246 #define __NR__llseek __NR_lseek
249 /* Newer kernel ports have llseek() instead of _llseek() */
250 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
251 #define TARGET_NR__llseek TARGET_NR_llseek
254 #define __NR_sys_gettid __NR_gettid
255 _syscall0(int, sys_gettid
)
257 /* For the 64-bit guest on 32-bit host case we must emulate
258 * getdents using getdents64, because otherwise the host
259 * might hand us back more dirent records than we can fit
260 * into the guest buffer after structure format conversion.
261 * Otherwise we emulate getdents with getdents if the host has it.
263 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
264 #define EMULATE_GETDENTS_WITH_GETDENTS
267 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
268 _syscall3(int, sys_getdents
, uint
, fd
, struct linux_dirent
*, dirp
, uint
, count
);
270 #if (defined(TARGET_NR_getdents) && \
271 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
272 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
273 _syscall3(int, sys_getdents64
, uint
, fd
, struct linux_dirent64
*, dirp
, uint
, count
);
275 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
276 _syscall5(int, _llseek
, uint
, fd
, ulong
, hi
, ulong
, lo
,
277 loff_t
*, res
, uint
, wh
);
279 _syscall3(int, sys_rt_sigqueueinfo
, pid_t
, pid
, int, sig
, siginfo_t
*, uinfo
)
280 _syscall4(int, sys_rt_tgsigqueueinfo
, pid_t
, pid
, pid_t
, tid
, int, sig
,
282 _syscall3(int,sys_syslog
,int,type
,char*,bufp
,int,len
)
283 #ifdef __NR_exit_group
284 _syscall1(int,exit_group
,int,error_code
)
286 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
287 _syscall1(int,set_tid_address
,int *,tidptr
)
289 #if defined(TARGET_NR_futex) && defined(__NR_futex)
290 _syscall6(int,sys_futex
,int *,uaddr
,int,op
,int,val
,
291 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
293 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
294 _syscall3(int, sys_sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
295 unsigned long *, user_mask_ptr
);
296 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
297 _syscall3(int, sys_sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
298 unsigned long *, user_mask_ptr
);
299 #define __NR_sys_getcpu __NR_getcpu
300 _syscall3(int, sys_getcpu
, unsigned *, cpu
, unsigned *, node
, void *, tcache
);
301 _syscall4(int, reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
303 _syscall2(int, capget
, struct __user_cap_header_struct
*, header
,
304 struct __user_cap_data_struct
*, data
);
305 _syscall2(int, capset
, struct __user_cap_header_struct
*, header
,
306 struct __user_cap_data_struct
*, data
);
307 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
308 _syscall2(int, ioprio_get
, int, which
, int, who
)
310 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
311 _syscall3(int, ioprio_set
, int, which
, int, who
, int, ioprio
)
313 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
314 _syscall3(int, getrandom
, void *, buf
, size_t, buflen
, unsigned int, flags
)
317 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
318 _syscall5(int, kcmp
, pid_t
, pid1
, pid_t
, pid2
, int, type
,
319 unsigned long, idx1
, unsigned long, idx2
)
323 * It is assumed that struct statx is architecture independent.
325 #if defined(TARGET_NR_statx) && defined(__NR_statx)
326 _syscall5(int, sys_statx
, int, dirfd
, const char *, pathname
, int, flags
,
327 unsigned int, mask
, struct target_statx
*, statxbuf
)
330 static bitmask_transtbl fcntl_flags_tbl
[] = {
331 { TARGET_O_ACCMODE
, TARGET_O_WRONLY
, O_ACCMODE
, O_WRONLY
, },
332 { TARGET_O_ACCMODE
, TARGET_O_RDWR
, O_ACCMODE
, O_RDWR
, },
333 { TARGET_O_CREAT
, TARGET_O_CREAT
, O_CREAT
, O_CREAT
, },
334 { TARGET_O_EXCL
, TARGET_O_EXCL
, O_EXCL
, O_EXCL
, },
335 { TARGET_O_NOCTTY
, TARGET_O_NOCTTY
, O_NOCTTY
, O_NOCTTY
, },
336 { TARGET_O_TRUNC
, TARGET_O_TRUNC
, O_TRUNC
, O_TRUNC
, },
337 { TARGET_O_APPEND
, TARGET_O_APPEND
, O_APPEND
, O_APPEND
, },
338 { TARGET_O_NONBLOCK
, TARGET_O_NONBLOCK
, O_NONBLOCK
, O_NONBLOCK
, },
339 { TARGET_O_SYNC
, TARGET_O_DSYNC
, O_SYNC
, O_DSYNC
, },
340 { TARGET_O_SYNC
, TARGET_O_SYNC
, O_SYNC
, O_SYNC
, },
341 { TARGET_FASYNC
, TARGET_FASYNC
, FASYNC
, FASYNC
, },
342 { TARGET_O_DIRECTORY
, TARGET_O_DIRECTORY
, O_DIRECTORY
, O_DIRECTORY
, },
343 { TARGET_O_NOFOLLOW
, TARGET_O_NOFOLLOW
, O_NOFOLLOW
, O_NOFOLLOW
, },
344 #if defined(O_DIRECT)
345 { TARGET_O_DIRECT
, TARGET_O_DIRECT
, O_DIRECT
, O_DIRECT
, },
347 #if defined(O_NOATIME)
348 { TARGET_O_NOATIME
, TARGET_O_NOATIME
, O_NOATIME
, O_NOATIME
},
350 #if defined(O_CLOEXEC)
351 { TARGET_O_CLOEXEC
, TARGET_O_CLOEXEC
, O_CLOEXEC
, O_CLOEXEC
},
354 { TARGET_O_PATH
, TARGET_O_PATH
, O_PATH
, O_PATH
},
356 #if defined(O_TMPFILE)
357 { TARGET_O_TMPFILE
, TARGET_O_TMPFILE
, O_TMPFILE
, O_TMPFILE
},
359 /* Don't terminate the list prematurely on 64-bit host+guest. */
360 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
361 { TARGET_O_LARGEFILE
, TARGET_O_LARGEFILE
, O_LARGEFILE
, O_LARGEFILE
, },
366 static int sys_getcwd1(char *buf
, size_t size
)
368 if (getcwd(buf
, size
) == NULL
) {
369 /* getcwd() sets errno */
372 return strlen(buf
)+1;
375 #ifdef TARGET_NR_utimensat
376 #if defined(__NR_utimensat)
377 #define __NR_sys_utimensat __NR_utimensat
378 _syscall4(int,sys_utimensat
,int,dirfd
,const char *,pathname
,
379 const struct timespec
*,tsp
,int,flags
)
381 static int sys_utimensat(int dirfd
, const char *pathname
,
382 const struct timespec times
[2], int flags
)
388 #endif /* TARGET_NR_utimensat */
390 #ifdef TARGET_NR_renameat2
391 #if defined(__NR_renameat2)
392 #define __NR_sys_renameat2 __NR_renameat2
393 _syscall5(int, sys_renameat2
, int, oldfd
, const char *, old
, int, newfd
,
394 const char *, new, unsigned int, flags
)
396 static int sys_renameat2(int oldfd
, const char *old
,
397 int newfd
, const char *new, int flags
)
400 return renameat(oldfd
, old
, newfd
, new);
406 #endif /* TARGET_NR_renameat2 */
408 #ifdef CONFIG_INOTIFY
409 #include <sys/inotify.h>
411 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
412 static int sys_inotify_init(void)
414 return (inotify_init());
417 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
418 static int sys_inotify_add_watch(int fd
,const char *pathname
, int32_t mask
)
420 return (inotify_add_watch(fd
, pathname
, mask
));
423 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
424 static int sys_inotify_rm_watch(int fd
, int32_t wd
)
426 return (inotify_rm_watch(fd
, wd
));
429 #ifdef CONFIG_INOTIFY1
430 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
431 static int sys_inotify_init1(int flags
)
433 return (inotify_init1(flags
));
438 /* Userspace can usually survive runtime without inotify */
439 #undef TARGET_NR_inotify_init
440 #undef TARGET_NR_inotify_init1
441 #undef TARGET_NR_inotify_add_watch
442 #undef TARGET_NR_inotify_rm_watch
443 #endif /* CONFIG_INOTIFY */
445 #if defined(TARGET_NR_prlimit64)
446 #ifndef __NR_prlimit64
447 # define __NR_prlimit64 -1
449 #define __NR_sys_prlimit64 __NR_prlimit64
450 /* The glibc rlimit structure may not be that used by the underlying syscall */
451 struct host_rlimit64
{
455 _syscall4(int, sys_prlimit64
, pid_t
, pid
, int, resource
,
456 const struct host_rlimit64
*, new_limit
,
457 struct host_rlimit64
*, old_limit
)
461 #if defined(TARGET_NR_timer_create)
462 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
463 static timer_t g_posix_timers
[32] = { 0, } ;
465 static inline int next_free_host_timer(void)
468 /* FIXME: Does finding the next free slot require a lock? */
469 for (k
= 0; k
< ARRAY_SIZE(g_posix_timers
); k
++) {
470 if (g_posix_timers
[k
] == 0) {
471 g_posix_timers
[k
] = (timer_t
) 1;
479 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
481 static inline int regpairs_aligned(void *cpu_env
, int num
)
483 return ((((CPUARMState
*)cpu_env
)->eabi
) == 1) ;
485 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
486 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 1; }
487 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
488 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
489 * of registers which translates to the same as ARM/MIPS, because we start with
491 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 1; }
492 #elif defined(TARGET_SH4)
493 /* SH4 doesn't align register pairs, except for p{read,write}64 */
494 static inline int regpairs_aligned(void *cpu_env
, int num
)
497 case TARGET_NR_pread64
:
498 case TARGET_NR_pwrite64
:
505 #elif defined(TARGET_XTENSA)
506 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 1; }
508 static inline int regpairs_aligned(void *cpu_env
, int num
) { return 0; }
511 #define ERRNO_TABLE_SIZE 1200
513 /* target_to_host_errno_table[] is initialized from
514 * host_to_target_errno_table[] in syscall_init(). */
515 static uint16_t target_to_host_errno_table
[ERRNO_TABLE_SIZE
] = {
519 * This list is the union of errno values overridden in asm-<arch>/errno.h
520 * minus the errnos that are not actually generic to all archs.
522 static uint16_t host_to_target_errno_table
[ERRNO_TABLE_SIZE
] = {
523 [EAGAIN
] = TARGET_EAGAIN
,
524 [EIDRM
] = TARGET_EIDRM
,
525 [ECHRNG
] = TARGET_ECHRNG
,
526 [EL2NSYNC
] = TARGET_EL2NSYNC
,
527 [EL3HLT
] = TARGET_EL3HLT
,
528 [EL3RST
] = TARGET_EL3RST
,
529 [ELNRNG
] = TARGET_ELNRNG
,
530 [EUNATCH
] = TARGET_EUNATCH
,
531 [ENOCSI
] = TARGET_ENOCSI
,
532 [EL2HLT
] = TARGET_EL2HLT
,
533 [EDEADLK
] = TARGET_EDEADLK
,
534 [ENOLCK
] = TARGET_ENOLCK
,
535 [EBADE
] = TARGET_EBADE
,
536 [EBADR
] = TARGET_EBADR
,
537 [EXFULL
] = TARGET_EXFULL
,
538 [ENOANO
] = TARGET_ENOANO
,
539 [EBADRQC
] = TARGET_EBADRQC
,
540 [EBADSLT
] = TARGET_EBADSLT
,
541 [EBFONT
] = TARGET_EBFONT
,
542 [ENOSTR
] = TARGET_ENOSTR
,
543 [ENODATA
] = TARGET_ENODATA
,
544 [ETIME
] = TARGET_ETIME
,
545 [ENOSR
] = TARGET_ENOSR
,
546 [ENONET
] = TARGET_ENONET
,
547 [ENOPKG
] = TARGET_ENOPKG
,
548 [EREMOTE
] = TARGET_EREMOTE
,
549 [ENOLINK
] = TARGET_ENOLINK
,
550 [EADV
] = TARGET_EADV
,
551 [ESRMNT
] = TARGET_ESRMNT
,
552 [ECOMM
] = TARGET_ECOMM
,
553 [EPROTO
] = TARGET_EPROTO
,
554 [EDOTDOT
] = TARGET_EDOTDOT
,
555 [EMULTIHOP
] = TARGET_EMULTIHOP
,
556 [EBADMSG
] = TARGET_EBADMSG
,
557 [ENAMETOOLONG
] = TARGET_ENAMETOOLONG
,
558 [EOVERFLOW
] = TARGET_EOVERFLOW
,
559 [ENOTUNIQ
] = TARGET_ENOTUNIQ
,
560 [EBADFD
] = TARGET_EBADFD
,
561 [EREMCHG
] = TARGET_EREMCHG
,
562 [ELIBACC
] = TARGET_ELIBACC
,
563 [ELIBBAD
] = TARGET_ELIBBAD
,
564 [ELIBSCN
] = TARGET_ELIBSCN
,
565 [ELIBMAX
] = TARGET_ELIBMAX
,
566 [ELIBEXEC
] = TARGET_ELIBEXEC
,
567 [EILSEQ
] = TARGET_EILSEQ
,
568 [ENOSYS
] = TARGET_ENOSYS
,
569 [ELOOP
] = TARGET_ELOOP
,
570 [ERESTART
] = TARGET_ERESTART
,
571 [ESTRPIPE
] = TARGET_ESTRPIPE
,
572 [ENOTEMPTY
] = TARGET_ENOTEMPTY
,
573 [EUSERS
] = TARGET_EUSERS
,
574 [ENOTSOCK
] = TARGET_ENOTSOCK
,
575 [EDESTADDRREQ
] = TARGET_EDESTADDRREQ
,
576 [EMSGSIZE
] = TARGET_EMSGSIZE
,
577 [EPROTOTYPE
] = TARGET_EPROTOTYPE
,
578 [ENOPROTOOPT
] = TARGET_ENOPROTOOPT
,
579 [EPROTONOSUPPORT
] = TARGET_EPROTONOSUPPORT
,
580 [ESOCKTNOSUPPORT
] = TARGET_ESOCKTNOSUPPORT
,
581 [EOPNOTSUPP
] = TARGET_EOPNOTSUPP
,
582 [EPFNOSUPPORT
] = TARGET_EPFNOSUPPORT
,
583 [EAFNOSUPPORT
] = TARGET_EAFNOSUPPORT
,
584 [EADDRINUSE
] = TARGET_EADDRINUSE
,
585 [EADDRNOTAVAIL
] = TARGET_EADDRNOTAVAIL
,
586 [ENETDOWN
] = TARGET_ENETDOWN
,
587 [ENETUNREACH
] = TARGET_ENETUNREACH
,
588 [ENETRESET
] = TARGET_ENETRESET
,
589 [ECONNABORTED
] = TARGET_ECONNABORTED
,
590 [ECONNRESET
] = TARGET_ECONNRESET
,
591 [ENOBUFS
] = TARGET_ENOBUFS
,
592 [EISCONN
] = TARGET_EISCONN
,
593 [ENOTCONN
] = TARGET_ENOTCONN
,
594 [EUCLEAN
] = TARGET_EUCLEAN
,
595 [ENOTNAM
] = TARGET_ENOTNAM
,
596 [ENAVAIL
] = TARGET_ENAVAIL
,
597 [EISNAM
] = TARGET_EISNAM
,
598 [EREMOTEIO
] = TARGET_EREMOTEIO
,
599 [EDQUOT
] = TARGET_EDQUOT
,
600 [ESHUTDOWN
] = TARGET_ESHUTDOWN
,
601 [ETOOMANYREFS
] = TARGET_ETOOMANYREFS
,
602 [ETIMEDOUT
] = TARGET_ETIMEDOUT
,
603 [ECONNREFUSED
] = TARGET_ECONNREFUSED
,
604 [EHOSTDOWN
] = TARGET_EHOSTDOWN
,
605 [EHOSTUNREACH
] = TARGET_EHOSTUNREACH
,
606 [EALREADY
] = TARGET_EALREADY
,
607 [EINPROGRESS
] = TARGET_EINPROGRESS
,
608 [ESTALE
] = TARGET_ESTALE
,
609 [ECANCELED
] = TARGET_ECANCELED
,
610 [ENOMEDIUM
] = TARGET_ENOMEDIUM
,
611 [EMEDIUMTYPE
] = TARGET_EMEDIUMTYPE
,
613 [ENOKEY
] = TARGET_ENOKEY
,
616 [EKEYEXPIRED
] = TARGET_EKEYEXPIRED
,
619 [EKEYREVOKED
] = TARGET_EKEYREVOKED
,
622 [EKEYREJECTED
] = TARGET_EKEYREJECTED
,
625 [EOWNERDEAD
] = TARGET_EOWNERDEAD
,
627 #ifdef ENOTRECOVERABLE
628 [ENOTRECOVERABLE
] = TARGET_ENOTRECOVERABLE
,
631 [ENOMSG
] = TARGET_ENOMSG
,
634 [ERFKILL
] = TARGET_ERFKILL
,
637 [EHWPOISON
] = TARGET_EHWPOISON
,
641 static inline int host_to_target_errno(int err
)
643 if (err
>= 0 && err
< ERRNO_TABLE_SIZE
&&
644 host_to_target_errno_table
[err
]) {
645 return host_to_target_errno_table
[err
];
650 static inline int target_to_host_errno(int err
)
652 if (err
>= 0 && err
< ERRNO_TABLE_SIZE
&&
653 target_to_host_errno_table
[err
]) {
654 return target_to_host_errno_table
[err
];
659 static inline abi_long
get_errno(abi_long ret
)
662 return -host_to_target_errno(errno
);
667 const char *target_strerror(int err
)
669 if (err
== TARGET_ERESTARTSYS
) {
670 return "To be restarted";
672 if (err
== TARGET_QEMU_ESIGRETURN
) {
673 return "Successful exit from sigreturn";
676 if ((err
>= ERRNO_TABLE_SIZE
) || (err
< 0)) {
679 return strerror(target_to_host_errno(err
));
682 #define safe_syscall0(type, name) \
683 static type safe_##name(void) \
685 return safe_syscall(__NR_##name); \
688 #define safe_syscall1(type, name, type1, arg1) \
689 static type safe_##name(type1 arg1) \
691 return safe_syscall(__NR_##name, arg1); \
694 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
695 static type safe_##name(type1 arg1, type2 arg2) \
697 return safe_syscall(__NR_##name, arg1, arg2); \
700 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
701 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
703 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
706 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
708 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
710 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
713 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
714 type4, arg4, type5, arg5) \
715 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
718 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
721 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
722 type4, arg4, type5, arg5, type6, arg6) \
723 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
724 type5 arg5, type6 arg6) \
726 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
729 safe_syscall3(ssize_t
, read
, int, fd
, void *, buff
, size_t, count
)
730 safe_syscall3(ssize_t
, write
, int, fd
, const void *, buff
, size_t, count
)
731 safe_syscall4(int, openat
, int, dirfd
, const char *, pathname
, \
732 int, flags
, mode_t
, mode
)
733 safe_syscall4(pid_t
, wait4
, pid_t
, pid
, int *, status
, int, options
, \
734 struct rusage
*, rusage
)
735 safe_syscall5(int, waitid
, idtype_t
, idtype
, id_t
, id
, siginfo_t
*, infop
, \
736 int, options
, struct rusage
*, rusage
)
737 safe_syscall3(int, execve
, const char *, filename
, char **, argv
, char **, envp
)
738 safe_syscall6(int, pselect6
, int, nfds
, fd_set
*, readfds
, fd_set
*, writefds
, \
739 fd_set
*, exceptfds
, struct timespec
*, timeout
, void *, sig
)
740 safe_syscall5(int, ppoll
, struct pollfd
*, ufds
, unsigned int, nfds
,
741 struct timespec
*, tsp
, const sigset_t
*, sigmask
,
743 safe_syscall6(int, epoll_pwait
, int, epfd
, struct epoll_event
*, events
,
744 int, maxevents
, int, timeout
, const sigset_t
*, sigmask
,
746 safe_syscall6(int,futex
,int *,uaddr
,int,op
,int,val
, \
747 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
748 safe_syscall2(int, rt_sigsuspend
, sigset_t
*, newset
, size_t, sigsetsize
)
749 safe_syscall2(int, kill
, pid_t
, pid
, int, sig
)
750 safe_syscall2(int, tkill
, int, tid
, int, sig
)
751 safe_syscall3(int, tgkill
, int, tgid
, int, pid
, int, sig
)
752 safe_syscall3(ssize_t
, readv
, int, fd
, const struct iovec
*, iov
, int, iovcnt
)
753 safe_syscall3(ssize_t
, writev
, int, fd
, const struct iovec
*, iov
, int, iovcnt
)
754 safe_syscall5(ssize_t
, preadv
, int, fd
, const struct iovec
*, iov
, int, iovcnt
,
755 unsigned long, pos_l
, unsigned long, pos_h
)
756 safe_syscall5(ssize_t
, pwritev
, int, fd
, const struct iovec
*, iov
, int, iovcnt
,
757 unsigned long, pos_l
, unsigned long, pos_h
)
758 safe_syscall3(int, connect
, int, fd
, const struct sockaddr
*, addr
,
760 safe_syscall6(ssize_t
, sendto
, int, fd
, const void *, buf
, size_t, len
,
761 int, flags
, const struct sockaddr
*, addr
, socklen_t
, addrlen
)
762 safe_syscall6(ssize_t
, recvfrom
, int, fd
, void *, buf
, size_t, len
,
763 int, flags
, struct sockaddr
*, addr
, socklen_t
*, addrlen
)
764 safe_syscall3(ssize_t
, sendmsg
, int, fd
, const struct msghdr
*, msg
, int, flags
)
765 safe_syscall3(ssize_t
, recvmsg
, int, fd
, struct msghdr
*, msg
, int, flags
)
766 safe_syscall2(int, flock
, int, fd
, int, operation
)
767 safe_syscall4(int, rt_sigtimedwait
, const sigset_t
*, these
, siginfo_t
*, uinfo
,
768 const struct timespec
*, uts
, size_t, sigsetsize
)
769 safe_syscall4(int, accept4
, int, fd
, struct sockaddr
*, addr
, socklen_t
*, len
,
771 safe_syscall2(int, nanosleep
, const struct timespec
*, req
,
772 struct timespec
*, rem
)
773 #ifdef TARGET_NR_clock_nanosleep
774 safe_syscall4(int, clock_nanosleep
, const clockid_t
, clock
, int, flags
,
775 const struct timespec
*, req
, struct timespec
*, rem
)
778 safe_syscall6(int, ipc
, int, call
, long, first
, long, second
, long, third
,
779 void *, ptr
, long, fifth
)
782 safe_syscall4(int, msgsnd
, int, msgid
, const void *, msgp
, size_t, sz
,
786 safe_syscall5(int, msgrcv
, int, msgid
, void *, msgp
, size_t, sz
,
787 long, msgtype
, int, flags
)
789 #ifdef __NR_semtimedop
790 safe_syscall4(int, semtimedop
, int, semid
, struct sembuf
*, tsops
,
791 unsigned, nsops
, const struct timespec
*, timeout
)
793 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
794 safe_syscall5(int, mq_timedsend
, int, mqdes
, const char *, msg_ptr
,
795 size_t, len
, unsigned, prio
, const struct timespec
*, timeout
)
796 safe_syscall5(int, mq_timedreceive
, int, mqdes
, char *, msg_ptr
,
797 size_t, len
, unsigned *, prio
, const struct timespec
*, timeout
)
799 /* We do ioctl like this rather than via safe_syscall3 to preserve the
800 * "third argument might be integer or pointer or not present" behaviour of
803 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
804 /* Similarly for fcntl. Note that callers must always:
805 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
806 * use the flock64 struct rather than unsuffixed flock
807 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
810 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
812 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
815 static inline int host_to_target_sock_type(int host_type
)
819 switch (host_type
& 0xf /* SOCK_TYPE_MASK */) {
821 target_type
= TARGET_SOCK_DGRAM
;
824 target_type
= TARGET_SOCK_STREAM
;
827 target_type
= host_type
& 0xf /* SOCK_TYPE_MASK */;
831 #if defined(SOCK_CLOEXEC)
832 if (host_type
& SOCK_CLOEXEC
) {
833 target_type
|= TARGET_SOCK_CLOEXEC
;
837 #if defined(SOCK_NONBLOCK)
838 if (host_type
& SOCK_NONBLOCK
) {
839 target_type
|= TARGET_SOCK_NONBLOCK
;
846 static abi_ulong target_brk
;
847 static abi_ulong target_original_brk
;
848 static abi_ulong brk_page
;
850 void target_set_brk(abi_ulong new_brk
)
852 target_original_brk
= target_brk
= HOST_PAGE_ALIGN(new_brk
);
853 brk_page
= HOST_PAGE_ALIGN(target_brk
);
856 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
857 #define DEBUGF_BRK(message, args...)
859 /* do_brk() must return target values and target errnos. */
860 abi_long
do_brk(abi_ulong new_brk
)
862 abi_long mapped_addr
;
863 abi_ulong new_alloc_size
;
865 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx
") -> ", new_brk
);
868 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (!new_brk)\n", target_brk
);
871 if (new_brk
< target_original_brk
) {
872 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (new_brk < target_original_brk)\n",
877 /* If the new brk is less than the highest page reserved to the
878 * target heap allocation, set it and we're almost done... */
879 if (new_brk
<= brk_page
) {
880 /* Heap contents are initialized to zero, as for anonymous
882 if (new_brk
> target_brk
) {
883 memset(g2h(target_brk
), 0, new_brk
- target_brk
);
885 target_brk
= new_brk
;
886 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (new_brk <= brk_page)\n", target_brk
);
890 /* We need to allocate more memory after the brk... Note that
891 * we don't use MAP_FIXED because that will map over the top of
892 * any existing mapping (like the one with the host libc or qemu
893 * itself); instead we treat "mapped but at wrong address" as
894 * a failure and unmap again.
896 new_alloc_size
= HOST_PAGE_ALIGN(new_brk
- brk_page
);
897 mapped_addr
= get_errno(target_mmap(brk_page
, new_alloc_size
,
898 PROT_READ
|PROT_WRITE
,
899 MAP_ANON
|MAP_PRIVATE
, 0, 0));
901 if (mapped_addr
== brk_page
) {
902 /* Heap contents are initialized to zero, as for anonymous
903 * mapped pages. Technically the new pages are already
904 * initialized to zero since they *are* anonymous mapped
905 * pages, however we have to take care with the contents that
906 * come from the remaining part of the previous page: it may
907 * contains garbage data due to a previous heap usage (grown
909 memset(g2h(target_brk
), 0, brk_page
- target_brk
);
911 target_brk
= new_brk
;
912 brk_page
= HOST_PAGE_ALIGN(target_brk
);
913 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (mapped_addr == brk_page)\n",
916 } else if (mapped_addr
!= -1) {
917 /* Mapped but at wrong address, meaning there wasn't actually
918 * enough space for this brk.
920 target_munmap(mapped_addr
, new_alloc_size
);
922 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (mapped_addr != -1)\n", target_brk
);
925 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (otherwise)\n", target_brk
);
928 #if defined(TARGET_ALPHA)
929 /* We (partially) emulate OSF/1 on Alpha, which requires we
930 return a proper errno, not an unchanged brk value. */
931 return -TARGET_ENOMEM
;
933 /* For everything else, return the previous break. */
937 static inline abi_long
copy_from_user_fdset(fd_set
*fds
,
938 abi_ulong target_fds_addr
,
942 abi_ulong b
, *target_fds
;
944 nw
= DIV_ROUND_UP(n
, TARGET_ABI_BITS
);
945 if (!(target_fds
= lock_user(VERIFY_READ
,
947 sizeof(abi_ulong
) * nw
,
949 return -TARGET_EFAULT
;
953 for (i
= 0; i
< nw
; i
++) {
954 /* grab the abi_ulong */
955 __get_user(b
, &target_fds
[i
]);
956 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
957 /* check the bit inside the abi_ulong */
964 unlock_user(target_fds
, target_fds_addr
, 0);
969 static inline abi_ulong
copy_from_user_fdset_ptr(fd_set
*fds
, fd_set
**fds_ptr
,
970 abi_ulong target_fds_addr
,
973 if (target_fds_addr
) {
974 if (copy_from_user_fdset(fds
, target_fds_addr
, n
))
975 return -TARGET_EFAULT
;
983 static inline abi_long
copy_to_user_fdset(abi_ulong target_fds_addr
,
989 abi_ulong
*target_fds
;
991 nw
= DIV_ROUND_UP(n
, TARGET_ABI_BITS
);
992 if (!(target_fds
= lock_user(VERIFY_WRITE
,
994 sizeof(abi_ulong
) * nw
,
996 return -TARGET_EFAULT
;
999 for (i
= 0; i
< nw
; i
++) {
1001 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
1002 v
|= ((abi_ulong
)(FD_ISSET(k
, fds
) != 0) << j
);
1005 __put_user(v
, &target_fds
[i
]);
1008 unlock_user(target_fds
, target_fds_addr
, sizeof(abi_ulong
) * nw
);
1013 #if defined(__alpha__)
1014 #define HOST_HZ 1024
1019 static inline abi_long
host_to_target_clock_t(long ticks
)
1021 #if HOST_HZ == TARGET_HZ
1024 return ((int64_t)ticks
* TARGET_HZ
) / HOST_HZ
;
1028 static inline abi_long
host_to_target_rusage(abi_ulong target_addr
,
1029 const struct rusage
*rusage
)
1031 struct target_rusage
*target_rusage
;
1033 if (!lock_user_struct(VERIFY_WRITE
, target_rusage
, target_addr
, 0))
1034 return -TARGET_EFAULT
;
1035 target_rusage
->ru_utime
.tv_sec
= tswapal(rusage
->ru_utime
.tv_sec
);
1036 target_rusage
->ru_utime
.tv_usec
= tswapal(rusage
->ru_utime
.tv_usec
);
1037 target_rusage
->ru_stime
.tv_sec
= tswapal(rusage
->ru_stime
.tv_sec
);
1038 target_rusage
->ru_stime
.tv_usec
= tswapal(rusage
->ru_stime
.tv_usec
);
1039 target_rusage
->ru_maxrss
= tswapal(rusage
->ru_maxrss
);
1040 target_rusage
->ru_ixrss
= tswapal(rusage
->ru_ixrss
);
1041 target_rusage
->ru_idrss
= tswapal(rusage
->ru_idrss
);
1042 target_rusage
->ru_isrss
= tswapal(rusage
->ru_isrss
);
1043 target_rusage
->ru_minflt
= tswapal(rusage
->ru_minflt
);
1044 target_rusage
->ru_majflt
= tswapal(rusage
->ru_majflt
);
1045 target_rusage
->ru_nswap
= tswapal(rusage
->ru_nswap
);
1046 target_rusage
->ru_inblock
= tswapal(rusage
->ru_inblock
);
1047 target_rusage
->ru_oublock
= tswapal(rusage
->ru_oublock
);
1048 target_rusage
->ru_msgsnd
= tswapal(rusage
->ru_msgsnd
);
1049 target_rusage
->ru_msgrcv
= tswapal(rusage
->ru_msgrcv
);
1050 target_rusage
->ru_nsignals
= tswapal(rusage
->ru_nsignals
);
1051 target_rusage
->ru_nvcsw
= tswapal(rusage
->ru_nvcsw
);
1052 target_rusage
->ru_nivcsw
= tswapal(rusage
->ru_nivcsw
);
1053 unlock_user_struct(target_rusage
, target_addr
, 1);
1058 static inline rlim_t
target_to_host_rlim(abi_ulong target_rlim
)
1060 abi_ulong target_rlim_swap
;
1063 target_rlim_swap
= tswapal(target_rlim
);
1064 if (target_rlim_swap
== TARGET_RLIM_INFINITY
)
1065 return RLIM_INFINITY
;
1067 result
= target_rlim_swap
;
1068 if (target_rlim_swap
!= (rlim_t
)result
)
1069 return RLIM_INFINITY
;
1074 static inline abi_ulong
host_to_target_rlim(rlim_t rlim
)
1076 abi_ulong target_rlim_swap
;
1079 if (rlim
== RLIM_INFINITY
|| rlim
!= (abi_long
)rlim
)
1080 target_rlim_swap
= TARGET_RLIM_INFINITY
;
1082 target_rlim_swap
= rlim
;
1083 result
= tswapal(target_rlim_swap
);
1088 static inline int target_to_host_resource(int code
)
1091 case TARGET_RLIMIT_AS
:
1093 case TARGET_RLIMIT_CORE
:
1095 case TARGET_RLIMIT_CPU
:
1097 case TARGET_RLIMIT_DATA
:
1099 case TARGET_RLIMIT_FSIZE
:
1100 return RLIMIT_FSIZE
;
1101 case TARGET_RLIMIT_LOCKS
:
1102 return RLIMIT_LOCKS
;
1103 case TARGET_RLIMIT_MEMLOCK
:
1104 return RLIMIT_MEMLOCK
;
1105 case TARGET_RLIMIT_MSGQUEUE
:
1106 return RLIMIT_MSGQUEUE
;
1107 case TARGET_RLIMIT_NICE
:
1109 case TARGET_RLIMIT_NOFILE
:
1110 return RLIMIT_NOFILE
;
1111 case TARGET_RLIMIT_NPROC
:
1112 return RLIMIT_NPROC
;
1113 case TARGET_RLIMIT_RSS
:
1115 case TARGET_RLIMIT_RTPRIO
:
1116 return RLIMIT_RTPRIO
;
1117 case TARGET_RLIMIT_SIGPENDING
:
1118 return RLIMIT_SIGPENDING
;
1119 case TARGET_RLIMIT_STACK
:
1120 return RLIMIT_STACK
;
1126 static inline abi_long
copy_from_user_timeval(struct timeval
*tv
,
1127 abi_ulong target_tv_addr
)
1129 struct target_timeval
*target_tv
;
1131 if (!lock_user_struct(VERIFY_READ
, target_tv
, target_tv_addr
, 1)) {
1132 return -TARGET_EFAULT
;
1135 __get_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1136 __get_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1138 unlock_user_struct(target_tv
, target_tv_addr
, 0);
1143 static inline abi_long
copy_to_user_timeval(abi_ulong target_tv_addr
,
1144 const struct timeval
*tv
)
1146 struct target_timeval
*target_tv
;
1148 if (!lock_user_struct(VERIFY_WRITE
, target_tv
, target_tv_addr
, 0)) {
1149 return -TARGET_EFAULT
;
1152 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1153 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1155 unlock_user_struct(target_tv
, target_tv_addr
, 1);
1160 static inline abi_long
copy_to_user_timeval64(abi_ulong target_tv_addr
,
1161 const struct timeval
*tv
)
1163 struct target__kernel_sock_timeval
*target_tv
;
1165 if (!lock_user_struct(VERIFY_WRITE
, target_tv
, target_tv_addr
, 0)) {
1166 return -TARGET_EFAULT
;
1169 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1170 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1172 unlock_user_struct(target_tv
, target_tv_addr
, 1);
1177 static inline abi_long
target_to_host_timespec(struct timespec
*host_ts
,
1178 abi_ulong target_addr
)
1180 struct target_timespec
*target_ts
;
1182 if (!lock_user_struct(VERIFY_READ
, target_ts
, target_addr
, 1)) {
1183 return -TARGET_EFAULT
;
1185 __get_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1186 __get_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1187 unlock_user_struct(target_ts
, target_addr
, 0);
1191 static inline abi_long
host_to_target_timespec(abi_ulong target_addr
,
1192 struct timespec
*host_ts
)
1194 struct target_timespec
*target_ts
;
1196 if (!lock_user_struct(VERIFY_WRITE
, target_ts
, target_addr
, 0)) {
1197 return -TARGET_EFAULT
;
1199 __put_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1200 __put_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1201 unlock_user_struct(target_ts
, target_addr
, 1);
1205 static inline abi_long
host_to_target_timespec64(abi_ulong target_addr
,
1206 struct timespec
*host_ts
)
1208 struct target__kernel_timespec
*target_ts
;
1210 if (!lock_user_struct(VERIFY_WRITE
, target_ts
, target_addr
, 0)) {
1211 return -TARGET_EFAULT
;
1213 __put_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1214 __put_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1215 unlock_user_struct(target_ts
, target_addr
, 1);
1219 static inline abi_long
copy_from_user_timezone(struct timezone
*tz
,
1220 abi_ulong target_tz_addr
)
1222 struct target_timezone
*target_tz
;
1224 if (!lock_user_struct(VERIFY_READ
, target_tz
, target_tz_addr
, 1)) {
1225 return -TARGET_EFAULT
;
1228 __get_user(tz
->tz_minuteswest
, &target_tz
->tz_minuteswest
);
1229 __get_user(tz
->tz_dsttime
, &target_tz
->tz_dsttime
);
1231 unlock_user_struct(target_tz
, target_tz_addr
, 0);
1236 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1239 static inline abi_long
copy_from_user_mq_attr(struct mq_attr
*attr
,
1240 abi_ulong target_mq_attr_addr
)
1242 struct target_mq_attr
*target_mq_attr
;
1244 if (!lock_user_struct(VERIFY_READ
, target_mq_attr
,
1245 target_mq_attr_addr
, 1))
1246 return -TARGET_EFAULT
;
1248 __get_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
1249 __get_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
1250 __get_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
1251 __get_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
1253 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 0);
1258 static inline abi_long
copy_to_user_mq_attr(abi_ulong target_mq_attr_addr
,
1259 const struct mq_attr
*attr
)
1261 struct target_mq_attr
*target_mq_attr
;
1263 if (!lock_user_struct(VERIFY_WRITE
, target_mq_attr
,
1264 target_mq_attr_addr
, 0))
1265 return -TARGET_EFAULT
;
1267 __put_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
1268 __put_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
1269 __put_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
1270 __put_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
1272 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 1);
1278 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1279 /* do_select() must return target values and target errnos. */
1280 static abi_long
do_select(int n
,
1281 abi_ulong rfd_addr
, abi_ulong wfd_addr
,
1282 abi_ulong efd_addr
, abi_ulong target_tv_addr
)
1284 fd_set rfds
, wfds
, efds
;
1285 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
1287 struct timespec ts
, *ts_ptr
;
1290 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
1294 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
1298 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
1303 if (target_tv_addr
) {
1304 if (copy_from_user_timeval(&tv
, target_tv_addr
))
1305 return -TARGET_EFAULT
;
1306 ts
.tv_sec
= tv
.tv_sec
;
1307 ts
.tv_nsec
= tv
.tv_usec
* 1000;
1313 ret
= get_errno(safe_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
1316 if (!is_error(ret
)) {
1317 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
1318 return -TARGET_EFAULT
;
1319 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
1320 return -TARGET_EFAULT
;
1321 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
1322 return -TARGET_EFAULT
;
1324 if (target_tv_addr
) {
1325 tv
.tv_sec
= ts
.tv_sec
;
1326 tv
.tv_usec
= ts
.tv_nsec
/ 1000;
1327 if (copy_to_user_timeval(target_tv_addr
, &tv
)) {
1328 return -TARGET_EFAULT
;
1336 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1337 static abi_long
do_old_select(abi_ulong arg1
)
1339 struct target_sel_arg_struct
*sel
;
1340 abi_ulong inp
, outp
, exp
, tvp
;
1343 if (!lock_user_struct(VERIFY_READ
, sel
, arg1
, 1)) {
1344 return -TARGET_EFAULT
;
1347 nsel
= tswapal(sel
->n
);
1348 inp
= tswapal(sel
->inp
);
1349 outp
= tswapal(sel
->outp
);
1350 exp
= tswapal(sel
->exp
);
1351 tvp
= tswapal(sel
->tvp
);
1353 unlock_user_struct(sel
, arg1
, 0);
1355 return do_select(nsel
, inp
, outp
, exp
, tvp
);
1360 static abi_long
do_pipe2(int host_pipe
[], int flags
)
1363 return pipe2(host_pipe
, flags
);
1369 static abi_long
do_pipe(void *cpu_env
, abi_ulong pipedes
,
1370 int flags
, int is_pipe2
)
1374 ret
= flags
? do_pipe2(host_pipe
, flags
) : pipe(host_pipe
);
1377 return get_errno(ret
);
1379 /* Several targets have special calling conventions for the original
1380 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1382 #if defined(TARGET_ALPHA)
1383 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
] = host_pipe
[1];
1384 return host_pipe
[0];
1385 #elif defined(TARGET_MIPS)
1386 ((CPUMIPSState
*)cpu_env
)->active_tc
.gpr
[3] = host_pipe
[1];
1387 return host_pipe
[0];
1388 #elif defined(TARGET_SH4)
1389 ((CPUSH4State
*)cpu_env
)->gregs
[1] = host_pipe
[1];
1390 return host_pipe
[0];
1391 #elif defined(TARGET_SPARC)
1392 ((CPUSPARCState
*)cpu_env
)->regwptr
[1] = host_pipe
[1];
1393 return host_pipe
[0];
1397 if (put_user_s32(host_pipe
[0], pipedes
)
1398 || put_user_s32(host_pipe
[1], pipedes
+ sizeof(host_pipe
[0])))
1399 return -TARGET_EFAULT
;
1400 return get_errno(ret
);
1403 static inline abi_long
target_to_host_ip_mreq(struct ip_mreqn
*mreqn
,
1404 abi_ulong target_addr
,
1407 struct target_ip_mreqn
*target_smreqn
;
1409 target_smreqn
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1411 return -TARGET_EFAULT
;
1412 mreqn
->imr_multiaddr
.s_addr
= target_smreqn
->imr_multiaddr
.s_addr
;
1413 mreqn
->imr_address
.s_addr
= target_smreqn
->imr_address
.s_addr
;
1414 if (len
== sizeof(struct target_ip_mreqn
))
1415 mreqn
->imr_ifindex
= tswapal(target_smreqn
->imr_ifindex
);
1416 unlock_user(target_smreqn
, target_addr
, 0);
1421 static inline abi_long
target_to_host_sockaddr(int fd
, struct sockaddr
*addr
,
1422 abi_ulong target_addr
,
1425 const socklen_t unix_maxlen
= sizeof (struct sockaddr_un
);
1426 sa_family_t sa_family
;
1427 struct target_sockaddr
*target_saddr
;
1429 if (fd_trans_target_to_host_addr(fd
)) {
1430 return fd_trans_target_to_host_addr(fd
)(addr
, target_addr
, len
);
1433 target_saddr
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1435 return -TARGET_EFAULT
;
1437 sa_family
= tswap16(target_saddr
->sa_family
);
1439 /* Oops. The caller might send a incomplete sun_path; sun_path
1440 * must be terminated by \0 (see the manual page), but
1441 * unfortunately it is quite common to specify sockaddr_un
1442 * length as "strlen(x->sun_path)" while it should be
1443 * "strlen(...) + 1". We'll fix that here if needed.
1444 * Linux kernel has a similar feature.
1447 if (sa_family
== AF_UNIX
) {
1448 if (len
< unix_maxlen
&& len
> 0) {
1449 char *cp
= (char*)target_saddr
;
1451 if ( cp
[len
-1] && !cp
[len
] )
1454 if (len
> unix_maxlen
)
1458 memcpy(addr
, target_saddr
, len
);
1459 addr
->sa_family
= sa_family
;
1460 if (sa_family
== AF_NETLINK
) {
1461 struct sockaddr_nl
*nladdr
;
1463 nladdr
= (struct sockaddr_nl
*)addr
;
1464 nladdr
->nl_pid
= tswap32(nladdr
->nl_pid
);
1465 nladdr
->nl_groups
= tswap32(nladdr
->nl_groups
);
1466 } else if (sa_family
== AF_PACKET
) {
1467 struct target_sockaddr_ll
*lladdr
;
1469 lladdr
= (struct target_sockaddr_ll
*)addr
;
1470 lladdr
->sll_ifindex
= tswap32(lladdr
->sll_ifindex
);
1471 lladdr
->sll_hatype
= tswap16(lladdr
->sll_hatype
);
1473 unlock_user(target_saddr
, target_addr
, 0);
1478 static inline abi_long
host_to_target_sockaddr(abi_ulong target_addr
,
1479 struct sockaddr
*addr
,
1482 struct target_sockaddr
*target_saddr
;
1489 target_saddr
= lock_user(VERIFY_WRITE
, target_addr
, len
, 0);
1491 return -TARGET_EFAULT
;
1492 memcpy(target_saddr
, addr
, len
);
1493 if (len
>= offsetof(struct target_sockaddr
, sa_family
) +
1494 sizeof(target_saddr
->sa_family
)) {
1495 target_saddr
->sa_family
= tswap16(addr
->sa_family
);
1497 if (addr
->sa_family
== AF_NETLINK
&& len
>= sizeof(struct sockaddr_nl
)) {
1498 struct sockaddr_nl
*target_nl
= (struct sockaddr_nl
*)target_saddr
;
1499 target_nl
->nl_pid
= tswap32(target_nl
->nl_pid
);
1500 target_nl
->nl_groups
= tswap32(target_nl
->nl_groups
);
1501 } else if (addr
->sa_family
== AF_PACKET
) {
1502 struct sockaddr_ll
*target_ll
= (struct sockaddr_ll
*)target_saddr
;
1503 target_ll
->sll_ifindex
= tswap32(target_ll
->sll_ifindex
);
1504 target_ll
->sll_hatype
= tswap16(target_ll
->sll_hatype
);
1505 } else if (addr
->sa_family
== AF_INET6
&&
1506 len
>= sizeof(struct target_sockaddr_in6
)) {
1507 struct target_sockaddr_in6
*target_in6
=
1508 (struct target_sockaddr_in6
*)target_saddr
;
1509 target_in6
->sin6_scope_id
= tswap16(target_in6
->sin6_scope_id
);
1511 unlock_user(target_saddr
, target_addr
, len
);
1516 static inline abi_long
target_to_host_cmsg(struct msghdr
*msgh
,
1517 struct target_msghdr
*target_msgh
)
1519 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1520 abi_long msg_controllen
;
1521 abi_ulong target_cmsg_addr
;
1522 struct target_cmsghdr
*target_cmsg
, *target_cmsg_start
;
1523 socklen_t space
= 0;
1525 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1526 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1528 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1529 target_cmsg
= lock_user(VERIFY_READ
, target_cmsg_addr
, msg_controllen
, 1);
1530 target_cmsg_start
= target_cmsg
;
1532 return -TARGET_EFAULT
;
1534 while (cmsg
&& target_cmsg
) {
1535 void *data
= CMSG_DATA(cmsg
);
1536 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1538 int len
= tswapal(target_cmsg
->cmsg_len
)
1539 - sizeof(struct target_cmsghdr
);
1541 space
+= CMSG_SPACE(len
);
1542 if (space
> msgh
->msg_controllen
) {
1543 space
-= CMSG_SPACE(len
);
1544 /* This is a QEMU bug, since we allocated the payload
1545 * area ourselves (unlike overflow in host-to-target
1546 * conversion, which is just the guest giving us a buffer
1547 * that's too small). It can't happen for the payload types
1548 * we currently support; if it becomes an issue in future
1549 * we would need to improve our allocation strategy to
1550 * something more intelligent than "twice the size of the
1551 * target buffer we're reading from".
1553 gemu_log("Host cmsg overflow\n");
1557 if (tswap32(target_cmsg
->cmsg_level
) == TARGET_SOL_SOCKET
) {
1558 cmsg
->cmsg_level
= SOL_SOCKET
;
1560 cmsg
->cmsg_level
= tswap32(target_cmsg
->cmsg_level
);
1562 cmsg
->cmsg_type
= tswap32(target_cmsg
->cmsg_type
);
1563 cmsg
->cmsg_len
= CMSG_LEN(len
);
1565 if (cmsg
->cmsg_level
== SOL_SOCKET
&& cmsg
->cmsg_type
== SCM_RIGHTS
) {
1566 int *fd
= (int *)data
;
1567 int *target_fd
= (int *)target_data
;
1568 int i
, numfds
= len
/ sizeof(int);
1570 for (i
= 0; i
< numfds
; i
++) {
1571 __get_user(fd
[i
], target_fd
+ i
);
1573 } else if (cmsg
->cmsg_level
== SOL_SOCKET
1574 && cmsg
->cmsg_type
== SCM_CREDENTIALS
) {
1575 struct ucred
*cred
= (struct ucred
*)data
;
1576 struct target_ucred
*target_cred
=
1577 (struct target_ucred
*)target_data
;
1579 __get_user(cred
->pid
, &target_cred
->pid
);
1580 __get_user(cred
->uid
, &target_cred
->uid
);
1581 __get_user(cred
->gid
, &target_cred
->gid
);
1583 gemu_log("Unsupported ancillary data: %d/%d\n",
1584 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1585 memcpy(data
, target_data
, len
);
1588 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1589 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
,
1592 unlock_user(target_cmsg
, target_cmsg_addr
, 0);
1594 msgh
->msg_controllen
= space
;
1598 static inline abi_long
host_to_target_cmsg(struct target_msghdr
*target_msgh
,
1599 struct msghdr
*msgh
)
1601 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1602 abi_long msg_controllen
;
1603 abi_ulong target_cmsg_addr
;
1604 struct target_cmsghdr
*target_cmsg
, *target_cmsg_start
;
1605 socklen_t space
= 0;
1607 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1608 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1610 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1611 target_cmsg
= lock_user(VERIFY_WRITE
, target_cmsg_addr
, msg_controllen
, 0);
1612 target_cmsg_start
= target_cmsg
;
1614 return -TARGET_EFAULT
;
1616 while (cmsg
&& target_cmsg
) {
1617 void *data
= CMSG_DATA(cmsg
);
1618 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1620 int len
= cmsg
->cmsg_len
- sizeof(struct cmsghdr
);
1621 int tgt_len
, tgt_space
;
1623 /* We never copy a half-header but may copy half-data;
1624 * this is Linux's behaviour in put_cmsg(). Note that
1625 * truncation here is a guest problem (which we report
1626 * to the guest via the CTRUNC bit), unlike truncation
1627 * in target_to_host_cmsg, which is a QEMU bug.
1629 if (msg_controllen
< sizeof(struct target_cmsghdr
)) {
1630 target_msgh
->msg_flags
|= tswap32(MSG_CTRUNC
);
1634 if (cmsg
->cmsg_level
== SOL_SOCKET
) {
1635 target_cmsg
->cmsg_level
= tswap32(TARGET_SOL_SOCKET
);
1637 target_cmsg
->cmsg_level
= tswap32(cmsg
->cmsg_level
);
1639 target_cmsg
->cmsg_type
= tswap32(cmsg
->cmsg_type
);
1641 /* Payload types which need a different size of payload on
1642 * the target must adjust tgt_len here.
1645 switch (cmsg
->cmsg_level
) {
1647 switch (cmsg
->cmsg_type
) {
1649 tgt_len
= sizeof(struct target_timeval
);
1659 if (msg_controllen
< TARGET_CMSG_LEN(tgt_len
)) {
1660 target_msgh
->msg_flags
|= tswap32(MSG_CTRUNC
);
1661 tgt_len
= msg_controllen
- sizeof(struct target_cmsghdr
);
1664 /* We must now copy-and-convert len bytes of payload
1665 * into tgt_len bytes of destination space. Bear in mind
1666 * that in both source and destination we may be dealing
1667 * with a truncated value!
1669 switch (cmsg
->cmsg_level
) {
1671 switch (cmsg
->cmsg_type
) {
1674 int *fd
= (int *)data
;
1675 int *target_fd
= (int *)target_data
;
1676 int i
, numfds
= tgt_len
/ sizeof(int);
1678 for (i
= 0; i
< numfds
; i
++) {
1679 __put_user(fd
[i
], target_fd
+ i
);
1685 struct timeval
*tv
= (struct timeval
*)data
;
1686 struct target_timeval
*target_tv
=
1687 (struct target_timeval
*)target_data
;
1689 if (len
!= sizeof(struct timeval
) ||
1690 tgt_len
!= sizeof(struct target_timeval
)) {
1694 /* copy struct timeval to target */
1695 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1696 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1699 case SCM_CREDENTIALS
:
1701 struct ucred
*cred
= (struct ucred
*)data
;
1702 struct target_ucred
*target_cred
=
1703 (struct target_ucred
*)target_data
;
1705 __put_user(cred
->pid
, &target_cred
->pid
);
1706 __put_user(cred
->uid
, &target_cred
->uid
);
1707 __put_user(cred
->gid
, &target_cred
->gid
);
1716 switch (cmsg
->cmsg_type
) {
1719 uint32_t *v
= (uint32_t *)data
;
1720 uint32_t *t_int
= (uint32_t *)target_data
;
1722 if (len
!= sizeof(uint32_t) ||
1723 tgt_len
!= sizeof(uint32_t)) {
1726 __put_user(*v
, t_int
);
1732 struct sock_extended_err ee
;
1733 struct sockaddr_in offender
;
1735 struct errhdr_t
*errh
= (struct errhdr_t
*)data
;
1736 struct errhdr_t
*target_errh
=
1737 (struct errhdr_t
*)target_data
;
1739 if (len
!= sizeof(struct errhdr_t
) ||
1740 tgt_len
!= sizeof(struct errhdr_t
)) {
1743 __put_user(errh
->ee
.ee_errno
, &target_errh
->ee
.ee_errno
);
1744 __put_user(errh
->ee
.ee_origin
, &target_errh
->ee
.ee_origin
);
1745 __put_user(errh
->ee
.ee_type
, &target_errh
->ee
.ee_type
);
1746 __put_user(errh
->ee
.ee_code
, &target_errh
->ee
.ee_code
);
1747 __put_user(errh
->ee
.ee_pad
, &target_errh
->ee
.ee_pad
);
1748 __put_user(errh
->ee
.ee_info
, &target_errh
->ee
.ee_info
);
1749 __put_user(errh
->ee
.ee_data
, &target_errh
->ee
.ee_data
);
1750 host_to_target_sockaddr((unsigned long) &target_errh
->offender
,
1751 (void *) &errh
->offender
, sizeof(errh
->offender
));
1760 switch (cmsg
->cmsg_type
) {
1763 uint32_t *v
= (uint32_t *)data
;
1764 uint32_t *t_int
= (uint32_t *)target_data
;
1766 if (len
!= sizeof(uint32_t) ||
1767 tgt_len
!= sizeof(uint32_t)) {
1770 __put_user(*v
, t_int
);
1776 struct sock_extended_err ee
;
1777 struct sockaddr_in6 offender
;
1779 struct errhdr6_t
*errh
= (struct errhdr6_t
*)data
;
1780 struct errhdr6_t
*target_errh
=
1781 (struct errhdr6_t
*)target_data
;
1783 if (len
!= sizeof(struct errhdr6_t
) ||
1784 tgt_len
!= sizeof(struct errhdr6_t
)) {
1787 __put_user(errh
->ee
.ee_errno
, &target_errh
->ee
.ee_errno
);
1788 __put_user(errh
->ee
.ee_origin
, &target_errh
->ee
.ee_origin
);
1789 __put_user(errh
->ee
.ee_type
, &target_errh
->ee
.ee_type
);
1790 __put_user(errh
->ee
.ee_code
, &target_errh
->ee
.ee_code
);
1791 __put_user(errh
->ee
.ee_pad
, &target_errh
->ee
.ee_pad
);
1792 __put_user(errh
->ee
.ee_info
, &target_errh
->ee
.ee_info
);
1793 __put_user(errh
->ee
.ee_data
, &target_errh
->ee
.ee_data
);
1794 host_to_target_sockaddr((unsigned long) &target_errh
->offender
,
1795 (void *) &errh
->offender
, sizeof(errh
->offender
));
1805 gemu_log("Unsupported ancillary data: %d/%d\n",
1806 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1807 memcpy(target_data
, data
, MIN(len
, tgt_len
));
1808 if (tgt_len
> len
) {
1809 memset(target_data
+ len
, 0, tgt_len
- len
);
1813 target_cmsg
->cmsg_len
= tswapal(TARGET_CMSG_LEN(tgt_len
));
1814 tgt_space
= TARGET_CMSG_SPACE(tgt_len
);
1815 if (msg_controllen
< tgt_space
) {
1816 tgt_space
= msg_controllen
;
1818 msg_controllen
-= tgt_space
;
1820 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1821 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
,
1824 unlock_user(target_cmsg
, target_cmsg_addr
, space
);
1826 target_msgh
->msg_controllen
= tswapal(space
);
1830 /* do_setsockopt() Must return target values and target errnos. */
1831 static abi_long
do_setsockopt(int sockfd
, int level
, int optname
,
1832 abi_ulong optval_addr
, socklen_t optlen
)
1836 struct ip_mreqn
*ip_mreq
;
1837 struct ip_mreq_source
*ip_mreq_source
;
1841 /* TCP options all take an 'int' value. */
1842 if (optlen
< sizeof(uint32_t))
1843 return -TARGET_EINVAL
;
1845 if (get_user_u32(val
, optval_addr
))
1846 return -TARGET_EFAULT
;
1847 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
1854 case IP_ROUTER_ALERT
:
1858 case IP_MTU_DISCOVER
:
1865 case IP_MULTICAST_TTL
:
1866 case IP_MULTICAST_LOOP
:
1868 if (optlen
>= sizeof(uint32_t)) {
1869 if (get_user_u32(val
, optval_addr
))
1870 return -TARGET_EFAULT
;
1871 } else if (optlen
>= 1) {
1872 if (get_user_u8(val
, optval_addr
))
1873 return -TARGET_EFAULT
;
1875 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
1877 case IP_ADD_MEMBERSHIP
:
1878 case IP_DROP_MEMBERSHIP
:
1879 if (optlen
< sizeof (struct target_ip_mreq
) ||
1880 optlen
> sizeof (struct target_ip_mreqn
))
1881 return -TARGET_EINVAL
;
1883 ip_mreq
= (struct ip_mreqn
*) alloca(optlen
);
1884 target_to_host_ip_mreq(ip_mreq
, optval_addr
, optlen
);
1885 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq
, optlen
));
1888 case IP_BLOCK_SOURCE
:
1889 case IP_UNBLOCK_SOURCE
:
1890 case IP_ADD_SOURCE_MEMBERSHIP
:
1891 case IP_DROP_SOURCE_MEMBERSHIP
:
1892 if (optlen
!= sizeof (struct target_ip_mreq_source
))
1893 return -TARGET_EINVAL
;
1895 ip_mreq_source
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
1896 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq_source
, optlen
));
1897 unlock_user (ip_mreq_source
, optval_addr
, 0);
1906 case IPV6_MTU_DISCOVER
:
1909 case IPV6_RECVPKTINFO
:
1910 case IPV6_UNICAST_HOPS
:
1911 case IPV6_MULTICAST_HOPS
:
1912 case IPV6_MULTICAST_LOOP
:
1914 case IPV6_RECVHOPLIMIT
:
1915 case IPV6_2292HOPLIMIT
:
1918 case IPV6_2292PKTINFO
:
1919 case IPV6_RECVTCLASS
:
1920 case IPV6_RECVRTHDR
:
1921 case IPV6_2292RTHDR
:
1922 case IPV6_RECVHOPOPTS
:
1923 case IPV6_2292HOPOPTS
:
1924 case IPV6_RECVDSTOPTS
:
1925 case IPV6_2292DSTOPTS
:
1927 #ifdef IPV6_RECVPATHMTU
1928 case IPV6_RECVPATHMTU
:
1930 #ifdef IPV6_TRANSPARENT
1931 case IPV6_TRANSPARENT
:
1933 #ifdef IPV6_FREEBIND
1936 #ifdef IPV6_RECVORIGDSTADDR
1937 case IPV6_RECVORIGDSTADDR
:
1940 if (optlen
< sizeof(uint32_t)) {
1941 return -TARGET_EINVAL
;
1943 if (get_user_u32(val
, optval_addr
)) {
1944 return -TARGET_EFAULT
;
1946 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
1947 &val
, sizeof(val
)));
1951 struct in6_pktinfo pki
;
1953 if (optlen
< sizeof(pki
)) {
1954 return -TARGET_EINVAL
;
1957 if (copy_from_user(&pki
, optval_addr
, sizeof(pki
))) {
1958 return -TARGET_EFAULT
;
1961 pki
.ipi6_ifindex
= tswap32(pki
.ipi6_ifindex
);
1963 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
1964 &pki
, sizeof(pki
)));
1967 case IPV6_ADD_MEMBERSHIP
:
1968 case IPV6_DROP_MEMBERSHIP
:
1970 struct ipv6_mreq ipv6mreq
;
1972 if (optlen
< sizeof(ipv6mreq
)) {
1973 return -TARGET_EINVAL
;
1976 if (copy_from_user(&ipv6mreq
, optval_addr
, sizeof(ipv6mreq
))) {
1977 return -TARGET_EFAULT
;
1980 ipv6mreq
.ipv6mr_interface
= tswap32(ipv6mreq
.ipv6mr_interface
);
1982 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
1983 &ipv6mreq
, sizeof(ipv6mreq
)));
1994 struct icmp6_filter icmp6f
;
1996 if (optlen
> sizeof(icmp6f
)) {
1997 optlen
= sizeof(icmp6f
);
2000 if (copy_from_user(&icmp6f
, optval_addr
, optlen
)) {
2001 return -TARGET_EFAULT
;
2004 for (val
= 0; val
< 8; val
++) {
2005 icmp6f
.data
[val
] = tswap32(icmp6f
.data
[val
]);
2008 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2020 /* those take an u32 value */
2021 if (optlen
< sizeof(uint32_t)) {
2022 return -TARGET_EINVAL
;
2025 if (get_user_u32(val
, optval_addr
)) {
2026 return -TARGET_EFAULT
;
2028 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2029 &val
, sizeof(val
)));
2036 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2041 char *alg_key
= g_malloc(optlen
);
2044 return -TARGET_ENOMEM
;
2046 if (copy_from_user(alg_key
, optval_addr
, optlen
)) {
2048 return -TARGET_EFAULT
;
2050 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2055 case ALG_SET_AEAD_AUTHSIZE
:
2057 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2066 case TARGET_SOL_SOCKET
:
2068 case TARGET_SO_RCVTIMEO
:
2072 optname
= SO_RCVTIMEO
;
2075 if (optlen
!= sizeof(struct target_timeval
)) {
2076 return -TARGET_EINVAL
;
2079 if (copy_from_user_timeval(&tv
, optval_addr
)) {
2080 return -TARGET_EFAULT
;
2083 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
2087 case TARGET_SO_SNDTIMEO
:
2088 optname
= SO_SNDTIMEO
;
2090 case TARGET_SO_ATTACH_FILTER
:
2092 struct target_sock_fprog
*tfprog
;
2093 struct target_sock_filter
*tfilter
;
2094 struct sock_fprog fprog
;
2095 struct sock_filter
*filter
;
2098 if (optlen
!= sizeof(*tfprog
)) {
2099 return -TARGET_EINVAL
;
2101 if (!lock_user_struct(VERIFY_READ
, tfprog
, optval_addr
, 0)) {
2102 return -TARGET_EFAULT
;
2104 if (!lock_user_struct(VERIFY_READ
, tfilter
,
2105 tswapal(tfprog
->filter
), 0)) {
2106 unlock_user_struct(tfprog
, optval_addr
, 1);
2107 return -TARGET_EFAULT
;
2110 fprog
.len
= tswap16(tfprog
->len
);
2111 filter
= g_try_new(struct sock_filter
, fprog
.len
);
2112 if (filter
== NULL
) {
2113 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
2114 unlock_user_struct(tfprog
, optval_addr
, 1);
2115 return -TARGET_ENOMEM
;
2117 for (i
= 0; i
< fprog
.len
; i
++) {
2118 filter
[i
].code
= tswap16(tfilter
[i
].code
);
2119 filter
[i
].jt
= tfilter
[i
].jt
;
2120 filter
[i
].jf
= tfilter
[i
].jf
;
2121 filter
[i
].k
= tswap32(tfilter
[i
].k
);
2123 fprog
.filter
= filter
;
2125 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
,
2126 SO_ATTACH_FILTER
, &fprog
, sizeof(fprog
)));
2129 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
2130 unlock_user_struct(tfprog
, optval_addr
, 1);
2133 case TARGET_SO_BINDTODEVICE
:
2135 char *dev_ifname
, *addr_ifname
;
2137 if (optlen
> IFNAMSIZ
- 1) {
2138 optlen
= IFNAMSIZ
- 1;
2140 dev_ifname
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
2142 return -TARGET_EFAULT
;
2144 optname
= SO_BINDTODEVICE
;
2145 addr_ifname
= alloca(IFNAMSIZ
);
2146 memcpy(addr_ifname
, dev_ifname
, optlen
);
2147 addr_ifname
[optlen
] = 0;
2148 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
2149 addr_ifname
, optlen
));
2150 unlock_user (dev_ifname
, optval_addr
, 0);
2153 case TARGET_SO_LINGER
:
2156 struct target_linger
*tlg
;
2158 if (optlen
!= sizeof(struct target_linger
)) {
2159 return -TARGET_EINVAL
;
2161 if (!lock_user_struct(VERIFY_READ
, tlg
, optval_addr
, 1)) {
2162 return -TARGET_EFAULT
;
2164 __get_user(lg
.l_onoff
, &tlg
->l_onoff
);
2165 __get_user(lg
.l_linger
, &tlg
->l_linger
);
2166 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, SO_LINGER
,
2168 unlock_user_struct(tlg
, optval_addr
, 0);
2171 /* Options with 'int' argument. */
2172 case TARGET_SO_DEBUG
:
2175 case TARGET_SO_REUSEADDR
:
2176 optname
= SO_REUSEADDR
;
2179 case TARGET_SO_REUSEPORT
:
2180 optname
= SO_REUSEPORT
;
2183 case TARGET_SO_TYPE
:
2186 case TARGET_SO_ERROR
:
2189 case TARGET_SO_DONTROUTE
:
2190 optname
= SO_DONTROUTE
;
2192 case TARGET_SO_BROADCAST
:
2193 optname
= SO_BROADCAST
;
2195 case TARGET_SO_SNDBUF
:
2196 optname
= SO_SNDBUF
;
2198 case TARGET_SO_SNDBUFFORCE
:
2199 optname
= SO_SNDBUFFORCE
;
2201 case TARGET_SO_RCVBUF
:
2202 optname
= SO_RCVBUF
;
2204 case TARGET_SO_RCVBUFFORCE
:
2205 optname
= SO_RCVBUFFORCE
;
2207 case TARGET_SO_KEEPALIVE
:
2208 optname
= SO_KEEPALIVE
;
2210 case TARGET_SO_OOBINLINE
:
2211 optname
= SO_OOBINLINE
;
2213 case TARGET_SO_NO_CHECK
:
2214 optname
= SO_NO_CHECK
;
2216 case TARGET_SO_PRIORITY
:
2217 optname
= SO_PRIORITY
;
2220 case TARGET_SO_BSDCOMPAT
:
2221 optname
= SO_BSDCOMPAT
;
2224 case TARGET_SO_PASSCRED
:
2225 optname
= SO_PASSCRED
;
2227 case TARGET_SO_PASSSEC
:
2228 optname
= SO_PASSSEC
;
2230 case TARGET_SO_TIMESTAMP
:
2231 optname
= SO_TIMESTAMP
;
2233 case TARGET_SO_RCVLOWAT
:
2234 optname
= SO_RCVLOWAT
;
2239 if (optlen
< sizeof(uint32_t))
2240 return -TARGET_EINVAL
;
2242 if (get_user_u32(val
, optval_addr
))
2243 return -TARGET_EFAULT
;
2244 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
, &val
, sizeof(val
)));
2248 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level
, optname
);
2249 ret
= -TARGET_ENOPROTOOPT
;
2254 /* do_getsockopt() Must return target values and target errnos. */
2255 static abi_long
do_getsockopt(int sockfd
, int level
, int optname
,
2256 abi_ulong optval_addr
, abi_ulong optlen
)
2263 case TARGET_SOL_SOCKET
:
2266 /* These don't just return a single integer */
2267 case TARGET_SO_RCVTIMEO
:
2268 case TARGET_SO_SNDTIMEO
:
2269 case TARGET_SO_PEERNAME
:
2271 case TARGET_SO_PEERCRED
: {
2274 struct target_ucred
*tcr
;
2276 if (get_user_u32(len
, optlen
)) {
2277 return -TARGET_EFAULT
;
2280 return -TARGET_EINVAL
;
2284 ret
= get_errno(getsockopt(sockfd
, level
, SO_PEERCRED
,
2292 if (!lock_user_struct(VERIFY_WRITE
, tcr
, optval_addr
, 0)) {
2293 return -TARGET_EFAULT
;
2295 __put_user(cr
.pid
, &tcr
->pid
);
2296 __put_user(cr
.uid
, &tcr
->uid
);
2297 __put_user(cr
.gid
, &tcr
->gid
);
2298 unlock_user_struct(tcr
, optval_addr
, 1);
2299 if (put_user_u32(len
, optlen
)) {
2300 return -TARGET_EFAULT
;
2304 case TARGET_SO_LINGER
:
2308 struct target_linger
*tlg
;
2310 if (get_user_u32(len
, optlen
)) {
2311 return -TARGET_EFAULT
;
2314 return -TARGET_EINVAL
;
2318 ret
= get_errno(getsockopt(sockfd
, level
, SO_LINGER
,
2326 if (!lock_user_struct(VERIFY_WRITE
, tlg
, optval_addr
, 0)) {
2327 return -TARGET_EFAULT
;
2329 __put_user(lg
.l_onoff
, &tlg
->l_onoff
);
2330 __put_user(lg
.l_linger
, &tlg
->l_linger
);
2331 unlock_user_struct(tlg
, optval_addr
, 1);
2332 if (put_user_u32(len
, optlen
)) {
2333 return -TARGET_EFAULT
;
2337 /* Options with 'int' argument. */
2338 case TARGET_SO_DEBUG
:
2341 case TARGET_SO_REUSEADDR
:
2342 optname
= SO_REUSEADDR
;
2345 case TARGET_SO_REUSEPORT
:
2346 optname
= SO_REUSEPORT
;
2349 case TARGET_SO_TYPE
:
2352 case TARGET_SO_ERROR
:
2355 case TARGET_SO_DONTROUTE
:
2356 optname
= SO_DONTROUTE
;
2358 case TARGET_SO_BROADCAST
:
2359 optname
= SO_BROADCAST
;
2361 case TARGET_SO_SNDBUF
:
2362 optname
= SO_SNDBUF
;
2364 case TARGET_SO_RCVBUF
:
2365 optname
= SO_RCVBUF
;
2367 case TARGET_SO_KEEPALIVE
:
2368 optname
= SO_KEEPALIVE
;
2370 case TARGET_SO_OOBINLINE
:
2371 optname
= SO_OOBINLINE
;
2373 case TARGET_SO_NO_CHECK
:
2374 optname
= SO_NO_CHECK
;
2376 case TARGET_SO_PRIORITY
:
2377 optname
= SO_PRIORITY
;
2380 case TARGET_SO_BSDCOMPAT
:
2381 optname
= SO_BSDCOMPAT
;
2384 case TARGET_SO_PASSCRED
:
2385 optname
= SO_PASSCRED
;
2387 case TARGET_SO_TIMESTAMP
:
2388 optname
= SO_TIMESTAMP
;
2390 case TARGET_SO_RCVLOWAT
:
2391 optname
= SO_RCVLOWAT
;
2393 case TARGET_SO_ACCEPTCONN
:
2394 optname
= SO_ACCEPTCONN
;
2401 /* TCP options all take an 'int' value. */
2403 if (get_user_u32(len
, optlen
))
2404 return -TARGET_EFAULT
;
2406 return -TARGET_EINVAL
;
2408 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2411 if (optname
== SO_TYPE
) {
2412 val
= host_to_target_sock_type(val
);
2417 if (put_user_u32(val
, optval_addr
))
2418 return -TARGET_EFAULT
;
2420 if (put_user_u8(val
, optval_addr
))
2421 return -TARGET_EFAULT
;
2423 if (put_user_u32(len
, optlen
))
2424 return -TARGET_EFAULT
;
2431 case IP_ROUTER_ALERT
:
2435 case IP_MTU_DISCOVER
:
2441 case IP_MULTICAST_TTL
:
2442 case IP_MULTICAST_LOOP
:
2443 if (get_user_u32(len
, optlen
))
2444 return -TARGET_EFAULT
;
2446 return -TARGET_EINVAL
;
2448 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2451 if (len
< sizeof(int) && len
> 0 && val
>= 0 && val
< 255) {
2453 if (put_user_u32(len
, optlen
)
2454 || put_user_u8(val
, optval_addr
))
2455 return -TARGET_EFAULT
;
2457 if (len
> sizeof(int))
2459 if (put_user_u32(len
, optlen
)
2460 || put_user_u32(val
, optval_addr
))
2461 return -TARGET_EFAULT
;
2465 ret
= -TARGET_ENOPROTOOPT
;
2471 case IPV6_MTU_DISCOVER
:
2474 case IPV6_RECVPKTINFO
:
2475 case IPV6_UNICAST_HOPS
:
2476 case IPV6_MULTICAST_HOPS
:
2477 case IPV6_MULTICAST_LOOP
:
2479 case IPV6_RECVHOPLIMIT
:
2480 case IPV6_2292HOPLIMIT
:
2483 case IPV6_2292PKTINFO
:
2484 case IPV6_RECVTCLASS
:
2485 case IPV6_RECVRTHDR
:
2486 case IPV6_2292RTHDR
:
2487 case IPV6_RECVHOPOPTS
:
2488 case IPV6_2292HOPOPTS
:
2489 case IPV6_RECVDSTOPTS
:
2490 case IPV6_2292DSTOPTS
:
2492 #ifdef IPV6_RECVPATHMTU
2493 case IPV6_RECVPATHMTU
:
2495 #ifdef IPV6_TRANSPARENT
2496 case IPV6_TRANSPARENT
:
2498 #ifdef IPV6_FREEBIND
2501 #ifdef IPV6_RECVORIGDSTADDR
2502 case IPV6_RECVORIGDSTADDR
:
2504 if (get_user_u32(len
, optlen
))
2505 return -TARGET_EFAULT
;
2507 return -TARGET_EINVAL
;
2509 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2512 if (len
< sizeof(int) && len
> 0 && val
>= 0 && val
< 255) {
2514 if (put_user_u32(len
, optlen
)
2515 || put_user_u8(val
, optval_addr
))
2516 return -TARGET_EFAULT
;
2518 if (len
> sizeof(int))
2520 if (put_user_u32(len
, optlen
)
2521 || put_user_u32(val
, optval_addr
))
2522 return -TARGET_EFAULT
;
2526 ret
= -TARGET_ENOPROTOOPT
;
2532 gemu_log("getsockopt level=%d optname=%d not yet supported\n",
2534 ret
= -TARGET_EOPNOTSUPP
;
2540 /* Convert target low/high pair representing file offset into the host
2541 * low/high pair. This function doesn't handle offsets bigger than 64 bits
2542 * as the kernel doesn't handle them either.
2544 static void target_to_host_low_high(abi_ulong tlow
,
2546 unsigned long *hlow
,
2547 unsigned long *hhigh
)
2549 uint64_t off
= tlow
|
2550 ((unsigned long long)thigh
<< TARGET_LONG_BITS
/ 2) <<
2551 TARGET_LONG_BITS
/ 2;
2554 *hhigh
= (off
>> HOST_LONG_BITS
/ 2) >> HOST_LONG_BITS
/ 2;
2557 static struct iovec
*lock_iovec(int type
, abi_ulong target_addr
,
2558 abi_ulong count
, int copy
)
2560 struct target_iovec
*target_vec
;
2562 abi_ulong total_len
, max_len
;
2565 bool bad_address
= false;
2571 if (count
> IOV_MAX
) {
2576 vec
= g_try_new0(struct iovec
, count
);
2582 target_vec
= lock_user(VERIFY_READ
, target_addr
,
2583 count
* sizeof(struct target_iovec
), 1);
2584 if (target_vec
== NULL
) {
2589 /* ??? If host page size > target page size, this will result in a
2590 value larger than what we can actually support. */
2591 max_len
= 0x7fffffff & TARGET_PAGE_MASK
;
2594 for (i
= 0; i
< count
; i
++) {
2595 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
2596 abi_long len
= tswapal(target_vec
[i
].iov_len
);
2601 } else if (len
== 0) {
2602 /* Zero length pointer is ignored. */
2603 vec
[i
].iov_base
= 0;
2605 vec
[i
].iov_base
= lock_user(type
, base
, len
, copy
);
2606 /* If the first buffer pointer is bad, this is a fault. But
2607 * subsequent bad buffers will result in a partial write; this
2608 * is realized by filling the vector with null pointers and
2610 if (!vec
[i
].iov_base
) {
2621 if (len
> max_len
- total_len
) {
2622 len
= max_len
- total_len
;
2625 vec
[i
].iov_len
= len
;
2629 unlock_user(target_vec
, target_addr
, 0);
2634 if (tswapal(target_vec
[i
].iov_len
) > 0) {
2635 unlock_user(vec
[i
].iov_base
, tswapal(target_vec
[i
].iov_base
), 0);
2638 unlock_user(target_vec
, target_addr
, 0);
2645 static void unlock_iovec(struct iovec
*vec
, abi_ulong target_addr
,
2646 abi_ulong count
, int copy
)
2648 struct target_iovec
*target_vec
;
2651 target_vec
= lock_user(VERIFY_READ
, target_addr
,
2652 count
* sizeof(struct target_iovec
), 1);
2654 for (i
= 0; i
< count
; i
++) {
2655 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
2656 abi_long len
= tswapal(target_vec
[i
].iov_len
);
2660 unlock_user(vec
[i
].iov_base
, base
, copy
? vec
[i
].iov_len
: 0);
2662 unlock_user(target_vec
, target_addr
, 0);
2668 static inline int target_to_host_sock_type(int *type
)
2671 int target_type
= *type
;
2673 switch (target_type
& TARGET_SOCK_TYPE_MASK
) {
2674 case TARGET_SOCK_DGRAM
:
2675 host_type
= SOCK_DGRAM
;
2677 case TARGET_SOCK_STREAM
:
2678 host_type
= SOCK_STREAM
;
2681 host_type
= target_type
& TARGET_SOCK_TYPE_MASK
;
2684 if (target_type
& TARGET_SOCK_CLOEXEC
) {
2685 #if defined(SOCK_CLOEXEC)
2686 host_type
|= SOCK_CLOEXEC
;
2688 return -TARGET_EINVAL
;
2691 if (target_type
& TARGET_SOCK_NONBLOCK
) {
2692 #if defined(SOCK_NONBLOCK)
2693 host_type
|= SOCK_NONBLOCK
;
2694 #elif !defined(O_NONBLOCK)
2695 return -TARGET_EINVAL
;
2702 /* Try to emulate socket type flags after socket creation. */
2703 static int sock_flags_fixup(int fd
, int target_type
)
2705 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
2706 if (target_type
& TARGET_SOCK_NONBLOCK
) {
2707 int flags
= fcntl(fd
, F_GETFL
);
2708 if (fcntl(fd
, F_SETFL
, O_NONBLOCK
| flags
) == -1) {
2710 return -TARGET_EINVAL
;
2717 /* do_socket() Must return target values and target errnos. */
2718 static abi_long
do_socket(int domain
, int type
, int protocol
)
2720 int target_type
= type
;
2723 ret
= target_to_host_sock_type(&type
);
2728 if (domain
== PF_NETLINK
&& !(
2729 #ifdef CONFIG_RTNETLINK
2730 protocol
== NETLINK_ROUTE
||
2732 protocol
== NETLINK_KOBJECT_UEVENT
||
2733 protocol
== NETLINK_AUDIT
)) {
2734 return -EPFNOSUPPORT
;
2737 if (domain
== AF_PACKET
||
2738 (domain
== AF_INET
&& type
== SOCK_PACKET
)) {
2739 protocol
= tswap16(protocol
);
2742 ret
= get_errno(socket(domain
, type
, protocol
));
2744 ret
= sock_flags_fixup(ret
, target_type
);
2745 if (type
== SOCK_PACKET
) {
2746 /* Manage an obsolete case :
2747 * if socket type is SOCK_PACKET, bind by name
2749 fd_trans_register(ret
, &target_packet_trans
);
2750 } else if (domain
== PF_NETLINK
) {
2752 #ifdef CONFIG_RTNETLINK
2754 fd_trans_register(ret
, &target_netlink_route_trans
);
2757 case NETLINK_KOBJECT_UEVENT
:
2758 /* nothing to do: messages are strings */
2761 fd_trans_register(ret
, &target_netlink_audit_trans
);
2764 g_assert_not_reached();
2771 /* do_bind() Must return target values and target errnos. */
2772 static abi_long
do_bind(int sockfd
, abi_ulong target_addr
,
2778 if ((int)addrlen
< 0) {
2779 return -TARGET_EINVAL
;
2782 addr
= alloca(addrlen
+1);
2784 ret
= target_to_host_sockaddr(sockfd
, addr
, target_addr
, addrlen
);
2788 return get_errno(bind(sockfd
, addr
, addrlen
));
2791 /* do_connect() Must return target values and target errnos. */
2792 static abi_long
do_connect(int sockfd
, abi_ulong target_addr
,
2798 if ((int)addrlen
< 0) {
2799 return -TARGET_EINVAL
;
2802 addr
= alloca(addrlen
+1);
2804 ret
= target_to_host_sockaddr(sockfd
, addr
, target_addr
, addrlen
);
2808 return get_errno(safe_connect(sockfd
, addr
, addrlen
));
2811 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
2812 static abi_long
do_sendrecvmsg_locked(int fd
, struct target_msghdr
*msgp
,
2813 int flags
, int send
)
2819 abi_ulong target_vec
;
2821 if (msgp
->msg_name
) {
2822 msg
.msg_namelen
= tswap32(msgp
->msg_namelen
);
2823 msg
.msg_name
= alloca(msg
.msg_namelen
+1);
2824 ret
= target_to_host_sockaddr(fd
, msg
.msg_name
,
2825 tswapal(msgp
->msg_name
),
2827 if (ret
== -TARGET_EFAULT
) {
2828 /* For connected sockets msg_name and msg_namelen must
2829 * be ignored, so returning EFAULT immediately is wrong.
2830 * Instead, pass a bad msg_name to the host kernel, and
2831 * let it decide whether to return EFAULT or not.
2833 msg
.msg_name
= (void *)-1;
2838 msg
.msg_name
= NULL
;
2839 msg
.msg_namelen
= 0;
2841 msg
.msg_controllen
= 2 * tswapal(msgp
->msg_controllen
);
2842 msg
.msg_control
= alloca(msg
.msg_controllen
);
2843 memset(msg
.msg_control
, 0, msg
.msg_controllen
);
2845 msg
.msg_flags
= tswap32(msgp
->msg_flags
);
2847 count
= tswapal(msgp
->msg_iovlen
);
2848 target_vec
= tswapal(msgp
->msg_iov
);
2850 if (count
> IOV_MAX
) {
2851 /* sendrcvmsg returns a different errno for this condition than
2852 * readv/writev, so we must catch it here before lock_iovec() does.
2854 ret
= -TARGET_EMSGSIZE
;
2858 vec
= lock_iovec(send
? VERIFY_READ
: VERIFY_WRITE
,
2859 target_vec
, count
, send
);
2861 ret
= -host_to_target_errno(errno
);
2864 msg
.msg_iovlen
= count
;
2868 if (fd_trans_target_to_host_data(fd
)) {
2871 host_msg
= g_malloc(msg
.msg_iov
->iov_len
);
2872 memcpy(host_msg
, msg
.msg_iov
->iov_base
, msg
.msg_iov
->iov_len
);
2873 ret
= fd_trans_target_to_host_data(fd
)(host_msg
,
2874 msg
.msg_iov
->iov_len
);
2876 msg
.msg_iov
->iov_base
= host_msg
;
2877 ret
= get_errno(safe_sendmsg(fd
, &msg
, flags
));
2881 ret
= target_to_host_cmsg(&msg
, msgp
);
2883 ret
= get_errno(safe_sendmsg(fd
, &msg
, flags
));
2887 ret
= get_errno(safe_recvmsg(fd
, &msg
, flags
));
2888 if (!is_error(ret
)) {
2890 if (fd_trans_host_to_target_data(fd
)) {
2891 ret
= fd_trans_host_to_target_data(fd
)(msg
.msg_iov
->iov_base
,
2892 MIN(msg
.msg_iov
->iov_len
, len
));
2894 ret
= host_to_target_cmsg(msgp
, &msg
);
2896 if (!is_error(ret
)) {
2897 msgp
->msg_namelen
= tswap32(msg
.msg_namelen
);
2898 msgp
->msg_flags
= tswap32(msg
.msg_flags
);
2899 if (msg
.msg_name
!= NULL
&& msg
.msg_name
!= (void *)-1) {
2900 ret
= host_to_target_sockaddr(tswapal(msgp
->msg_name
),
2901 msg
.msg_name
, msg
.msg_namelen
);
2913 unlock_iovec(vec
, target_vec
, count
, !send
);
2918 static abi_long
do_sendrecvmsg(int fd
, abi_ulong target_msg
,
2919 int flags
, int send
)
2922 struct target_msghdr
*msgp
;
2924 if (!lock_user_struct(send
? VERIFY_READ
: VERIFY_WRITE
,
2928 return -TARGET_EFAULT
;
2930 ret
= do_sendrecvmsg_locked(fd
, msgp
, flags
, send
);
2931 unlock_user_struct(msgp
, target_msg
, send
? 0 : 1);
2935 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
2936 * so it might not have this *mmsg-specific flag either.
2938 #ifndef MSG_WAITFORONE
2939 #define MSG_WAITFORONE 0x10000
2942 static abi_long
do_sendrecvmmsg(int fd
, abi_ulong target_msgvec
,
2943 unsigned int vlen
, unsigned int flags
,
2946 struct target_mmsghdr
*mmsgp
;
2950 if (vlen
> UIO_MAXIOV
) {
2954 mmsgp
= lock_user(VERIFY_WRITE
, target_msgvec
, sizeof(*mmsgp
) * vlen
, 1);
2956 return -TARGET_EFAULT
;
2959 for (i
= 0; i
< vlen
; i
++) {
2960 ret
= do_sendrecvmsg_locked(fd
, &mmsgp
[i
].msg_hdr
, flags
, send
);
2961 if (is_error(ret
)) {
2964 mmsgp
[i
].msg_len
= tswap32(ret
);
2965 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2966 if (flags
& MSG_WAITFORONE
) {
2967 flags
|= MSG_DONTWAIT
;
2971 unlock_user(mmsgp
, target_msgvec
, sizeof(*mmsgp
) * i
);
2973 /* Return number of datagrams sent if we sent any at all;
2974 * otherwise return the error.
2982 /* do_accept4() Must return target values and target errnos. */
2983 static abi_long
do_accept4(int fd
, abi_ulong target_addr
,
2984 abi_ulong target_addrlen_addr
, int flags
)
2986 socklen_t addrlen
, ret_addrlen
;
2991 host_flags
= target_to_host_bitmask(flags
, fcntl_flags_tbl
);
2993 if (target_addr
== 0) {
2994 return get_errno(safe_accept4(fd
, NULL
, NULL
, host_flags
));
2997 /* linux returns EINVAL if addrlen pointer is invalid */
2998 if (get_user_u32(addrlen
, target_addrlen_addr
))
2999 return -TARGET_EINVAL
;
3001 if ((int)addrlen
< 0) {
3002 return -TARGET_EINVAL
;
3005 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
3006 return -TARGET_EINVAL
;
3008 addr
= alloca(addrlen
);
3010 ret_addrlen
= addrlen
;
3011 ret
= get_errno(safe_accept4(fd
, addr
, &ret_addrlen
, host_flags
));
3012 if (!is_error(ret
)) {
3013 host_to_target_sockaddr(target_addr
, addr
, MIN(addrlen
, ret_addrlen
));
3014 if (put_user_u32(ret_addrlen
, target_addrlen_addr
)) {
3015 ret
= -TARGET_EFAULT
;
3021 /* do_getpeername() Must return target values and target errnos. */
3022 static abi_long
do_getpeername(int fd
, abi_ulong target_addr
,
3023 abi_ulong target_addrlen_addr
)
3025 socklen_t addrlen
, ret_addrlen
;
3029 if (get_user_u32(addrlen
, target_addrlen_addr
))
3030 return -TARGET_EFAULT
;
3032 if ((int)addrlen
< 0) {
3033 return -TARGET_EINVAL
;
3036 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
3037 return -TARGET_EFAULT
;
3039 addr
= alloca(addrlen
);
3041 ret_addrlen
= addrlen
;
3042 ret
= get_errno(getpeername(fd
, addr
, &ret_addrlen
));
3043 if (!is_error(ret
)) {
3044 host_to_target_sockaddr(target_addr
, addr
, MIN(addrlen
, ret_addrlen
));
3045 if (put_user_u32(ret_addrlen
, target_addrlen_addr
)) {
3046 ret
= -TARGET_EFAULT
;
3052 /* do_getsockname() Must return target values and target errnos. */
3053 static abi_long
do_getsockname(int fd
, abi_ulong target_addr
,
3054 abi_ulong target_addrlen_addr
)
3056 socklen_t addrlen
, ret_addrlen
;
3060 if (get_user_u32(addrlen
, target_addrlen_addr
))
3061 return -TARGET_EFAULT
;
3063 if ((int)addrlen
< 0) {
3064 return -TARGET_EINVAL
;
3067 if (!access_ok(VERIFY_WRITE
, target_addr
, addrlen
))
3068 return -TARGET_EFAULT
;
3070 addr
= alloca(addrlen
);
3072 ret_addrlen
= addrlen
;
3073 ret
= get_errno(getsockname(fd
, addr
, &ret_addrlen
));
3074 if (!is_error(ret
)) {
3075 host_to_target_sockaddr(target_addr
, addr
, MIN(addrlen
, ret_addrlen
));
3076 if (put_user_u32(ret_addrlen
, target_addrlen_addr
)) {
3077 ret
= -TARGET_EFAULT
;
3083 /* do_socketpair() Must return target values and target errnos. */
3084 static abi_long
do_socketpair(int domain
, int type
, int protocol
,
3085 abi_ulong target_tab_addr
)
3090 target_to_host_sock_type(&type
);
3092 ret
= get_errno(socketpair(domain
, type
, protocol
, tab
));
3093 if (!is_error(ret
)) {
3094 if (put_user_s32(tab
[0], target_tab_addr
)
3095 || put_user_s32(tab
[1], target_tab_addr
+ sizeof(tab
[0])))
3096 ret
= -TARGET_EFAULT
;
3101 /* do_sendto() Must return target values and target errnos. */
3102 static abi_long
do_sendto(int fd
, abi_ulong msg
, size_t len
, int flags
,
3103 abi_ulong target_addr
, socklen_t addrlen
)
3107 void *copy_msg
= NULL
;
3110 if ((int)addrlen
< 0) {
3111 return -TARGET_EINVAL
;
3114 host_msg
= lock_user(VERIFY_READ
, msg
, len
, 1);
3116 return -TARGET_EFAULT
;
3117 if (fd_trans_target_to_host_data(fd
)) {
3118 copy_msg
= host_msg
;
3119 host_msg
= g_malloc(len
);
3120 memcpy(host_msg
, copy_msg
, len
);
3121 ret
= fd_trans_target_to_host_data(fd
)(host_msg
, len
);
3127 addr
= alloca(addrlen
+1);
3128 ret
= target_to_host_sockaddr(fd
, addr
, target_addr
, addrlen
);
3132 ret
= get_errno(safe_sendto(fd
, host_msg
, len
, flags
, addr
, addrlen
));
3134 ret
= get_errno(safe_sendto(fd
, host_msg
, len
, flags
, NULL
, 0));
3139 host_msg
= copy_msg
;
3141 unlock_user(host_msg
, msg
, 0);
3145 /* do_recvfrom() Must return target values and target errnos. */
3146 static abi_long
do_recvfrom(int fd
, abi_ulong msg
, size_t len
, int flags
,
3147 abi_ulong target_addr
,
3148 abi_ulong target_addrlen
)
3150 socklen_t addrlen
, ret_addrlen
;
3155 host_msg
= lock_user(VERIFY_WRITE
, msg
, len
, 0);
3157 return -TARGET_EFAULT
;
3159 if (get_user_u32(addrlen
, target_addrlen
)) {
3160 ret
= -TARGET_EFAULT
;
3163 if ((int)addrlen
< 0) {
3164 ret
= -TARGET_EINVAL
;
3167 addr
= alloca(addrlen
);
3168 ret_addrlen
= addrlen
;
3169 ret
= get_errno(safe_recvfrom(fd
, host_msg
, len
, flags
,
3170 addr
, &ret_addrlen
));
3172 addr
= NULL
; /* To keep compiler quiet. */
3173 addrlen
= 0; /* To keep compiler quiet. */
3174 ret
= get_errno(safe_recvfrom(fd
, host_msg
, len
, flags
, NULL
, 0));
3176 if (!is_error(ret
)) {
3177 if (fd_trans_host_to_target_data(fd
)) {
3179 trans
= fd_trans_host_to_target_data(fd
)(host_msg
, MIN(ret
, len
));
3180 if (is_error(trans
)) {
3186 host_to_target_sockaddr(target_addr
, addr
,
3187 MIN(addrlen
, ret_addrlen
));
3188 if (put_user_u32(ret_addrlen
, target_addrlen
)) {
3189 ret
= -TARGET_EFAULT
;
3193 unlock_user(host_msg
, msg
, len
);
3196 unlock_user(host_msg
, msg
, 0);
3201 #ifdef TARGET_NR_socketcall
3202 /* do_socketcall() must return target values and target errnos. */
3203 static abi_long
do_socketcall(int num
, abi_ulong vptr
)
3205 static const unsigned nargs
[] = { /* number of arguments per operation */
3206 [TARGET_SYS_SOCKET
] = 3, /* domain, type, protocol */
3207 [TARGET_SYS_BIND
] = 3, /* fd, addr, addrlen */
3208 [TARGET_SYS_CONNECT
] = 3, /* fd, addr, addrlen */
3209 [TARGET_SYS_LISTEN
] = 2, /* fd, backlog */
3210 [TARGET_SYS_ACCEPT
] = 3, /* fd, addr, addrlen */
3211 [TARGET_SYS_GETSOCKNAME
] = 3, /* fd, addr, addrlen */
3212 [TARGET_SYS_GETPEERNAME
] = 3, /* fd, addr, addrlen */
3213 [TARGET_SYS_SOCKETPAIR
] = 4, /* domain, type, protocol, tab */
3214 [TARGET_SYS_SEND
] = 4, /* fd, msg, len, flags */
3215 [TARGET_SYS_RECV
] = 4, /* fd, msg, len, flags */
3216 [TARGET_SYS_SENDTO
] = 6, /* fd, msg, len, flags, addr, addrlen */
3217 [TARGET_SYS_RECVFROM
] = 6, /* fd, msg, len, flags, addr, addrlen */
3218 [TARGET_SYS_SHUTDOWN
] = 2, /* fd, how */
3219 [TARGET_SYS_SETSOCKOPT
] = 5, /* fd, level, optname, optval, optlen */
3220 [TARGET_SYS_GETSOCKOPT
] = 5, /* fd, level, optname, optval, optlen */
3221 [TARGET_SYS_SENDMSG
] = 3, /* fd, msg, flags */
3222 [TARGET_SYS_RECVMSG
] = 3, /* fd, msg, flags */
3223 [TARGET_SYS_ACCEPT4
] = 4, /* fd, addr, addrlen, flags */
3224 [TARGET_SYS_RECVMMSG
] = 4, /* fd, msgvec, vlen, flags */
3225 [TARGET_SYS_SENDMMSG
] = 4, /* fd, msgvec, vlen, flags */
3227 abi_long a
[6]; /* max 6 args */
3230 /* check the range of the first argument num */
3231 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3232 if (num
< 1 || num
> TARGET_SYS_SENDMMSG
) {
3233 return -TARGET_EINVAL
;
3235 /* ensure we have space for args */
3236 if (nargs
[num
] > ARRAY_SIZE(a
)) {
3237 return -TARGET_EINVAL
;
3239 /* collect the arguments in a[] according to nargs[] */
3240 for (i
= 0; i
< nargs
[num
]; ++i
) {
3241 if (get_user_ual(a
[i
], vptr
+ i
* sizeof(abi_long
)) != 0) {
3242 return -TARGET_EFAULT
;
3245 /* now when we have the args, invoke the appropriate underlying function */
3247 case TARGET_SYS_SOCKET
: /* domain, type, protocol */
3248 return do_socket(a
[0], a
[1], a
[2]);
3249 case TARGET_SYS_BIND
: /* sockfd, addr, addrlen */
3250 return do_bind(a
[0], a
[1], a
[2]);
3251 case TARGET_SYS_CONNECT
: /* sockfd, addr, addrlen */
3252 return do_connect(a
[0], a
[1], a
[2]);
3253 case TARGET_SYS_LISTEN
: /* sockfd, backlog */
3254 return get_errno(listen(a
[0], a
[1]));
3255 case TARGET_SYS_ACCEPT
: /* sockfd, addr, addrlen */
3256 return do_accept4(a
[0], a
[1], a
[2], 0);
3257 case TARGET_SYS_GETSOCKNAME
: /* sockfd, addr, addrlen */
3258 return do_getsockname(a
[0], a
[1], a
[2]);
3259 case TARGET_SYS_GETPEERNAME
: /* sockfd, addr, addrlen */
3260 return do_getpeername(a
[0], a
[1], a
[2]);
3261 case TARGET_SYS_SOCKETPAIR
: /* domain, type, protocol, tab */
3262 return do_socketpair(a
[0], a
[1], a
[2], a
[3]);
3263 case TARGET_SYS_SEND
: /* sockfd, msg, len, flags */
3264 return do_sendto(a
[0], a
[1], a
[2], a
[3], 0, 0);
3265 case TARGET_SYS_RECV
: /* sockfd, msg, len, flags */
3266 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], 0, 0);
3267 case TARGET_SYS_SENDTO
: /* sockfd, msg, len, flags, addr, addrlen */
3268 return do_sendto(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
3269 case TARGET_SYS_RECVFROM
: /* sockfd, msg, len, flags, addr, addrlen */
3270 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
3271 case TARGET_SYS_SHUTDOWN
: /* sockfd, how */
3272 return get_errno(shutdown(a
[0], a
[1]));
3273 case TARGET_SYS_SETSOCKOPT
: /* sockfd, level, optname, optval, optlen */
3274 return do_setsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
3275 case TARGET_SYS_GETSOCKOPT
: /* sockfd, level, optname, optval, optlen */
3276 return do_getsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
3277 case TARGET_SYS_SENDMSG
: /* sockfd, msg, flags */
3278 return do_sendrecvmsg(a
[0], a
[1], a
[2], 1);
3279 case TARGET_SYS_RECVMSG
: /* sockfd, msg, flags */
3280 return do_sendrecvmsg(a
[0], a
[1], a
[2], 0);
3281 case TARGET_SYS_ACCEPT4
: /* sockfd, addr, addrlen, flags */
3282 return do_accept4(a
[0], a
[1], a
[2], a
[3]);
3283 case TARGET_SYS_RECVMMSG
: /* sockfd, msgvec, vlen, flags */
3284 return do_sendrecvmmsg(a
[0], a
[1], a
[2], a
[3], 0);
3285 case TARGET_SYS_SENDMMSG
: /* sockfd, msgvec, vlen, flags */
3286 return do_sendrecvmmsg(a
[0], a
[1], a
[2], a
[3], 1);
3288 gemu_log("Unsupported socketcall: %d\n", num
);
3289 return -TARGET_EINVAL
;
3294 #define N_SHM_REGIONS 32
3296 static struct shm_region
{
3300 } shm_regions
[N_SHM_REGIONS
];
3302 #ifndef TARGET_SEMID64_DS
3303 /* asm-generic version of this struct */
3304 struct target_semid64_ds
3306 struct target_ipc_perm sem_perm
;
3307 abi_ulong sem_otime
;
3308 #if TARGET_ABI_BITS == 32
3309 abi_ulong __unused1
;
3311 abi_ulong sem_ctime
;
3312 #if TARGET_ABI_BITS == 32
3313 abi_ulong __unused2
;
3315 abi_ulong sem_nsems
;
3316 abi_ulong __unused3
;
3317 abi_ulong __unused4
;
3321 static inline abi_long
target_to_host_ipc_perm(struct ipc_perm
*host_ip
,
3322 abi_ulong target_addr
)
3324 struct target_ipc_perm
*target_ip
;
3325 struct target_semid64_ds
*target_sd
;
3327 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
3328 return -TARGET_EFAULT
;
3329 target_ip
= &(target_sd
->sem_perm
);
3330 host_ip
->__key
= tswap32(target_ip
->__key
);
3331 host_ip
->uid
= tswap32(target_ip
->uid
);
3332 host_ip
->gid
= tswap32(target_ip
->gid
);
3333 host_ip
->cuid
= tswap32(target_ip
->cuid
);
3334 host_ip
->cgid
= tswap32(target_ip
->cgid
);
3335 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3336 host_ip
->mode
= tswap32(target_ip
->mode
);
3338 host_ip
->mode
= tswap16(target_ip
->mode
);
3340 #if defined(TARGET_PPC)
3341 host_ip
->__seq
= tswap32(target_ip
->__seq
);
3343 host_ip
->__seq
= tswap16(target_ip
->__seq
);
3345 unlock_user_struct(target_sd
, target_addr
, 0);
3349 static inline abi_long
host_to_target_ipc_perm(abi_ulong target_addr
,
3350 struct ipc_perm
*host_ip
)
3352 struct target_ipc_perm
*target_ip
;
3353 struct target_semid64_ds
*target_sd
;
3355 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
3356 return -TARGET_EFAULT
;
3357 target_ip
= &(target_sd
->sem_perm
);
3358 target_ip
->__key
= tswap32(host_ip
->__key
);
3359 target_ip
->uid
= tswap32(host_ip
->uid
);
3360 target_ip
->gid
= tswap32(host_ip
->gid
);
3361 target_ip
->cuid
= tswap32(host_ip
->cuid
);
3362 target_ip
->cgid
= tswap32(host_ip
->cgid
);
3363 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3364 target_ip
->mode
= tswap32(host_ip
->mode
);
3366 target_ip
->mode
= tswap16(host_ip
->mode
);
3368 #if defined(TARGET_PPC)
3369 target_ip
->__seq
= tswap32(host_ip
->__seq
);
3371 target_ip
->__seq
= tswap16(host_ip
->__seq
);
3373 unlock_user_struct(target_sd
, target_addr
, 1);
3377 static inline abi_long
target_to_host_semid_ds(struct semid_ds
*host_sd
,
3378 abi_ulong target_addr
)
3380 struct target_semid64_ds
*target_sd
;
3382 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
3383 return -TARGET_EFAULT
;
3384 if (target_to_host_ipc_perm(&(host_sd
->sem_perm
),target_addr
))
3385 return -TARGET_EFAULT
;
3386 host_sd
->sem_nsems
= tswapal(target_sd
->sem_nsems
);
3387 host_sd
->sem_otime
= tswapal(target_sd
->sem_otime
);
3388 host_sd
->sem_ctime
= tswapal(target_sd
->sem_ctime
);
3389 unlock_user_struct(target_sd
, target_addr
, 0);
3393 static inline abi_long
host_to_target_semid_ds(abi_ulong target_addr
,
3394 struct semid_ds
*host_sd
)
3396 struct target_semid64_ds
*target_sd
;
3398 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
3399 return -TARGET_EFAULT
;
3400 if (host_to_target_ipc_perm(target_addr
,&(host_sd
->sem_perm
)))
3401 return -TARGET_EFAULT
;
3402 target_sd
->sem_nsems
= tswapal(host_sd
->sem_nsems
);
3403 target_sd
->sem_otime
= tswapal(host_sd
->sem_otime
);
3404 target_sd
->sem_ctime
= tswapal(host_sd
->sem_ctime
);
3405 unlock_user_struct(target_sd
, target_addr
, 1);
3409 struct target_seminfo
{
3422 static inline abi_long
host_to_target_seminfo(abi_ulong target_addr
,
3423 struct seminfo
*host_seminfo
)
3425 struct target_seminfo
*target_seminfo
;
3426 if (!lock_user_struct(VERIFY_WRITE
, target_seminfo
, target_addr
, 0))
3427 return -TARGET_EFAULT
;
3428 __put_user(host_seminfo
->semmap
, &target_seminfo
->semmap
);
3429 __put_user(host_seminfo
->semmni
, &target_seminfo
->semmni
);
3430 __put_user(host_seminfo
->semmns
, &target_seminfo
->semmns
);
3431 __put_user(host_seminfo
->semmnu
, &target_seminfo
->semmnu
);
3432 __put_user(host_seminfo
->semmsl
, &target_seminfo
->semmsl
);
3433 __put_user(host_seminfo
->semopm
, &target_seminfo
->semopm
);
3434 __put_user(host_seminfo
->semume
, &target_seminfo
->semume
);
3435 __put_user(host_seminfo
->semusz
, &target_seminfo
->semusz
);
3436 __put_user(host_seminfo
->semvmx
, &target_seminfo
->semvmx
);
3437 __put_user(host_seminfo
->semaem
, &target_seminfo
->semaem
);
3438 unlock_user_struct(target_seminfo
, target_addr
, 1);
3444 struct semid_ds
*buf
;
3445 unsigned short *array
;
3446 struct seminfo
*__buf
;
3449 union target_semun
{
3456 static inline abi_long
target_to_host_semarray(int semid
, unsigned short **host_array
,
3457 abi_ulong target_addr
)
3460 unsigned short *array
;
3462 struct semid_ds semid_ds
;
3465 semun
.buf
= &semid_ds
;
3467 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
3469 return get_errno(ret
);
3471 nsems
= semid_ds
.sem_nsems
;
3473 *host_array
= g_try_new(unsigned short, nsems
);
3475 return -TARGET_ENOMEM
;
3477 array
= lock_user(VERIFY_READ
, target_addr
,
3478 nsems
*sizeof(unsigned short), 1);
3480 g_free(*host_array
);
3481 return -TARGET_EFAULT
;
3484 for(i
=0; i
<nsems
; i
++) {
3485 __get_user((*host_array
)[i
], &array
[i
]);
3487 unlock_user(array
, target_addr
, 0);
3492 static inline abi_long
host_to_target_semarray(int semid
, abi_ulong target_addr
,
3493 unsigned short **host_array
)
3496 unsigned short *array
;
3498 struct semid_ds semid_ds
;
3501 semun
.buf
= &semid_ds
;
3503 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
3505 return get_errno(ret
);
3507 nsems
= semid_ds
.sem_nsems
;
3509 array
= lock_user(VERIFY_WRITE
, target_addr
,
3510 nsems
*sizeof(unsigned short), 0);
3512 return -TARGET_EFAULT
;
3514 for(i
=0; i
<nsems
; i
++) {
3515 __put_user((*host_array
)[i
], &array
[i
]);
3517 g_free(*host_array
);
3518 unlock_user(array
, target_addr
, 1);
3523 static inline abi_long
do_semctl(int semid
, int semnum
, int cmd
,
3524 abi_ulong target_arg
)
3526 union target_semun target_su
= { .buf
= target_arg
};
3528 struct semid_ds dsarg
;
3529 unsigned short *array
= NULL
;
3530 struct seminfo seminfo
;
3531 abi_long ret
= -TARGET_EINVAL
;
3538 /* In 64 bit cross-endian situations, we will erroneously pick up
3539 * the wrong half of the union for the "val" element. To rectify
3540 * this, the entire 8-byte structure is byteswapped, followed by
3541 * a swap of the 4 byte val field. In other cases, the data is
3542 * already in proper host byte order. */
3543 if (sizeof(target_su
.val
) != (sizeof(target_su
.buf
))) {
3544 target_su
.buf
= tswapal(target_su
.buf
);
3545 arg
.val
= tswap32(target_su
.val
);
3547 arg
.val
= target_su
.val
;
3549 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3553 err
= target_to_host_semarray(semid
, &array
, target_su
.array
);
3557 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3558 err
= host_to_target_semarray(semid
, target_su
.array
, &array
);
3565 err
= target_to_host_semid_ds(&dsarg
, target_su
.buf
);
3569 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3570 err
= host_to_target_semid_ds(target_su
.buf
, &dsarg
);
3576 arg
.__buf
= &seminfo
;
3577 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3578 err
= host_to_target_seminfo(target_su
.__buf
, &seminfo
);
3586 ret
= get_errno(semctl(semid
, semnum
, cmd
, NULL
));
3593 struct target_sembuf
{
3594 unsigned short sem_num
;
3599 static inline abi_long
target_to_host_sembuf(struct sembuf
*host_sembuf
,
3600 abi_ulong target_addr
,
3603 struct target_sembuf
*target_sembuf
;
3606 target_sembuf
= lock_user(VERIFY_READ
, target_addr
,
3607 nsops
*sizeof(struct target_sembuf
), 1);
3609 return -TARGET_EFAULT
;
3611 for(i
=0; i
<nsops
; i
++) {
3612 __get_user(host_sembuf
[i
].sem_num
, &target_sembuf
[i
].sem_num
);
3613 __get_user(host_sembuf
[i
].sem_op
, &target_sembuf
[i
].sem_op
);
3614 __get_user(host_sembuf
[i
].sem_flg
, &target_sembuf
[i
].sem_flg
);
3617 unlock_user(target_sembuf
, target_addr
, 0);
3622 static inline abi_long
do_semop(int semid
, abi_long ptr
, unsigned nsops
)
3624 struct sembuf sops
[nsops
];
3627 if (target_to_host_sembuf(sops
, ptr
, nsops
))
3628 return -TARGET_EFAULT
;
3630 ret
= -TARGET_ENOSYS
;
3631 #ifdef __NR_semtimedop
3632 ret
= get_errno(safe_semtimedop(semid
, sops
, nsops
, NULL
));
3635 if (ret
== -TARGET_ENOSYS
) {
3636 ret
= get_errno(safe_ipc(IPCOP_semtimedop
, semid
, nsops
, 0, sops
, 0));
3642 struct target_msqid_ds
3644 struct target_ipc_perm msg_perm
;
3645 abi_ulong msg_stime
;
3646 #if TARGET_ABI_BITS == 32
3647 abi_ulong __unused1
;
3649 abi_ulong msg_rtime
;
3650 #if TARGET_ABI_BITS == 32
3651 abi_ulong __unused2
;
3653 abi_ulong msg_ctime
;
3654 #if TARGET_ABI_BITS == 32
3655 abi_ulong __unused3
;
3657 abi_ulong __msg_cbytes
;
3659 abi_ulong msg_qbytes
;
3660 abi_ulong msg_lspid
;
3661 abi_ulong msg_lrpid
;
3662 abi_ulong __unused4
;
3663 abi_ulong __unused5
;
3666 static inline abi_long
target_to_host_msqid_ds(struct msqid_ds
*host_md
,
3667 abi_ulong target_addr
)
3669 struct target_msqid_ds
*target_md
;
3671 if (!lock_user_struct(VERIFY_READ
, target_md
, target_addr
, 1))
3672 return -TARGET_EFAULT
;
3673 if (target_to_host_ipc_perm(&(host_md
->msg_perm
),target_addr
))
3674 return -TARGET_EFAULT
;
3675 host_md
->msg_stime
= tswapal(target_md
->msg_stime
);
3676 host_md
->msg_rtime
= tswapal(target_md
->msg_rtime
);
3677 host_md
->msg_ctime
= tswapal(target_md
->msg_ctime
);
3678 host_md
->__msg_cbytes
= tswapal(target_md
->__msg_cbytes
);
3679 host_md
->msg_qnum
= tswapal(target_md
->msg_qnum
);
3680 host_md
->msg_qbytes
= tswapal(target_md
->msg_qbytes
);
3681 host_md
->msg_lspid
= tswapal(target_md
->msg_lspid
);
3682 host_md
->msg_lrpid
= tswapal(target_md
->msg_lrpid
);
3683 unlock_user_struct(target_md
, target_addr
, 0);
3687 static inline abi_long
host_to_target_msqid_ds(abi_ulong target_addr
,
3688 struct msqid_ds
*host_md
)
3690 struct target_msqid_ds
*target_md
;
3692 if (!lock_user_struct(VERIFY_WRITE
, target_md
, target_addr
, 0))
3693 return -TARGET_EFAULT
;
3694 if (host_to_target_ipc_perm(target_addr
,&(host_md
->msg_perm
)))
3695 return -TARGET_EFAULT
;
3696 target_md
->msg_stime
= tswapal(host_md
->msg_stime
);
3697 target_md
->msg_rtime
= tswapal(host_md
->msg_rtime
);
3698 target_md
->msg_ctime
= tswapal(host_md
->msg_ctime
);
3699 target_md
->__msg_cbytes
= tswapal(host_md
->__msg_cbytes
);
3700 target_md
->msg_qnum
= tswapal(host_md
->msg_qnum
);
3701 target_md
->msg_qbytes
= tswapal(host_md
->msg_qbytes
);
3702 target_md
->msg_lspid
= tswapal(host_md
->msg_lspid
);
3703 target_md
->msg_lrpid
= tswapal(host_md
->msg_lrpid
);
3704 unlock_user_struct(target_md
, target_addr
, 1);
3708 struct target_msginfo
{
3716 unsigned short int msgseg
;
3719 static inline abi_long
host_to_target_msginfo(abi_ulong target_addr
,
3720 struct msginfo
*host_msginfo
)
3722 struct target_msginfo
*target_msginfo
;
3723 if (!lock_user_struct(VERIFY_WRITE
, target_msginfo
, target_addr
, 0))
3724 return -TARGET_EFAULT
;
3725 __put_user(host_msginfo
->msgpool
, &target_msginfo
->msgpool
);
3726 __put_user(host_msginfo
->msgmap
, &target_msginfo
->msgmap
);
3727 __put_user(host_msginfo
->msgmax
, &target_msginfo
->msgmax
);
3728 __put_user(host_msginfo
->msgmnb
, &target_msginfo
->msgmnb
);
3729 __put_user(host_msginfo
->msgmni
, &target_msginfo
->msgmni
);
3730 __put_user(host_msginfo
->msgssz
, &target_msginfo
->msgssz
);
3731 __put_user(host_msginfo
->msgtql
, &target_msginfo
->msgtql
);
3732 __put_user(host_msginfo
->msgseg
, &target_msginfo
->msgseg
);
3733 unlock_user_struct(target_msginfo
, target_addr
, 1);
3737 static inline abi_long
do_msgctl(int msgid
, int cmd
, abi_long ptr
)
3739 struct msqid_ds dsarg
;
3740 struct msginfo msginfo
;
3741 abi_long ret
= -TARGET_EINVAL
;
3749 if (target_to_host_msqid_ds(&dsarg
,ptr
))
3750 return -TARGET_EFAULT
;
3751 ret
= get_errno(msgctl(msgid
, cmd
, &dsarg
));
3752 if (host_to_target_msqid_ds(ptr
,&dsarg
))
3753 return -TARGET_EFAULT
;
3756 ret
= get_errno(msgctl(msgid
, cmd
, NULL
));
3760 ret
= get_errno(msgctl(msgid
, cmd
, (struct msqid_ds
*)&msginfo
));
3761 if (host_to_target_msginfo(ptr
, &msginfo
))
3762 return -TARGET_EFAULT
;
3769 struct target_msgbuf
{
3774 static inline abi_long
do_msgsnd(int msqid
, abi_long msgp
,
3775 ssize_t msgsz
, int msgflg
)
3777 struct target_msgbuf
*target_mb
;
3778 struct msgbuf
*host_mb
;
3782 return -TARGET_EINVAL
;
3785 if (!lock_user_struct(VERIFY_READ
, target_mb
, msgp
, 0))
3786 return -TARGET_EFAULT
;
3787 host_mb
= g_try_malloc(msgsz
+ sizeof(long));
3789 unlock_user_struct(target_mb
, msgp
, 0);
3790 return -TARGET_ENOMEM
;
3792 host_mb
->mtype
= (abi_long
) tswapal(target_mb
->mtype
);
3793 memcpy(host_mb
->mtext
, target_mb
->mtext
, msgsz
);
3794 ret
= -TARGET_ENOSYS
;
3796 ret
= get_errno(safe_msgsnd(msqid
, host_mb
, msgsz
, msgflg
));
3799 if (ret
== -TARGET_ENOSYS
) {
3800 ret
= get_errno(safe_ipc(IPCOP_msgsnd
, msqid
, msgsz
, msgflg
,
3805 unlock_user_struct(target_mb
, msgp
, 0);
3810 static inline abi_long
do_msgrcv(int msqid
, abi_long msgp
,
3811 ssize_t msgsz
, abi_long msgtyp
,
3814 struct target_msgbuf
*target_mb
;
3816 struct msgbuf
*host_mb
;
3820 return -TARGET_EINVAL
;
3823 if (!lock_user_struct(VERIFY_WRITE
, target_mb
, msgp
, 0))
3824 return -TARGET_EFAULT
;
3826 host_mb
= g_try_malloc(msgsz
+ sizeof(long));
3828 ret
= -TARGET_ENOMEM
;
3831 ret
= -TARGET_ENOSYS
;
3833 ret
= get_errno(safe_msgrcv(msqid
, host_mb
, msgsz
, msgtyp
, msgflg
));
3836 if (ret
== -TARGET_ENOSYS
) {
3837 ret
= get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv
), msqid
, msgsz
,
3838 msgflg
, host_mb
, msgtyp
));
3843 abi_ulong target_mtext_addr
= msgp
+ sizeof(abi_ulong
);
3844 target_mtext
= lock_user(VERIFY_WRITE
, target_mtext_addr
, ret
, 0);
3845 if (!target_mtext
) {
3846 ret
= -TARGET_EFAULT
;
3849 memcpy(target_mb
->mtext
, host_mb
->mtext
, ret
);
3850 unlock_user(target_mtext
, target_mtext_addr
, ret
);
3853 target_mb
->mtype
= tswapal(host_mb
->mtype
);
3857 unlock_user_struct(target_mb
, msgp
, 1);
3862 static inline abi_long
target_to_host_shmid_ds(struct shmid_ds
*host_sd
,
3863 abi_ulong target_addr
)
3865 struct target_shmid_ds
*target_sd
;
3867 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
3868 return -TARGET_EFAULT
;
3869 if (target_to_host_ipc_perm(&(host_sd
->shm_perm
), target_addr
))
3870 return -TARGET_EFAULT
;
3871 __get_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
3872 __get_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
3873 __get_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
3874 __get_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
3875 __get_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
3876 __get_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
3877 __get_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
3878 unlock_user_struct(target_sd
, target_addr
, 0);
3882 static inline abi_long
host_to_target_shmid_ds(abi_ulong target_addr
,
3883 struct shmid_ds
*host_sd
)
3885 struct target_shmid_ds
*target_sd
;
3887 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
3888 return -TARGET_EFAULT
;
3889 if (host_to_target_ipc_perm(target_addr
, &(host_sd
->shm_perm
)))
3890 return -TARGET_EFAULT
;
3891 __put_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
3892 __put_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
3893 __put_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
3894 __put_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
3895 __put_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
3896 __put_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
3897 __put_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
3898 unlock_user_struct(target_sd
, target_addr
, 1);
3902 struct target_shminfo
{
3910 static inline abi_long
host_to_target_shminfo(abi_ulong target_addr
,
3911 struct shminfo
*host_shminfo
)
3913 struct target_shminfo
*target_shminfo
;
3914 if (!lock_user_struct(VERIFY_WRITE
, target_shminfo
, target_addr
, 0))
3915 return -TARGET_EFAULT
;
3916 __put_user(host_shminfo
->shmmax
, &target_shminfo
->shmmax
);
3917 __put_user(host_shminfo
->shmmin
, &target_shminfo
->shmmin
);
3918 __put_user(host_shminfo
->shmmni
, &target_shminfo
->shmmni
);
3919 __put_user(host_shminfo
->shmseg
, &target_shminfo
->shmseg
);
3920 __put_user(host_shminfo
->shmall
, &target_shminfo
->shmall
);
3921 unlock_user_struct(target_shminfo
, target_addr
, 1);
3925 struct target_shm_info
{
3930 abi_ulong swap_attempts
;
3931 abi_ulong swap_successes
;
3934 static inline abi_long
host_to_target_shm_info(abi_ulong target_addr
,
3935 struct shm_info
*host_shm_info
)
3937 struct target_shm_info
*target_shm_info
;
3938 if (!lock_user_struct(VERIFY_WRITE
, target_shm_info
, target_addr
, 0))
3939 return -TARGET_EFAULT
;
3940 __put_user(host_shm_info
->used_ids
, &target_shm_info
->used_ids
);
3941 __put_user(host_shm_info
->shm_tot
, &target_shm_info
->shm_tot
);
3942 __put_user(host_shm_info
->shm_rss
, &target_shm_info
->shm_rss
);
3943 __put_user(host_shm_info
->shm_swp
, &target_shm_info
->shm_swp
);
3944 __put_user(host_shm_info
->swap_attempts
, &target_shm_info
->swap_attempts
);
3945 __put_user(host_shm_info
->swap_successes
, &target_shm_info
->swap_successes
);
3946 unlock_user_struct(target_shm_info
, target_addr
, 1);
3950 static inline abi_long
do_shmctl(int shmid
, int cmd
, abi_long buf
)
3952 struct shmid_ds dsarg
;
3953 struct shminfo shminfo
;
3954 struct shm_info shm_info
;
3955 abi_long ret
= -TARGET_EINVAL
;
3963 if (target_to_host_shmid_ds(&dsarg
, buf
))
3964 return -TARGET_EFAULT
;
3965 ret
= get_errno(shmctl(shmid
, cmd
, &dsarg
));
3966 if (host_to_target_shmid_ds(buf
, &dsarg
))
3967 return -TARGET_EFAULT
;
3970 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shminfo
));
3971 if (host_to_target_shminfo(buf
, &shminfo
))
3972 return -TARGET_EFAULT
;
3975 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shm_info
));
3976 if (host_to_target_shm_info(buf
, &shm_info
))
3977 return -TARGET_EFAULT
;
3982 ret
= get_errno(shmctl(shmid
, cmd
, NULL
));
3989 #ifndef TARGET_FORCE_SHMLBA
3990 /* For most architectures, SHMLBA is the same as the page size;
3991 * some architectures have larger values, in which case they should
3992 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
3993 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
3994 * and defining its own value for SHMLBA.
3996 * The kernel also permits SHMLBA to be set by the architecture to a
3997 * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
3998 * this means that addresses are rounded to the large size if
3999 * SHM_RND is set but addresses not aligned to that size are not rejected
4000 * as long as they are at least page-aligned. Since the only architecture
4001 * which uses this is ia64 this code doesn't provide for that oddity.
4003 static inline abi_ulong
target_shmlba(CPUArchState
*cpu_env
)
4005 return TARGET_PAGE_SIZE
;
4009 static inline abi_ulong
do_shmat(CPUArchState
*cpu_env
,
4010 int shmid
, abi_ulong shmaddr
, int shmflg
)
4014 struct shmid_ds shm_info
;
4018 /* find out the length of the shared memory segment */
4019 ret
= get_errno(shmctl(shmid
, IPC_STAT
, &shm_info
));
4020 if (is_error(ret
)) {
4021 /* can't get length, bail out */
4025 shmlba
= target_shmlba(cpu_env
);
4027 if (shmaddr
& (shmlba
- 1)) {
4028 if (shmflg
& SHM_RND
) {
4029 shmaddr
&= ~(shmlba
- 1);
4031 return -TARGET_EINVAL
;
4034 if (!guest_range_valid(shmaddr
, shm_info
.shm_segsz
)) {
4035 return -TARGET_EINVAL
;
4041 host_raddr
= shmat(shmid
, (void *)g2h(shmaddr
), shmflg
);
4043 abi_ulong mmap_start
;
4045 /* In order to use the host shmat, we need to honor host SHMLBA. */
4046 mmap_start
= mmap_find_vma(0, shm_info
.shm_segsz
, MAX(SHMLBA
, shmlba
));
4048 if (mmap_start
== -1) {
4050 host_raddr
= (void *)-1;
4052 host_raddr
= shmat(shmid
, g2h(mmap_start
), shmflg
| SHM_REMAP
);
4055 if (host_raddr
== (void *)-1) {
4057 return get_errno((long)host_raddr
);
4059 raddr
=h2g((unsigned long)host_raddr
);
4061 page_set_flags(raddr
, raddr
+ shm_info
.shm_segsz
,
4062 PAGE_VALID
| PAGE_READ
|
4063 ((shmflg
& SHM_RDONLY
)? 0 : PAGE_WRITE
));
4065 for (i
= 0; i
< N_SHM_REGIONS
; i
++) {
4066 if (!shm_regions
[i
].in_use
) {
4067 shm_regions
[i
].in_use
= true;
4068 shm_regions
[i
].start
= raddr
;
4069 shm_regions
[i
].size
= shm_info
.shm_segsz
;
4079 static inline abi_long
do_shmdt(abi_ulong shmaddr
)
4086 for (i
= 0; i
< N_SHM_REGIONS
; ++i
) {
4087 if (shm_regions
[i
].in_use
&& shm_regions
[i
].start
== shmaddr
) {
4088 shm_regions
[i
].in_use
= false;
4089 page_set_flags(shmaddr
, shmaddr
+ shm_regions
[i
].size
, 0);
4093 rv
= get_errno(shmdt(g2h(shmaddr
)));
4100 #ifdef TARGET_NR_ipc
4101 /* ??? This only works with linear mappings. */
4102 /* do_ipc() must return target values and target errnos. */
4103 static abi_long
do_ipc(CPUArchState
*cpu_env
,
4104 unsigned int call
, abi_long first
,
4105 abi_long second
, abi_long third
,
4106 abi_long ptr
, abi_long fifth
)
4111 version
= call
>> 16;
4116 ret
= do_semop(first
, ptr
, second
);
4120 ret
= get_errno(semget(first
, second
, third
));
4123 case IPCOP_semctl
: {
4124 /* The semun argument to semctl is passed by value, so dereference the
4127 get_user_ual(atptr
, ptr
);
4128 ret
= do_semctl(first
, second
, third
, atptr
);
4133 ret
= get_errno(msgget(first
, second
));
4137 ret
= do_msgsnd(first
, ptr
, second
, third
);
4141 ret
= do_msgctl(first
, second
, ptr
);
4148 struct target_ipc_kludge
{
4153 if (!lock_user_struct(VERIFY_READ
, tmp
, ptr
, 1)) {
4154 ret
= -TARGET_EFAULT
;
4158 ret
= do_msgrcv(first
, tswapal(tmp
->msgp
), second
, tswapal(tmp
->msgtyp
), third
);
4160 unlock_user_struct(tmp
, ptr
, 0);
4164 ret
= do_msgrcv(first
, ptr
, second
, fifth
, third
);
4173 raddr
= do_shmat(cpu_env
, first
, ptr
, second
);
4174 if (is_error(raddr
))
4175 return get_errno(raddr
);
4176 if (put_user_ual(raddr
, third
))
4177 return -TARGET_EFAULT
;
4181 ret
= -TARGET_EINVAL
;
4186 ret
= do_shmdt(ptr
);
4190 /* IPC_* flag values are the same on all linux platforms */
4191 ret
= get_errno(shmget(first
, second
, third
));
4194 /* IPC_* and SHM_* command values are the same on all linux platforms */
4196 ret
= do_shmctl(first
, second
, ptr
);
4199 gemu_log("Unsupported ipc call: %d (version %d)\n", call
, version
);
4200 ret
= -TARGET_ENOSYS
;
4207 /* kernel structure types definitions */
4209 #define STRUCT(name, ...) STRUCT_ ## name,
4210 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4212 #include "syscall_types.h"
4216 #undef STRUCT_SPECIAL
4218 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
4219 #define STRUCT_SPECIAL(name)
4220 #include "syscall_types.h"
4222 #undef STRUCT_SPECIAL
4224 typedef struct IOCTLEntry IOCTLEntry
;
4226 typedef abi_long
do_ioctl_fn(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4227 int fd
, int cmd
, abi_long arg
);
4231 unsigned int host_cmd
;
4234 do_ioctl_fn
*do_ioctl
;
4235 const argtype arg_type
[5];
4238 #define IOC_R 0x0001
4239 #define IOC_W 0x0002
4240 #define IOC_RW (IOC_R | IOC_W)
4242 #define MAX_STRUCT_SIZE 4096
4244 #ifdef CONFIG_FIEMAP
4245 /* So fiemap access checks don't overflow on 32 bit systems.
4246 * This is very slightly smaller than the limit imposed by
4247 * the underlying kernel.
4249 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
4250 / sizeof(struct fiemap_extent))
4252 static abi_long
do_ioctl_fs_ioc_fiemap(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4253 int fd
, int cmd
, abi_long arg
)
4255 /* The parameter for this ioctl is a struct fiemap followed
4256 * by an array of struct fiemap_extent whose size is set
4257 * in fiemap->fm_extent_count. The array is filled in by the
4260 int target_size_in
, target_size_out
;
4262 const argtype
*arg_type
= ie
->arg_type
;
4263 const argtype extent_arg_type
[] = { MK_STRUCT(STRUCT_fiemap_extent
) };
4266 int i
, extent_size
= thunk_type_size(extent_arg_type
, 0);
4270 assert(arg_type
[0] == TYPE_PTR
);
4271 assert(ie
->access
== IOC_RW
);
4273 target_size_in
= thunk_type_size(arg_type
, 0);
4274 argptr
= lock_user(VERIFY_READ
, arg
, target_size_in
, 1);
4276 return -TARGET_EFAULT
;
4278 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
4279 unlock_user(argptr
, arg
, 0);
4280 fm
= (struct fiemap
*)buf_temp
;
4281 if (fm
->fm_extent_count
> FIEMAP_MAX_EXTENTS
) {
4282 return -TARGET_EINVAL
;
4285 outbufsz
= sizeof (*fm
) +
4286 (sizeof(struct fiemap_extent
) * fm
->fm_extent_count
);
4288 if (outbufsz
> MAX_STRUCT_SIZE
) {
4289 /* We can't fit all the extents into the fixed size buffer.
4290 * Allocate one that is large enough and use it instead.
4292 fm
= g_try_malloc(outbufsz
);
4294 return -TARGET_ENOMEM
;
4296 memcpy(fm
, buf_temp
, sizeof(struct fiemap
));
4299 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, fm
));
4300 if (!is_error(ret
)) {
4301 target_size_out
= target_size_in
;
4302 /* An extent_count of 0 means we were only counting the extents
4303 * so there are no structs to copy
4305 if (fm
->fm_extent_count
!= 0) {
4306 target_size_out
+= fm
->fm_mapped_extents
* extent_size
;
4308 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size_out
, 0);
4310 ret
= -TARGET_EFAULT
;
4312 /* Convert the struct fiemap */
4313 thunk_convert(argptr
, fm
, arg_type
, THUNK_TARGET
);
4314 if (fm
->fm_extent_count
!= 0) {
4315 p
= argptr
+ target_size_in
;
4316 /* ...and then all the struct fiemap_extents */
4317 for (i
= 0; i
< fm
->fm_mapped_extents
; i
++) {
4318 thunk_convert(p
, &fm
->fm_extents
[i
], extent_arg_type
,
4323 unlock_user(argptr
, arg
, target_size_out
);
4333 static abi_long
do_ioctl_ifconf(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4334 int fd
, int cmd
, abi_long arg
)
4336 const argtype
*arg_type
= ie
->arg_type
;
4340 struct ifconf
*host_ifconf
;
4342 const argtype ifreq_arg_type
[] = { MK_STRUCT(STRUCT_sockaddr_ifreq
) };
4343 int target_ifreq_size
;
4348 abi_long target_ifc_buf
;
4352 assert(arg_type
[0] == TYPE_PTR
);
4353 assert(ie
->access
== IOC_RW
);
4356 target_size
= thunk_type_size(arg_type
, 0);
4358 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
4360 return -TARGET_EFAULT
;
4361 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
4362 unlock_user(argptr
, arg
, 0);
4364 host_ifconf
= (struct ifconf
*)(unsigned long)buf_temp
;
4365 target_ifc_buf
= (abi_long
)(unsigned long)host_ifconf
->ifc_buf
;
4366 target_ifreq_size
= thunk_type_size(ifreq_arg_type
, 0);
4368 if (target_ifc_buf
!= 0) {
4369 target_ifc_len
= host_ifconf
->ifc_len
;
4370 nb_ifreq
= target_ifc_len
/ target_ifreq_size
;
4371 host_ifc_len
= nb_ifreq
* sizeof(struct ifreq
);
4373 outbufsz
= sizeof(*host_ifconf
) + host_ifc_len
;
4374 if (outbufsz
> MAX_STRUCT_SIZE
) {
4376 * We can't fit all the extents into the fixed size buffer.
4377 * Allocate one that is large enough and use it instead.
4379 host_ifconf
= malloc(outbufsz
);
4381 return -TARGET_ENOMEM
;
4383 memcpy(host_ifconf
, buf_temp
, sizeof(*host_ifconf
));
4386 host_ifc_buf
= (char *)host_ifconf
+ sizeof(*host_ifconf
);
4388 host_ifconf
->ifc_len
= host_ifc_len
;
4390 host_ifc_buf
= NULL
;
4392 host_ifconf
->ifc_buf
= host_ifc_buf
;
4394 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, host_ifconf
));
4395 if (!is_error(ret
)) {
4396 /* convert host ifc_len to target ifc_len */
4398 nb_ifreq
= host_ifconf
->ifc_len
/ sizeof(struct ifreq
);
4399 target_ifc_len
= nb_ifreq
* target_ifreq_size
;
4400 host_ifconf
->ifc_len
= target_ifc_len
;
4402 /* restore target ifc_buf */
4404 host_ifconf
->ifc_buf
= (char *)(unsigned long)target_ifc_buf
;
4406 /* copy struct ifconf to target user */
4408 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
4410 return -TARGET_EFAULT
;
4411 thunk_convert(argptr
, host_ifconf
, arg_type
, THUNK_TARGET
);
4412 unlock_user(argptr
, arg
, target_size
);
4414 if (target_ifc_buf
!= 0) {
4415 /* copy ifreq[] to target user */
4416 argptr
= lock_user(VERIFY_WRITE
, target_ifc_buf
, target_ifc_len
, 0);
4417 for (i
= 0; i
< nb_ifreq
; i
++) {
4418 thunk_convert(argptr
+ i
* target_ifreq_size
,
4419 host_ifc_buf
+ i
* sizeof(struct ifreq
),
4420 ifreq_arg_type
, THUNK_TARGET
);
4422 unlock_user(argptr
, target_ifc_buf
, target_ifc_len
);
4433 #if defined(CONFIG_USBFS)
4434 #if HOST_LONG_BITS > 64
4435 #error USBDEVFS thunks do not support >64 bit hosts yet.
4438 uint64_t target_urb_adr
;
4439 uint64_t target_buf_adr
;
4440 char *target_buf_ptr
;
4441 struct usbdevfs_urb host_urb
;
4444 static GHashTable
*usbdevfs_urb_hashtable(void)
4446 static GHashTable
*urb_hashtable
;
4448 if (!urb_hashtable
) {
4449 urb_hashtable
= g_hash_table_new(g_int64_hash
, g_int64_equal
);
4451 return urb_hashtable
;
4454 static void urb_hashtable_insert(struct live_urb
*urb
)
4456 GHashTable
*urb_hashtable
= usbdevfs_urb_hashtable();
4457 g_hash_table_insert(urb_hashtable
, urb
, urb
);
4460 static struct live_urb
*urb_hashtable_lookup(uint64_t target_urb_adr
)
4462 GHashTable
*urb_hashtable
= usbdevfs_urb_hashtable();
4463 return g_hash_table_lookup(urb_hashtable
, &target_urb_adr
);
4466 static void urb_hashtable_remove(struct live_urb
*urb
)
4468 GHashTable
*urb_hashtable
= usbdevfs_urb_hashtable();
4469 g_hash_table_remove(urb_hashtable
, urb
);
4473 do_ioctl_usbdevfs_reapurb(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4474 int fd
, int cmd
, abi_long arg
)
4476 const argtype usbfsurb_arg_type
[] = { MK_STRUCT(STRUCT_usbdevfs_urb
) };
4477 const argtype ptrvoid_arg_type
[] = { TYPE_PTRVOID
, 0, 0 };
4478 struct live_urb
*lurb
;
4482 uintptr_t target_urb_adr
;
4485 target_size
= thunk_type_size(usbfsurb_arg_type
, THUNK_TARGET
);
4487 memset(buf_temp
, 0, sizeof(uint64_t));
4488 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
4489 if (is_error(ret
)) {
4493 memcpy(&hurb
, buf_temp
, sizeof(uint64_t));
4494 lurb
= (void *)((uintptr_t)hurb
- offsetof(struct live_urb
, host_urb
));
4495 if (!lurb
->target_urb_adr
) {
4496 return -TARGET_EFAULT
;
4498 urb_hashtable_remove(lurb
);
4499 unlock_user(lurb
->target_buf_ptr
, lurb
->target_buf_adr
,
4500 lurb
->host_urb
.buffer_length
);
4501 lurb
->target_buf_ptr
= NULL
;
4503 /* restore the guest buffer pointer */
4504 lurb
->host_urb
.buffer
= (void *)(uintptr_t)lurb
->target_buf_adr
;
4506 /* update the guest urb struct */
4507 argptr
= lock_user(VERIFY_WRITE
, lurb
->target_urb_adr
, target_size
, 0);
4510 return -TARGET_EFAULT
;
4512 thunk_convert(argptr
, &lurb
->host_urb
, usbfsurb_arg_type
, THUNK_TARGET
);
4513 unlock_user(argptr
, lurb
->target_urb_adr
, target_size
);
4515 target_size
= thunk_type_size(ptrvoid_arg_type
, THUNK_TARGET
);
4516 /* write back the urb handle */
4517 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
4520 return -TARGET_EFAULT
;
4523 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4524 target_urb_adr
= lurb
->target_urb_adr
;
4525 thunk_convert(argptr
, &target_urb_adr
, ptrvoid_arg_type
, THUNK_TARGET
);
4526 unlock_user(argptr
, arg
, target_size
);
4533 do_ioctl_usbdevfs_discardurb(const IOCTLEntry
*ie
,
4534 uint8_t *buf_temp
__attribute__((unused
)),
4535 int fd
, int cmd
, abi_long arg
)
4537 struct live_urb
*lurb
;
4539 /* map target address back to host URB with metadata. */
4540 lurb
= urb_hashtable_lookup(arg
);
4542 return -TARGET_EFAULT
;
4544 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, &lurb
->host_urb
));
4548 do_ioctl_usbdevfs_submiturb(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4549 int fd
, int cmd
, abi_long arg
)
4551 const argtype
*arg_type
= ie
->arg_type
;
4556 struct live_urb
*lurb
;
4559 * each submitted URB needs to map to a unique ID for the
4560 * kernel, and that unique ID needs to be a pointer to
4561 * host memory. hence, we need to malloc for each URB.
4562 * isochronous transfers have a variable length struct.
4565 target_size
= thunk_type_size(arg_type
, THUNK_TARGET
);
4567 /* construct host copy of urb and metadata */
4568 lurb
= g_try_malloc0(sizeof(struct live_urb
));
4570 return -TARGET_ENOMEM
;
4573 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
4576 return -TARGET_EFAULT
;
4578 thunk_convert(&lurb
->host_urb
, argptr
, arg_type
, THUNK_HOST
);
4579 unlock_user(argptr
, arg
, 0);
4581 lurb
->target_urb_adr
= arg
;
4582 lurb
->target_buf_adr
= (uintptr_t)lurb
->host_urb
.buffer
;
4584 /* buffer space used depends on endpoint type so lock the entire buffer */
4585 /* control type urbs should check the buffer contents for true direction */
4586 rw_dir
= lurb
->host_urb
.endpoint
& USB_DIR_IN
? VERIFY_WRITE
: VERIFY_READ
;
4587 lurb
->target_buf_ptr
= lock_user(rw_dir
, lurb
->target_buf_adr
,
4588 lurb
->host_urb
.buffer_length
, 1);
4589 if (lurb
->target_buf_ptr
== NULL
) {
4591 return -TARGET_EFAULT
;
4594 /* update buffer pointer in host copy */
4595 lurb
->host_urb
.buffer
= lurb
->target_buf_ptr
;
4597 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, &lurb
->host_urb
));
4598 if (is_error(ret
)) {
4599 unlock_user(lurb
->target_buf_ptr
, lurb
->target_buf_adr
, 0);
4602 urb_hashtable_insert(lurb
);
4607 #endif /* CONFIG_USBFS */
4609 static abi_long
do_ioctl_dm(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
4610 int cmd
, abi_long arg
)
4613 struct dm_ioctl
*host_dm
;
4614 abi_long guest_data
;
4615 uint32_t guest_data_size
;
4617 const argtype
*arg_type
= ie
->arg_type
;
4619 void *big_buf
= NULL
;
4623 target_size
= thunk_type_size(arg_type
, 0);
4624 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
4626 ret
= -TARGET_EFAULT
;
4629 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
4630 unlock_user(argptr
, arg
, 0);
4632 /* buf_temp is too small, so fetch things into a bigger buffer */
4633 big_buf
= g_malloc0(((struct dm_ioctl
*)buf_temp
)->data_size
* 2);
4634 memcpy(big_buf
, buf_temp
, target_size
);
4638 guest_data
= arg
+ host_dm
->data_start
;
4639 if ((guest_data
- arg
) < 0) {
4640 ret
= -TARGET_EINVAL
;
4643 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
4644 host_data
= (char*)host_dm
+ host_dm
->data_start
;
4646 argptr
= lock_user(VERIFY_READ
, guest_data
, guest_data_size
, 1);
4648 ret
= -TARGET_EFAULT
;
4652 switch (ie
->host_cmd
) {
4654 case DM_LIST_DEVICES
:
4657 case DM_DEV_SUSPEND
:
4660 case DM_TABLE_STATUS
:
4661 case DM_TABLE_CLEAR
:
4663 case DM_LIST_VERSIONS
:
4667 case DM_DEV_SET_GEOMETRY
:
4668 /* data contains only strings */
4669 memcpy(host_data
, argptr
, guest_data_size
);
4672 memcpy(host_data
, argptr
, guest_data_size
);
4673 *(uint64_t*)host_data
= tswap64(*(uint64_t*)argptr
);
4677 void *gspec
= argptr
;
4678 void *cur_data
= host_data
;
4679 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
4680 int spec_size
= thunk_type_size(arg_type
, 0);
4683 for (i
= 0; i
< host_dm
->target_count
; i
++) {
4684 struct dm_target_spec
*spec
= cur_data
;
4688 thunk_convert(spec
, gspec
, arg_type
, THUNK_HOST
);
4689 slen
= strlen((char*)gspec
+ spec_size
) + 1;
4691 spec
->next
= sizeof(*spec
) + slen
;
4692 strcpy((char*)&spec
[1], gspec
+ spec_size
);
4694 cur_data
+= spec
->next
;
4699 ret
= -TARGET_EINVAL
;
4700 unlock_user(argptr
, guest_data
, 0);
4703 unlock_user(argptr
, guest_data
, 0);
4705 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
4706 if (!is_error(ret
)) {
4707 guest_data
= arg
+ host_dm
->data_start
;
4708 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
4709 argptr
= lock_user(VERIFY_WRITE
, guest_data
, guest_data_size
, 0);
4710 switch (ie
->host_cmd
) {
4715 case DM_DEV_SUSPEND
:
4718 case DM_TABLE_CLEAR
:
4720 case DM_DEV_SET_GEOMETRY
:
4721 /* no return data */
4723 case DM_LIST_DEVICES
:
4725 struct dm_name_list
*nl
= (void*)host_dm
+ host_dm
->data_start
;
4726 uint32_t remaining_data
= guest_data_size
;
4727 void *cur_data
= argptr
;
4728 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_name_list
) };
4729 int nl_size
= 12; /* can't use thunk_size due to alignment */
4732 uint32_t next
= nl
->next
;
4734 nl
->next
= nl_size
+ (strlen(nl
->name
) + 1);
4736 if (remaining_data
< nl
->next
) {
4737 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
4740 thunk_convert(cur_data
, nl
, arg_type
, THUNK_TARGET
);
4741 strcpy(cur_data
+ nl_size
, nl
->name
);
4742 cur_data
+= nl
->next
;
4743 remaining_data
-= nl
->next
;
4747 nl
= (void*)nl
+ next
;
4752 case DM_TABLE_STATUS
:
4754 struct dm_target_spec
*spec
= (void*)host_dm
+ host_dm
->data_start
;
4755 void *cur_data
= argptr
;
4756 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
4757 int spec_size
= thunk_type_size(arg_type
, 0);
4760 for (i
= 0; i
< host_dm
->target_count
; i
++) {
4761 uint32_t next
= spec
->next
;
4762 int slen
= strlen((char*)&spec
[1]) + 1;
4763 spec
->next
= (cur_data
- argptr
) + spec_size
+ slen
;
4764 if (guest_data_size
< spec
->next
) {
4765 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
4768 thunk_convert(cur_data
, spec
, arg_type
, THUNK_TARGET
);
4769 strcpy(cur_data
+ spec_size
, (char*)&spec
[1]);
4770 cur_data
= argptr
+ spec
->next
;
4771 spec
= (void*)host_dm
+ host_dm
->data_start
+ next
;
4777 void *hdata
= (void*)host_dm
+ host_dm
->data_start
;
4778 int count
= *(uint32_t*)hdata
;
4779 uint64_t *hdev
= hdata
+ 8;
4780 uint64_t *gdev
= argptr
+ 8;
4783 *(uint32_t*)argptr
= tswap32(count
);
4784 for (i
= 0; i
< count
; i
++) {
4785 *gdev
= tswap64(*hdev
);
4791 case DM_LIST_VERSIONS
:
4793 struct dm_target_versions
*vers
= (void*)host_dm
+ host_dm
->data_start
;
4794 uint32_t remaining_data
= guest_data_size
;
4795 void *cur_data
= argptr
;
4796 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_versions
) };
4797 int vers_size
= thunk_type_size(arg_type
, 0);
4800 uint32_t next
= vers
->next
;
4802 vers
->next
= vers_size
+ (strlen(vers
->name
) + 1);
4804 if (remaining_data
< vers
->next
) {
4805 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
4808 thunk_convert(cur_data
, vers
, arg_type
, THUNK_TARGET
);
4809 strcpy(cur_data
+ vers_size
, vers
->name
);
4810 cur_data
+= vers
->next
;
4811 remaining_data
-= vers
->next
;
4815 vers
= (void*)vers
+ next
;
4820 unlock_user(argptr
, guest_data
, 0);
4821 ret
= -TARGET_EINVAL
;
4824 unlock_user(argptr
, guest_data
, guest_data_size
);
4826 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
4828 ret
= -TARGET_EFAULT
;
4831 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
4832 unlock_user(argptr
, arg
, target_size
);
4839 static abi_long
do_ioctl_blkpg(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
4840 int cmd
, abi_long arg
)
4844 const argtype
*arg_type
= ie
->arg_type
;
4845 const argtype part_arg_type
[] = { MK_STRUCT(STRUCT_blkpg_partition
) };
4848 struct blkpg_ioctl_arg
*host_blkpg
= (void*)buf_temp
;
4849 struct blkpg_partition host_part
;
4851 /* Read and convert blkpg */
4853 target_size
= thunk_type_size(arg_type
, 0);
4854 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
4856 ret
= -TARGET_EFAULT
;
4859 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
4860 unlock_user(argptr
, arg
, 0);
4862 switch (host_blkpg
->op
) {
4863 case BLKPG_ADD_PARTITION
:
4864 case BLKPG_DEL_PARTITION
:
4865 /* payload is struct blkpg_partition */
4868 /* Unknown opcode */
4869 ret
= -TARGET_EINVAL
;
4873 /* Read and convert blkpg->data */
4874 arg
= (abi_long
)(uintptr_t)host_blkpg
->data
;
4875 target_size
= thunk_type_size(part_arg_type
, 0);
4876 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
4878 ret
= -TARGET_EFAULT
;
4881 thunk_convert(&host_part
, argptr
, part_arg_type
, THUNK_HOST
);
4882 unlock_user(argptr
, arg
, 0);
4884 /* Swizzle the data pointer to our local copy and call! */
4885 host_blkpg
->data
= &host_part
;
4886 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, host_blkpg
));
4892 static abi_long
do_ioctl_rt(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4893 int fd
, int cmd
, abi_long arg
)
4895 const argtype
*arg_type
= ie
->arg_type
;
4896 const StructEntry
*se
;
4897 const argtype
*field_types
;
4898 const int *dst_offsets
, *src_offsets
;
4901 abi_ulong
*target_rt_dev_ptr
= NULL
;
4902 unsigned long *host_rt_dev_ptr
= NULL
;
4906 assert(ie
->access
== IOC_W
);
4907 assert(*arg_type
== TYPE_PTR
);
4909 assert(*arg_type
== TYPE_STRUCT
);
4910 target_size
= thunk_type_size(arg_type
, 0);
4911 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
4913 return -TARGET_EFAULT
;
4916 assert(*arg_type
== (int)STRUCT_rtentry
);
4917 se
= struct_entries
+ *arg_type
++;
4918 assert(se
->convert
[0] == NULL
);
4919 /* convert struct here to be able to catch rt_dev string */
4920 field_types
= se
->field_types
;
4921 dst_offsets
= se
->field_offsets
[THUNK_HOST
];
4922 src_offsets
= se
->field_offsets
[THUNK_TARGET
];
4923 for (i
= 0; i
< se
->nb_fields
; i
++) {
4924 if (dst_offsets
[i
] == offsetof(struct rtentry
, rt_dev
)) {
4925 assert(*field_types
== TYPE_PTRVOID
);
4926 target_rt_dev_ptr
= (abi_ulong
*)(argptr
+ src_offsets
[i
]);
4927 host_rt_dev_ptr
= (unsigned long *)(buf_temp
+ dst_offsets
[i
]);
4928 if (*target_rt_dev_ptr
!= 0) {
4929 *host_rt_dev_ptr
= (unsigned long)lock_user_string(
4930 tswapal(*target_rt_dev_ptr
));
4931 if (!*host_rt_dev_ptr
) {
4932 unlock_user(argptr
, arg
, 0);
4933 return -TARGET_EFAULT
;
4936 *host_rt_dev_ptr
= 0;
4941 field_types
= thunk_convert(buf_temp
+ dst_offsets
[i
],
4942 argptr
+ src_offsets
[i
],
4943 field_types
, THUNK_HOST
);
4945 unlock_user(argptr
, arg
, 0);
4947 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
4949 assert(host_rt_dev_ptr
!= NULL
);
4950 assert(target_rt_dev_ptr
!= NULL
);
4951 if (*host_rt_dev_ptr
!= 0) {
4952 unlock_user((void *)*host_rt_dev_ptr
,
4953 *target_rt_dev_ptr
, 0);
4958 static abi_long
do_ioctl_kdsigaccept(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4959 int fd
, int cmd
, abi_long arg
)
4961 int sig
= target_to_host_signal(arg
);
4962 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, sig
));
4965 static abi_long
do_ioctl_SIOCGSTAMP(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4966 int fd
, int cmd
, abi_long arg
)
4971 ret
= get_errno(safe_ioctl(fd
, SIOCGSTAMP
, &tv
));
4972 if (is_error(ret
)) {
4976 if (cmd
== (int)TARGET_SIOCGSTAMP_OLD
) {
4977 if (copy_to_user_timeval(arg
, &tv
)) {
4978 return -TARGET_EFAULT
;
4981 if (copy_to_user_timeval64(arg
, &tv
)) {
4982 return -TARGET_EFAULT
;
4989 static abi_long
do_ioctl_SIOCGSTAMPNS(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4990 int fd
, int cmd
, abi_long arg
)
4995 ret
= get_errno(safe_ioctl(fd
, SIOCGSTAMPNS
, &ts
));
4996 if (is_error(ret
)) {
5000 if (cmd
== (int)TARGET_SIOCGSTAMPNS_OLD
) {
5001 if (host_to_target_timespec(arg
, &ts
)) {
5002 return -TARGET_EFAULT
;
5005 if (host_to_target_timespec64(arg
, &ts
)) {
5006 return -TARGET_EFAULT
;
5014 static abi_long
do_ioctl_tiocgptpeer(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5015 int fd
, int cmd
, abi_long arg
)
5017 int flags
= target_to_host_bitmask(arg
, fcntl_flags_tbl
);
5018 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, flags
));
5022 static IOCTLEntry ioctl_entries
[] = {
5023 #define IOCTL(cmd, access, ...) \
5024 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5025 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5026 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5027 #define IOCTL_IGNORE(cmd) \
5028 { TARGET_ ## cmd, 0, #cmd },
5033 /* ??? Implement proper locking for ioctls. */
5034 /* do_ioctl() Must return target values and target errnos. */
5035 static abi_long
do_ioctl(int fd
, int cmd
, abi_long arg
)
5037 const IOCTLEntry
*ie
;
5038 const argtype
*arg_type
;
5040 uint8_t buf_temp
[MAX_STRUCT_SIZE
];
5046 if (ie
->target_cmd
== 0) {
5047 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd
);
5048 return -TARGET_ENOSYS
;
5050 if (ie
->target_cmd
== cmd
)
5054 arg_type
= ie
->arg_type
;
5056 return ie
->do_ioctl(ie
, buf_temp
, fd
, cmd
, arg
);
5057 } else if (!ie
->host_cmd
) {
5058 /* Some architectures define BSD ioctls in their headers
5059 that are not implemented in Linux. */
5060 return -TARGET_ENOSYS
;
5063 switch(arg_type
[0]) {
5066 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
));
5070 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, arg
));
5074 target_size
= thunk_type_size(arg_type
, 0);
5075 switch(ie
->access
) {
5077 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5078 if (!is_error(ret
)) {
5079 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5081 return -TARGET_EFAULT
;
5082 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5083 unlock_user(argptr
, arg
, target_size
);
5087 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5089 return -TARGET_EFAULT
;
5090 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5091 unlock_user(argptr
, arg
, 0);
5092 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5096 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5098 return -TARGET_EFAULT
;
5099 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5100 unlock_user(argptr
, arg
, 0);
5101 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5102 if (!is_error(ret
)) {
5103 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5105 return -TARGET_EFAULT
;
5106 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5107 unlock_user(argptr
, arg
, target_size
);
5113 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5114 (long)cmd
, arg_type
[0]);
5115 ret
= -TARGET_ENOSYS
;
5121 static const bitmask_transtbl iflag_tbl
[] = {
5122 { TARGET_IGNBRK
, TARGET_IGNBRK
, IGNBRK
, IGNBRK
},
5123 { TARGET_BRKINT
, TARGET_BRKINT
, BRKINT
, BRKINT
},
5124 { TARGET_IGNPAR
, TARGET_IGNPAR
, IGNPAR
, IGNPAR
},
5125 { TARGET_PARMRK
, TARGET_PARMRK
, PARMRK
, PARMRK
},
5126 { TARGET_INPCK
, TARGET_INPCK
, INPCK
, INPCK
},
5127 { TARGET_ISTRIP
, TARGET_ISTRIP
, ISTRIP
, ISTRIP
},
5128 { TARGET_INLCR
, TARGET_INLCR
, INLCR
, INLCR
},
5129 { TARGET_IGNCR
, TARGET_IGNCR
, IGNCR
, IGNCR
},
5130 { TARGET_ICRNL
, TARGET_ICRNL
, ICRNL
, ICRNL
},
5131 { TARGET_IUCLC
, TARGET_IUCLC
, IUCLC
, IUCLC
},
5132 { TARGET_IXON
, TARGET_IXON
, IXON
, IXON
},
5133 { TARGET_IXANY
, TARGET_IXANY
, IXANY
, IXANY
},
5134 { TARGET_IXOFF
, TARGET_IXOFF
, IXOFF
, IXOFF
},
5135 { TARGET_IMAXBEL
, TARGET_IMAXBEL
, IMAXBEL
, IMAXBEL
},
5139 static const bitmask_transtbl oflag_tbl
[] = {
5140 { TARGET_OPOST
, TARGET_OPOST
, OPOST
, OPOST
},
5141 { TARGET_OLCUC
, TARGET_OLCUC
, OLCUC
, OLCUC
},
5142 { TARGET_ONLCR
, TARGET_ONLCR
, ONLCR
, ONLCR
},
5143 { TARGET_OCRNL
, TARGET_OCRNL
, OCRNL
, OCRNL
},
5144 { TARGET_ONOCR
, TARGET_ONOCR
, ONOCR
, ONOCR
},
5145 { TARGET_ONLRET
, TARGET_ONLRET
, ONLRET
, ONLRET
},
5146 { TARGET_OFILL
, TARGET_OFILL
, OFILL
, OFILL
},
5147 { TARGET_OFDEL
, TARGET_OFDEL
, OFDEL
, OFDEL
},
5148 { TARGET_NLDLY
, TARGET_NL0
, NLDLY
, NL0
},
5149 { TARGET_NLDLY
, TARGET_NL1
, NLDLY
, NL1
},
5150 { TARGET_CRDLY
, TARGET_CR0
, CRDLY
, CR0
},
5151 { TARGET_CRDLY
, TARGET_CR1
, CRDLY
, CR1
},
5152 { TARGET_CRDLY
, TARGET_CR2
, CRDLY
, CR2
},
5153 { TARGET_CRDLY
, TARGET_CR3
, CRDLY
, CR3
},
5154 { TARGET_TABDLY
, TARGET_TAB0
, TABDLY
, TAB0
},
5155 { TARGET_TABDLY
, TARGET_TAB1
, TABDLY
, TAB1
},
5156 { TARGET_TABDLY
, TARGET_TAB2
, TABDLY
, TAB2
},
5157 { TARGET_TABDLY
, TARGET_TAB3
, TABDLY
, TAB3
},
5158 { TARGET_BSDLY
, TARGET_BS0
, BSDLY
, BS0
},
5159 { TARGET_BSDLY
, TARGET_BS1
, BSDLY
, BS1
},
5160 { TARGET_VTDLY
, TARGET_VT0
, VTDLY
, VT0
},
5161 { TARGET_VTDLY
, TARGET_VT1
, VTDLY
, VT1
},
5162 { TARGET_FFDLY
, TARGET_FF0
, FFDLY
, FF0
},
5163 { TARGET_FFDLY
, TARGET_FF1
, FFDLY
, FF1
},
5167 static const bitmask_transtbl cflag_tbl
[] = {
5168 { TARGET_CBAUD
, TARGET_B0
, CBAUD
, B0
},
5169 { TARGET_CBAUD
, TARGET_B50
, CBAUD
, B50
},
5170 { TARGET_CBAUD
, TARGET_B75
, CBAUD
, B75
},
5171 { TARGET_CBAUD
, TARGET_B110
, CBAUD
, B110
},
5172 { TARGET_CBAUD
, TARGET_B134
, CBAUD
, B134
},
5173 { TARGET_CBAUD
, TARGET_B150
, CBAUD
, B150
},
5174 { TARGET_CBAUD
, TARGET_B200
, CBAUD
, B200
},
5175 { TARGET_CBAUD
, TARGET_B300
, CBAUD
, B300
},
5176 { TARGET_CBAUD
, TARGET_B600
, CBAUD
, B600
},
5177 { TARGET_CBAUD
, TARGET_B1200
, CBAUD
, B1200
},
5178 { TARGET_CBAUD
, TARGET_B1800
, CBAUD
, B1800
},
5179 { TARGET_CBAUD
, TARGET_B2400
, CBAUD
, B2400
},
5180 { TARGET_CBAUD
, TARGET_B4800
, CBAUD
, B4800
},
5181 { TARGET_CBAUD
, TARGET_B9600
, CBAUD
, B9600
},
5182 { TARGET_CBAUD
, TARGET_B19200
, CBAUD
, B19200
},
5183 { TARGET_CBAUD
, TARGET_B38400
, CBAUD
, B38400
},
5184 { TARGET_CBAUD
, TARGET_B57600
, CBAUD
, B57600
},
5185 { TARGET_CBAUD
, TARGET_B115200
, CBAUD
, B115200
},
5186 { TARGET_CBAUD
, TARGET_B230400
, CBAUD
, B230400
},
5187 { TARGET_CBAUD
, TARGET_B460800
, CBAUD
, B460800
},
5188 { TARGET_CSIZE
, TARGET_CS5
, CSIZE
, CS5
},
5189 { TARGET_CSIZE
, TARGET_CS6
, CSIZE
, CS6
},
5190 { TARGET_CSIZE
, TARGET_CS7
, CSIZE
, CS7
},
5191 { TARGET_CSIZE
, TARGET_CS8
, CSIZE
, CS8
},
5192 { TARGET_CSTOPB
, TARGET_CSTOPB
, CSTOPB
, CSTOPB
},
5193 { TARGET_CREAD
, TARGET_CREAD
, CREAD
, CREAD
},
5194 { TARGET_PARENB
, TARGET_PARENB
, PARENB
, PARENB
},
5195 { TARGET_PARODD
, TARGET_PARODD
, PARODD
, PARODD
},
5196 { TARGET_HUPCL
, TARGET_HUPCL
, HUPCL
, HUPCL
},
5197 { TARGET_CLOCAL
, TARGET_CLOCAL
, CLOCAL
, CLOCAL
},
5198 { TARGET_CRTSCTS
, TARGET_CRTSCTS
, CRTSCTS
, CRTSCTS
},
5202 static const bitmask_transtbl lflag_tbl
[] = {
5203 { TARGET_ISIG
, TARGET_ISIG
, ISIG
, ISIG
},
5204 { TARGET_ICANON
, TARGET_ICANON
, ICANON
, ICANON
},
5205 { TARGET_XCASE
, TARGET_XCASE
, XCASE
, XCASE
},
5206 { TARGET_ECHO
, TARGET_ECHO
, ECHO
, ECHO
},
5207 { TARGET_ECHOE
, TARGET_ECHOE
, ECHOE
, ECHOE
},
5208 { TARGET_ECHOK
, TARGET_ECHOK
, ECHOK
, ECHOK
},
5209 { TARGET_ECHONL
, TARGET_ECHONL
, ECHONL
, ECHONL
},
5210 { TARGET_NOFLSH
, TARGET_NOFLSH
, NOFLSH
, NOFLSH
},
5211 { TARGET_TOSTOP
, TARGET_TOSTOP
, TOSTOP
, TOSTOP
},
5212 { TARGET_ECHOCTL
, TARGET_ECHOCTL
, ECHOCTL
, ECHOCTL
},
5213 { TARGET_ECHOPRT
, TARGET_ECHOPRT
, ECHOPRT
, ECHOPRT
},
5214 { TARGET_ECHOKE
, TARGET_ECHOKE
, ECHOKE
, ECHOKE
},
5215 { TARGET_FLUSHO
, TARGET_FLUSHO
, FLUSHO
, FLUSHO
},
5216 { TARGET_PENDIN
, TARGET_PENDIN
, PENDIN
, PENDIN
},
5217 { TARGET_IEXTEN
, TARGET_IEXTEN
, IEXTEN
, IEXTEN
},
5221 static void target_to_host_termios (void *dst
, const void *src
)
5223 struct host_termios
*host
= dst
;
5224 const struct target_termios
*target
= src
;
5227 target_to_host_bitmask(tswap32(target
->c_iflag
), iflag_tbl
);
5229 target_to_host_bitmask(tswap32(target
->c_oflag
), oflag_tbl
);
5231 target_to_host_bitmask(tswap32(target
->c_cflag
), cflag_tbl
);
5233 target_to_host_bitmask(tswap32(target
->c_lflag
), lflag_tbl
);
5234 host
->c_line
= target
->c_line
;
5236 memset(host
->c_cc
, 0, sizeof(host
->c_cc
));
5237 host
->c_cc
[VINTR
] = target
->c_cc
[TARGET_VINTR
];
5238 host
->c_cc
[VQUIT
] = target
->c_cc
[TARGET_VQUIT
];
5239 host
->c_cc
[VERASE
] = target
->c_cc
[TARGET_VERASE
];
5240 host
->c_cc
[VKILL
] = target
->c_cc
[TARGET_VKILL
];
5241 host
->c_cc
[VEOF
] = target
->c_cc
[TARGET_VEOF
];
5242 host
->c_cc
[VTIME
] = target
->c_cc
[TARGET_VTIME
];
5243 host
->c_cc
[VMIN
] = target
->c_cc
[TARGET_VMIN
];
5244 host
->c_cc
[VSWTC
] = target
->c_cc
[TARGET_VSWTC
];
5245 host
->c_cc
[VSTART
] = target
->c_cc
[TARGET_VSTART
];
5246 host
->c_cc
[VSTOP
] = target
->c_cc
[TARGET_VSTOP
];
5247 host
->c_cc
[VSUSP
] = target
->c_cc
[TARGET_VSUSP
];
5248 host
->c_cc
[VEOL
] = target
->c_cc
[TARGET_VEOL
];
5249 host
->c_cc
[VREPRINT
] = target
->c_cc
[TARGET_VREPRINT
];
5250 host
->c_cc
[VDISCARD
] = target
->c_cc
[TARGET_VDISCARD
];
5251 host
->c_cc
[VWERASE
] = target
->c_cc
[TARGET_VWERASE
];
5252 host
->c_cc
[VLNEXT
] = target
->c_cc
[TARGET_VLNEXT
];
5253 host
->c_cc
[VEOL2
] = target
->c_cc
[TARGET_VEOL2
];
5256 static void host_to_target_termios (void *dst
, const void *src
)
5258 struct target_termios
*target
= dst
;
5259 const struct host_termios
*host
= src
;
5262 tswap32(host_to_target_bitmask(host
->c_iflag
, iflag_tbl
));
5264 tswap32(host_to_target_bitmask(host
->c_oflag
, oflag_tbl
));
5266 tswap32(host_to_target_bitmask(host
->c_cflag
, cflag_tbl
));
5268 tswap32(host_to_target_bitmask(host
->c_lflag
, lflag_tbl
));
5269 target
->c_line
= host
->c_line
;
5271 memset(target
->c_cc
, 0, sizeof(target
->c_cc
));
5272 target
->c_cc
[TARGET_VINTR
] = host
->c_cc
[VINTR
];
5273 target
->c_cc
[TARGET_VQUIT
] = host
->c_cc
[VQUIT
];
5274 target
->c_cc
[TARGET_VERASE
] = host
->c_cc
[VERASE
];
5275 target
->c_cc
[TARGET_VKILL
] = host
->c_cc
[VKILL
];
5276 target
->c_cc
[TARGET_VEOF
] = host
->c_cc
[VEOF
];
5277 target
->c_cc
[TARGET_VTIME
] = host
->c_cc
[VTIME
];
5278 target
->c_cc
[TARGET_VMIN
] = host
->c_cc
[VMIN
];
5279 target
->c_cc
[TARGET_VSWTC
] = host
->c_cc
[VSWTC
];
5280 target
->c_cc
[TARGET_VSTART
] = host
->c_cc
[VSTART
];
5281 target
->c_cc
[TARGET_VSTOP
] = host
->c_cc
[VSTOP
];
5282 target
->c_cc
[TARGET_VSUSP
] = host
->c_cc
[VSUSP
];
5283 target
->c_cc
[TARGET_VEOL
] = host
->c_cc
[VEOL
];
5284 target
->c_cc
[TARGET_VREPRINT
] = host
->c_cc
[VREPRINT
];
5285 target
->c_cc
[TARGET_VDISCARD
] = host
->c_cc
[VDISCARD
];
5286 target
->c_cc
[TARGET_VWERASE
] = host
->c_cc
[VWERASE
];
5287 target
->c_cc
[TARGET_VLNEXT
] = host
->c_cc
[VLNEXT
];
5288 target
->c_cc
[TARGET_VEOL2
] = host
->c_cc
[VEOL2
];
5291 static const StructEntry struct_termios_def
= {
5292 .convert
= { host_to_target_termios
, target_to_host_termios
},
5293 .size
= { sizeof(struct target_termios
), sizeof(struct host_termios
) },
5294 .align
= { __alignof__(struct target_termios
), __alignof__(struct host_termios
) },
5297 static bitmask_transtbl mmap_flags_tbl
[] = {
5298 { TARGET_MAP_SHARED
, TARGET_MAP_SHARED
, MAP_SHARED
, MAP_SHARED
},
5299 { TARGET_MAP_PRIVATE
, TARGET_MAP_PRIVATE
, MAP_PRIVATE
, MAP_PRIVATE
},
5300 { TARGET_MAP_FIXED
, TARGET_MAP_FIXED
, MAP_FIXED
, MAP_FIXED
},
5301 { TARGET_MAP_ANONYMOUS
, TARGET_MAP_ANONYMOUS
,
5302 MAP_ANONYMOUS
, MAP_ANONYMOUS
},
5303 { TARGET_MAP_GROWSDOWN
, TARGET_MAP_GROWSDOWN
,
5304 MAP_GROWSDOWN
, MAP_GROWSDOWN
},
5305 { TARGET_MAP_DENYWRITE
, TARGET_MAP_DENYWRITE
,
5306 MAP_DENYWRITE
, MAP_DENYWRITE
},
5307 { TARGET_MAP_EXECUTABLE
, TARGET_MAP_EXECUTABLE
,
5308 MAP_EXECUTABLE
, MAP_EXECUTABLE
},
5309 { TARGET_MAP_LOCKED
, TARGET_MAP_LOCKED
, MAP_LOCKED
, MAP_LOCKED
},
5310 { TARGET_MAP_NORESERVE
, TARGET_MAP_NORESERVE
,
5311 MAP_NORESERVE
, MAP_NORESERVE
},
5312 { TARGET_MAP_HUGETLB
, TARGET_MAP_HUGETLB
, MAP_HUGETLB
, MAP_HUGETLB
},
5313 /* MAP_STACK had been ignored by the kernel for quite some time.
5314 Recognize it for the target insofar as we do not want to pass
5315 it through to the host. */
5316 { TARGET_MAP_STACK
, TARGET_MAP_STACK
, 0, 0 },
5320 #if defined(TARGET_I386)
5322 /* NOTE: there is really one LDT for all the threads */
5323 static uint8_t *ldt_table
;
5325 static abi_long
read_ldt(abi_ulong ptr
, unsigned long bytecount
)
5332 size
= TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
;
5333 if (size
> bytecount
)
5335 p
= lock_user(VERIFY_WRITE
, ptr
, size
, 0);
5337 return -TARGET_EFAULT
;
5338 /* ??? Should this by byteswapped? */
5339 memcpy(p
, ldt_table
, size
);
5340 unlock_user(p
, ptr
, size
);
5344 /* XXX: add locking support */
5345 static abi_long
write_ldt(CPUX86State
*env
,
5346 abi_ulong ptr
, unsigned long bytecount
, int oldmode
)
5348 struct target_modify_ldt_ldt_s ldt_info
;
5349 struct target_modify_ldt_ldt_s
*target_ldt_info
;
5350 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
5351 int seg_not_present
, useable
, lm
;
5352 uint32_t *lp
, entry_1
, entry_2
;
5354 if (bytecount
!= sizeof(ldt_info
))
5355 return -TARGET_EINVAL
;
5356 if (!lock_user_struct(VERIFY_READ
, target_ldt_info
, ptr
, 1))
5357 return -TARGET_EFAULT
;
5358 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
5359 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
5360 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
5361 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
5362 unlock_user_struct(target_ldt_info
, ptr
, 0);
5364 if (ldt_info
.entry_number
>= TARGET_LDT_ENTRIES
)
5365 return -TARGET_EINVAL
;
5366 seg_32bit
= ldt_info
.flags
& 1;
5367 contents
= (ldt_info
.flags
>> 1) & 3;
5368 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
5369 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
5370 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
5371 useable
= (ldt_info
.flags
>> 6) & 1;
5375 lm
= (ldt_info
.flags
>> 7) & 1;
5377 if (contents
== 3) {
5379 return -TARGET_EINVAL
;
5380 if (seg_not_present
== 0)
5381 return -TARGET_EINVAL
;
5383 /* allocate the LDT */
5385 env
->ldt
.base
= target_mmap(0,
5386 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
,
5387 PROT_READ
|PROT_WRITE
,
5388 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
5389 if (env
->ldt
.base
== -1)
5390 return -TARGET_ENOMEM
;
5391 memset(g2h(env
->ldt
.base
), 0,
5392 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
);
5393 env
->ldt
.limit
= 0xffff;
5394 ldt_table
= g2h(env
->ldt
.base
);
5397 /* NOTE: same code as Linux kernel */
5398 /* Allow LDTs to be cleared by the user. */
5399 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
5402 read_exec_only
== 1 &&
5404 limit_in_pages
== 0 &&
5405 seg_not_present
== 1 &&
5413 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
5414 (ldt_info
.limit
& 0x0ffff);
5415 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
5416 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
5417 (ldt_info
.limit
& 0xf0000) |
5418 ((read_exec_only
^ 1) << 9) |
5420 ((seg_not_present
^ 1) << 15) |
5422 (limit_in_pages
<< 23) |
5426 entry_2
|= (useable
<< 20);
5428 /* Install the new entry ... */
5430 lp
= (uint32_t *)(ldt_table
+ (ldt_info
.entry_number
<< 3));
5431 lp
[0] = tswap32(entry_1
);
5432 lp
[1] = tswap32(entry_2
);
5436 /* specific and weird i386 syscalls */
5437 static abi_long
do_modify_ldt(CPUX86State
*env
, int func
, abi_ulong ptr
,
5438 unsigned long bytecount
)
5444 ret
= read_ldt(ptr
, bytecount
);
5447 ret
= write_ldt(env
, ptr
, bytecount
, 1);
5450 ret
= write_ldt(env
, ptr
, bytecount
, 0);
5453 ret
= -TARGET_ENOSYS
;
5459 #if defined(TARGET_I386) && defined(TARGET_ABI32)
5460 abi_long
do_set_thread_area(CPUX86State
*env
, abi_ulong ptr
)
5462 uint64_t *gdt_table
= g2h(env
->gdt
.base
);
5463 struct target_modify_ldt_ldt_s ldt_info
;
5464 struct target_modify_ldt_ldt_s
*target_ldt_info
;
5465 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
5466 int seg_not_present
, useable
, lm
;
5467 uint32_t *lp
, entry_1
, entry_2
;
5470 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
5471 if (!target_ldt_info
)
5472 return -TARGET_EFAULT
;
5473 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
5474 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
5475 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
5476 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
5477 if (ldt_info
.entry_number
== -1) {
5478 for (i
=TARGET_GDT_ENTRY_TLS_MIN
; i
<=TARGET_GDT_ENTRY_TLS_MAX
; i
++) {
5479 if (gdt_table
[i
] == 0) {
5480 ldt_info
.entry_number
= i
;
5481 target_ldt_info
->entry_number
= tswap32(i
);
5486 unlock_user_struct(target_ldt_info
, ptr
, 1);
5488 if (ldt_info
.entry_number
< TARGET_GDT_ENTRY_TLS_MIN
||
5489 ldt_info
.entry_number
> TARGET_GDT_ENTRY_TLS_MAX
)
5490 return -TARGET_EINVAL
;
5491 seg_32bit
= ldt_info
.flags
& 1;
5492 contents
= (ldt_info
.flags
>> 1) & 3;
5493 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
5494 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
5495 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
5496 useable
= (ldt_info
.flags
>> 6) & 1;
5500 lm
= (ldt_info
.flags
>> 7) & 1;
5503 if (contents
== 3) {
5504 if (seg_not_present
== 0)
5505 return -TARGET_EINVAL
;
5508 /* NOTE: same code as Linux kernel */
5509 /* Allow LDTs to be cleared by the user. */
5510 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
5511 if ((contents
== 0 &&
5512 read_exec_only
== 1 &&
5514 limit_in_pages
== 0 &&
5515 seg_not_present
== 1 &&
5523 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
5524 (ldt_info
.limit
& 0x0ffff);
5525 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
5526 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
5527 (ldt_info
.limit
& 0xf0000) |
5528 ((read_exec_only
^ 1) << 9) |
5530 ((seg_not_present
^ 1) << 15) |
5532 (limit_in_pages
<< 23) |
5537 /* Install the new entry ... */
5539 lp
= (uint32_t *)(gdt_table
+ ldt_info
.entry_number
);
5540 lp
[0] = tswap32(entry_1
);
5541 lp
[1] = tswap32(entry_2
);
5545 static abi_long
do_get_thread_area(CPUX86State
*env
, abi_ulong ptr
)
5547 struct target_modify_ldt_ldt_s
*target_ldt_info
;
5548 uint64_t *gdt_table
= g2h(env
->gdt
.base
);
5549 uint32_t base_addr
, limit
, flags
;
5550 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
, idx
;
5551 int seg_not_present
, useable
, lm
;
5552 uint32_t *lp
, entry_1
, entry_2
;
5554 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
5555 if (!target_ldt_info
)
5556 return -TARGET_EFAULT
;
5557 idx
= tswap32(target_ldt_info
->entry_number
);
5558 if (idx
< TARGET_GDT_ENTRY_TLS_MIN
||
5559 idx
> TARGET_GDT_ENTRY_TLS_MAX
) {
5560 unlock_user_struct(target_ldt_info
, ptr
, 1);
5561 return -TARGET_EINVAL
;
5563 lp
= (uint32_t *)(gdt_table
+ idx
);
5564 entry_1
= tswap32(lp
[0]);
5565 entry_2
= tswap32(lp
[1]);
5567 read_exec_only
= ((entry_2
>> 9) & 1) ^ 1;
5568 contents
= (entry_2
>> 10) & 3;
5569 seg_not_present
= ((entry_2
>> 15) & 1) ^ 1;
5570 seg_32bit
= (entry_2
>> 22) & 1;
5571 limit_in_pages
= (entry_2
>> 23) & 1;
5572 useable
= (entry_2
>> 20) & 1;
5576 lm
= (entry_2
>> 21) & 1;
5578 flags
= (seg_32bit
<< 0) | (contents
<< 1) |
5579 (read_exec_only
<< 3) | (limit_in_pages
<< 4) |
5580 (seg_not_present
<< 5) | (useable
<< 6) | (lm
<< 7);
5581 limit
= (entry_1
& 0xffff) | (entry_2
& 0xf0000);
5582 base_addr
= (entry_1
>> 16) |
5583 (entry_2
& 0xff000000) |
5584 ((entry_2
& 0xff) << 16);
5585 target_ldt_info
->base_addr
= tswapal(base_addr
);
5586 target_ldt_info
->limit
= tswap32(limit
);
5587 target_ldt_info
->flags
= tswap32(flags
);
5588 unlock_user_struct(target_ldt_info
, ptr
, 1);
5591 #endif /* TARGET_I386 && TARGET_ABI32 */
5593 #ifndef TARGET_ABI32
5594 abi_long
do_arch_prctl(CPUX86State
*env
, int code
, abi_ulong addr
)
5601 case TARGET_ARCH_SET_GS
:
5602 case TARGET_ARCH_SET_FS
:
5603 if (code
== TARGET_ARCH_SET_GS
)
5607 cpu_x86_load_seg(env
, idx
, 0);
5608 env
->segs
[idx
].base
= addr
;
5610 case TARGET_ARCH_GET_GS
:
5611 case TARGET_ARCH_GET_FS
:
5612 if (code
== TARGET_ARCH_GET_GS
)
5616 val
= env
->segs
[idx
].base
;
5617 if (put_user(val
, addr
, abi_ulong
))
5618 ret
= -TARGET_EFAULT
;
5621 ret
= -TARGET_EINVAL
;
5628 #endif /* defined(TARGET_I386) */
5630 #define NEW_STACK_SIZE 0x40000
5633 static pthread_mutex_t clone_lock
= PTHREAD_MUTEX_INITIALIZER
;
5636 pthread_mutex_t mutex
;
5637 pthread_cond_t cond
;
5640 abi_ulong child_tidptr
;
5641 abi_ulong parent_tidptr
;
5645 static void *clone_func(void *arg
)
5647 new_thread_info
*info
= arg
;
5652 rcu_register_thread();
5653 tcg_register_thread();
5657 ts
= (TaskState
*)cpu
->opaque
;
5658 info
->tid
= sys_gettid();
5660 if (info
->child_tidptr
)
5661 put_user_u32(info
->tid
, info
->child_tidptr
);
5662 if (info
->parent_tidptr
)
5663 put_user_u32(info
->tid
, info
->parent_tidptr
);
5664 qemu_guest_random_seed_thread_part2(cpu
->random_seed
);
5665 /* Enable signals. */
5666 sigprocmask(SIG_SETMASK
, &info
->sigmask
, NULL
);
5667 /* Signal to the parent that we're ready. */
5668 pthread_mutex_lock(&info
->mutex
);
5669 pthread_cond_broadcast(&info
->cond
);
5670 pthread_mutex_unlock(&info
->mutex
);
5671 /* Wait until the parent has finished initializing the tls state. */
5672 pthread_mutex_lock(&clone_lock
);
5673 pthread_mutex_unlock(&clone_lock
);
5679 /* do_fork() Must return host values and target errnos (unlike most
5680 do_*() functions). */
5681 static int do_fork(CPUArchState
*env
, unsigned int flags
, abi_ulong newsp
,
5682 abi_ulong parent_tidptr
, target_ulong newtls
,
5683 abi_ulong child_tidptr
)
5685 CPUState
*cpu
= env_cpu(env
);
5689 CPUArchState
*new_env
;
5692 flags
&= ~CLONE_IGNORED_FLAGS
;
5694 /* Emulate vfork() with fork() */
5695 if (flags
& CLONE_VFORK
)
5696 flags
&= ~(CLONE_VFORK
| CLONE_VM
);
5698 if (flags
& CLONE_VM
) {
5699 TaskState
*parent_ts
= (TaskState
*)cpu
->opaque
;
5700 new_thread_info info
;
5701 pthread_attr_t attr
;
5703 if (((flags
& CLONE_THREAD_FLAGS
) != CLONE_THREAD_FLAGS
) ||
5704 (flags
& CLONE_INVALID_THREAD_FLAGS
)) {
5705 return -TARGET_EINVAL
;
5708 ts
= g_new0(TaskState
, 1);
5709 init_task_state(ts
);
5711 /* Grab a mutex so that thread setup appears atomic. */
5712 pthread_mutex_lock(&clone_lock
);
5714 /* we create a new CPU instance. */
5715 new_env
= cpu_copy(env
);
5716 /* Init regs that differ from the parent. */
5717 cpu_clone_regs(new_env
, newsp
);
5718 new_cpu
= env_cpu(new_env
);
5719 new_cpu
->opaque
= ts
;
5720 ts
->bprm
= parent_ts
->bprm
;
5721 ts
->info
= parent_ts
->info
;
5722 ts
->signal_mask
= parent_ts
->signal_mask
;
5724 if (flags
& CLONE_CHILD_CLEARTID
) {
5725 ts
->child_tidptr
= child_tidptr
;
5728 if (flags
& CLONE_SETTLS
) {
5729 cpu_set_tls (new_env
, newtls
);
5732 memset(&info
, 0, sizeof(info
));
5733 pthread_mutex_init(&info
.mutex
, NULL
);
5734 pthread_mutex_lock(&info
.mutex
);
5735 pthread_cond_init(&info
.cond
, NULL
);
5737 if (flags
& CLONE_CHILD_SETTID
) {
5738 info
.child_tidptr
= child_tidptr
;
5740 if (flags
& CLONE_PARENT_SETTID
) {
5741 info
.parent_tidptr
= parent_tidptr
;
5744 ret
= pthread_attr_init(&attr
);
5745 ret
= pthread_attr_setstacksize(&attr
, NEW_STACK_SIZE
);
5746 ret
= pthread_attr_setdetachstate(&attr
, PTHREAD_CREATE_DETACHED
);
5747 /* It is not safe to deliver signals until the child has finished
5748 initializing, so temporarily block all signals. */
5749 sigfillset(&sigmask
);
5750 sigprocmask(SIG_BLOCK
, &sigmask
, &info
.sigmask
);
5751 cpu
->random_seed
= qemu_guest_random_seed_thread_part1();
5753 /* If this is our first additional thread, we need to ensure we
5754 * generate code for parallel execution and flush old translations.
5756 if (!parallel_cpus
) {
5757 parallel_cpus
= true;
5761 ret
= pthread_create(&info
.thread
, &attr
, clone_func
, &info
);
5762 /* TODO: Free new CPU state if thread creation failed. */
5764 sigprocmask(SIG_SETMASK
, &info
.sigmask
, NULL
);
5765 pthread_attr_destroy(&attr
);
5767 /* Wait for the child to initialize. */
5768 pthread_cond_wait(&info
.cond
, &info
.mutex
);
5773 pthread_mutex_unlock(&info
.mutex
);
5774 pthread_cond_destroy(&info
.cond
);
5775 pthread_mutex_destroy(&info
.mutex
);
5776 pthread_mutex_unlock(&clone_lock
);
5778 /* if no CLONE_VM, we consider it is a fork */
5779 if (flags
& CLONE_INVALID_FORK_FLAGS
) {
5780 return -TARGET_EINVAL
;
5783 /* We can't support custom termination signals */
5784 if ((flags
& CSIGNAL
) != TARGET_SIGCHLD
) {
5785 return -TARGET_EINVAL
;
5788 if (block_signals()) {
5789 return -TARGET_ERESTARTSYS
;
5795 /* Child Process. */
5796 cpu_clone_regs(env
, newsp
);
5798 /* There is a race condition here. The parent process could
5799 theoretically read the TID in the child process before the child
5800 tid is set. This would require using either ptrace
5801 (not implemented) or having *_tidptr to point at a shared memory
5802 mapping. We can't repeat the spinlock hack used above because
5803 the child process gets its own copy of the lock. */
5804 if (flags
& CLONE_CHILD_SETTID
)
5805 put_user_u32(sys_gettid(), child_tidptr
);
5806 if (flags
& CLONE_PARENT_SETTID
)
5807 put_user_u32(sys_gettid(), parent_tidptr
);
5808 ts
= (TaskState
*)cpu
->opaque
;
5809 if (flags
& CLONE_SETTLS
)
5810 cpu_set_tls (env
, newtls
);
5811 if (flags
& CLONE_CHILD_CLEARTID
)
5812 ts
->child_tidptr
= child_tidptr
;
5820 /* warning : doesn't handle linux specific flags... */
5821 static int target_to_host_fcntl_cmd(int cmd
)
5826 case TARGET_F_DUPFD
:
5827 case TARGET_F_GETFD
:
5828 case TARGET_F_SETFD
:
5829 case TARGET_F_GETFL
:
5830 case TARGET_F_SETFL
:
5833 case TARGET_F_GETLK
:
5836 case TARGET_F_SETLK
:
5839 case TARGET_F_SETLKW
:
5842 case TARGET_F_GETOWN
:
5845 case TARGET_F_SETOWN
:
5848 case TARGET_F_GETSIG
:
5851 case TARGET_F_SETSIG
:
5854 #if TARGET_ABI_BITS == 32
5855 case TARGET_F_GETLK64
:
5858 case TARGET_F_SETLK64
:
5861 case TARGET_F_SETLKW64
:
5865 case TARGET_F_SETLEASE
:
5868 case TARGET_F_GETLEASE
:
5871 #ifdef F_DUPFD_CLOEXEC
5872 case TARGET_F_DUPFD_CLOEXEC
:
5873 ret
= F_DUPFD_CLOEXEC
;
5876 case TARGET_F_NOTIFY
:
5880 case TARGET_F_GETOWN_EX
:
5885 case TARGET_F_SETOWN_EX
:
5890 case TARGET_F_SETPIPE_SZ
:
5893 case TARGET_F_GETPIPE_SZ
:
5898 ret
= -TARGET_EINVAL
;
5902 #if defined(__powerpc64__)
5903 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
5904 * is not supported by kernel. The glibc fcntl call actually adjusts
5905 * them to 5, 6 and 7 before making the syscall(). Since we make the
5906 * syscall directly, adjust to what is supported by the kernel.
5908 if (ret
>= F_GETLK64
&& ret
<= F_SETLKW64
) {
5909 ret
-= F_GETLK64
- 5;
5916 #define FLOCK_TRANSTBL \
5918 TRANSTBL_CONVERT(F_RDLCK); \
5919 TRANSTBL_CONVERT(F_WRLCK); \
5920 TRANSTBL_CONVERT(F_UNLCK); \
5921 TRANSTBL_CONVERT(F_EXLCK); \
5922 TRANSTBL_CONVERT(F_SHLCK); \
5925 static int target_to_host_flock(int type
)
5927 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
5929 #undef TRANSTBL_CONVERT
5930 return -TARGET_EINVAL
;
5933 static int host_to_target_flock(int type
)
5935 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
5937 #undef TRANSTBL_CONVERT
5938 /* if we don't know how to convert the value coming
5939 * from the host we copy to the target field as-is
5944 static inline abi_long
copy_from_user_flock(struct flock64
*fl
,
5945 abi_ulong target_flock_addr
)
5947 struct target_flock
*target_fl
;
5950 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
5951 return -TARGET_EFAULT
;
5954 __get_user(l_type
, &target_fl
->l_type
);
5955 l_type
= target_to_host_flock(l_type
);
5959 fl
->l_type
= l_type
;
5960 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
5961 __get_user(fl
->l_start
, &target_fl
->l_start
);
5962 __get_user(fl
->l_len
, &target_fl
->l_len
);
5963 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
5964 unlock_user_struct(target_fl
, target_flock_addr
, 0);
5968 static inline abi_long
copy_to_user_flock(abi_ulong target_flock_addr
,
5969 const struct flock64
*fl
)
5971 struct target_flock
*target_fl
;
5974 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
5975 return -TARGET_EFAULT
;
5978 l_type
= host_to_target_flock(fl
->l_type
);
5979 __put_user(l_type
, &target_fl
->l_type
);
5980 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
5981 __put_user(fl
->l_start
, &target_fl
->l_start
);
5982 __put_user(fl
->l_len
, &target_fl
->l_len
);
5983 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
5984 unlock_user_struct(target_fl
, target_flock_addr
, 1);
5988 typedef abi_long
from_flock64_fn(struct flock64
*fl
, abi_ulong target_addr
);
5989 typedef abi_long
to_flock64_fn(abi_ulong target_addr
, const struct flock64
*fl
);
5991 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
5992 static inline abi_long
copy_from_user_oabi_flock64(struct flock64
*fl
,
5993 abi_ulong target_flock_addr
)
5995 struct target_oabi_flock64
*target_fl
;
5998 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
5999 return -TARGET_EFAULT
;
6002 __get_user(l_type
, &target_fl
->l_type
);
6003 l_type
= target_to_host_flock(l_type
);
6007 fl
->l_type
= l_type
;
6008 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6009 __get_user(fl
->l_start
, &target_fl
->l_start
);
6010 __get_user(fl
->l_len
, &target_fl
->l_len
);
6011 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6012 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6016 static inline abi_long
copy_to_user_oabi_flock64(abi_ulong target_flock_addr
,
6017 const struct flock64
*fl
)
6019 struct target_oabi_flock64
*target_fl
;
6022 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6023 return -TARGET_EFAULT
;
6026 l_type
= host_to_target_flock(fl
->l_type
);
6027 __put_user(l_type
, &target_fl
->l_type
);
6028 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6029 __put_user(fl
->l_start
, &target_fl
->l_start
);
6030 __put_user(fl
->l_len
, &target_fl
->l_len
);
6031 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6032 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6037 static inline abi_long
copy_from_user_flock64(struct flock64
*fl
,
6038 abi_ulong target_flock_addr
)
6040 struct target_flock64
*target_fl
;
6043 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6044 return -TARGET_EFAULT
;
6047 __get_user(l_type
, &target_fl
->l_type
);
6048 l_type
= target_to_host_flock(l_type
);
6052 fl
->l_type
= l_type
;
6053 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6054 __get_user(fl
->l_start
, &target_fl
->l_start
);
6055 __get_user(fl
->l_len
, &target_fl
->l_len
);
6056 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6057 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6061 static inline abi_long
copy_to_user_flock64(abi_ulong target_flock_addr
,
6062 const struct flock64
*fl
)
6064 struct target_flock64
*target_fl
;
6067 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6068 return -TARGET_EFAULT
;
6071 l_type
= host_to_target_flock(fl
->l_type
);
6072 __put_user(l_type
, &target_fl
->l_type
);
6073 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6074 __put_user(fl
->l_start
, &target_fl
->l_start
);
6075 __put_user(fl
->l_len
, &target_fl
->l_len
);
6076 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6077 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6081 static abi_long
do_fcntl(int fd
, int cmd
, abi_ulong arg
)
6083 struct flock64 fl64
;
6085 struct f_owner_ex fox
;
6086 struct target_f_owner_ex
*target_fox
;
6089 int host_cmd
= target_to_host_fcntl_cmd(cmd
);
6091 if (host_cmd
== -TARGET_EINVAL
)
6095 case TARGET_F_GETLK
:
6096 ret
= copy_from_user_flock(&fl64
, arg
);
6100 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
6102 ret
= copy_to_user_flock(arg
, &fl64
);
6106 case TARGET_F_SETLK
:
6107 case TARGET_F_SETLKW
:
6108 ret
= copy_from_user_flock(&fl64
, arg
);
6112 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
6115 case TARGET_F_GETLK64
:
6116 ret
= copy_from_user_flock64(&fl64
, arg
);
6120 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
6122 ret
= copy_to_user_flock64(arg
, &fl64
);
6125 case TARGET_F_SETLK64
:
6126 case TARGET_F_SETLKW64
:
6127 ret
= copy_from_user_flock64(&fl64
, arg
);
6131 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
6134 case TARGET_F_GETFL
:
6135 ret
= get_errno(safe_fcntl(fd
, host_cmd
, arg
));
6137 ret
= host_to_target_bitmask(ret
, fcntl_flags_tbl
);
6141 case TARGET_F_SETFL
:
6142 ret
= get_errno(safe_fcntl(fd
, host_cmd
,
6143 target_to_host_bitmask(arg
,
6148 case TARGET_F_GETOWN_EX
:
6149 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fox
));
6151 if (!lock_user_struct(VERIFY_WRITE
, target_fox
, arg
, 0))
6152 return -TARGET_EFAULT
;
6153 target_fox
->type
= tswap32(fox
.type
);
6154 target_fox
->pid
= tswap32(fox
.pid
);
6155 unlock_user_struct(target_fox
, arg
, 1);
6161 case TARGET_F_SETOWN_EX
:
6162 if (!lock_user_struct(VERIFY_READ
, target_fox
, arg
, 1))
6163 return -TARGET_EFAULT
;
6164 fox
.type
= tswap32(target_fox
->type
);
6165 fox
.pid
= tswap32(target_fox
->pid
);
6166 unlock_user_struct(target_fox
, arg
, 0);
6167 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fox
));
6171 case TARGET_F_SETOWN
:
6172 case TARGET_F_GETOWN
:
6173 case TARGET_F_SETSIG
:
6174 case TARGET_F_GETSIG
:
6175 case TARGET_F_SETLEASE
:
6176 case TARGET_F_GETLEASE
:
6177 case TARGET_F_SETPIPE_SZ
:
6178 case TARGET_F_GETPIPE_SZ
:
6179 ret
= get_errno(safe_fcntl(fd
, host_cmd
, arg
));
6183 ret
= get_errno(safe_fcntl(fd
, cmd
, arg
));
6191 static inline int high2lowuid(int uid
)
6199 static inline int high2lowgid(int gid
)
6207 static inline int low2highuid(int uid
)
6209 if ((int16_t)uid
== -1)
6215 static inline int low2highgid(int gid
)
6217 if ((int16_t)gid
== -1)
6222 static inline int tswapid(int id
)
6227 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
6229 #else /* !USE_UID16 */
6230 static inline int high2lowuid(int uid
)
6234 static inline int high2lowgid(int gid
)
6238 static inline int low2highuid(int uid
)
6242 static inline int low2highgid(int gid
)
6246 static inline int tswapid(int id
)
6251 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
6253 #endif /* USE_UID16 */
6255 /* We must do direct syscalls for setting UID/GID, because we want to
6256 * implement the Linux system call semantics of "change only for this thread",
6257 * not the libc/POSIX semantics of "change for all threads in process".
6258 * (See http://ewontfix.com/17/ for more details.)
6259 * We use the 32-bit version of the syscalls if present; if it is not
6260 * then either the host architecture supports 32-bit UIDs natively with
6261 * the standard syscall, or the 16-bit UID is the best we can do.
6263 #ifdef __NR_setuid32
6264 #define __NR_sys_setuid __NR_setuid32
6266 #define __NR_sys_setuid __NR_setuid
6268 #ifdef __NR_setgid32
6269 #define __NR_sys_setgid __NR_setgid32
6271 #define __NR_sys_setgid __NR_setgid
6273 #ifdef __NR_setresuid32
6274 #define __NR_sys_setresuid __NR_setresuid32
6276 #define __NR_sys_setresuid __NR_setresuid
6278 #ifdef __NR_setresgid32
6279 #define __NR_sys_setresgid __NR_setresgid32
6281 #define __NR_sys_setresgid __NR_setresgid
6284 _syscall1(int, sys_setuid
, uid_t
, uid
)
6285 _syscall1(int, sys_setgid
, gid_t
, gid
)
6286 _syscall3(int, sys_setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
6287 _syscall3(int, sys_setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
6289 void syscall_init(void)
6292 const argtype
*arg_type
;
6296 thunk_init(STRUCT_MAX
);
6298 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
6299 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
6300 #include "syscall_types.h"
6302 #undef STRUCT_SPECIAL
6304 /* Build target_to_host_errno_table[] table from
6305 * host_to_target_errno_table[]. */
6306 for (i
= 0; i
< ERRNO_TABLE_SIZE
; i
++) {
6307 target_to_host_errno_table
[host_to_target_errno_table
[i
]] = i
;
6310 /* we patch the ioctl size if necessary. We rely on the fact that
6311 no ioctl has all the bits at '1' in the size field */
6313 while (ie
->target_cmd
!= 0) {
6314 if (((ie
->target_cmd
>> TARGET_IOC_SIZESHIFT
) & TARGET_IOC_SIZEMASK
) ==
6315 TARGET_IOC_SIZEMASK
) {
6316 arg_type
= ie
->arg_type
;
6317 if (arg_type
[0] != TYPE_PTR
) {
6318 fprintf(stderr
, "cannot patch size for ioctl 0x%x\n",
6323 size
= thunk_type_size(arg_type
, 0);
6324 ie
->target_cmd
= (ie
->target_cmd
&
6325 ~(TARGET_IOC_SIZEMASK
<< TARGET_IOC_SIZESHIFT
)) |
6326 (size
<< TARGET_IOC_SIZESHIFT
);
6329 /* automatic consistency check if same arch */
6330 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
6331 (defined(__x86_64__) && defined(TARGET_X86_64))
6332 if (unlikely(ie
->target_cmd
!= ie
->host_cmd
)) {
6333 fprintf(stderr
, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
6334 ie
->name
, ie
->target_cmd
, ie
->host_cmd
);
6341 #if TARGET_ABI_BITS == 32
6342 static inline uint64_t target_offset64(uint32_t word0
, uint32_t word1
)
6344 #ifdef TARGET_WORDS_BIGENDIAN
6345 return ((uint64_t)word0
<< 32) | word1
;
6347 return ((uint64_t)word1
<< 32) | word0
;
6350 #else /* TARGET_ABI_BITS == 32 */
6351 static inline uint64_t target_offset64(uint64_t word0
, uint64_t word1
)
6355 #endif /* TARGET_ABI_BITS != 32 */
6357 #ifdef TARGET_NR_truncate64
6358 static inline abi_long
target_truncate64(void *cpu_env
, const char *arg1
,
6363 if (regpairs_aligned(cpu_env
, TARGET_NR_truncate64
)) {
6367 return get_errno(truncate64(arg1
, target_offset64(arg2
, arg3
)));
6371 #ifdef TARGET_NR_ftruncate64
6372 static inline abi_long
target_ftruncate64(void *cpu_env
, abi_long arg1
,
6377 if (regpairs_aligned(cpu_env
, TARGET_NR_ftruncate64
)) {
6381 return get_errno(ftruncate64(arg1
, target_offset64(arg2
, arg3
)));
6385 static inline abi_long
target_to_host_itimerspec(struct itimerspec
*host_itspec
,
6386 abi_ulong target_addr
)
6388 struct target_itimerspec
*target_itspec
;
6390 if (!lock_user_struct(VERIFY_READ
, target_itspec
, target_addr
, 1)) {
6391 return -TARGET_EFAULT
;
6394 host_itspec
->it_interval
.tv_sec
=
6395 tswapal(target_itspec
->it_interval
.tv_sec
);
6396 host_itspec
->it_interval
.tv_nsec
=
6397 tswapal(target_itspec
->it_interval
.tv_nsec
);
6398 host_itspec
->it_value
.tv_sec
= tswapal(target_itspec
->it_value
.tv_sec
);
6399 host_itspec
->it_value
.tv_nsec
= tswapal(target_itspec
->it_value
.tv_nsec
);
6401 unlock_user_struct(target_itspec
, target_addr
, 1);
6405 static inline abi_long
host_to_target_itimerspec(abi_ulong target_addr
,
6406 struct itimerspec
*host_its
)
6408 struct target_itimerspec
*target_itspec
;
6410 if (!lock_user_struct(VERIFY_WRITE
, target_itspec
, target_addr
, 0)) {
6411 return -TARGET_EFAULT
;
6414 target_itspec
->it_interval
.tv_sec
= tswapal(host_its
->it_interval
.tv_sec
);
6415 target_itspec
->it_interval
.tv_nsec
= tswapal(host_its
->it_interval
.tv_nsec
);
6417 target_itspec
->it_value
.tv_sec
= tswapal(host_its
->it_value
.tv_sec
);
6418 target_itspec
->it_value
.tv_nsec
= tswapal(host_its
->it_value
.tv_nsec
);
6420 unlock_user_struct(target_itspec
, target_addr
, 0);
6424 static inline abi_long
target_to_host_timex(struct timex
*host_tx
,
6425 abi_long target_addr
)
6427 struct target_timex
*target_tx
;
6429 if (!lock_user_struct(VERIFY_READ
, target_tx
, target_addr
, 1)) {
6430 return -TARGET_EFAULT
;
6433 __get_user(host_tx
->modes
, &target_tx
->modes
);
6434 __get_user(host_tx
->offset
, &target_tx
->offset
);
6435 __get_user(host_tx
->freq
, &target_tx
->freq
);
6436 __get_user(host_tx
->maxerror
, &target_tx
->maxerror
);
6437 __get_user(host_tx
->esterror
, &target_tx
->esterror
);
6438 __get_user(host_tx
->status
, &target_tx
->status
);
6439 __get_user(host_tx
->constant
, &target_tx
->constant
);
6440 __get_user(host_tx
->precision
, &target_tx
->precision
);
6441 __get_user(host_tx
->tolerance
, &target_tx
->tolerance
);
6442 __get_user(host_tx
->time
.tv_sec
, &target_tx
->time
.tv_sec
);
6443 __get_user(host_tx
->time
.tv_usec
, &target_tx
->time
.tv_usec
);
6444 __get_user(host_tx
->tick
, &target_tx
->tick
);
6445 __get_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
6446 __get_user(host_tx
->jitter
, &target_tx
->jitter
);
6447 __get_user(host_tx
->shift
, &target_tx
->shift
);
6448 __get_user(host_tx
->stabil
, &target_tx
->stabil
);
6449 __get_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
6450 __get_user(host_tx
->calcnt
, &target_tx
->calcnt
);
6451 __get_user(host_tx
->errcnt
, &target_tx
->errcnt
);
6452 __get_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
6453 __get_user(host_tx
->tai
, &target_tx
->tai
);
6455 unlock_user_struct(target_tx
, target_addr
, 0);
6459 static inline abi_long
host_to_target_timex(abi_long target_addr
,
6460 struct timex
*host_tx
)
6462 struct target_timex
*target_tx
;
6464 if (!lock_user_struct(VERIFY_WRITE
, target_tx
, target_addr
, 0)) {
6465 return -TARGET_EFAULT
;
6468 __put_user(host_tx
->modes
, &target_tx
->modes
);
6469 __put_user(host_tx
->offset
, &target_tx
->offset
);
6470 __put_user(host_tx
->freq
, &target_tx
->freq
);
6471 __put_user(host_tx
->maxerror
, &target_tx
->maxerror
);
6472 __put_user(host_tx
->esterror
, &target_tx
->esterror
);
6473 __put_user(host_tx
->status
, &target_tx
->status
);
6474 __put_user(host_tx
->constant
, &target_tx
->constant
);
6475 __put_user(host_tx
->precision
, &target_tx
->precision
);
6476 __put_user(host_tx
->tolerance
, &target_tx
->tolerance
);
6477 __put_user(host_tx
->time
.tv_sec
, &target_tx
->time
.tv_sec
);
6478 __put_user(host_tx
->time
.tv_usec
, &target_tx
->time
.tv_usec
);
6479 __put_user(host_tx
->tick
, &target_tx
->tick
);
6480 __put_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
6481 __put_user(host_tx
->jitter
, &target_tx
->jitter
);
6482 __put_user(host_tx
->shift
, &target_tx
->shift
);
6483 __put_user(host_tx
->stabil
, &target_tx
->stabil
);
6484 __put_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
6485 __put_user(host_tx
->calcnt
, &target_tx
->calcnt
);
6486 __put_user(host_tx
->errcnt
, &target_tx
->errcnt
);
6487 __put_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
6488 __put_user(host_tx
->tai
, &target_tx
->tai
);
6490 unlock_user_struct(target_tx
, target_addr
, 1);
6495 static inline abi_long
target_to_host_sigevent(struct sigevent
*host_sevp
,
6496 abi_ulong target_addr
)
6498 struct target_sigevent
*target_sevp
;
6500 if (!lock_user_struct(VERIFY_READ
, target_sevp
, target_addr
, 1)) {
6501 return -TARGET_EFAULT
;
6504 /* This union is awkward on 64 bit systems because it has a 32 bit
6505 * integer and a pointer in it; we follow the conversion approach
6506 * used for handling sigval types in signal.c so the guest should get
6507 * the correct value back even if we did a 64 bit byteswap and it's
6508 * using the 32 bit integer.
6510 host_sevp
->sigev_value
.sival_ptr
=
6511 (void *)(uintptr_t)tswapal(target_sevp
->sigev_value
.sival_ptr
);
6512 host_sevp
->sigev_signo
=
6513 target_to_host_signal(tswap32(target_sevp
->sigev_signo
));
6514 host_sevp
->sigev_notify
= tswap32(target_sevp
->sigev_notify
);
6515 host_sevp
->_sigev_un
._tid
= tswap32(target_sevp
->_sigev_un
._tid
);
6517 unlock_user_struct(target_sevp
, target_addr
, 1);
6521 #if defined(TARGET_NR_mlockall)
6522 static inline int target_to_host_mlockall_arg(int arg
)
6526 if (arg
& TARGET_MLOCKALL_MCL_CURRENT
) {
6527 result
|= MCL_CURRENT
;
6529 if (arg
& TARGET_MLOCKALL_MCL_FUTURE
) {
6530 result
|= MCL_FUTURE
;
6536 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \
6537 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \
6538 defined(TARGET_NR_newfstatat))
6539 static inline abi_long
host_to_target_stat64(void *cpu_env
,
6540 abi_ulong target_addr
,
6541 struct stat
*host_st
)
6543 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
6544 if (((CPUARMState
*)cpu_env
)->eabi
) {
6545 struct target_eabi_stat64
*target_st
;
6547 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
6548 return -TARGET_EFAULT
;
6549 memset(target_st
, 0, sizeof(struct target_eabi_stat64
));
6550 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
6551 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
6552 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
6553 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
6555 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
6556 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
6557 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
6558 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
6559 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
6560 __put_user(host_st
->st_size
, &target_st
->st_size
);
6561 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
6562 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
6563 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
6564 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
6565 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
6566 #if _POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700
6567 __put_user(host_st
->st_atim
.tv_nsec
, &target_st
->target_st_atime_nsec
);
6568 __put_user(host_st
->st_mtim
.tv_nsec
, &target_st
->target_st_mtime_nsec
);
6569 __put_user(host_st
->st_ctim
.tv_nsec
, &target_st
->target_st_ctime_nsec
);
6571 unlock_user_struct(target_st
, target_addr
, 1);
6575 #if defined(TARGET_HAS_STRUCT_STAT64)
6576 struct target_stat64
*target_st
;
6578 struct target_stat
*target_st
;
6581 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
6582 return -TARGET_EFAULT
;
6583 memset(target_st
, 0, sizeof(*target_st
));
6584 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
6585 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
6586 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
6587 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
6589 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
6590 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
6591 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
6592 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
6593 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
6594 /* XXX: better use of kernel struct */
6595 __put_user(host_st
->st_size
, &target_st
->st_size
);
6596 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
6597 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
6598 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
6599 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
6600 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
6601 #if _POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700
6602 __put_user(host_st
->st_atim
.tv_nsec
, &target_st
->target_st_atime_nsec
);
6603 __put_user(host_st
->st_mtim
.tv_nsec
, &target_st
->target_st_mtime_nsec
);
6604 __put_user(host_st
->st_ctim
.tv_nsec
, &target_st
->target_st_ctime_nsec
);
6606 unlock_user_struct(target_st
, target_addr
, 1);
6613 #if defined(TARGET_NR_statx) && defined(__NR_statx)
6614 static inline abi_long
host_to_target_statx(struct target_statx
*host_stx
,
6615 abi_ulong target_addr
)
6617 struct target_statx
*target_stx
;
6619 if (!lock_user_struct(VERIFY_WRITE
, target_stx
, target_addr
, 0)) {
6620 return -TARGET_EFAULT
;
6622 memset(target_stx
, 0, sizeof(*target_stx
));
6624 __put_user(host_stx
->stx_mask
, &target_stx
->stx_mask
);
6625 __put_user(host_stx
->stx_blksize
, &target_stx
->stx_blksize
);
6626 __put_user(host_stx
->stx_attributes
, &target_stx
->stx_attributes
);
6627 __put_user(host_stx
->stx_nlink
, &target_stx
->stx_nlink
);
6628 __put_user(host_stx
->stx_uid
, &target_stx
->stx_uid
);
6629 __put_user(host_stx
->stx_gid
, &target_stx
->stx_gid
);
6630 __put_user(host_stx
->stx_mode
, &target_stx
->stx_mode
);
6631 __put_user(host_stx
->stx_ino
, &target_stx
->stx_ino
);
6632 __put_user(host_stx
->stx_size
, &target_stx
->stx_size
);
6633 __put_user(host_stx
->stx_blocks
, &target_stx
->stx_blocks
);
6634 __put_user(host_stx
->stx_attributes_mask
, &target_stx
->stx_attributes_mask
);
6635 __put_user(host_stx
->stx_atime
.tv_sec
, &target_stx
->stx_atime
.tv_sec
);
6636 __put_user(host_stx
->stx_atime
.tv_nsec
, &target_stx
->stx_atime
.tv_nsec
);
6637 __put_user(host_stx
->stx_btime
.tv_sec
, &target_stx
->stx_atime
.tv_sec
);
6638 __put_user(host_stx
->stx_btime
.tv_nsec
, &target_stx
->stx_atime
.tv_nsec
);
6639 __put_user(host_stx
->stx_ctime
.tv_sec
, &target_stx
->stx_atime
.tv_sec
);
6640 __put_user(host_stx
->stx_ctime
.tv_nsec
, &target_stx
->stx_atime
.tv_nsec
);
6641 __put_user(host_stx
->stx_mtime
.tv_sec
, &target_stx
->stx_atime
.tv_sec
);
6642 __put_user(host_stx
->stx_mtime
.tv_nsec
, &target_stx
->stx_atime
.tv_nsec
);
6643 __put_user(host_stx
->stx_rdev_major
, &target_stx
->stx_rdev_major
);
6644 __put_user(host_stx
->stx_rdev_minor
, &target_stx
->stx_rdev_minor
);
6645 __put_user(host_stx
->stx_dev_major
, &target_stx
->stx_dev_major
);
6646 __put_user(host_stx
->stx_dev_minor
, &target_stx
->stx_dev_minor
);
6648 unlock_user_struct(target_stx
, target_addr
, 1);
6655 /* ??? Using host futex calls even when target atomic operations
6656 are not really atomic probably breaks things. However implementing
6657 futexes locally would make futexes shared between multiple processes
6658 tricky. However they're probably useless because guest atomic
6659 operations won't work either. */
6660 static int do_futex(target_ulong uaddr
, int op
, int val
, target_ulong timeout
,
6661 target_ulong uaddr2
, int val3
)
6663 struct timespec ts
, *pts
;
6666 /* ??? We assume FUTEX_* constants are the same on both host
6668 #ifdef FUTEX_CMD_MASK
6669 base_op
= op
& FUTEX_CMD_MASK
;
6675 case FUTEX_WAIT_BITSET
:
6678 target_to_host_timespec(pts
, timeout
);
6682 return get_errno(safe_futex(g2h(uaddr
), op
, tswap32(val
),
6685 return get_errno(safe_futex(g2h(uaddr
), op
, val
, NULL
, NULL
, 0));
6687 return get_errno(safe_futex(g2h(uaddr
), op
, val
, NULL
, NULL
, 0));
6689 case FUTEX_CMP_REQUEUE
:
6691 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
6692 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
6693 But the prototype takes a `struct timespec *'; insert casts
6694 to satisfy the compiler. We do not need to tswap TIMEOUT
6695 since it's not compared to guest memory. */
6696 pts
= (struct timespec
*)(uintptr_t) timeout
;
6697 return get_errno(safe_futex(g2h(uaddr
), op
, val
, pts
,
6699 (base_op
== FUTEX_CMP_REQUEUE
6703 return -TARGET_ENOSYS
;
6706 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
6707 static abi_long
do_name_to_handle_at(abi_long dirfd
, abi_long pathname
,
6708 abi_long handle
, abi_long mount_id
,
6711 struct file_handle
*target_fh
;
6712 struct file_handle
*fh
;
6716 unsigned int size
, total_size
;
6718 if (get_user_s32(size
, handle
)) {
6719 return -TARGET_EFAULT
;
6722 name
= lock_user_string(pathname
);
6724 return -TARGET_EFAULT
;
6727 total_size
= sizeof(struct file_handle
) + size
;
6728 target_fh
= lock_user(VERIFY_WRITE
, handle
, total_size
, 0);
6730 unlock_user(name
, pathname
, 0);
6731 return -TARGET_EFAULT
;
6734 fh
= g_malloc0(total_size
);
6735 fh
->handle_bytes
= size
;
6737 ret
= get_errno(name_to_handle_at(dirfd
, path(name
), fh
, &mid
, flags
));
6738 unlock_user(name
, pathname
, 0);
6740 /* man name_to_handle_at(2):
6741 * Other than the use of the handle_bytes field, the caller should treat
6742 * the file_handle structure as an opaque data type
6745 memcpy(target_fh
, fh
, total_size
);
6746 target_fh
->handle_bytes
= tswap32(fh
->handle_bytes
);
6747 target_fh
->handle_type
= tswap32(fh
->handle_type
);
6749 unlock_user(target_fh
, handle
, total_size
);
6751 if (put_user_s32(mid
, mount_id
)) {
6752 return -TARGET_EFAULT
;
6760 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
6761 static abi_long
do_open_by_handle_at(abi_long mount_fd
, abi_long handle
,
6764 struct file_handle
*target_fh
;
6765 struct file_handle
*fh
;
6766 unsigned int size
, total_size
;
6769 if (get_user_s32(size
, handle
)) {
6770 return -TARGET_EFAULT
;
6773 total_size
= sizeof(struct file_handle
) + size
;
6774 target_fh
= lock_user(VERIFY_READ
, handle
, total_size
, 1);
6776 return -TARGET_EFAULT
;
6779 fh
= g_memdup(target_fh
, total_size
);
6780 fh
->handle_bytes
= size
;
6781 fh
->handle_type
= tswap32(target_fh
->handle_type
);
6783 ret
= get_errno(open_by_handle_at(mount_fd
, fh
,
6784 target_to_host_bitmask(flags
, fcntl_flags_tbl
)));
6788 unlock_user(target_fh
, handle
, total_size
);
6794 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
6796 static abi_long
do_signalfd4(int fd
, abi_long mask
, int flags
)
6799 target_sigset_t
*target_mask
;
6803 if (flags
& ~(TARGET_O_NONBLOCK
| TARGET_O_CLOEXEC
)) {
6804 return -TARGET_EINVAL
;
6806 if (!lock_user_struct(VERIFY_READ
, target_mask
, mask
, 1)) {
6807 return -TARGET_EFAULT
;
6810 target_to_host_sigset(&host_mask
, target_mask
);
6812 host_flags
= target_to_host_bitmask(flags
, fcntl_flags_tbl
);
6814 ret
= get_errno(signalfd(fd
, &host_mask
, host_flags
));
6816 fd_trans_register(ret
, &target_signalfd_trans
);
6819 unlock_user_struct(target_mask
, mask
, 0);
6825 /* Map host to target signal numbers for the wait family of syscalls.
6826 Assume all other status bits are the same. */
6827 int host_to_target_waitstatus(int status
)
6829 if (WIFSIGNALED(status
)) {
6830 return host_to_target_signal(WTERMSIG(status
)) | (status
& ~0x7f);
6832 if (WIFSTOPPED(status
)) {
6833 return (host_to_target_signal(WSTOPSIG(status
)) << 8)
6839 static int open_self_cmdline(void *cpu_env
, int fd
)
6841 CPUState
*cpu
= env_cpu((CPUArchState
*)cpu_env
);
6842 struct linux_binprm
*bprm
= ((TaskState
*)cpu
->opaque
)->bprm
;
6845 for (i
= 0; i
< bprm
->argc
; i
++) {
6846 size_t len
= strlen(bprm
->argv
[i
]) + 1;
6848 if (write(fd
, bprm
->argv
[i
], len
) != len
) {
6856 static int open_self_maps(void *cpu_env
, int fd
)
6858 CPUState
*cpu
= env_cpu((CPUArchState
*)cpu_env
);
6859 TaskState
*ts
= cpu
->opaque
;
6865 fp
= fopen("/proc/self/maps", "r");
6870 while ((read
= getline(&line
, &len
, fp
)) != -1) {
6871 int fields
, dev_maj
, dev_min
, inode
;
6872 uint64_t min
, max
, offset
;
6873 char flag_r
, flag_w
, flag_x
, flag_p
;
6874 char path
[512] = "";
6875 fields
= sscanf(line
, "%"PRIx64
"-%"PRIx64
" %c%c%c%c %"PRIx64
" %x:%x %d"
6876 " %512s", &min
, &max
, &flag_r
, &flag_w
, &flag_x
,
6877 &flag_p
, &offset
, &dev_maj
, &dev_min
, &inode
, path
);
6879 if ((fields
< 10) || (fields
> 11)) {
6882 if (h2g_valid(min
)) {
6883 int flags
= page_get_flags(h2g(min
));
6884 max
= h2g_valid(max
- 1) ? max
: (uintptr_t)g2h(GUEST_ADDR_MAX
) + 1;
6885 if (page_check_range(h2g(min
), max
- min
, flags
) == -1) {
6888 if (h2g(min
) == ts
->info
->stack_limit
) {
6889 pstrcpy(path
, sizeof(path
), " [stack]");
6891 dprintf(fd
, TARGET_ABI_FMT_ptr
"-" TARGET_ABI_FMT_ptr
6892 " %c%c%c%c %08" PRIx64
" %02x:%02x %d %s%s\n",
6893 h2g(min
), h2g(max
- 1) + 1, flag_r
, flag_w
,
6894 flag_x
, flag_p
, offset
, dev_maj
, dev_min
, inode
,
6895 path
[0] ? " " : "", path
);
6905 static int open_self_stat(void *cpu_env
, int fd
)
6907 CPUState
*cpu
= env_cpu((CPUArchState
*)cpu_env
);
6908 TaskState
*ts
= cpu
->opaque
;
6909 abi_ulong start_stack
= ts
->info
->start_stack
;
6912 for (i
= 0; i
< 44; i
++) {
6920 snprintf(buf
, sizeof(buf
), "%"PRId64
" ", val
);
6921 } else if (i
== 1) {
6923 snprintf(buf
, sizeof(buf
), "(%s) ", ts
->bprm
->argv
[0]);
6924 } else if (i
== 27) {
6927 snprintf(buf
, sizeof(buf
), "%"PRId64
" ", val
);
6929 /* for the rest, there is MasterCard */
6930 snprintf(buf
, sizeof(buf
), "0%c", i
== 43 ? '\n' : ' ');
6934 if (write(fd
, buf
, len
) != len
) {
6942 static int open_self_auxv(void *cpu_env
, int fd
)
6944 CPUState
*cpu
= env_cpu((CPUArchState
*)cpu_env
);
6945 TaskState
*ts
= cpu
->opaque
;
6946 abi_ulong auxv
= ts
->info
->saved_auxv
;
6947 abi_ulong len
= ts
->info
->auxv_len
;
6951 * Auxiliary vector is stored in target process stack.
6952 * read in whole auxv vector and copy it to file
6954 ptr
= lock_user(VERIFY_READ
, auxv
, len
, 0);
6958 r
= write(fd
, ptr
, len
);
6965 lseek(fd
, 0, SEEK_SET
);
6966 unlock_user(ptr
, auxv
, len
);
6972 static int is_proc_myself(const char *filename
, const char *entry
)
6974 if (!strncmp(filename
, "/proc/", strlen("/proc/"))) {
6975 filename
+= strlen("/proc/");
6976 if (!strncmp(filename
, "self/", strlen("self/"))) {
6977 filename
+= strlen("self/");
6978 } else if (*filename
>= '1' && *filename
<= '9') {
6980 snprintf(myself
, sizeof(myself
), "%d/", getpid());
6981 if (!strncmp(filename
, myself
, strlen(myself
))) {
6982 filename
+= strlen(myself
);
6989 if (!strcmp(filename
, entry
)) {
6996 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) || \
6997 defined(TARGET_SPARC) || defined(TARGET_M68K)
6998 static int is_proc(const char *filename
, const char *entry
)
7000 return strcmp(filename
, entry
) == 0;
7004 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7005 static int open_net_route(void *cpu_env
, int fd
)
7012 fp
= fopen("/proc/net/route", "r");
7019 read
= getline(&line
, &len
, fp
);
7020 dprintf(fd
, "%s", line
);
7024 while ((read
= getline(&line
, &len
, fp
)) != -1) {
7026 uint32_t dest
, gw
, mask
;
7027 unsigned int flags
, refcnt
, use
, metric
, mtu
, window
, irtt
;
7030 fields
= sscanf(line
,
7031 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7032 iface
, &dest
, &gw
, &flags
, &refcnt
, &use
, &metric
,
7033 &mask
, &mtu
, &window
, &irtt
);
7037 dprintf(fd
, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7038 iface
, tswap32(dest
), tswap32(gw
), flags
, refcnt
, use
,
7039 metric
, tswap32(mask
), mtu
, window
, irtt
);
7049 #if defined(TARGET_SPARC)
7050 static int open_cpuinfo(void *cpu_env
, int fd
)
7052 dprintf(fd
, "type\t\t: sun4u\n");
7057 #if defined(TARGET_M68K)
7058 static int open_hardware(void *cpu_env
, int fd
)
7060 dprintf(fd
, "Model:\t\tqemu-m68k\n");
7065 static int do_openat(void *cpu_env
, int dirfd
, const char *pathname
, int flags
, mode_t mode
)
7068 const char *filename
;
7069 int (*fill
)(void *cpu_env
, int fd
);
7070 int (*cmp
)(const char *s1
, const char *s2
);
7072 const struct fake_open
*fake_open
;
7073 static const struct fake_open fakes
[] = {
7074 { "maps", open_self_maps
, is_proc_myself
},
7075 { "stat", open_self_stat
, is_proc_myself
},
7076 { "auxv", open_self_auxv
, is_proc_myself
},
7077 { "cmdline", open_self_cmdline
, is_proc_myself
},
7078 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7079 { "/proc/net/route", open_net_route
, is_proc
},
7081 #if defined(TARGET_SPARC)
7082 { "/proc/cpuinfo", open_cpuinfo
, is_proc
},
7084 #if defined(TARGET_M68K)
7085 { "/proc/hardware", open_hardware
, is_proc
},
7087 { NULL
, NULL
, NULL
}
7090 if (is_proc_myself(pathname
, "exe")) {
7091 int execfd
= qemu_getauxval(AT_EXECFD
);
7092 return execfd
? execfd
: safe_openat(dirfd
, exec_path
, flags
, mode
);
7095 for (fake_open
= fakes
; fake_open
->filename
; fake_open
++) {
7096 if (fake_open
->cmp(pathname
, fake_open
->filename
)) {
7101 if (fake_open
->filename
) {
7103 char filename
[PATH_MAX
];
7106 /* create temporary file to map stat to */
7107 tmpdir
= getenv("TMPDIR");
7110 snprintf(filename
, sizeof(filename
), "%s/qemu-open.XXXXXX", tmpdir
);
7111 fd
= mkstemp(filename
);
7117 if ((r
= fake_open
->fill(cpu_env
, fd
))) {
7123 lseek(fd
, 0, SEEK_SET
);
7128 return safe_openat(dirfd
, path(pathname
), flags
, mode
);
7131 #define TIMER_MAGIC 0x0caf0000
7132 #define TIMER_MAGIC_MASK 0xffff0000
7134 /* Convert QEMU provided timer ID back to internal 16bit index format */
7135 static target_timer_t
get_timer_id(abi_long arg
)
7137 target_timer_t timerid
= arg
;
7139 if ((timerid
& TIMER_MAGIC_MASK
) != TIMER_MAGIC
) {
7140 return -TARGET_EINVAL
;
7145 if (timerid
>= ARRAY_SIZE(g_posix_timers
)) {
7146 return -TARGET_EINVAL
;
7152 static int target_to_host_cpu_mask(unsigned long *host_mask
,
7154 abi_ulong target_addr
,
7157 unsigned target_bits
= sizeof(abi_ulong
) * 8;
7158 unsigned host_bits
= sizeof(*host_mask
) * 8;
7159 abi_ulong
*target_mask
;
7162 assert(host_size
>= target_size
);
7164 target_mask
= lock_user(VERIFY_READ
, target_addr
, target_size
, 1);
7166 return -TARGET_EFAULT
;
7168 memset(host_mask
, 0, host_size
);
7170 for (i
= 0 ; i
< target_size
/ sizeof(abi_ulong
); i
++) {
7171 unsigned bit
= i
* target_bits
;
7174 __get_user(val
, &target_mask
[i
]);
7175 for (j
= 0; j
< target_bits
; j
++, bit
++) {
7176 if (val
& (1UL << j
)) {
7177 host_mask
[bit
/ host_bits
] |= 1UL << (bit
% host_bits
);
7182 unlock_user(target_mask
, target_addr
, 0);
7186 static int host_to_target_cpu_mask(const unsigned long *host_mask
,
7188 abi_ulong target_addr
,
7191 unsigned target_bits
= sizeof(abi_ulong
) * 8;
7192 unsigned host_bits
= sizeof(*host_mask
) * 8;
7193 abi_ulong
*target_mask
;
7196 assert(host_size
>= target_size
);
7198 target_mask
= lock_user(VERIFY_WRITE
, target_addr
, target_size
, 0);
7200 return -TARGET_EFAULT
;
7203 for (i
= 0 ; i
< target_size
/ sizeof(abi_ulong
); i
++) {
7204 unsigned bit
= i
* target_bits
;
7207 for (j
= 0; j
< target_bits
; j
++, bit
++) {
7208 if (host_mask
[bit
/ host_bits
] & (1UL << (bit
% host_bits
))) {
7212 __put_user(val
, &target_mask
[i
]);
7215 unlock_user(target_mask
, target_addr
, target_size
);
7219 /* This is an internal helper for do_syscall so that it is easier
7220 * to have a single return point, so that actions, such as logging
7221 * of syscall results, can be performed.
7222 * All errnos that do_syscall() returns must be -TARGET_<errcode>.
7224 static abi_long
do_syscall1(void *cpu_env
, int num
, abi_long arg1
,
7225 abi_long arg2
, abi_long arg3
, abi_long arg4
,
7226 abi_long arg5
, abi_long arg6
, abi_long arg7
,
7229 CPUState
*cpu
= env_cpu(cpu_env
);
7231 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
7232 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
7233 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
7234 || defined(TARGET_NR_statx)
7237 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
7238 || defined(TARGET_NR_fstatfs)
7244 case TARGET_NR_exit
:
7245 /* In old applications this may be used to implement _exit(2).
7246 However in threaded applictions it is used for thread termination,
7247 and _exit_group is used for application termination.
7248 Do thread termination if we have more then one thread. */
7250 if (block_signals()) {
7251 return -TARGET_ERESTARTSYS
;
7256 if (CPU_NEXT(first_cpu
)) {
7259 /* Remove the CPU from the list. */
7260 QTAILQ_REMOVE_RCU(&cpus
, cpu
, node
);
7265 if (ts
->child_tidptr
) {
7266 put_user_u32(0, ts
->child_tidptr
);
7267 sys_futex(g2h(ts
->child_tidptr
), FUTEX_WAKE
, INT_MAX
,
7271 object_unref(OBJECT(cpu
));
7273 rcu_unregister_thread();
7278 preexit_cleanup(cpu_env
, arg1
);
7280 return 0; /* avoid warning */
7281 case TARGET_NR_read
:
7282 if (arg2
== 0 && arg3
== 0) {
7283 return get_errno(safe_read(arg1
, 0, 0));
7285 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0)))
7286 return -TARGET_EFAULT
;
7287 ret
= get_errno(safe_read(arg1
, p
, arg3
));
7289 fd_trans_host_to_target_data(arg1
)) {
7290 ret
= fd_trans_host_to_target_data(arg1
)(p
, ret
);
7292 unlock_user(p
, arg2
, ret
);
7295 case TARGET_NR_write
:
7296 if (arg2
== 0 && arg3
== 0) {
7297 return get_errno(safe_write(arg1
, 0, 0));
7299 if (!(p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1)))
7300 return -TARGET_EFAULT
;
7301 if (fd_trans_target_to_host_data(arg1
)) {
7302 void *copy
= g_malloc(arg3
);
7303 memcpy(copy
, p
, arg3
);
7304 ret
= fd_trans_target_to_host_data(arg1
)(copy
, arg3
);
7306 ret
= get_errno(safe_write(arg1
, copy
, ret
));
7310 ret
= get_errno(safe_write(arg1
, p
, arg3
));
7312 unlock_user(p
, arg2
, 0);
7315 #ifdef TARGET_NR_open
7316 case TARGET_NR_open
:
7317 if (!(p
= lock_user_string(arg1
)))
7318 return -TARGET_EFAULT
;
7319 ret
= get_errno(do_openat(cpu_env
, AT_FDCWD
, p
,
7320 target_to_host_bitmask(arg2
, fcntl_flags_tbl
),
7322 fd_trans_unregister(ret
);
7323 unlock_user(p
, arg1
, 0);
7326 case TARGET_NR_openat
:
7327 if (!(p
= lock_user_string(arg2
)))
7328 return -TARGET_EFAULT
;
7329 ret
= get_errno(do_openat(cpu_env
, arg1
, p
,
7330 target_to_host_bitmask(arg3
, fcntl_flags_tbl
),
7332 fd_trans_unregister(ret
);
7333 unlock_user(p
, arg2
, 0);
7335 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7336 case TARGET_NR_name_to_handle_at
:
7337 ret
= do_name_to_handle_at(arg1
, arg2
, arg3
, arg4
, arg5
);
7340 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7341 case TARGET_NR_open_by_handle_at
:
7342 ret
= do_open_by_handle_at(arg1
, arg2
, arg3
);
7343 fd_trans_unregister(ret
);
7346 case TARGET_NR_close
:
7347 fd_trans_unregister(arg1
);
7348 return get_errno(close(arg1
));
7351 return do_brk(arg1
);
7352 #ifdef TARGET_NR_fork
7353 case TARGET_NR_fork
:
7354 return get_errno(do_fork(cpu_env
, TARGET_SIGCHLD
, 0, 0, 0, 0));
7356 #ifdef TARGET_NR_waitpid
7357 case TARGET_NR_waitpid
:
7360 ret
= get_errno(safe_wait4(arg1
, &status
, arg3
, 0));
7361 if (!is_error(ret
) && arg2
&& ret
7362 && put_user_s32(host_to_target_waitstatus(status
), arg2
))
7363 return -TARGET_EFAULT
;
7367 #ifdef TARGET_NR_waitid
7368 case TARGET_NR_waitid
:
7372 ret
= get_errno(safe_waitid(arg1
, arg2
, &info
, arg4
, NULL
));
7373 if (!is_error(ret
) && arg3
&& info
.si_pid
!= 0) {
7374 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_siginfo_t
), 0)))
7375 return -TARGET_EFAULT
;
7376 host_to_target_siginfo(p
, &info
);
7377 unlock_user(p
, arg3
, sizeof(target_siginfo_t
));
7382 #ifdef TARGET_NR_creat /* not on alpha */
7383 case TARGET_NR_creat
:
7384 if (!(p
= lock_user_string(arg1
)))
7385 return -TARGET_EFAULT
;
7386 ret
= get_errno(creat(p
, arg2
));
7387 fd_trans_unregister(ret
);
7388 unlock_user(p
, arg1
, 0);
7391 #ifdef TARGET_NR_link
7392 case TARGET_NR_link
:
7395 p
= lock_user_string(arg1
);
7396 p2
= lock_user_string(arg2
);
7398 ret
= -TARGET_EFAULT
;
7400 ret
= get_errno(link(p
, p2
));
7401 unlock_user(p2
, arg2
, 0);
7402 unlock_user(p
, arg1
, 0);
7406 #if defined(TARGET_NR_linkat)
7407 case TARGET_NR_linkat
:
7411 return -TARGET_EFAULT
;
7412 p
= lock_user_string(arg2
);
7413 p2
= lock_user_string(arg4
);
7415 ret
= -TARGET_EFAULT
;
7417 ret
= get_errno(linkat(arg1
, p
, arg3
, p2
, arg5
));
7418 unlock_user(p
, arg2
, 0);
7419 unlock_user(p2
, arg4
, 0);
7423 #ifdef TARGET_NR_unlink
7424 case TARGET_NR_unlink
:
7425 if (!(p
= lock_user_string(arg1
)))
7426 return -TARGET_EFAULT
;
7427 ret
= get_errno(unlink(p
));
7428 unlock_user(p
, arg1
, 0);
7431 #if defined(TARGET_NR_unlinkat)
7432 case TARGET_NR_unlinkat
:
7433 if (!(p
= lock_user_string(arg2
)))
7434 return -TARGET_EFAULT
;
7435 ret
= get_errno(unlinkat(arg1
, p
, arg3
));
7436 unlock_user(p
, arg2
, 0);
7439 case TARGET_NR_execve
:
7441 char **argp
, **envp
;
7444 abi_ulong guest_argp
;
7445 abi_ulong guest_envp
;
7452 for (gp
= guest_argp
; gp
; gp
+= sizeof(abi_ulong
)) {
7453 if (get_user_ual(addr
, gp
))
7454 return -TARGET_EFAULT
;
7461 for (gp
= guest_envp
; gp
; gp
+= sizeof(abi_ulong
)) {
7462 if (get_user_ual(addr
, gp
))
7463 return -TARGET_EFAULT
;
7469 argp
= g_new0(char *, argc
+ 1);
7470 envp
= g_new0(char *, envc
+ 1);
7472 for (gp
= guest_argp
, q
= argp
; gp
;
7473 gp
+= sizeof(abi_ulong
), q
++) {
7474 if (get_user_ual(addr
, gp
))
7478 if (!(*q
= lock_user_string(addr
)))
7480 total_size
+= strlen(*q
) + 1;
7484 for (gp
= guest_envp
, q
= envp
; gp
;
7485 gp
+= sizeof(abi_ulong
), q
++) {
7486 if (get_user_ual(addr
, gp
))
7490 if (!(*q
= lock_user_string(addr
)))
7492 total_size
+= strlen(*q
) + 1;
7496 if (!(p
= lock_user_string(arg1
)))
7498 /* Although execve() is not an interruptible syscall it is
7499 * a special case where we must use the safe_syscall wrapper:
7500 * if we allow a signal to happen before we make the host
7501 * syscall then we will 'lose' it, because at the point of
7502 * execve the process leaves QEMU's control. So we use the
7503 * safe syscall wrapper to ensure that we either take the
7504 * signal as a guest signal, or else it does not happen
7505 * before the execve completes and makes it the other
7506 * program's problem.
7508 ret
= get_errno(safe_execve(p
, argp
, envp
));
7509 unlock_user(p
, arg1
, 0);
7514 ret
= -TARGET_EFAULT
;
7517 for (gp
= guest_argp
, q
= argp
; *q
;
7518 gp
+= sizeof(abi_ulong
), q
++) {
7519 if (get_user_ual(addr
, gp
)
7522 unlock_user(*q
, addr
, 0);
7524 for (gp
= guest_envp
, q
= envp
; *q
;
7525 gp
+= sizeof(abi_ulong
), q
++) {
7526 if (get_user_ual(addr
, gp
)
7529 unlock_user(*q
, addr
, 0);
7536 case TARGET_NR_chdir
:
7537 if (!(p
= lock_user_string(arg1
)))
7538 return -TARGET_EFAULT
;
7539 ret
= get_errno(chdir(p
));
7540 unlock_user(p
, arg1
, 0);
7542 #ifdef TARGET_NR_time
7543 case TARGET_NR_time
:
7546 ret
= get_errno(time(&host_time
));
7549 && put_user_sal(host_time
, arg1
))
7550 return -TARGET_EFAULT
;
7554 #ifdef TARGET_NR_mknod
7555 case TARGET_NR_mknod
:
7556 if (!(p
= lock_user_string(arg1
)))
7557 return -TARGET_EFAULT
;
7558 ret
= get_errno(mknod(p
, arg2
, arg3
));
7559 unlock_user(p
, arg1
, 0);
7562 #if defined(TARGET_NR_mknodat)
7563 case TARGET_NR_mknodat
:
7564 if (!(p
= lock_user_string(arg2
)))
7565 return -TARGET_EFAULT
;
7566 ret
= get_errno(mknodat(arg1
, p
, arg3
, arg4
));
7567 unlock_user(p
, arg2
, 0);
7570 #ifdef TARGET_NR_chmod
7571 case TARGET_NR_chmod
:
7572 if (!(p
= lock_user_string(arg1
)))
7573 return -TARGET_EFAULT
;
7574 ret
= get_errno(chmod(p
, arg2
));
7575 unlock_user(p
, arg1
, 0);
7578 #ifdef TARGET_NR_lseek
7579 case TARGET_NR_lseek
:
7580 return get_errno(lseek(arg1
, arg2
, arg3
));
7582 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
7583 /* Alpha specific */
7584 case TARGET_NR_getxpid
:
7585 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
] = getppid();
7586 return get_errno(getpid());
7588 #ifdef TARGET_NR_getpid
7589 case TARGET_NR_getpid
:
7590 return get_errno(getpid());
7592 case TARGET_NR_mount
:
7594 /* need to look at the data field */
7598 p
= lock_user_string(arg1
);
7600 return -TARGET_EFAULT
;
7606 p2
= lock_user_string(arg2
);
7609 unlock_user(p
, arg1
, 0);
7611 return -TARGET_EFAULT
;
7615 p3
= lock_user_string(arg3
);
7618 unlock_user(p
, arg1
, 0);
7620 unlock_user(p2
, arg2
, 0);
7621 return -TARGET_EFAULT
;
7627 /* FIXME - arg5 should be locked, but it isn't clear how to
7628 * do that since it's not guaranteed to be a NULL-terminated
7632 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, NULL
);
7634 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, g2h(arg5
));
7636 ret
= get_errno(ret
);
7639 unlock_user(p
, arg1
, 0);
7641 unlock_user(p2
, arg2
, 0);
7643 unlock_user(p3
, arg3
, 0);
7647 #ifdef TARGET_NR_umount
7648 case TARGET_NR_umount
:
7649 if (!(p
= lock_user_string(arg1
)))
7650 return -TARGET_EFAULT
;
7651 ret
= get_errno(umount(p
));
7652 unlock_user(p
, arg1
, 0);
7655 #ifdef TARGET_NR_stime /* not on alpha */
7656 case TARGET_NR_stime
:
7659 if (get_user_sal(host_time
, arg1
))
7660 return -TARGET_EFAULT
;
7661 return get_errno(stime(&host_time
));
7664 #ifdef TARGET_NR_alarm /* not on alpha */
7665 case TARGET_NR_alarm
:
7668 #ifdef TARGET_NR_pause /* not on alpha */
7669 case TARGET_NR_pause
:
7670 if (!block_signals()) {
7671 sigsuspend(&((TaskState
*)cpu
->opaque
)->signal_mask
);
7673 return -TARGET_EINTR
;
7675 #ifdef TARGET_NR_utime
7676 case TARGET_NR_utime
:
7678 struct utimbuf tbuf
, *host_tbuf
;
7679 struct target_utimbuf
*target_tbuf
;
7681 if (!lock_user_struct(VERIFY_READ
, target_tbuf
, arg2
, 1))
7682 return -TARGET_EFAULT
;
7683 tbuf
.actime
= tswapal(target_tbuf
->actime
);
7684 tbuf
.modtime
= tswapal(target_tbuf
->modtime
);
7685 unlock_user_struct(target_tbuf
, arg2
, 0);
7690 if (!(p
= lock_user_string(arg1
)))
7691 return -TARGET_EFAULT
;
7692 ret
= get_errno(utime(p
, host_tbuf
));
7693 unlock_user(p
, arg1
, 0);
7697 #ifdef TARGET_NR_utimes
7698 case TARGET_NR_utimes
:
7700 struct timeval
*tvp
, tv
[2];
7702 if (copy_from_user_timeval(&tv
[0], arg2
)
7703 || copy_from_user_timeval(&tv
[1],
7704 arg2
+ sizeof(struct target_timeval
)))
7705 return -TARGET_EFAULT
;
7710 if (!(p
= lock_user_string(arg1
)))
7711 return -TARGET_EFAULT
;
7712 ret
= get_errno(utimes(p
, tvp
));
7713 unlock_user(p
, arg1
, 0);
7717 #if defined(TARGET_NR_futimesat)
7718 case TARGET_NR_futimesat
:
7720 struct timeval
*tvp
, tv
[2];
7722 if (copy_from_user_timeval(&tv
[0], arg3
)
7723 || copy_from_user_timeval(&tv
[1],
7724 arg3
+ sizeof(struct target_timeval
)))
7725 return -TARGET_EFAULT
;
7730 if (!(p
= lock_user_string(arg2
))) {
7731 return -TARGET_EFAULT
;
7733 ret
= get_errno(futimesat(arg1
, path(p
), tvp
));
7734 unlock_user(p
, arg2
, 0);
7738 #ifdef TARGET_NR_access
7739 case TARGET_NR_access
:
7740 if (!(p
= lock_user_string(arg1
))) {
7741 return -TARGET_EFAULT
;
7743 ret
= get_errno(access(path(p
), arg2
));
7744 unlock_user(p
, arg1
, 0);
7747 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
7748 case TARGET_NR_faccessat
:
7749 if (!(p
= lock_user_string(arg2
))) {
7750 return -TARGET_EFAULT
;
7752 ret
= get_errno(faccessat(arg1
, p
, arg3
, 0));
7753 unlock_user(p
, arg2
, 0);
7756 #ifdef TARGET_NR_nice /* not on alpha */
7757 case TARGET_NR_nice
:
7758 return get_errno(nice(arg1
));
7760 case TARGET_NR_sync
:
7763 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
7764 case TARGET_NR_syncfs
:
7765 return get_errno(syncfs(arg1
));
7767 case TARGET_NR_kill
:
7768 return get_errno(safe_kill(arg1
, target_to_host_signal(arg2
)));
7769 #ifdef TARGET_NR_rename
7770 case TARGET_NR_rename
:
7773 p
= lock_user_string(arg1
);
7774 p2
= lock_user_string(arg2
);
7776 ret
= -TARGET_EFAULT
;
7778 ret
= get_errno(rename(p
, p2
));
7779 unlock_user(p2
, arg2
, 0);
7780 unlock_user(p
, arg1
, 0);
7784 #if defined(TARGET_NR_renameat)
7785 case TARGET_NR_renameat
:
7788 p
= lock_user_string(arg2
);
7789 p2
= lock_user_string(arg4
);
7791 ret
= -TARGET_EFAULT
;
7793 ret
= get_errno(renameat(arg1
, p
, arg3
, p2
));
7794 unlock_user(p2
, arg4
, 0);
7795 unlock_user(p
, arg2
, 0);
7799 #if defined(TARGET_NR_renameat2)
7800 case TARGET_NR_renameat2
:
7803 p
= lock_user_string(arg2
);
7804 p2
= lock_user_string(arg4
);
7806 ret
= -TARGET_EFAULT
;
7808 ret
= get_errno(sys_renameat2(arg1
, p
, arg3
, p2
, arg5
));
7810 unlock_user(p2
, arg4
, 0);
7811 unlock_user(p
, arg2
, 0);
7815 #ifdef TARGET_NR_mkdir
7816 case TARGET_NR_mkdir
:
7817 if (!(p
= lock_user_string(arg1
)))
7818 return -TARGET_EFAULT
;
7819 ret
= get_errno(mkdir(p
, arg2
));
7820 unlock_user(p
, arg1
, 0);
7823 #if defined(TARGET_NR_mkdirat)
7824 case TARGET_NR_mkdirat
:
7825 if (!(p
= lock_user_string(arg2
)))
7826 return -TARGET_EFAULT
;
7827 ret
= get_errno(mkdirat(arg1
, p
, arg3
));
7828 unlock_user(p
, arg2
, 0);
7831 #ifdef TARGET_NR_rmdir
7832 case TARGET_NR_rmdir
:
7833 if (!(p
= lock_user_string(arg1
)))
7834 return -TARGET_EFAULT
;
7835 ret
= get_errno(rmdir(p
));
7836 unlock_user(p
, arg1
, 0);
7840 ret
= get_errno(dup(arg1
));
7842 fd_trans_dup(arg1
, ret
);
7845 #ifdef TARGET_NR_pipe
7846 case TARGET_NR_pipe
:
7847 return do_pipe(cpu_env
, arg1
, 0, 0);
7849 #ifdef TARGET_NR_pipe2
7850 case TARGET_NR_pipe2
:
7851 return do_pipe(cpu_env
, arg1
,
7852 target_to_host_bitmask(arg2
, fcntl_flags_tbl
), 1);
7854 case TARGET_NR_times
:
7856 struct target_tms
*tmsp
;
7858 ret
= get_errno(times(&tms
));
7860 tmsp
= lock_user(VERIFY_WRITE
, arg1
, sizeof(struct target_tms
), 0);
7862 return -TARGET_EFAULT
;
7863 tmsp
->tms_utime
= tswapal(host_to_target_clock_t(tms
.tms_utime
));
7864 tmsp
->tms_stime
= tswapal(host_to_target_clock_t(tms
.tms_stime
));
7865 tmsp
->tms_cutime
= tswapal(host_to_target_clock_t(tms
.tms_cutime
));
7866 tmsp
->tms_cstime
= tswapal(host_to_target_clock_t(tms
.tms_cstime
));
7869 ret
= host_to_target_clock_t(ret
);
7872 case TARGET_NR_acct
:
7874 ret
= get_errno(acct(NULL
));
7876 if (!(p
= lock_user_string(arg1
))) {
7877 return -TARGET_EFAULT
;
7879 ret
= get_errno(acct(path(p
)));
7880 unlock_user(p
, arg1
, 0);
7883 #ifdef TARGET_NR_umount2
7884 case TARGET_NR_umount2
:
7885 if (!(p
= lock_user_string(arg1
)))
7886 return -TARGET_EFAULT
;
7887 ret
= get_errno(umount2(p
, arg2
));
7888 unlock_user(p
, arg1
, 0);
7891 case TARGET_NR_ioctl
:
7892 return do_ioctl(arg1
, arg2
, arg3
);
7893 #ifdef TARGET_NR_fcntl
7894 case TARGET_NR_fcntl
:
7895 return do_fcntl(arg1
, arg2
, arg3
);
7897 case TARGET_NR_setpgid
:
7898 return get_errno(setpgid(arg1
, arg2
));
7899 case TARGET_NR_umask
:
7900 return get_errno(umask(arg1
));
7901 case TARGET_NR_chroot
:
7902 if (!(p
= lock_user_string(arg1
)))
7903 return -TARGET_EFAULT
;
7904 ret
= get_errno(chroot(p
));
7905 unlock_user(p
, arg1
, 0);
7907 #ifdef TARGET_NR_dup2
7908 case TARGET_NR_dup2
:
7909 ret
= get_errno(dup2(arg1
, arg2
));
7911 fd_trans_dup(arg1
, arg2
);
7915 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
7916 case TARGET_NR_dup3
:
7920 if ((arg3
& ~TARGET_O_CLOEXEC
) != 0) {
7923 host_flags
= target_to_host_bitmask(arg3
, fcntl_flags_tbl
);
7924 ret
= get_errno(dup3(arg1
, arg2
, host_flags
));
7926 fd_trans_dup(arg1
, arg2
);
7931 #ifdef TARGET_NR_getppid /* not on alpha */
7932 case TARGET_NR_getppid
:
7933 return get_errno(getppid());
7935 #ifdef TARGET_NR_getpgrp
7936 case TARGET_NR_getpgrp
:
7937 return get_errno(getpgrp());
7939 case TARGET_NR_setsid
:
7940 return get_errno(setsid());
7941 #ifdef TARGET_NR_sigaction
7942 case TARGET_NR_sigaction
:
7944 #if defined(TARGET_ALPHA)
7945 struct target_sigaction act
, oact
, *pact
= 0;
7946 struct target_old_sigaction
*old_act
;
7948 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
7949 return -TARGET_EFAULT
;
7950 act
._sa_handler
= old_act
->_sa_handler
;
7951 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
7952 act
.sa_flags
= old_act
->sa_flags
;
7953 act
.sa_restorer
= 0;
7954 unlock_user_struct(old_act
, arg2
, 0);
7957 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
7958 if (!is_error(ret
) && arg3
) {
7959 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
7960 return -TARGET_EFAULT
;
7961 old_act
->_sa_handler
= oact
._sa_handler
;
7962 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
7963 old_act
->sa_flags
= oact
.sa_flags
;
7964 unlock_user_struct(old_act
, arg3
, 1);
7966 #elif defined(TARGET_MIPS)
7967 struct target_sigaction act
, oact
, *pact
, *old_act
;
7970 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
7971 return -TARGET_EFAULT
;
7972 act
._sa_handler
= old_act
->_sa_handler
;
7973 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
.sig
[0]);
7974 act
.sa_flags
= old_act
->sa_flags
;
7975 unlock_user_struct(old_act
, arg2
, 0);
7981 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
7983 if (!is_error(ret
) && arg3
) {
7984 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
7985 return -TARGET_EFAULT
;
7986 old_act
->_sa_handler
= oact
._sa_handler
;
7987 old_act
->sa_flags
= oact
.sa_flags
;
7988 old_act
->sa_mask
.sig
[0] = oact
.sa_mask
.sig
[0];
7989 old_act
->sa_mask
.sig
[1] = 0;
7990 old_act
->sa_mask
.sig
[2] = 0;
7991 old_act
->sa_mask
.sig
[3] = 0;
7992 unlock_user_struct(old_act
, arg3
, 1);
7995 struct target_old_sigaction
*old_act
;
7996 struct target_sigaction act
, oact
, *pact
;
7998 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
7999 return -TARGET_EFAULT
;
8000 act
._sa_handler
= old_act
->_sa_handler
;
8001 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
8002 act
.sa_flags
= old_act
->sa_flags
;
8003 act
.sa_restorer
= old_act
->sa_restorer
;
8004 #ifdef TARGET_ARCH_HAS_KA_RESTORER
8005 act
.ka_restorer
= 0;
8007 unlock_user_struct(old_act
, arg2
, 0);
8012 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
8013 if (!is_error(ret
) && arg3
) {
8014 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
8015 return -TARGET_EFAULT
;
8016 old_act
->_sa_handler
= oact
._sa_handler
;
8017 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
8018 old_act
->sa_flags
= oact
.sa_flags
;
8019 old_act
->sa_restorer
= oact
.sa_restorer
;
8020 unlock_user_struct(old_act
, arg3
, 1);
8026 case TARGET_NR_rt_sigaction
:
8028 #if defined(TARGET_ALPHA)
8029 /* For Alpha and SPARC this is a 5 argument syscall, with
8030 * a 'restorer' parameter which must be copied into the
8031 * sa_restorer field of the sigaction struct.
8032 * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
8033 * and arg5 is the sigsetsize.
8034 * Alpha also has a separate rt_sigaction struct that it uses
8035 * here; SPARC uses the usual sigaction struct.
8037 struct target_rt_sigaction
*rt_act
;
8038 struct target_sigaction act
, oact
, *pact
= 0;
8040 if (arg4
!= sizeof(target_sigset_t
)) {
8041 return -TARGET_EINVAL
;
8044 if (!lock_user_struct(VERIFY_READ
, rt_act
, arg2
, 1))
8045 return -TARGET_EFAULT
;
8046 act
._sa_handler
= rt_act
->_sa_handler
;
8047 act
.sa_mask
= rt_act
->sa_mask
;
8048 act
.sa_flags
= rt_act
->sa_flags
;
8049 act
.sa_restorer
= arg5
;
8050 unlock_user_struct(rt_act
, arg2
, 0);
8053 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
));
8054 if (!is_error(ret
) && arg3
) {
8055 if (!lock_user_struct(VERIFY_WRITE
, rt_act
, arg3
, 0))
8056 return -TARGET_EFAULT
;
8057 rt_act
->_sa_handler
= oact
._sa_handler
;
8058 rt_act
->sa_mask
= oact
.sa_mask
;
8059 rt_act
->sa_flags
= oact
.sa_flags
;
8060 unlock_user_struct(rt_act
, arg3
, 1);
8064 target_ulong restorer
= arg4
;
8065 target_ulong sigsetsize
= arg5
;
8067 target_ulong sigsetsize
= arg4
;
8069 struct target_sigaction
*act
;
8070 struct target_sigaction
*oact
;
8072 if (sigsetsize
!= sizeof(target_sigset_t
)) {
8073 return -TARGET_EINVAL
;
8076 if (!lock_user_struct(VERIFY_READ
, act
, arg2
, 1)) {
8077 return -TARGET_EFAULT
;
8079 #ifdef TARGET_ARCH_HAS_KA_RESTORER
8080 act
->ka_restorer
= restorer
;
8086 if (!lock_user_struct(VERIFY_WRITE
, oact
, arg3
, 0)) {
8087 ret
= -TARGET_EFAULT
;
8088 goto rt_sigaction_fail
;
8092 ret
= get_errno(do_sigaction(arg1
, act
, oact
));
8095 unlock_user_struct(act
, arg2
, 0);
8097 unlock_user_struct(oact
, arg3
, 1);
8101 #ifdef TARGET_NR_sgetmask /* not on alpha */
8102 case TARGET_NR_sgetmask
:
8105 abi_ulong target_set
;
8106 ret
= do_sigprocmask(0, NULL
, &cur_set
);
8108 host_to_target_old_sigset(&target_set
, &cur_set
);
8114 #ifdef TARGET_NR_ssetmask /* not on alpha */
8115 case TARGET_NR_ssetmask
:
8118 abi_ulong target_set
= arg1
;
8119 target_to_host_old_sigset(&set
, &target_set
);
8120 ret
= do_sigprocmask(SIG_SETMASK
, &set
, &oset
);
8122 host_to_target_old_sigset(&target_set
, &oset
);
8128 #ifdef TARGET_NR_sigprocmask
8129 case TARGET_NR_sigprocmask
:
8131 #if defined(TARGET_ALPHA)
8132 sigset_t set
, oldset
;
8137 case TARGET_SIG_BLOCK
:
8140 case TARGET_SIG_UNBLOCK
:
8143 case TARGET_SIG_SETMASK
:
8147 return -TARGET_EINVAL
;
8150 target_to_host_old_sigset(&set
, &mask
);
8152 ret
= do_sigprocmask(how
, &set
, &oldset
);
8153 if (!is_error(ret
)) {
8154 host_to_target_old_sigset(&mask
, &oldset
);
8156 ((CPUAlphaState
*)cpu_env
)->ir
[IR_V0
] = 0; /* force no error */
8159 sigset_t set
, oldset
, *set_ptr
;
8164 case TARGET_SIG_BLOCK
:
8167 case TARGET_SIG_UNBLOCK
:
8170 case TARGET_SIG_SETMASK
:
8174 return -TARGET_EINVAL
;
8176 if (!(p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1)))
8177 return -TARGET_EFAULT
;
8178 target_to_host_old_sigset(&set
, p
);
8179 unlock_user(p
, arg2
, 0);
8185 ret
= do_sigprocmask(how
, set_ptr
, &oldset
);
8186 if (!is_error(ret
) && arg3
) {
8187 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
8188 return -TARGET_EFAULT
;
8189 host_to_target_old_sigset(p
, &oldset
);
8190 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
8196 case TARGET_NR_rt_sigprocmask
:
8199 sigset_t set
, oldset
, *set_ptr
;
8201 if (arg4
!= sizeof(target_sigset_t
)) {
8202 return -TARGET_EINVAL
;
8207 case TARGET_SIG_BLOCK
:
8210 case TARGET_SIG_UNBLOCK
:
8213 case TARGET_SIG_SETMASK
:
8217 return -TARGET_EINVAL
;
8219 if (!(p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1)))
8220 return -TARGET_EFAULT
;
8221 target_to_host_sigset(&set
, p
);
8222 unlock_user(p
, arg2
, 0);
8228 ret
= do_sigprocmask(how
, set_ptr
, &oldset
);
8229 if (!is_error(ret
) && arg3
) {
8230 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
8231 return -TARGET_EFAULT
;
8232 host_to_target_sigset(p
, &oldset
);
8233 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
8237 #ifdef TARGET_NR_sigpending
8238 case TARGET_NR_sigpending
:
8241 ret
= get_errno(sigpending(&set
));
8242 if (!is_error(ret
)) {
8243 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
8244 return -TARGET_EFAULT
;
8245 host_to_target_old_sigset(p
, &set
);
8246 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
8251 case TARGET_NR_rt_sigpending
:
8255 /* Yes, this check is >, not != like most. We follow the kernel's
8256 * logic and it does it like this because it implements
8257 * NR_sigpending through the same code path, and in that case
8258 * the old_sigset_t is smaller in size.
8260 if (arg2
> sizeof(target_sigset_t
)) {
8261 return -TARGET_EINVAL
;
8264 ret
= get_errno(sigpending(&set
));
8265 if (!is_error(ret
)) {
8266 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
8267 return -TARGET_EFAULT
;
8268 host_to_target_sigset(p
, &set
);
8269 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
8273 #ifdef TARGET_NR_sigsuspend
8274 case TARGET_NR_sigsuspend
:
8276 TaskState
*ts
= cpu
->opaque
;
8277 #if defined(TARGET_ALPHA)
8278 abi_ulong mask
= arg1
;
8279 target_to_host_old_sigset(&ts
->sigsuspend_mask
, &mask
);
8281 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
8282 return -TARGET_EFAULT
;
8283 target_to_host_old_sigset(&ts
->sigsuspend_mask
, p
);
8284 unlock_user(p
, arg1
, 0);
8286 ret
= get_errno(safe_rt_sigsuspend(&ts
->sigsuspend_mask
,
8288 if (ret
!= -TARGET_ERESTARTSYS
) {
8289 ts
->in_sigsuspend
= 1;
8294 case TARGET_NR_rt_sigsuspend
:
8296 TaskState
*ts
= cpu
->opaque
;
8298 if (arg2
!= sizeof(target_sigset_t
)) {
8299 return -TARGET_EINVAL
;
8301 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
8302 return -TARGET_EFAULT
;
8303 target_to_host_sigset(&ts
->sigsuspend_mask
, p
);
8304 unlock_user(p
, arg1
, 0);
8305 ret
= get_errno(safe_rt_sigsuspend(&ts
->sigsuspend_mask
,
8307 if (ret
!= -TARGET_ERESTARTSYS
) {
8308 ts
->in_sigsuspend
= 1;
8312 case TARGET_NR_rt_sigtimedwait
:
8315 struct timespec uts
, *puts
;
8318 if (arg4
!= sizeof(target_sigset_t
)) {
8319 return -TARGET_EINVAL
;
8322 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
8323 return -TARGET_EFAULT
;
8324 target_to_host_sigset(&set
, p
);
8325 unlock_user(p
, arg1
, 0);
8328 target_to_host_timespec(puts
, arg3
);
8332 ret
= get_errno(safe_rt_sigtimedwait(&set
, &uinfo
, puts
,
8334 if (!is_error(ret
)) {
8336 p
= lock_user(VERIFY_WRITE
, arg2
, sizeof(target_siginfo_t
),
8339 return -TARGET_EFAULT
;
8341 host_to_target_siginfo(p
, &uinfo
);
8342 unlock_user(p
, arg2
, sizeof(target_siginfo_t
));
8344 ret
= host_to_target_signal(ret
);
8348 case TARGET_NR_rt_sigqueueinfo
:
8352 p
= lock_user(VERIFY_READ
, arg3
, sizeof(target_siginfo_t
), 1);
8354 return -TARGET_EFAULT
;
8356 target_to_host_siginfo(&uinfo
, p
);
8357 unlock_user(p
, arg3
, 0);
8358 ret
= get_errno(sys_rt_sigqueueinfo(arg1
, arg2
, &uinfo
));
8361 case TARGET_NR_rt_tgsigqueueinfo
:
8365 p
= lock_user(VERIFY_READ
, arg4
, sizeof(target_siginfo_t
), 1);
8367 return -TARGET_EFAULT
;
8369 target_to_host_siginfo(&uinfo
, p
);
8370 unlock_user(p
, arg4
, 0);
8371 ret
= get_errno(sys_rt_tgsigqueueinfo(arg1
, arg2
, arg3
, &uinfo
));
8374 #ifdef TARGET_NR_sigreturn
8375 case TARGET_NR_sigreturn
:
8376 if (block_signals()) {
8377 return -TARGET_ERESTARTSYS
;
8379 return do_sigreturn(cpu_env
);
8381 case TARGET_NR_rt_sigreturn
:
8382 if (block_signals()) {
8383 return -TARGET_ERESTARTSYS
;
8385 return do_rt_sigreturn(cpu_env
);
8386 case TARGET_NR_sethostname
:
8387 if (!(p
= lock_user_string(arg1
)))
8388 return -TARGET_EFAULT
;
8389 ret
= get_errno(sethostname(p
, arg2
));
8390 unlock_user(p
, arg1
, 0);
8392 #ifdef TARGET_NR_setrlimit
8393 case TARGET_NR_setrlimit
:
8395 int resource
= target_to_host_resource(arg1
);
8396 struct target_rlimit
*target_rlim
;
8398 if (!lock_user_struct(VERIFY_READ
, target_rlim
, arg2
, 1))
8399 return -TARGET_EFAULT
;
8400 rlim
.rlim_cur
= target_to_host_rlim(target_rlim
->rlim_cur
);
8401 rlim
.rlim_max
= target_to_host_rlim(target_rlim
->rlim_max
);
8402 unlock_user_struct(target_rlim
, arg2
, 0);
8404 * If we just passed through resource limit settings for memory then
8405 * they would also apply to QEMU's own allocations, and QEMU will
8406 * crash or hang or die if its allocations fail. Ideally we would
8407 * track the guest allocations in QEMU and apply the limits ourselves.
8408 * For now, just tell the guest the call succeeded but don't actually
8411 if (resource
!= RLIMIT_AS
&&
8412 resource
!= RLIMIT_DATA
&&
8413 resource
!= RLIMIT_STACK
) {
8414 return get_errno(setrlimit(resource
, &rlim
));
8420 #ifdef TARGET_NR_getrlimit
8421 case TARGET_NR_getrlimit
:
8423 int resource
= target_to_host_resource(arg1
);
8424 struct target_rlimit
*target_rlim
;
8427 ret
= get_errno(getrlimit(resource
, &rlim
));
8428 if (!is_error(ret
)) {
8429 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
8430 return -TARGET_EFAULT
;
8431 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
8432 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
8433 unlock_user_struct(target_rlim
, arg2
, 1);
8438 case TARGET_NR_getrusage
:
8440 struct rusage rusage
;
8441 ret
= get_errno(getrusage(arg1
, &rusage
));
8442 if (!is_error(ret
)) {
8443 ret
= host_to_target_rusage(arg2
, &rusage
);
8447 case TARGET_NR_gettimeofday
:
8450 ret
= get_errno(gettimeofday(&tv
, NULL
));
8451 if (!is_error(ret
)) {
8452 if (copy_to_user_timeval(arg1
, &tv
))
8453 return -TARGET_EFAULT
;
8457 case TARGET_NR_settimeofday
:
8459 struct timeval tv
, *ptv
= NULL
;
8460 struct timezone tz
, *ptz
= NULL
;
8463 if (copy_from_user_timeval(&tv
, arg1
)) {
8464 return -TARGET_EFAULT
;
8470 if (copy_from_user_timezone(&tz
, arg2
)) {
8471 return -TARGET_EFAULT
;
8476 return get_errno(settimeofday(ptv
, ptz
));
8478 #if defined(TARGET_NR_select)
8479 case TARGET_NR_select
:
8480 #if defined(TARGET_WANT_NI_OLD_SELECT)
8481 /* some architectures used to have old_select here
8482 * but now ENOSYS it.
8484 ret
= -TARGET_ENOSYS
;
8485 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
8486 ret
= do_old_select(arg1
);
8488 ret
= do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
8492 #ifdef TARGET_NR_pselect6
8493 case TARGET_NR_pselect6
:
8495 abi_long rfd_addr
, wfd_addr
, efd_addr
, n
, ts_addr
;
8496 fd_set rfds
, wfds
, efds
;
8497 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
8498 struct timespec ts
, *ts_ptr
;
8501 * The 6th arg is actually two args smashed together,
8502 * so we cannot use the C library.
8510 abi_ulong arg_sigset
, arg_sigsize
, *arg7
;
8511 target_sigset_t
*target_sigset
;
8519 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
8523 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
8527 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
8533 * This takes a timespec, and not a timeval, so we cannot
8534 * use the do_select() helper ...
8537 if (target_to_host_timespec(&ts
, ts_addr
)) {
8538 return -TARGET_EFAULT
;
8545 /* Extract the two packed args for the sigset */
8548 sig
.size
= SIGSET_T_SIZE
;
8550 arg7
= lock_user(VERIFY_READ
, arg6
, sizeof(*arg7
) * 2, 1);
8552 return -TARGET_EFAULT
;
8554 arg_sigset
= tswapal(arg7
[0]);
8555 arg_sigsize
= tswapal(arg7
[1]);
8556 unlock_user(arg7
, arg6
, 0);
8560 if (arg_sigsize
!= sizeof(*target_sigset
)) {
8561 /* Like the kernel, we enforce correct size sigsets */
8562 return -TARGET_EINVAL
;
8564 target_sigset
= lock_user(VERIFY_READ
, arg_sigset
,
8565 sizeof(*target_sigset
), 1);
8566 if (!target_sigset
) {
8567 return -TARGET_EFAULT
;
8569 target_to_host_sigset(&set
, target_sigset
);
8570 unlock_user(target_sigset
, arg_sigset
, 0);
8578 ret
= get_errno(safe_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
8581 if (!is_error(ret
)) {
8582 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
8583 return -TARGET_EFAULT
;
8584 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
8585 return -TARGET_EFAULT
;
8586 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
8587 return -TARGET_EFAULT
;
8589 if (ts_addr
&& host_to_target_timespec(ts_addr
, &ts
))
8590 return -TARGET_EFAULT
;
8595 #ifdef TARGET_NR_symlink
8596 case TARGET_NR_symlink
:
8599 p
= lock_user_string(arg1
);
8600 p2
= lock_user_string(arg2
);
8602 ret
= -TARGET_EFAULT
;
8604 ret
= get_errno(symlink(p
, p2
));
8605 unlock_user(p2
, arg2
, 0);
8606 unlock_user(p
, arg1
, 0);
8610 #if defined(TARGET_NR_symlinkat)
8611 case TARGET_NR_symlinkat
:
8614 p
= lock_user_string(arg1
);
8615 p2
= lock_user_string(arg3
);
8617 ret
= -TARGET_EFAULT
;
8619 ret
= get_errno(symlinkat(p
, arg2
, p2
));
8620 unlock_user(p2
, arg3
, 0);
8621 unlock_user(p
, arg1
, 0);
8625 #ifdef TARGET_NR_readlink
8626 case TARGET_NR_readlink
:
8629 p
= lock_user_string(arg1
);
8630 p2
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
8632 ret
= -TARGET_EFAULT
;
8634 /* Short circuit this for the magic exe check. */
8635 ret
= -TARGET_EINVAL
;
8636 } else if (is_proc_myself((const char *)p
, "exe")) {
8637 char real
[PATH_MAX
], *temp
;
8638 temp
= realpath(exec_path
, real
);
8639 /* Return value is # of bytes that we wrote to the buffer. */
8641 ret
= get_errno(-1);
8643 /* Don't worry about sign mismatch as earlier mapping
8644 * logic would have thrown a bad address error. */
8645 ret
= MIN(strlen(real
), arg3
);
8646 /* We cannot NUL terminate the string. */
8647 memcpy(p2
, real
, ret
);
8650 ret
= get_errno(readlink(path(p
), p2
, arg3
));
8652 unlock_user(p2
, arg2
, ret
);
8653 unlock_user(p
, arg1
, 0);
8657 #if defined(TARGET_NR_readlinkat)
8658 case TARGET_NR_readlinkat
:
8661 p
= lock_user_string(arg2
);
8662 p2
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
8664 ret
= -TARGET_EFAULT
;
8665 } else if (is_proc_myself((const char *)p
, "exe")) {
8666 char real
[PATH_MAX
], *temp
;
8667 temp
= realpath(exec_path
, real
);
8668 ret
= temp
== NULL
? get_errno(-1) : strlen(real
) ;
8669 snprintf((char *)p2
, arg4
, "%s", real
);
8671 ret
= get_errno(readlinkat(arg1
, path(p
), p2
, arg4
));
8673 unlock_user(p2
, arg3
, ret
);
8674 unlock_user(p
, arg2
, 0);
8678 #ifdef TARGET_NR_swapon
8679 case TARGET_NR_swapon
:
8680 if (!(p
= lock_user_string(arg1
)))
8681 return -TARGET_EFAULT
;
8682 ret
= get_errno(swapon(p
, arg2
));
8683 unlock_user(p
, arg1
, 0);
8686 case TARGET_NR_reboot
:
8687 if (arg3
== LINUX_REBOOT_CMD_RESTART2
) {
8688 /* arg4 must be ignored in all other cases */
8689 p
= lock_user_string(arg4
);
8691 return -TARGET_EFAULT
;
8693 ret
= get_errno(reboot(arg1
, arg2
, arg3
, p
));
8694 unlock_user(p
, arg4
, 0);
8696 ret
= get_errno(reboot(arg1
, arg2
, arg3
, NULL
));
8699 #ifdef TARGET_NR_mmap
8700 case TARGET_NR_mmap
:
8701 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
8702 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
8703 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
8704 || defined(TARGET_S390X)
8707 abi_ulong v1
, v2
, v3
, v4
, v5
, v6
;
8708 if (!(v
= lock_user(VERIFY_READ
, arg1
, 6 * sizeof(abi_ulong
), 1)))
8709 return -TARGET_EFAULT
;
8716 unlock_user(v
, arg1
, 0);
8717 ret
= get_errno(target_mmap(v1
, v2
, v3
,
8718 target_to_host_bitmask(v4
, mmap_flags_tbl
),
8722 ret
= get_errno(target_mmap(arg1
, arg2
, arg3
,
8723 target_to_host_bitmask(arg4
, mmap_flags_tbl
),
8729 #ifdef TARGET_NR_mmap2
8730 case TARGET_NR_mmap2
:
8732 #define MMAP_SHIFT 12
8734 ret
= target_mmap(arg1
, arg2
, arg3
,
8735 target_to_host_bitmask(arg4
, mmap_flags_tbl
),
8736 arg5
, arg6
<< MMAP_SHIFT
);
8737 return get_errno(ret
);
8739 case TARGET_NR_munmap
:
8740 return get_errno(target_munmap(arg1
, arg2
));
8741 case TARGET_NR_mprotect
:
8743 TaskState
*ts
= cpu
->opaque
;
8744 /* Special hack to detect libc making the stack executable. */
8745 if ((arg3
& PROT_GROWSDOWN
)
8746 && arg1
>= ts
->info
->stack_limit
8747 && arg1
<= ts
->info
->start_stack
) {
8748 arg3
&= ~PROT_GROWSDOWN
;
8749 arg2
= arg2
+ arg1
- ts
->info
->stack_limit
;
8750 arg1
= ts
->info
->stack_limit
;
8753 return get_errno(target_mprotect(arg1
, arg2
, arg3
));
8754 #ifdef TARGET_NR_mremap
8755 case TARGET_NR_mremap
:
8756 return get_errno(target_mremap(arg1
, arg2
, arg3
, arg4
, arg5
));
8758 /* ??? msync/mlock/munlock are broken for softmmu. */
8759 #ifdef TARGET_NR_msync
8760 case TARGET_NR_msync
:
8761 return get_errno(msync(g2h(arg1
), arg2
, arg3
));
8763 #ifdef TARGET_NR_mlock
8764 case TARGET_NR_mlock
:
8765 return get_errno(mlock(g2h(arg1
), arg2
));
8767 #ifdef TARGET_NR_munlock
8768 case TARGET_NR_munlock
:
8769 return get_errno(munlock(g2h(arg1
), arg2
));
8771 #ifdef TARGET_NR_mlockall
8772 case TARGET_NR_mlockall
:
8773 return get_errno(mlockall(target_to_host_mlockall_arg(arg1
)));
8775 #ifdef TARGET_NR_munlockall
8776 case TARGET_NR_munlockall
:
8777 return get_errno(munlockall());
8779 #ifdef TARGET_NR_truncate
8780 case TARGET_NR_truncate
:
8781 if (!(p
= lock_user_string(arg1
)))
8782 return -TARGET_EFAULT
;
8783 ret
= get_errno(truncate(p
, arg2
));
8784 unlock_user(p
, arg1
, 0);
8787 #ifdef TARGET_NR_ftruncate
8788 case TARGET_NR_ftruncate
:
8789 return get_errno(ftruncate(arg1
, arg2
));
8791 case TARGET_NR_fchmod
:
8792 return get_errno(fchmod(arg1
, arg2
));
8793 #if defined(TARGET_NR_fchmodat)
8794 case TARGET_NR_fchmodat
:
8795 if (!(p
= lock_user_string(arg2
)))
8796 return -TARGET_EFAULT
;
8797 ret
= get_errno(fchmodat(arg1
, p
, arg3
, 0));
8798 unlock_user(p
, arg2
, 0);
8801 case TARGET_NR_getpriority
:
8802 /* Note that negative values are valid for getpriority, so we must
8803 differentiate based on errno settings. */
8805 ret
= getpriority(arg1
, arg2
);
8806 if (ret
== -1 && errno
!= 0) {
8807 return -host_to_target_errno(errno
);
8810 /* Return value is the unbiased priority. Signal no error. */
8811 ((CPUAlphaState
*)cpu_env
)->ir
[IR_V0
] = 0;
8813 /* Return value is a biased priority to avoid negative numbers. */
8817 case TARGET_NR_setpriority
:
8818 return get_errno(setpriority(arg1
, arg2
, arg3
));
8819 #ifdef TARGET_NR_statfs
8820 case TARGET_NR_statfs
:
8821 if (!(p
= lock_user_string(arg1
))) {
8822 return -TARGET_EFAULT
;
8824 ret
= get_errno(statfs(path(p
), &stfs
));
8825 unlock_user(p
, arg1
, 0);
8827 if (!is_error(ret
)) {
8828 struct target_statfs
*target_stfs
;
8830 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg2
, 0))
8831 return -TARGET_EFAULT
;
8832 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
8833 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
8834 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
8835 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
8836 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
8837 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
8838 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
8839 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
8840 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
8841 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
8842 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
8843 #ifdef _STATFS_F_FLAGS
8844 __put_user(stfs
.f_flags
, &target_stfs
->f_flags
);
8846 __put_user(0, &target_stfs
->f_flags
);
8848 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
8849 unlock_user_struct(target_stfs
, arg2
, 1);
8853 #ifdef TARGET_NR_fstatfs
8854 case TARGET_NR_fstatfs
:
8855 ret
= get_errno(fstatfs(arg1
, &stfs
));
8856 goto convert_statfs
;
8858 #ifdef TARGET_NR_statfs64
8859 case TARGET_NR_statfs64
:
8860 if (!(p
= lock_user_string(arg1
))) {
8861 return -TARGET_EFAULT
;
8863 ret
= get_errno(statfs(path(p
), &stfs
));
8864 unlock_user(p
, arg1
, 0);
8866 if (!is_error(ret
)) {
8867 struct target_statfs64
*target_stfs
;
8869 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg3
, 0))
8870 return -TARGET_EFAULT
;
8871 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
8872 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
8873 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
8874 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
8875 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
8876 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
8877 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
8878 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
8879 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
8880 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
8881 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
8882 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
8883 unlock_user_struct(target_stfs
, arg3
, 1);
8886 case TARGET_NR_fstatfs64
:
8887 ret
= get_errno(fstatfs(arg1
, &stfs
));
8888 goto convert_statfs64
;
8890 #ifdef TARGET_NR_socketcall
8891 case TARGET_NR_socketcall
:
8892 return do_socketcall(arg1
, arg2
);
8894 #ifdef TARGET_NR_accept
8895 case TARGET_NR_accept
:
8896 return do_accept4(arg1
, arg2
, arg3
, 0);
8898 #ifdef TARGET_NR_accept4
8899 case TARGET_NR_accept4
:
8900 return do_accept4(arg1
, arg2
, arg3
, arg4
);
8902 #ifdef TARGET_NR_bind
8903 case TARGET_NR_bind
:
8904 return do_bind(arg1
, arg2
, arg3
);
8906 #ifdef TARGET_NR_connect
8907 case TARGET_NR_connect
:
8908 return do_connect(arg1
, arg2
, arg3
);
8910 #ifdef TARGET_NR_getpeername
8911 case TARGET_NR_getpeername
:
8912 return do_getpeername(arg1
, arg2
, arg3
);
8914 #ifdef TARGET_NR_getsockname
8915 case TARGET_NR_getsockname
:
8916 return do_getsockname(arg1
, arg2
, arg3
);
8918 #ifdef TARGET_NR_getsockopt
8919 case TARGET_NR_getsockopt
:
8920 return do_getsockopt(arg1
, arg2
, arg3
, arg4
, arg5
);
8922 #ifdef TARGET_NR_listen
8923 case TARGET_NR_listen
:
8924 return get_errno(listen(arg1
, arg2
));
8926 #ifdef TARGET_NR_recv
8927 case TARGET_NR_recv
:
8928 return do_recvfrom(arg1
, arg2
, arg3
, arg4
, 0, 0);
8930 #ifdef TARGET_NR_recvfrom
8931 case TARGET_NR_recvfrom
:
8932 return do_recvfrom(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
8934 #ifdef TARGET_NR_recvmsg
8935 case TARGET_NR_recvmsg
:
8936 return do_sendrecvmsg(arg1
, arg2
, arg3
, 0);
8938 #ifdef TARGET_NR_send
8939 case TARGET_NR_send
:
8940 return do_sendto(arg1
, arg2
, arg3
, arg4
, 0, 0);
8942 #ifdef TARGET_NR_sendmsg
8943 case TARGET_NR_sendmsg
:
8944 return do_sendrecvmsg(arg1
, arg2
, arg3
, 1);
8946 #ifdef TARGET_NR_sendmmsg
8947 case TARGET_NR_sendmmsg
:
8948 return do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 1);
8949 case TARGET_NR_recvmmsg
:
8950 return do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 0);
8952 #ifdef TARGET_NR_sendto
8953 case TARGET_NR_sendto
:
8954 return do_sendto(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
8956 #ifdef TARGET_NR_shutdown
8957 case TARGET_NR_shutdown
:
8958 return get_errno(shutdown(arg1
, arg2
));
8960 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
8961 case TARGET_NR_getrandom
:
8962 p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
8964 return -TARGET_EFAULT
;
8966 ret
= get_errno(getrandom(p
, arg2
, arg3
));
8967 unlock_user(p
, arg1
, ret
);
8970 #ifdef TARGET_NR_socket
8971 case TARGET_NR_socket
:
8972 return do_socket(arg1
, arg2
, arg3
);
8974 #ifdef TARGET_NR_socketpair
8975 case TARGET_NR_socketpair
:
8976 return do_socketpair(arg1
, arg2
, arg3
, arg4
);
8978 #ifdef TARGET_NR_setsockopt
8979 case TARGET_NR_setsockopt
:
8980 return do_setsockopt(arg1
, arg2
, arg3
, arg4
, (socklen_t
) arg5
);
8982 #if defined(TARGET_NR_syslog)
8983 case TARGET_NR_syslog
:
8988 case TARGET_SYSLOG_ACTION_CLOSE
: /* Close log */
8989 case TARGET_SYSLOG_ACTION_OPEN
: /* Open log */
8990 case TARGET_SYSLOG_ACTION_CLEAR
: /* Clear ring buffer */
8991 case TARGET_SYSLOG_ACTION_CONSOLE_OFF
: /* Disable logging */
8992 case TARGET_SYSLOG_ACTION_CONSOLE_ON
: /* Enable logging */
8993 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL
: /* Set messages level */
8994 case TARGET_SYSLOG_ACTION_SIZE_UNREAD
: /* Number of chars */
8995 case TARGET_SYSLOG_ACTION_SIZE_BUFFER
: /* Size of the buffer */
8996 return get_errno(sys_syslog((int)arg1
, NULL
, (int)arg3
));
8997 case TARGET_SYSLOG_ACTION_READ
: /* Read from log */
8998 case TARGET_SYSLOG_ACTION_READ_CLEAR
: /* Read/clear msgs */
8999 case TARGET_SYSLOG_ACTION_READ_ALL
: /* Read last messages */
9002 return -TARGET_EINVAL
;
9007 p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
9009 return -TARGET_EFAULT
;
9011 ret
= get_errno(sys_syslog((int)arg1
, p
, (int)arg3
));
9012 unlock_user(p
, arg2
, arg3
);
9016 return -TARGET_EINVAL
;
9021 case TARGET_NR_setitimer
:
9023 struct itimerval value
, ovalue
, *pvalue
;
9027 if (copy_from_user_timeval(&pvalue
->it_interval
, arg2
)
9028 || copy_from_user_timeval(&pvalue
->it_value
,
9029 arg2
+ sizeof(struct target_timeval
)))
9030 return -TARGET_EFAULT
;
9034 ret
= get_errno(setitimer(arg1
, pvalue
, &ovalue
));
9035 if (!is_error(ret
) && arg3
) {
9036 if (copy_to_user_timeval(arg3
,
9037 &ovalue
.it_interval
)
9038 || copy_to_user_timeval(arg3
+ sizeof(struct target_timeval
),
9040 return -TARGET_EFAULT
;
9044 case TARGET_NR_getitimer
:
9046 struct itimerval value
;
9048 ret
= get_errno(getitimer(arg1
, &value
));
9049 if (!is_error(ret
) && arg2
) {
9050 if (copy_to_user_timeval(arg2
,
9052 || copy_to_user_timeval(arg2
+ sizeof(struct target_timeval
),
9054 return -TARGET_EFAULT
;
9058 #ifdef TARGET_NR_stat
9059 case TARGET_NR_stat
:
9060 if (!(p
= lock_user_string(arg1
))) {
9061 return -TARGET_EFAULT
;
9063 ret
= get_errno(stat(path(p
), &st
));
9064 unlock_user(p
, arg1
, 0);
9067 #ifdef TARGET_NR_lstat
9068 case TARGET_NR_lstat
:
9069 if (!(p
= lock_user_string(arg1
))) {
9070 return -TARGET_EFAULT
;
9072 ret
= get_errno(lstat(path(p
), &st
));
9073 unlock_user(p
, arg1
, 0);
9076 #ifdef TARGET_NR_fstat
9077 case TARGET_NR_fstat
:
9079 ret
= get_errno(fstat(arg1
, &st
));
9080 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
9083 if (!is_error(ret
)) {
9084 struct target_stat
*target_st
;
9086 if (!lock_user_struct(VERIFY_WRITE
, target_st
, arg2
, 0))
9087 return -TARGET_EFAULT
;
9088 memset(target_st
, 0, sizeof(*target_st
));
9089 __put_user(st
.st_dev
, &target_st
->st_dev
);
9090 __put_user(st
.st_ino
, &target_st
->st_ino
);
9091 __put_user(st
.st_mode
, &target_st
->st_mode
);
9092 __put_user(st
.st_uid
, &target_st
->st_uid
);
9093 __put_user(st
.st_gid
, &target_st
->st_gid
);
9094 __put_user(st
.st_nlink
, &target_st
->st_nlink
);
9095 __put_user(st
.st_rdev
, &target_st
->st_rdev
);
9096 __put_user(st
.st_size
, &target_st
->st_size
);
9097 __put_user(st
.st_blksize
, &target_st
->st_blksize
);
9098 __put_user(st
.st_blocks
, &target_st
->st_blocks
);
9099 __put_user(st
.st_atime
, &target_st
->target_st_atime
);
9100 __put_user(st
.st_mtime
, &target_st
->target_st_mtime
);
9101 __put_user(st
.st_ctime
, &target_st
->target_st_ctime
);
9102 #if (_POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700) && \
9103 defined(TARGET_STAT_HAVE_NSEC)
9104 __put_user(st
.st_atim
.tv_nsec
,
9105 &target_st
->target_st_atime_nsec
);
9106 __put_user(st
.st_mtim
.tv_nsec
,
9107 &target_st
->target_st_mtime_nsec
);
9108 __put_user(st
.st_ctim
.tv_nsec
,
9109 &target_st
->target_st_ctime_nsec
);
9111 unlock_user_struct(target_st
, arg2
, 1);
9116 case TARGET_NR_vhangup
:
9117 return get_errno(vhangup());
9118 #ifdef TARGET_NR_syscall
9119 case TARGET_NR_syscall
:
9120 return do_syscall(cpu_env
, arg1
& 0xffff, arg2
, arg3
, arg4
, arg5
,
9121 arg6
, arg7
, arg8
, 0);
9123 case TARGET_NR_wait4
:
9126 abi_long status_ptr
= arg2
;
9127 struct rusage rusage
, *rusage_ptr
;
9128 abi_ulong target_rusage
= arg4
;
9129 abi_long rusage_err
;
9131 rusage_ptr
= &rusage
;
9134 ret
= get_errno(safe_wait4(arg1
, &status
, arg3
, rusage_ptr
));
9135 if (!is_error(ret
)) {
9136 if (status_ptr
&& ret
) {
9137 status
= host_to_target_waitstatus(status
);
9138 if (put_user_s32(status
, status_ptr
))
9139 return -TARGET_EFAULT
;
9141 if (target_rusage
) {
9142 rusage_err
= host_to_target_rusage(target_rusage
, &rusage
);
9150 #ifdef TARGET_NR_swapoff
9151 case TARGET_NR_swapoff
:
9152 if (!(p
= lock_user_string(arg1
)))
9153 return -TARGET_EFAULT
;
9154 ret
= get_errno(swapoff(p
));
9155 unlock_user(p
, arg1
, 0);
9158 case TARGET_NR_sysinfo
:
9160 struct target_sysinfo
*target_value
;
9161 struct sysinfo value
;
9162 ret
= get_errno(sysinfo(&value
));
9163 if (!is_error(ret
) && arg1
)
9165 if (!lock_user_struct(VERIFY_WRITE
, target_value
, arg1
, 0))
9166 return -TARGET_EFAULT
;
9167 __put_user(value
.uptime
, &target_value
->uptime
);
9168 __put_user(value
.loads
[0], &target_value
->loads
[0]);
9169 __put_user(value
.loads
[1], &target_value
->loads
[1]);
9170 __put_user(value
.loads
[2], &target_value
->loads
[2]);
9171 __put_user(value
.totalram
, &target_value
->totalram
);
9172 __put_user(value
.freeram
, &target_value
->freeram
);
9173 __put_user(value
.sharedram
, &target_value
->sharedram
);
9174 __put_user(value
.bufferram
, &target_value
->bufferram
);
9175 __put_user(value
.totalswap
, &target_value
->totalswap
);
9176 __put_user(value
.freeswap
, &target_value
->freeswap
);
9177 __put_user(value
.procs
, &target_value
->procs
);
9178 __put_user(value
.totalhigh
, &target_value
->totalhigh
);
9179 __put_user(value
.freehigh
, &target_value
->freehigh
);
9180 __put_user(value
.mem_unit
, &target_value
->mem_unit
);
9181 unlock_user_struct(target_value
, arg1
, 1);
9185 #ifdef TARGET_NR_ipc
9187 return do_ipc(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
9189 #ifdef TARGET_NR_semget
9190 case TARGET_NR_semget
:
9191 return get_errno(semget(arg1
, arg2
, arg3
));
9193 #ifdef TARGET_NR_semop
9194 case TARGET_NR_semop
:
9195 return do_semop(arg1
, arg2
, arg3
);
9197 #ifdef TARGET_NR_semctl
9198 case TARGET_NR_semctl
:
9199 return do_semctl(arg1
, arg2
, arg3
, arg4
);
9201 #ifdef TARGET_NR_msgctl
9202 case TARGET_NR_msgctl
:
9203 return do_msgctl(arg1
, arg2
, arg3
);
9205 #ifdef TARGET_NR_msgget
9206 case TARGET_NR_msgget
:
9207 return get_errno(msgget(arg1
, arg2
));
9209 #ifdef TARGET_NR_msgrcv
9210 case TARGET_NR_msgrcv
:
9211 return do_msgrcv(arg1
, arg2
, arg3
, arg4
, arg5
);
9213 #ifdef TARGET_NR_msgsnd
9214 case TARGET_NR_msgsnd
:
9215 return do_msgsnd(arg1
, arg2
, arg3
, arg4
);
9217 #ifdef TARGET_NR_shmget
9218 case TARGET_NR_shmget
:
9219 return get_errno(shmget(arg1
, arg2
, arg3
));
9221 #ifdef TARGET_NR_shmctl
9222 case TARGET_NR_shmctl
:
9223 return do_shmctl(arg1
, arg2
, arg3
);
9225 #ifdef TARGET_NR_shmat
9226 case TARGET_NR_shmat
:
9227 return do_shmat(cpu_env
, arg1
, arg2
, arg3
);
9229 #ifdef TARGET_NR_shmdt
9230 case TARGET_NR_shmdt
:
9231 return do_shmdt(arg1
);
9233 case TARGET_NR_fsync
:
9234 return get_errno(fsync(arg1
));
9235 case TARGET_NR_clone
:
9236 /* Linux manages to have three different orderings for its
9237 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
9238 * match the kernel's CONFIG_CLONE_* settings.
9239 * Microblaze is further special in that it uses a sixth
9240 * implicit argument to clone for the TLS pointer.
9242 #if defined(TARGET_MICROBLAZE)
9243 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg4
, arg6
, arg5
));
9244 #elif defined(TARGET_CLONE_BACKWARDS)
9245 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
));
9246 #elif defined(TARGET_CLONE_BACKWARDS2)
9247 ret
= get_errno(do_fork(cpu_env
, arg2
, arg1
, arg3
, arg5
, arg4
));
9249 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg5
, arg4
));
9252 #ifdef __NR_exit_group
9253 /* new thread calls */
9254 case TARGET_NR_exit_group
:
9255 preexit_cleanup(cpu_env
, arg1
);
9256 return get_errno(exit_group(arg1
));
9258 case TARGET_NR_setdomainname
:
9259 if (!(p
= lock_user_string(arg1
)))
9260 return -TARGET_EFAULT
;
9261 ret
= get_errno(setdomainname(p
, arg2
));
9262 unlock_user(p
, arg1
, 0);
9264 case TARGET_NR_uname
:
9265 /* no need to transcode because we use the linux syscall */
9267 struct new_utsname
* buf
;
9269 if (!lock_user_struct(VERIFY_WRITE
, buf
, arg1
, 0))
9270 return -TARGET_EFAULT
;
9271 ret
= get_errno(sys_uname(buf
));
9272 if (!is_error(ret
)) {
9273 /* Overwrite the native machine name with whatever is being
9275 g_strlcpy(buf
->machine
, cpu_to_uname_machine(cpu_env
),
9276 sizeof(buf
->machine
));
9277 /* Allow the user to override the reported release. */
9278 if (qemu_uname_release
&& *qemu_uname_release
) {
9279 g_strlcpy(buf
->release
, qemu_uname_release
,
9280 sizeof(buf
->release
));
9283 unlock_user_struct(buf
, arg1
, 1);
9287 case TARGET_NR_modify_ldt
:
9288 return do_modify_ldt(cpu_env
, arg1
, arg2
, arg3
);
9289 #if !defined(TARGET_X86_64)
9290 case TARGET_NR_vm86
:
9291 return do_vm86(cpu_env
, arg1
, arg2
);
9294 case TARGET_NR_adjtimex
:
9296 struct timex host_buf
;
9298 if (target_to_host_timex(&host_buf
, arg1
) != 0) {
9299 return -TARGET_EFAULT
;
9301 ret
= get_errno(adjtimex(&host_buf
));
9302 if (!is_error(ret
)) {
9303 if (host_to_target_timex(arg1
, &host_buf
) != 0) {
9304 return -TARGET_EFAULT
;
9309 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
9310 case TARGET_NR_clock_adjtime
:
9312 struct timex htx
, *phtx
= &htx
;
9314 if (target_to_host_timex(phtx
, arg2
) != 0) {
9315 return -TARGET_EFAULT
;
9317 ret
= get_errno(clock_adjtime(arg1
, phtx
));
9318 if (!is_error(ret
) && phtx
) {
9319 if (host_to_target_timex(arg2
, phtx
) != 0) {
9320 return -TARGET_EFAULT
;
9326 case TARGET_NR_getpgid
:
9327 return get_errno(getpgid(arg1
));
9328 case TARGET_NR_fchdir
:
9329 return get_errno(fchdir(arg1
));
9330 case TARGET_NR_personality
:
9331 return get_errno(personality(arg1
));
9332 #ifdef TARGET_NR__llseek /* Not on alpha */
9333 case TARGET_NR__llseek
:
9336 #if !defined(__NR_llseek)
9337 res
= lseek(arg1
, ((uint64_t)arg2
<< 32) | (abi_ulong
)arg3
, arg5
);
9339 ret
= get_errno(res
);
9344 ret
= get_errno(_llseek(arg1
, arg2
, arg3
, &res
, arg5
));
9346 if ((ret
== 0) && put_user_s64(res
, arg4
)) {
9347 return -TARGET_EFAULT
;
9352 #ifdef TARGET_NR_getdents
9353 case TARGET_NR_getdents
:
9354 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
9355 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
9357 struct target_dirent
*target_dirp
;
9358 struct linux_dirent
*dirp
;
9359 abi_long count
= arg3
;
9361 dirp
= g_try_malloc(count
);
9363 return -TARGET_ENOMEM
;
9366 ret
= get_errno(sys_getdents(arg1
, dirp
, count
));
9367 if (!is_error(ret
)) {
9368 struct linux_dirent
*de
;
9369 struct target_dirent
*tde
;
9371 int reclen
, treclen
;
9372 int count1
, tnamelen
;
9376 if (!(target_dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
9377 return -TARGET_EFAULT
;
9380 reclen
= de
->d_reclen
;
9381 tnamelen
= reclen
- offsetof(struct linux_dirent
, d_name
);
9382 assert(tnamelen
>= 0);
9383 treclen
= tnamelen
+ offsetof(struct target_dirent
, d_name
);
9384 assert(count1
+ treclen
<= count
);
9385 tde
->d_reclen
= tswap16(treclen
);
9386 tde
->d_ino
= tswapal(de
->d_ino
);
9387 tde
->d_off
= tswapal(de
->d_off
);
9388 memcpy(tde
->d_name
, de
->d_name
, tnamelen
);
9389 de
= (struct linux_dirent
*)((char *)de
+ reclen
);
9391 tde
= (struct target_dirent
*)((char *)tde
+ treclen
);
9395 unlock_user(target_dirp
, arg2
, ret
);
9401 struct linux_dirent
*dirp
;
9402 abi_long count
= arg3
;
9404 if (!(dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
9405 return -TARGET_EFAULT
;
9406 ret
= get_errno(sys_getdents(arg1
, dirp
, count
));
9407 if (!is_error(ret
)) {
9408 struct linux_dirent
*de
;
9413 reclen
= de
->d_reclen
;
9416 de
->d_reclen
= tswap16(reclen
);
9417 tswapls(&de
->d_ino
);
9418 tswapls(&de
->d_off
);
9419 de
= (struct linux_dirent
*)((char *)de
+ reclen
);
9423 unlock_user(dirp
, arg2
, ret
);
9427 /* Implement getdents in terms of getdents64 */
9429 struct linux_dirent64
*dirp
;
9430 abi_long count
= arg3
;
9432 dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0);
9434 return -TARGET_EFAULT
;
9436 ret
= get_errno(sys_getdents64(arg1
, dirp
, count
));
9437 if (!is_error(ret
)) {
9438 /* Convert the dirent64 structs to target dirent. We do this
9439 * in-place, since we can guarantee that a target_dirent is no
9440 * larger than a dirent64; however this means we have to be
9441 * careful to read everything before writing in the new format.
9443 struct linux_dirent64
*de
;
9444 struct target_dirent
*tde
;
9449 tde
= (struct target_dirent
*)dirp
;
9451 int namelen
, treclen
;
9452 int reclen
= de
->d_reclen
;
9453 uint64_t ino
= de
->d_ino
;
9454 int64_t off
= de
->d_off
;
9455 uint8_t type
= de
->d_type
;
9457 namelen
= strlen(de
->d_name
);
9458 treclen
= offsetof(struct target_dirent
, d_name
)
9460 treclen
= QEMU_ALIGN_UP(treclen
, sizeof(abi_long
));
9462 memmove(tde
->d_name
, de
->d_name
, namelen
+ 1);
9463 tde
->d_ino
= tswapal(ino
);
9464 tde
->d_off
= tswapal(off
);
9465 tde
->d_reclen
= tswap16(treclen
);
9466 /* The target_dirent type is in what was formerly a padding
9467 * byte at the end of the structure:
9469 *(((char *)tde
) + treclen
- 1) = type
;
9471 de
= (struct linux_dirent64
*)((char *)de
+ reclen
);
9472 tde
= (struct target_dirent
*)((char *)tde
+ treclen
);
9478 unlock_user(dirp
, arg2
, ret
);
9482 #endif /* TARGET_NR_getdents */
9483 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
9484 case TARGET_NR_getdents64
:
9486 struct linux_dirent64
*dirp
;
9487 abi_long count
= arg3
;
9488 if (!(dirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0)))
9489 return -TARGET_EFAULT
;
9490 ret
= get_errno(sys_getdents64(arg1
, dirp
, count
));
9491 if (!is_error(ret
)) {
9492 struct linux_dirent64
*de
;
9497 reclen
= de
->d_reclen
;
9500 de
->d_reclen
= tswap16(reclen
);
9501 tswap64s((uint64_t *)&de
->d_ino
);
9502 tswap64s((uint64_t *)&de
->d_off
);
9503 de
= (struct linux_dirent64
*)((char *)de
+ reclen
);
9507 unlock_user(dirp
, arg2
, ret
);
9510 #endif /* TARGET_NR_getdents64 */
9511 #if defined(TARGET_NR__newselect)
9512 case TARGET_NR__newselect
:
9513 return do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
9515 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
9516 # ifdef TARGET_NR_poll
9517 case TARGET_NR_poll
:
9519 # ifdef TARGET_NR_ppoll
9520 case TARGET_NR_ppoll
:
9523 struct target_pollfd
*target_pfd
;
9524 unsigned int nfds
= arg2
;
9531 if (nfds
> (INT_MAX
/ sizeof(struct target_pollfd
))) {
9532 return -TARGET_EINVAL
;
9535 target_pfd
= lock_user(VERIFY_WRITE
, arg1
,
9536 sizeof(struct target_pollfd
) * nfds
, 1);
9538 return -TARGET_EFAULT
;
9541 pfd
= alloca(sizeof(struct pollfd
) * nfds
);
9542 for (i
= 0; i
< nfds
; i
++) {
9543 pfd
[i
].fd
= tswap32(target_pfd
[i
].fd
);
9544 pfd
[i
].events
= tswap16(target_pfd
[i
].events
);
9549 # ifdef TARGET_NR_ppoll
9550 case TARGET_NR_ppoll
:
9552 struct timespec _timeout_ts
, *timeout_ts
= &_timeout_ts
;
9553 target_sigset_t
*target_set
;
9554 sigset_t _set
, *set
= &_set
;
9557 if (target_to_host_timespec(timeout_ts
, arg3
)) {
9558 unlock_user(target_pfd
, arg1
, 0);
9559 return -TARGET_EFAULT
;
9566 if (arg5
!= sizeof(target_sigset_t
)) {
9567 unlock_user(target_pfd
, arg1
, 0);
9568 return -TARGET_EINVAL
;
9571 target_set
= lock_user(VERIFY_READ
, arg4
, sizeof(target_sigset_t
), 1);
9573 unlock_user(target_pfd
, arg1
, 0);
9574 return -TARGET_EFAULT
;
9576 target_to_host_sigset(set
, target_set
);
9581 ret
= get_errno(safe_ppoll(pfd
, nfds
, timeout_ts
,
9582 set
, SIGSET_T_SIZE
));
9584 if (!is_error(ret
) && arg3
) {
9585 host_to_target_timespec(arg3
, timeout_ts
);
9588 unlock_user(target_set
, arg4
, 0);
9593 # ifdef TARGET_NR_poll
9594 case TARGET_NR_poll
:
9596 struct timespec ts
, *pts
;
9599 /* Convert ms to secs, ns */
9600 ts
.tv_sec
= arg3
/ 1000;
9601 ts
.tv_nsec
= (arg3
% 1000) * 1000000LL;
9604 /* -ve poll() timeout means "infinite" */
9607 ret
= get_errno(safe_ppoll(pfd
, nfds
, pts
, NULL
, 0));
9612 g_assert_not_reached();
9615 if (!is_error(ret
)) {
9616 for(i
= 0; i
< nfds
; i
++) {
9617 target_pfd
[i
].revents
= tswap16(pfd
[i
].revents
);
9620 unlock_user(target_pfd
, arg1
, sizeof(struct target_pollfd
) * nfds
);
9624 case TARGET_NR_flock
:
9625 /* NOTE: the flock constant seems to be the same for every
9627 return get_errno(safe_flock(arg1
, arg2
));
9628 case TARGET_NR_readv
:
9630 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
9632 ret
= get_errno(safe_readv(arg1
, vec
, arg3
));
9633 unlock_iovec(vec
, arg2
, arg3
, 1);
9635 ret
= -host_to_target_errno(errno
);
9639 case TARGET_NR_writev
:
9641 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
9643 ret
= get_errno(safe_writev(arg1
, vec
, arg3
));
9644 unlock_iovec(vec
, arg2
, arg3
, 0);
9646 ret
= -host_to_target_errno(errno
);
9650 #if defined(TARGET_NR_preadv)
9651 case TARGET_NR_preadv
:
9653 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
9655 unsigned long low
, high
;
9657 target_to_host_low_high(arg4
, arg5
, &low
, &high
);
9658 ret
= get_errno(safe_preadv(arg1
, vec
, arg3
, low
, high
));
9659 unlock_iovec(vec
, arg2
, arg3
, 1);
9661 ret
= -host_to_target_errno(errno
);
9666 #if defined(TARGET_NR_pwritev)
9667 case TARGET_NR_pwritev
:
9669 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
9671 unsigned long low
, high
;
9673 target_to_host_low_high(arg4
, arg5
, &low
, &high
);
9674 ret
= get_errno(safe_pwritev(arg1
, vec
, arg3
, low
, high
));
9675 unlock_iovec(vec
, arg2
, arg3
, 0);
9677 ret
= -host_to_target_errno(errno
);
9682 case TARGET_NR_getsid
:
9683 return get_errno(getsid(arg1
));
9684 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
9685 case TARGET_NR_fdatasync
:
9686 return get_errno(fdatasync(arg1
));
9688 #ifdef TARGET_NR__sysctl
9689 case TARGET_NR__sysctl
:
9690 /* We don't implement this, but ENOTDIR is always a safe
9692 return -TARGET_ENOTDIR
;
9694 case TARGET_NR_sched_getaffinity
:
9696 unsigned int mask_size
;
9697 unsigned long *mask
;
9700 * sched_getaffinity needs multiples of ulong, so need to take
9701 * care of mismatches between target ulong and host ulong sizes.
9703 if (arg2
& (sizeof(abi_ulong
) - 1)) {
9704 return -TARGET_EINVAL
;
9706 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
9708 mask
= alloca(mask_size
);
9709 memset(mask
, 0, mask_size
);
9710 ret
= get_errno(sys_sched_getaffinity(arg1
, mask_size
, mask
));
9712 if (!is_error(ret
)) {
9714 /* More data returned than the caller's buffer will fit.
9715 * This only happens if sizeof(abi_long) < sizeof(long)
9716 * and the caller passed us a buffer holding an odd number
9717 * of abi_longs. If the host kernel is actually using the
9718 * extra 4 bytes then fail EINVAL; otherwise we can just
9719 * ignore them and only copy the interesting part.
9721 int numcpus
= sysconf(_SC_NPROCESSORS_CONF
);
9722 if (numcpus
> arg2
* 8) {
9723 return -TARGET_EINVAL
;
9728 if (host_to_target_cpu_mask(mask
, mask_size
, arg3
, ret
)) {
9729 return -TARGET_EFAULT
;
9734 case TARGET_NR_sched_setaffinity
:
9736 unsigned int mask_size
;
9737 unsigned long *mask
;
9740 * sched_setaffinity needs multiples of ulong, so need to take
9741 * care of mismatches between target ulong and host ulong sizes.
9743 if (arg2
& (sizeof(abi_ulong
) - 1)) {
9744 return -TARGET_EINVAL
;
9746 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
9747 mask
= alloca(mask_size
);
9749 ret
= target_to_host_cpu_mask(mask
, mask_size
, arg3
, arg2
);
9754 return get_errno(sys_sched_setaffinity(arg1
, mask_size
, mask
));
9756 case TARGET_NR_getcpu
:
9759 ret
= get_errno(sys_getcpu(arg1
? &cpu
: NULL
,
9760 arg2
? &node
: NULL
,
9762 if (is_error(ret
)) {
9765 if (arg1
&& put_user_u32(cpu
, arg1
)) {
9766 return -TARGET_EFAULT
;
9768 if (arg2
&& put_user_u32(node
, arg2
)) {
9769 return -TARGET_EFAULT
;
9773 case TARGET_NR_sched_setparam
:
9775 struct sched_param
*target_schp
;
9776 struct sched_param schp
;
9779 return -TARGET_EINVAL
;
9781 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg2
, 1))
9782 return -TARGET_EFAULT
;
9783 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
9784 unlock_user_struct(target_schp
, arg2
, 0);
9785 return get_errno(sched_setparam(arg1
, &schp
));
9787 case TARGET_NR_sched_getparam
:
9789 struct sched_param
*target_schp
;
9790 struct sched_param schp
;
9793 return -TARGET_EINVAL
;
9795 ret
= get_errno(sched_getparam(arg1
, &schp
));
9796 if (!is_error(ret
)) {
9797 if (!lock_user_struct(VERIFY_WRITE
, target_schp
, arg2
, 0))
9798 return -TARGET_EFAULT
;
9799 target_schp
->sched_priority
= tswap32(schp
.sched_priority
);
9800 unlock_user_struct(target_schp
, arg2
, 1);
9804 case TARGET_NR_sched_setscheduler
:
9806 struct sched_param
*target_schp
;
9807 struct sched_param schp
;
9809 return -TARGET_EINVAL
;
9811 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg3
, 1))
9812 return -TARGET_EFAULT
;
9813 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
9814 unlock_user_struct(target_schp
, arg3
, 0);
9815 return get_errno(sched_setscheduler(arg1
, arg2
, &schp
));
9817 case TARGET_NR_sched_getscheduler
:
9818 return get_errno(sched_getscheduler(arg1
));
9819 case TARGET_NR_sched_yield
:
9820 return get_errno(sched_yield());
9821 case TARGET_NR_sched_get_priority_max
:
9822 return get_errno(sched_get_priority_max(arg1
));
9823 case TARGET_NR_sched_get_priority_min
:
9824 return get_errno(sched_get_priority_min(arg1
));
9825 case TARGET_NR_sched_rr_get_interval
:
9828 ret
= get_errno(sched_rr_get_interval(arg1
, &ts
));
9829 if (!is_error(ret
)) {
9830 ret
= host_to_target_timespec(arg2
, &ts
);
9834 case TARGET_NR_nanosleep
:
9836 struct timespec req
, rem
;
9837 target_to_host_timespec(&req
, arg1
);
9838 ret
= get_errno(safe_nanosleep(&req
, &rem
));
9839 if (is_error(ret
) && arg2
) {
9840 host_to_target_timespec(arg2
, &rem
);
9844 case TARGET_NR_prctl
:
9846 case PR_GET_PDEATHSIG
:
9849 ret
= get_errno(prctl(arg1
, &deathsig
, arg3
, arg4
, arg5
));
9850 if (!is_error(ret
) && arg2
9851 && put_user_ual(deathsig
, arg2
)) {
9852 return -TARGET_EFAULT
;
9859 void *name
= lock_user(VERIFY_WRITE
, arg2
, 16, 1);
9861 return -TARGET_EFAULT
;
9863 ret
= get_errno(prctl(arg1
, (unsigned long)name
,
9865 unlock_user(name
, arg2
, 16);
9870 void *name
= lock_user(VERIFY_READ
, arg2
, 16, 1);
9872 return -TARGET_EFAULT
;
9874 ret
= get_errno(prctl(arg1
, (unsigned long)name
,
9876 unlock_user(name
, arg2
, 0);
9881 case TARGET_PR_GET_FP_MODE
:
9883 CPUMIPSState
*env
= ((CPUMIPSState
*)cpu_env
);
9885 if (env
->CP0_Status
& (1 << CP0St_FR
)) {
9886 ret
|= TARGET_PR_FP_MODE_FR
;
9888 if (env
->CP0_Config5
& (1 << CP0C5_FRE
)) {
9889 ret
|= TARGET_PR_FP_MODE_FRE
;
9893 case TARGET_PR_SET_FP_MODE
:
9895 CPUMIPSState
*env
= ((CPUMIPSState
*)cpu_env
);
9896 bool old_fr
= env
->CP0_Status
& (1 << CP0St_FR
);
9897 bool old_fre
= env
->CP0_Config5
& (1 << CP0C5_FRE
);
9898 bool new_fr
= arg2
& TARGET_PR_FP_MODE_FR
;
9899 bool new_fre
= arg2
& TARGET_PR_FP_MODE_FRE
;
9901 const unsigned int known_bits
= TARGET_PR_FP_MODE_FR
|
9902 TARGET_PR_FP_MODE_FRE
;
9904 /* If nothing to change, return right away, successfully. */
9905 if (old_fr
== new_fr
&& old_fre
== new_fre
) {
9908 /* Check the value is valid */
9909 if (arg2
& ~known_bits
) {
9910 return -TARGET_EOPNOTSUPP
;
9912 /* Setting FRE without FR is not supported. */
9913 if (new_fre
&& !new_fr
) {
9914 return -TARGET_EOPNOTSUPP
;
9916 if (new_fr
&& !(env
->active_fpu
.fcr0
& (1 << FCR0_F64
))) {
9917 /* FR1 is not supported */
9918 return -TARGET_EOPNOTSUPP
;
9920 if (!new_fr
&& (env
->active_fpu
.fcr0
& (1 << FCR0_F64
))
9921 && !(env
->CP0_Status_rw_bitmask
& (1 << CP0St_FR
))) {
9922 /* cannot set FR=0 */
9923 return -TARGET_EOPNOTSUPP
;
9925 if (new_fre
&& !(env
->active_fpu
.fcr0
& (1 << FCR0_FREP
))) {
9926 /* Cannot set FRE=1 */
9927 return -TARGET_EOPNOTSUPP
;
9931 fpr_t
*fpr
= env
->active_fpu
.fpr
;
9932 for (i
= 0; i
< 32 ; i
+= 2) {
9933 if (!old_fr
&& new_fr
) {
9934 fpr
[i
].w
[!FP_ENDIAN_IDX
] = fpr
[i
+ 1].w
[FP_ENDIAN_IDX
];
9935 } else if (old_fr
&& !new_fr
) {
9936 fpr
[i
+ 1].w
[FP_ENDIAN_IDX
] = fpr
[i
].w
[!FP_ENDIAN_IDX
];
9941 env
->CP0_Status
|= (1 << CP0St_FR
);
9942 env
->hflags
|= MIPS_HFLAG_F64
;
9944 env
->CP0_Status
&= ~(1 << CP0St_FR
);
9945 env
->hflags
&= ~MIPS_HFLAG_F64
;
9948 env
->CP0_Config5
|= (1 << CP0C5_FRE
);
9949 if (env
->active_fpu
.fcr0
& (1 << FCR0_FREP
)) {
9950 env
->hflags
|= MIPS_HFLAG_FRE
;
9953 env
->CP0_Config5
&= ~(1 << CP0C5_FRE
);
9954 env
->hflags
&= ~MIPS_HFLAG_FRE
;
9960 #ifdef TARGET_AARCH64
9961 case TARGET_PR_SVE_SET_VL
:
9963 * We cannot support either PR_SVE_SET_VL_ONEXEC or
9964 * PR_SVE_VL_INHERIT. Note the kernel definition
9965 * of sve_vl_valid allows for VQ=512, i.e. VL=8192,
9966 * even though the current architectural maximum is VQ=16.
9968 ret
= -TARGET_EINVAL
;
9969 if (cpu_isar_feature(aa64_sve
, env_archcpu(cpu_env
))
9970 && arg2
>= 0 && arg2
<= 512 * 16 && !(arg2
& 15)) {
9971 CPUARMState
*env
= cpu_env
;
9972 ARMCPU
*cpu
= env_archcpu(env
);
9973 uint32_t vq
, old_vq
;
9975 old_vq
= (env
->vfp
.zcr_el
[1] & 0xf) + 1;
9976 vq
= MAX(arg2
/ 16, 1);
9977 vq
= MIN(vq
, cpu
->sve_max_vq
);
9980 aarch64_sve_narrow_vq(env
, vq
);
9982 env
->vfp
.zcr_el
[1] = vq
- 1;
9986 case TARGET_PR_SVE_GET_VL
:
9987 ret
= -TARGET_EINVAL
;
9989 ARMCPU
*cpu
= env_archcpu(cpu_env
);
9990 if (cpu_isar_feature(aa64_sve
, cpu
)) {
9991 ret
= ((cpu
->env
.vfp
.zcr_el
[1] & 0xf) + 1) * 16;
9995 case TARGET_PR_PAC_RESET_KEYS
:
9997 CPUARMState
*env
= cpu_env
;
9998 ARMCPU
*cpu
= env_archcpu(env
);
10000 if (arg3
|| arg4
|| arg5
) {
10001 return -TARGET_EINVAL
;
10003 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
10004 int all
= (TARGET_PR_PAC_APIAKEY
| TARGET_PR_PAC_APIBKEY
|
10005 TARGET_PR_PAC_APDAKEY
| TARGET_PR_PAC_APDBKEY
|
10006 TARGET_PR_PAC_APGAKEY
);
10012 } else if (arg2
& ~all
) {
10013 return -TARGET_EINVAL
;
10015 if (arg2
& TARGET_PR_PAC_APIAKEY
) {
10016 ret
|= qemu_guest_getrandom(&env
->keys
.apia
,
10017 sizeof(ARMPACKey
), &err
);
10019 if (arg2
& TARGET_PR_PAC_APIBKEY
) {
10020 ret
|= qemu_guest_getrandom(&env
->keys
.apib
,
10021 sizeof(ARMPACKey
), &err
);
10023 if (arg2
& TARGET_PR_PAC_APDAKEY
) {
10024 ret
|= qemu_guest_getrandom(&env
->keys
.apda
,
10025 sizeof(ARMPACKey
), &err
);
10027 if (arg2
& TARGET_PR_PAC_APDBKEY
) {
10028 ret
|= qemu_guest_getrandom(&env
->keys
.apdb
,
10029 sizeof(ARMPACKey
), &err
);
10031 if (arg2
& TARGET_PR_PAC_APGAKEY
) {
10032 ret
|= qemu_guest_getrandom(&env
->keys
.apga
,
10033 sizeof(ARMPACKey
), &err
);
10037 * Some unknown failure in the crypto. The best
10038 * we can do is log it and fail the syscall.
10039 * The real syscall cannot fail this way.
10041 qemu_log_mask(LOG_UNIMP
,
10042 "PR_PAC_RESET_KEYS: Crypto failure: %s",
10043 error_get_pretty(err
));
10045 return -TARGET_EIO
;
10050 return -TARGET_EINVAL
;
10051 #endif /* AARCH64 */
10052 case PR_GET_SECCOMP
:
10053 case PR_SET_SECCOMP
:
10054 /* Disable seccomp to prevent the target disabling syscalls we
10056 return -TARGET_EINVAL
;
10058 /* Most prctl options have no pointer arguments */
10059 return get_errno(prctl(arg1
, arg2
, arg3
, arg4
, arg5
));
10062 #ifdef TARGET_NR_arch_prctl
10063 case TARGET_NR_arch_prctl
:
10064 #if defined(TARGET_I386) && !defined(TARGET_ABI32)
10065 return do_arch_prctl(cpu_env
, arg1
, arg2
);
10070 #ifdef TARGET_NR_pread64
10071 case TARGET_NR_pread64
:
10072 if (regpairs_aligned(cpu_env
, num
)) {
10076 if (arg2
== 0 && arg3
== 0) {
10077 /* Special-case NULL buffer and zero length, which should succeed */
10080 p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
10082 return -TARGET_EFAULT
;
10085 ret
= get_errno(pread64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
10086 unlock_user(p
, arg2
, ret
);
10088 case TARGET_NR_pwrite64
:
10089 if (regpairs_aligned(cpu_env
, num
)) {
10093 if (arg2
== 0 && arg3
== 0) {
10094 /* Special-case NULL buffer and zero length, which should succeed */
10097 p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1);
10099 return -TARGET_EFAULT
;
10102 ret
= get_errno(pwrite64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
10103 unlock_user(p
, arg2
, 0);
10106 case TARGET_NR_getcwd
:
10107 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0)))
10108 return -TARGET_EFAULT
;
10109 ret
= get_errno(sys_getcwd1(p
, arg2
));
10110 unlock_user(p
, arg1
, ret
);
10112 case TARGET_NR_capget
:
10113 case TARGET_NR_capset
:
10115 struct target_user_cap_header
*target_header
;
10116 struct target_user_cap_data
*target_data
= NULL
;
10117 struct __user_cap_header_struct header
;
10118 struct __user_cap_data_struct data
[2];
10119 struct __user_cap_data_struct
*dataptr
= NULL
;
10120 int i
, target_datalen
;
10121 int data_items
= 1;
10123 if (!lock_user_struct(VERIFY_WRITE
, target_header
, arg1
, 1)) {
10124 return -TARGET_EFAULT
;
10126 header
.version
= tswap32(target_header
->version
);
10127 header
.pid
= tswap32(target_header
->pid
);
10129 if (header
.version
!= _LINUX_CAPABILITY_VERSION
) {
10130 /* Version 2 and up takes pointer to two user_data structs */
10134 target_datalen
= sizeof(*target_data
) * data_items
;
10137 if (num
== TARGET_NR_capget
) {
10138 target_data
= lock_user(VERIFY_WRITE
, arg2
, target_datalen
, 0);
10140 target_data
= lock_user(VERIFY_READ
, arg2
, target_datalen
, 1);
10142 if (!target_data
) {
10143 unlock_user_struct(target_header
, arg1
, 0);
10144 return -TARGET_EFAULT
;
10147 if (num
== TARGET_NR_capset
) {
10148 for (i
= 0; i
< data_items
; i
++) {
10149 data
[i
].effective
= tswap32(target_data
[i
].effective
);
10150 data
[i
].permitted
= tswap32(target_data
[i
].permitted
);
10151 data
[i
].inheritable
= tswap32(target_data
[i
].inheritable
);
10158 if (num
== TARGET_NR_capget
) {
10159 ret
= get_errno(capget(&header
, dataptr
));
10161 ret
= get_errno(capset(&header
, dataptr
));
10164 /* The kernel always updates version for both capget and capset */
10165 target_header
->version
= tswap32(header
.version
);
10166 unlock_user_struct(target_header
, arg1
, 1);
10169 if (num
== TARGET_NR_capget
) {
10170 for (i
= 0; i
< data_items
; i
++) {
10171 target_data
[i
].effective
= tswap32(data
[i
].effective
);
10172 target_data
[i
].permitted
= tswap32(data
[i
].permitted
);
10173 target_data
[i
].inheritable
= tswap32(data
[i
].inheritable
);
10175 unlock_user(target_data
, arg2
, target_datalen
);
10177 unlock_user(target_data
, arg2
, 0);
10182 case TARGET_NR_sigaltstack
:
10183 return do_sigaltstack(arg1
, arg2
,
10184 get_sp_from_cpustate((CPUArchState
*)cpu_env
));
10186 #ifdef CONFIG_SENDFILE
10187 #ifdef TARGET_NR_sendfile
10188 case TARGET_NR_sendfile
:
10190 off_t
*offp
= NULL
;
10193 ret
= get_user_sal(off
, arg3
);
10194 if (is_error(ret
)) {
10199 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
10200 if (!is_error(ret
) && arg3
) {
10201 abi_long ret2
= put_user_sal(off
, arg3
);
10202 if (is_error(ret2
)) {
10209 #ifdef TARGET_NR_sendfile64
10210 case TARGET_NR_sendfile64
:
10212 off_t
*offp
= NULL
;
10215 ret
= get_user_s64(off
, arg3
);
10216 if (is_error(ret
)) {
10221 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
10222 if (!is_error(ret
) && arg3
) {
10223 abi_long ret2
= put_user_s64(off
, arg3
);
10224 if (is_error(ret2
)) {
10232 #ifdef TARGET_NR_vfork
10233 case TARGET_NR_vfork
:
10234 return get_errno(do_fork(cpu_env
,
10235 CLONE_VFORK
| CLONE_VM
| TARGET_SIGCHLD
,
10238 #ifdef TARGET_NR_ugetrlimit
10239 case TARGET_NR_ugetrlimit
:
10241 struct rlimit rlim
;
10242 int resource
= target_to_host_resource(arg1
);
10243 ret
= get_errno(getrlimit(resource
, &rlim
));
10244 if (!is_error(ret
)) {
10245 struct target_rlimit
*target_rlim
;
10246 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
10247 return -TARGET_EFAULT
;
10248 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
10249 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
10250 unlock_user_struct(target_rlim
, arg2
, 1);
10255 #ifdef TARGET_NR_truncate64
10256 case TARGET_NR_truncate64
:
10257 if (!(p
= lock_user_string(arg1
)))
10258 return -TARGET_EFAULT
;
10259 ret
= target_truncate64(cpu_env
, p
, arg2
, arg3
, arg4
);
10260 unlock_user(p
, arg1
, 0);
10263 #ifdef TARGET_NR_ftruncate64
10264 case TARGET_NR_ftruncate64
:
10265 return target_ftruncate64(cpu_env
, arg1
, arg2
, arg3
, arg4
);
10267 #ifdef TARGET_NR_stat64
10268 case TARGET_NR_stat64
:
10269 if (!(p
= lock_user_string(arg1
))) {
10270 return -TARGET_EFAULT
;
10272 ret
= get_errno(stat(path(p
), &st
));
10273 unlock_user(p
, arg1
, 0);
10274 if (!is_error(ret
))
10275 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
10278 #ifdef TARGET_NR_lstat64
10279 case TARGET_NR_lstat64
:
10280 if (!(p
= lock_user_string(arg1
))) {
10281 return -TARGET_EFAULT
;
10283 ret
= get_errno(lstat(path(p
), &st
));
10284 unlock_user(p
, arg1
, 0);
10285 if (!is_error(ret
))
10286 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
10289 #ifdef TARGET_NR_fstat64
10290 case TARGET_NR_fstat64
:
10291 ret
= get_errno(fstat(arg1
, &st
));
10292 if (!is_error(ret
))
10293 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
10296 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
10297 #ifdef TARGET_NR_fstatat64
10298 case TARGET_NR_fstatat64
:
10300 #ifdef TARGET_NR_newfstatat
10301 case TARGET_NR_newfstatat
:
10303 if (!(p
= lock_user_string(arg2
))) {
10304 return -TARGET_EFAULT
;
10306 ret
= get_errno(fstatat(arg1
, path(p
), &st
, arg4
));
10307 unlock_user(p
, arg2
, 0);
10308 if (!is_error(ret
))
10309 ret
= host_to_target_stat64(cpu_env
, arg3
, &st
);
10312 #if defined(TARGET_NR_statx)
10313 case TARGET_NR_statx
:
10315 struct target_statx
*target_stx
;
10319 p
= lock_user_string(arg2
);
10321 return -TARGET_EFAULT
;
10323 #if defined(__NR_statx)
10326 * It is assumed that struct statx is architecture independent.
10328 struct target_statx host_stx
;
10331 ret
= get_errno(sys_statx(dirfd
, p
, flags
, mask
, &host_stx
));
10332 if (!is_error(ret
)) {
10333 if (host_to_target_statx(&host_stx
, arg5
) != 0) {
10334 unlock_user(p
, arg2
, 0);
10335 return -TARGET_EFAULT
;
10339 if (ret
!= -TARGET_ENOSYS
) {
10340 unlock_user(p
, arg2
, 0);
10345 ret
= get_errno(fstatat(dirfd
, path(p
), &st
, flags
));
10346 unlock_user(p
, arg2
, 0);
10348 if (!is_error(ret
)) {
10349 if (!lock_user_struct(VERIFY_WRITE
, target_stx
, arg5
, 0)) {
10350 return -TARGET_EFAULT
;
10352 memset(target_stx
, 0, sizeof(*target_stx
));
10353 __put_user(major(st
.st_dev
), &target_stx
->stx_dev_major
);
10354 __put_user(minor(st
.st_dev
), &target_stx
->stx_dev_minor
);
10355 __put_user(st
.st_ino
, &target_stx
->stx_ino
);
10356 __put_user(st
.st_mode
, &target_stx
->stx_mode
);
10357 __put_user(st
.st_uid
, &target_stx
->stx_uid
);
10358 __put_user(st
.st_gid
, &target_stx
->stx_gid
);
10359 __put_user(st
.st_nlink
, &target_stx
->stx_nlink
);
10360 __put_user(major(st
.st_rdev
), &target_stx
->stx_rdev_major
);
10361 __put_user(minor(st
.st_rdev
), &target_stx
->stx_rdev_minor
);
10362 __put_user(st
.st_size
, &target_stx
->stx_size
);
10363 __put_user(st
.st_blksize
, &target_stx
->stx_blksize
);
10364 __put_user(st
.st_blocks
, &target_stx
->stx_blocks
);
10365 __put_user(st
.st_atime
, &target_stx
->stx_atime
.tv_sec
);
10366 __put_user(st
.st_mtime
, &target_stx
->stx_mtime
.tv_sec
);
10367 __put_user(st
.st_ctime
, &target_stx
->stx_ctime
.tv_sec
);
10368 unlock_user_struct(target_stx
, arg5
, 1);
10373 #ifdef TARGET_NR_lchown
10374 case TARGET_NR_lchown
:
10375 if (!(p
= lock_user_string(arg1
)))
10376 return -TARGET_EFAULT
;
10377 ret
= get_errno(lchown(p
, low2highuid(arg2
), low2highgid(arg3
)));
10378 unlock_user(p
, arg1
, 0);
10381 #ifdef TARGET_NR_getuid
10382 case TARGET_NR_getuid
:
10383 return get_errno(high2lowuid(getuid()));
10385 #ifdef TARGET_NR_getgid
10386 case TARGET_NR_getgid
:
10387 return get_errno(high2lowgid(getgid()));
10389 #ifdef TARGET_NR_geteuid
10390 case TARGET_NR_geteuid
:
10391 return get_errno(high2lowuid(geteuid()));
10393 #ifdef TARGET_NR_getegid
10394 case TARGET_NR_getegid
:
10395 return get_errno(high2lowgid(getegid()));
10397 case TARGET_NR_setreuid
:
10398 return get_errno(setreuid(low2highuid(arg1
), low2highuid(arg2
)));
10399 case TARGET_NR_setregid
:
10400 return get_errno(setregid(low2highgid(arg1
), low2highgid(arg2
)));
10401 case TARGET_NR_getgroups
:
10403 int gidsetsize
= arg1
;
10404 target_id
*target_grouplist
;
10408 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
10409 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
10410 if (gidsetsize
== 0)
10412 if (!is_error(ret
)) {
10413 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
, gidsetsize
* sizeof(target_id
), 0);
10414 if (!target_grouplist
)
10415 return -TARGET_EFAULT
;
10416 for(i
= 0;i
< ret
; i
++)
10417 target_grouplist
[i
] = tswapid(high2lowgid(grouplist
[i
]));
10418 unlock_user(target_grouplist
, arg2
, gidsetsize
* sizeof(target_id
));
10422 case TARGET_NR_setgroups
:
10424 int gidsetsize
= arg1
;
10425 target_id
*target_grouplist
;
10426 gid_t
*grouplist
= NULL
;
10429 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
10430 target_grouplist
= lock_user(VERIFY_READ
, arg2
, gidsetsize
* sizeof(target_id
), 1);
10431 if (!target_grouplist
) {
10432 return -TARGET_EFAULT
;
10434 for (i
= 0; i
< gidsetsize
; i
++) {
10435 grouplist
[i
] = low2highgid(tswapid(target_grouplist
[i
]));
10437 unlock_user(target_grouplist
, arg2
, 0);
10439 return get_errno(setgroups(gidsetsize
, grouplist
));
10441 case TARGET_NR_fchown
:
10442 return get_errno(fchown(arg1
, low2highuid(arg2
), low2highgid(arg3
)));
10443 #if defined(TARGET_NR_fchownat)
10444 case TARGET_NR_fchownat
:
10445 if (!(p
= lock_user_string(arg2
)))
10446 return -TARGET_EFAULT
;
10447 ret
= get_errno(fchownat(arg1
, p
, low2highuid(arg3
),
10448 low2highgid(arg4
), arg5
));
10449 unlock_user(p
, arg2
, 0);
10452 #ifdef TARGET_NR_setresuid
10453 case TARGET_NR_setresuid
:
10454 return get_errno(sys_setresuid(low2highuid(arg1
),
10456 low2highuid(arg3
)));
10458 #ifdef TARGET_NR_getresuid
10459 case TARGET_NR_getresuid
:
10461 uid_t ruid
, euid
, suid
;
10462 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
10463 if (!is_error(ret
)) {
10464 if (put_user_id(high2lowuid(ruid
), arg1
)
10465 || put_user_id(high2lowuid(euid
), arg2
)
10466 || put_user_id(high2lowuid(suid
), arg3
))
10467 return -TARGET_EFAULT
;
10472 #ifdef TARGET_NR_getresgid
10473 case TARGET_NR_setresgid
:
10474 return get_errno(sys_setresgid(low2highgid(arg1
),
10476 low2highgid(arg3
)));
10478 #ifdef TARGET_NR_getresgid
10479 case TARGET_NR_getresgid
:
10481 gid_t rgid
, egid
, sgid
;
10482 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
10483 if (!is_error(ret
)) {
10484 if (put_user_id(high2lowgid(rgid
), arg1
)
10485 || put_user_id(high2lowgid(egid
), arg2
)
10486 || put_user_id(high2lowgid(sgid
), arg3
))
10487 return -TARGET_EFAULT
;
10492 #ifdef TARGET_NR_chown
10493 case TARGET_NR_chown
:
10494 if (!(p
= lock_user_string(arg1
)))
10495 return -TARGET_EFAULT
;
10496 ret
= get_errno(chown(p
, low2highuid(arg2
), low2highgid(arg3
)));
10497 unlock_user(p
, arg1
, 0);
10500 case TARGET_NR_setuid
:
10501 return get_errno(sys_setuid(low2highuid(arg1
)));
10502 case TARGET_NR_setgid
:
10503 return get_errno(sys_setgid(low2highgid(arg1
)));
10504 case TARGET_NR_setfsuid
:
10505 return get_errno(setfsuid(arg1
));
10506 case TARGET_NR_setfsgid
:
10507 return get_errno(setfsgid(arg1
));
10509 #ifdef TARGET_NR_lchown32
10510 case TARGET_NR_lchown32
:
10511 if (!(p
= lock_user_string(arg1
)))
10512 return -TARGET_EFAULT
;
10513 ret
= get_errno(lchown(p
, arg2
, arg3
));
10514 unlock_user(p
, arg1
, 0);
10517 #ifdef TARGET_NR_getuid32
10518 case TARGET_NR_getuid32
:
10519 return get_errno(getuid());
10522 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
10523 /* Alpha specific */
10524 case TARGET_NR_getxuid
:
10528 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
]=euid
;
10530 return get_errno(getuid());
10532 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
10533 /* Alpha specific */
10534 case TARGET_NR_getxgid
:
10538 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
]=egid
;
10540 return get_errno(getgid());
10542 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
10543 /* Alpha specific */
10544 case TARGET_NR_osf_getsysinfo
:
10545 ret
= -TARGET_EOPNOTSUPP
;
10547 case TARGET_GSI_IEEE_FP_CONTROL
:
10549 uint64_t fpcr
= cpu_alpha_load_fpcr(cpu_env
);
10550 uint64_t swcr
= ((CPUAlphaState
*)cpu_env
)->swcr
;
10552 swcr
&= ~SWCR_STATUS_MASK
;
10553 swcr
|= (fpcr
>> 35) & SWCR_STATUS_MASK
;
10555 if (put_user_u64 (swcr
, arg2
))
10556 return -TARGET_EFAULT
;
10561 /* case GSI_IEEE_STATE_AT_SIGNAL:
10562 -- Not implemented in linux kernel.
10564 -- Retrieves current unaligned access state; not much used.
10565 case GSI_PROC_TYPE:
10566 -- Retrieves implver information; surely not used.
10567 case GSI_GET_HWRPB:
10568 -- Grabs a copy of the HWRPB; surely not used.
10573 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
10574 /* Alpha specific */
10575 case TARGET_NR_osf_setsysinfo
:
10576 ret
= -TARGET_EOPNOTSUPP
;
10578 case TARGET_SSI_IEEE_FP_CONTROL
:
10580 uint64_t swcr
, fpcr
;
10582 if (get_user_u64 (swcr
, arg2
)) {
10583 return -TARGET_EFAULT
;
10587 * The kernel calls swcr_update_status to update the
10588 * status bits from the fpcr at every point that it
10589 * could be queried. Therefore, we store the status
10590 * bits only in FPCR.
10592 ((CPUAlphaState
*)cpu_env
)->swcr
10593 = swcr
& (SWCR_TRAP_ENABLE_MASK
| SWCR_MAP_MASK
);
10595 fpcr
= cpu_alpha_load_fpcr(cpu_env
);
10596 fpcr
&= ((uint64_t)FPCR_DYN_MASK
<< 32);
10597 fpcr
|= alpha_ieee_swcr_to_fpcr(swcr
);
10598 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
10603 case TARGET_SSI_IEEE_RAISE_EXCEPTION
:
10605 uint64_t exc
, fpcr
, fex
;
10607 if (get_user_u64(exc
, arg2
)) {
10608 return -TARGET_EFAULT
;
10610 exc
&= SWCR_STATUS_MASK
;
10611 fpcr
= cpu_alpha_load_fpcr(cpu_env
);
10613 /* Old exceptions are not signaled. */
10614 fex
= alpha_ieee_fpcr_to_swcr(fpcr
);
10616 fex
>>= SWCR_STATUS_TO_EXCSUM_SHIFT
;
10617 fex
&= ((CPUArchState
*)cpu_env
)->swcr
;
10619 /* Update the hardware fpcr. */
10620 fpcr
|= alpha_ieee_swcr_to_fpcr(exc
);
10621 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
10624 int si_code
= TARGET_FPE_FLTUNK
;
10625 target_siginfo_t info
;
10627 if (fex
& SWCR_TRAP_ENABLE_DNO
) {
10628 si_code
= TARGET_FPE_FLTUND
;
10630 if (fex
& SWCR_TRAP_ENABLE_INE
) {
10631 si_code
= TARGET_FPE_FLTRES
;
10633 if (fex
& SWCR_TRAP_ENABLE_UNF
) {
10634 si_code
= TARGET_FPE_FLTUND
;
10636 if (fex
& SWCR_TRAP_ENABLE_OVF
) {
10637 si_code
= TARGET_FPE_FLTOVF
;
10639 if (fex
& SWCR_TRAP_ENABLE_DZE
) {
10640 si_code
= TARGET_FPE_FLTDIV
;
10642 if (fex
& SWCR_TRAP_ENABLE_INV
) {
10643 si_code
= TARGET_FPE_FLTINV
;
10646 info
.si_signo
= SIGFPE
;
10648 info
.si_code
= si_code
;
10649 info
._sifields
._sigfault
._addr
10650 = ((CPUArchState
*)cpu_env
)->pc
;
10651 queue_signal((CPUArchState
*)cpu_env
, info
.si_signo
,
10652 QEMU_SI_FAULT
, &info
);
10658 /* case SSI_NVPAIRS:
10659 -- Used with SSIN_UACPROC to enable unaligned accesses.
10660 case SSI_IEEE_STATE_AT_SIGNAL:
10661 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
10662 -- Not implemented in linux kernel
10667 #ifdef TARGET_NR_osf_sigprocmask
10668 /* Alpha specific. */
10669 case TARGET_NR_osf_sigprocmask
:
10673 sigset_t set
, oldset
;
10676 case TARGET_SIG_BLOCK
:
10679 case TARGET_SIG_UNBLOCK
:
10682 case TARGET_SIG_SETMASK
:
10686 return -TARGET_EINVAL
;
10689 target_to_host_old_sigset(&set
, &mask
);
10690 ret
= do_sigprocmask(how
, &set
, &oldset
);
10692 host_to_target_old_sigset(&mask
, &oldset
);
10699 #ifdef TARGET_NR_getgid32
10700 case TARGET_NR_getgid32
:
10701 return get_errno(getgid());
10703 #ifdef TARGET_NR_geteuid32
10704 case TARGET_NR_geteuid32
:
10705 return get_errno(geteuid());
10707 #ifdef TARGET_NR_getegid32
10708 case TARGET_NR_getegid32
:
10709 return get_errno(getegid());
10711 #ifdef TARGET_NR_setreuid32
10712 case TARGET_NR_setreuid32
:
10713 return get_errno(setreuid(arg1
, arg2
));
10715 #ifdef TARGET_NR_setregid32
10716 case TARGET_NR_setregid32
:
10717 return get_errno(setregid(arg1
, arg2
));
10719 #ifdef TARGET_NR_getgroups32
10720 case TARGET_NR_getgroups32
:
10722 int gidsetsize
= arg1
;
10723 uint32_t *target_grouplist
;
10727 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
10728 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
10729 if (gidsetsize
== 0)
10731 if (!is_error(ret
)) {
10732 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
, gidsetsize
* 4, 0);
10733 if (!target_grouplist
) {
10734 return -TARGET_EFAULT
;
10736 for(i
= 0;i
< ret
; i
++)
10737 target_grouplist
[i
] = tswap32(grouplist
[i
]);
10738 unlock_user(target_grouplist
, arg2
, gidsetsize
* 4);
10743 #ifdef TARGET_NR_setgroups32
10744 case TARGET_NR_setgroups32
:
10746 int gidsetsize
= arg1
;
10747 uint32_t *target_grouplist
;
10751 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
10752 target_grouplist
= lock_user(VERIFY_READ
, arg2
, gidsetsize
* 4, 1);
10753 if (!target_grouplist
) {
10754 return -TARGET_EFAULT
;
10756 for(i
= 0;i
< gidsetsize
; i
++)
10757 grouplist
[i
] = tswap32(target_grouplist
[i
]);
10758 unlock_user(target_grouplist
, arg2
, 0);
10759 return get_errno(setgroups(gidsetsize
, grouplist
));
10762 #ifdef TARGET_NR_fchown32
10763 case TARGET_NR_fchown32
:
10764 return get_errno(fchown(arg1
, arg2
, arg3
));
10766 #ifdef TARGET_NR_setresuid32
10767 case TARGET_NR_setresuid32
:
10768 return get_errno(sys_setresuid(arg1
, arg2
, arg3
));
10770 #ifdef TARGET_NR_getresuid32
10771 case TARGET_NR_getresuid32
:
10773 uid_t ruid
, euid
, suid
;
10774 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
10775 if (!is_error(ret
)) {
10776 if (put_user_u32(ruid
, arg1
)
10777 || put_user_u32(euid
, arg2
)
10778 || put_user_u32(suid
, arg3
))
10779 return -TARGET_EFAULT
;
10784 #ifdef TARGET_NR_setresgid32
10785 case TARGET_NR_setresgid32
:
10786 return get_errno(sys_setresgid(arg1
, arg2
, arg3
));
10788 #ifdef TARGET_NR_getresgid32
10789 case TARGET_NR_getresgid32
:
10791 gid_t rgid
, egid
, sgid
;
10792 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
10793 if (!is_error(ret
)) {
10794 if (put_user_u32(rgid
, arg1
)
10795 || put_user_u32(egid
, arg2
)
10796 || put_user_u32(sgid
, arg3
))
10797 return -TARGET_EFAULT
;
10802 #ifdef TARGET_NR_chown32
10803 case TARGET_NR_chown32
:
10804 if (!(p
= lock_user_string(arg1
)))
10805 return -TARGET_EFAULT
;
10806 ret
= get_errno(chown(p
, arg2
, arg3
));
10807 unlock_user(p
, arg1
, 0);
10810 #ifdef TARGET_NR_setuid32
10811 case TARGET_NR_setuid32
:
10812 return get_errno(sys_setuid(arg1
));
10814 #ifdef TARGET_NR_setgid32
10815 case TARGET_NR_setgid32
:
10816 return get_errno(sys_setgid(arg1
));
10818 #ifdef TARGET_NR_setfsuid32
10819 case TARGET_NR_setfsuid32
:
10820 return get_errno(setfsuid(arg1
));
10822 #ifdef TARGET_NR_setfsgid32
10823 case TARGET_NR_setfsgid32
:
10824 return get_errno(setfsgid(arg1
));
10826 #ifdef TARGET_NR_mincore
10827 case TARGET_NR_mincore
:
10829 void *a
= lock_user(VERIFY_READ
, arg1
, arg2
, 0);
10831 return -TARGET_ENOMEM
;
10833 p
= lock_user_string(arg3
);
10835 ret
= -TARGET_EFAULT
;
10837 ret
= get_errno(mincore(a
, arg2
, p
));
10838 unlock_user(p
, arg3
, ret
);
10840 unlock_user(a
, arg1
, 0);
10844 #ifdef TARGET_NR_arm_fadvise64_64
10845 case TARGET_NR_arm_fadvise64_64
:
10846 /* arm_fadvise64_64 looks like fadvise64_64 but
10847 * with different argument order: fd, advice, offset, len
10848 * rather than the usual fd, offset, len, advice.
10849 * Note that offset and len are both 64-bit so appear as
10850 * pairs of 32-bit registers.
10852 ret
= posix_fadvise(arg1
, target_offset64(arg3
, arg4
),
10853 target_offset64(arg5
, arg6
), arg2
);
10854 return -host_to_target_errno(ret
);
10857 #if TARGET_ABI_BITS == 32
10859 #ifdef TARGET_NR_fadvise64_64
10860 case TARGET_NR_fadvise64_64
:
10861 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
10862 /* 6 args: fd, advice, offset (high, low), len (high, low) */
10870 /* 6 args: fd, offset (high, low), len (high, low), advice */
10871 if (regpairs_aligned(cpu_env
, num
)) {
10872 /* offset is in (3,4), len in (5,6) and advice in 7 */
10880 ret
= posix_fadvise(arg1
, target_offset64(arg2
, arg3
),
10881 target_offset64(arg4
, arg5
), arg6
);
10882 return -host_to_target_errno(ret
);
10885 #ifdef TARGET_NR_fadvise64
10886 case TARGET_NR_fadvise64
:
10887 /* 5 args: fd, offset (high, low), len, advice */
10888 if (regpairs_aligned(cpu_env
, num
)) {
10889 /* offset is in (3,4), len in 5 and advice in 6 */
10895 ret
= posix_fadvise(arg1
, target_offset64(arg2
, arg3
), arg4
, arg5
);
10896 return -host_to_target_errno(ret
);
10899 #else /* not a 32-bit ABI */
10900 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
10901 #ifdef TARGET_NR_fadvise64_64
10902 case TARGET_NR_fadvise64_64
:
10904 #ifdef TARGET_NR_fadvise64
10905 case TARGET_NR_fadvise64
:
10907 #ifdef TARGET_S390X
10909 case 4: arg4
= POSIX_FADV_NOREUSE
+ 1; break; /* make sure it's an invalid value */
10910 case 5: arg4
= POSIX_FADV_NOREUSE
+ 2; break; /* ditto */
10911 case 6: arg4
= POSIX_FADV_DONTNEED
; break;
10912 case 7: arg4
= POSIX_FADV_NOREUSE
; break;
10916 return -host_to_target_errno(posix_fadvise(arg1
, arg2
, arg3
, arg4
));
10918 #endif /* end of 64-bit ABI fadvise handling */
10920 #ifdef TARGET_NR_madvise
10921 case TARGET_NR_madvise
:
10922 /* A straight passthrough may not be safe because qemu sometimes
10923 turns private file-backed mappings into anonymous mappings.
10924 This will break MADV_DONTNEED.
10925 This is a hint, so ignoring and returning success is ok. */
10928 #if TARGET_ABI_BITS == 32
10929 case TARGET_NR_fcntl64
:
10933 from_flock64_fn
*copyfrom
= copy_from_user_flock64
;
10934 to_flock64_fn
*copyto
= copy_to_user_flock64
;
10937 if (!((CPUARMState
*)cpu_env
)->eabi
) {
10938 copyfrom
= copy_from_user_oabi_flock64
;
10939 copyto
= copy_to_user_oabi_flock64
;
10943 cmd
= target_to_host_fcntl_cmd(arg2
);
10944 if (cmd
== -TARGET_EINVAL
) {
10949 case TARGET_F_GETLK64
:
10950 ret
= copyfrom(&fl
, arg3
);
10954 ret
= get_errno(safe_fcntl(arg1
, cmd
, &fl
));
10956 ret
= copyto(arg3
, &fl
);
10960 case TARGET_F_SETLK64
:
10961 case TARGET_F_SETLKW64
:
10962 ret
= copyfrom(&fl
, arg3
);
10966 ret
= get_errno(safe_fcntl(arg1
, cmd
, &fl
));
10969 ret
= do_fcntl(arg1
, arg2
, arg3
);
10975 #ifdef TARGET_NR_cacheflush
10976 case TARGET_NR_cacheflush
:
10977 /* self-modifying code is handled automatically, so nothing needed */
10980 #ifdef TARGET_NR_getpagesize
10981 case TARGET_NR_getpagesize
:
10982 return TARGET_PAGE_SIZE
;
10984 case TARGET_NR_gettid
:
10985 return get_errno(sys_gettid());
10986 #ifdef TARGET_NR_readahead
10987 case TARGET_NR_readahead
:
10988 #if TARGET_ABI_BITS == 32
10989 if (regpairs_aligned(cpu_env
, num
)) {
10994 ret
= get_errno(readahead(arg1
, target_offset64(arg2
, arg3
) , arg4
));
10996 ret
= get_errno(readahead(arg1
, arg2
, arg3
));
11001 #ifdef TARGET_NR_setxattr
11002 case TARGET_NR_listxattr
:
11003 case TARGET_NR_llistxattr
:
11007 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
11009 return -TARGET_EFAULT
;
11012 p
= lock_user_string(arg1
);
11014 if (num
== TARGET_NR_listxattr
) {
11015 ret
= get_errno(listxattr(p
, b
, arg3
));
11017 ret
= get_errno(llistxattr(p
, b
, arg3
));
11020 ret
= -TARGET_EFAULT
;
11022 unlock_user(p
, arg1
, 0);
11023 unlock_user(b
, arg2
, arg3
);
11026 case TARGET_NR_flistxattr
:
11030 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
11032 return -TARGET_EFAULT
;
11035 ret
= get_errno(flistxattr(arg1
, b
, arg3
));
11036 unlock_user(b
, arg2
, arg3
);
11039 case TARGET_NR_setxattr
:
11040 case TARGET_NR_lsetxattr
:
11042 void *p
, *n
, *v
= 0;
11044 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
11046 return -TARGET_EFAULT
;
11049 p
= lock_user_string(arg1
);
11050 n
= lock_user_string(arg2
);
11052 if (num
== TARGET_NR_setxattr
) {
11053 ret
= get_errno(setxattr(p
, n
, v
, arg4
, arg5
));
11055 ret
= get_errno(lsetxattr(p
, n
, v
, arg4
, arg5
));
11058 ret
= -TARGET_EFAULT
;
11060 unlock_user(p
, arg1
, 0);
11061 unlock_user(n
, arg2
, 0);
11062 unlock_user(v
, arg3
, 0);
11065 case TARGET_NR_fsetxattr
:
11069 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
11071 return -TARGET_EFAULT
;
11074 n
= lock_user_string(arg2
);
11076 ret
= get_errno(fsetxattr(arg1
, n
, v
, arg4
, arg5
));
11078 ret
= -TARGET_EFAULT
;
11080 unlock_user(n
, arg2
, 0);
11081 unlock_user(v
, arg3
, 0);
11084 case TARGET_NR_getxattr
:
11085 case TARGET_NR_lgetxattr
:
11087 void *p
, *n
, *v
= 0;
11089 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
11091 return -TARGET_EFAULT
;
11094 p
= lock_user_string(arg1
);
11095 n
= lock_user_string(arg2
);
11097 if (num
== TARGET_NR_getxattr
) {
11098 ret
= get_errno(getxattr(p
, n
, v
, arg4
));
11100 ret
= get_errno(lgetxattr(p
, n
, v
, arg4
));
11103 ret
= -TARGET_EFAULT
;
11105 unlock_user(p
, arg1
, 0);
11106 unlock_user(n
, arg2
, 0);
11107 unlock_user(v
, arg3
, arg4
);
11110 case TARGET_NR_fgetxattr
:
11114 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
11116 return -TARGET_EFAULT
;
11119 n
= lock_user_string(arg2
);
11121 ret
= get_errno(fgetxattr(arg1
, n
, v
, arg4
));
11123 ret
= -TARGET_EFAULT
;
11125 unlock_user(n
, arg2
, 0);
11126 unlock_user(v
, arg3
, arg4
);
11129 case TARGET_NR_removexattr
:
11130 case TARGET_NR_lremovexattr
:
11133 p
= lock_user_string(arg1
);
11134 n
= lock_user_string(arg2
);
11136 if (num
== TARGET_NR_removexattr
) {
11137 ret
= get_errno(removexattr(p
, n
));
11139 ret
= get_errno(lremovexattr(p
, n
));
11142 ret
= -TARGET_EFAULT
;
11144 unlock_user(p
, arg1
, 0);
11145 unlock_user(n
, arg2
, 0);
11148 case TARGET_NR_fremovexattr
:
11151 n
= lock_user_string(arg2
);
11153 ret
= get_errno(fremovexattr(arg1
, n
));
11155 ret
= -TARGET_EFAULT
;
11157 unlock_user(n
, arg2
, 0);
11161 #endif /* CONFIG_ATTR */
11162 #ifdef TARGET_NR_set_thread_area
11163 case TARGET_NR_set_thread_area
:
11164 #if defined(TARGET_MIPS)
11165 ((CPUMIPSState
*) cpu_env
)->active_tc
.CP0_UserLocal
= arg1
;
11167 #elif defined(TARGET_CRIS)
11169 ret
= -TARGET_EINVAL
;
11171 ((CPUCRISState
*) cpu_env
)->pregs
[PR_PID
] = arg1
;
11175 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
11176 return do_set_thread_area(cpu_env
, arg1
);
11177 #elif defined(TARGET_M68K)
11179 TaskState
*ts
= cpu
->opaque
;
11180 ts
->tp_value
= arg1
;
11184 return -TARGET_ENOSYS
;
11187 #ifdef TARGET_NR_get_thread_area
11188 case TARGET_NR_get_thread_area
:
11189 #if defined(TARGET_I386) && defined(TARGET_ABI32)
11190 return do_get_thread_area(cpu_env
, arg1
);
11191 #elif defined(TARGET_M68K)
11193 TaskState
*ts
= cpu
->opaque
;
11194 return ts
->tp_value
;
11197 return -TARGET_ENOSYS
;
11200 #ifdef TARGET_NR_getdomainname
11201 case TARGET_NR_getdomainname
:
11202 return -TARGET_ENOSYS
;
11205 #ifdef TARGET_NR_clock_settime
11206 case TARGET_NR_clock_settime
:
11208 struct timespec ts
;
11210 ret
= target_to_host_timespec(&ts
, arg2
);
11211 if (!is_error(ret
)) {
11212 ret
= get_errno(clock_settime(arg1
, &ts
));
11217 #ifdef TARGET_NR_clock_gettime
11218 case TARGET_NR_clock_gettime
:
11220 struct timespec ts
;
11221 ret
= get_errno(clock_gettime(arg1
, &ts
));
11222 if (!is_error(ret
)) {
11223 ret
= host_to_target_timespec(arg2
, &ts
);
11228 #ifdef TARGET_NR_clock_getres
11229 case TARGET_NR_clock_getres
:
11231 struct timespec ts
;
11232 ret
= get_errno(clock_getres(arg1
, &ts
));
11233 if (!is_error(ret
)) {
11234 host_to_target_timespec(arg2
, &ts
);
11239 #ifdef TARGET_NR_clock_nanosleep
11240 case TARGET_NR_clock_nanosleep
:
11242 struct timespec ts
;
11243 target_to_host_timespec(&ts
, arg3
);
11244 ret
= get_errno(safe_clock_nanosleep(arg1
, arg2
,
11245 &ts
, arg4
? &ts
: NULL
));
11247 host_to_target_timespec(arg4
, &ts
);
11249 #if defined(TARGET_PPC)
11250 /* clock_nanosleep is odd in that it returns positive errno values.
11251 * On PPC, CR0 bit 3 should be set in such a situation. */
11252 if (ret
&& ret
!= -TARGET_ERESTARTSYS
) {
11253 ((CPUPPCState
*)cpu_env
)->crf
[0] |= 1;
11260 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
11261 case TARGET_NR_set_tid_address
:
11262 return get_errno(set_tid_address((int *)g2h(arg1
)));
11265 case TARGET_NR_tkill
:
11266 return get_errno(safe_tkill((int)arg1
, target_to_host_signal(arg2
)));
11268 case TARGET_NR_tgkill
:
11269 return get_errno(safe_tgkill((int)arg1
, (int)arg2
,
11270 target_to_host_signal(arg3
)));
11272 #ifdef TARGET_NR_set_robust_list
11273 case TARGET_NR_set_robust_list
:
11274 case TARGET_NR_get_robust_list
:
11275 /* The ABI for supporting robust futexes has userspace pass
11276 * the kernel a pointer to a linked list which is updated by
11277 * userspace after the syscall; the list is walked by the kernel
11278 * when the thread exits. Since the linked list in QEMU guest
11279 * memory isn't a valid linked list for the host and we have
11280 * no way to reliably intercept the thread-death event, we can't
11281 * support these. Silently return ENOSYS so that guest userspace
11282 * falls back to a non-robust futex implementation (which should
11283 * be OK except in the corner case of the guest crashing while
11284 * holding a mutex that is shared with another process via
11287 return -TARGET_ENOSYS
;
11290 #if defined(TARGET_NR_utimensat)
11291 case TARGET_NR_utimensat
:
11293 struct timespec
*tsp
, ts
[2];
11297 target_to_host_timespec(ts
, arg3
);
11298 target_to_host_timespec(ts
+1, arg3
+sizeof(struct target_timespec
));
11302 ret
= get_errno(sys_utimensat(arg1
, NULL
, tsp
, arg4
));
11304 if (!(p
= lock_user_string(arg2
))) {
11305 return -TARGET_EFAULT
;
11307 ret
= get_errno(sys_utimensat(arg1
, path(p
), tsp
, arg4
));
11308 unlock_user(p
, arg2
, 0);
11313 case TARGET_NR_futex
:
11314 return do_futex(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
11315 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
11316 case TARGET_NR_inotify_init
:
11317 ret
= get_errno(sys_inotify_init());
11319 fd_trans_register(ret
, &target_inotify_trans
);
11323 #ifdef CONFIG_INOTIFY1
11324 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
11325 case TARGET_NR_inotify_init1
:
11326 ret
= get_errno(sys_inotify_init1(target_to_host_bitmask(arg1
,
11327 fcntl_flags_tbl
)));
11329 fd_trans_register(ret
, &target_inotify_trans
);
11334 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
11335 case TARGET_NR_inotify_add_watch
:
11336 p
= lock_user_string(arg2
);
11337 ret
= get_errno(sys_inotify_add_watch(arg1
, path(p
), arg3
));
11338 unlock_user(p
, arg2
, 0);
11341 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
11342 case TARGET_NR_inotify_rm_watch
:
11343 return get_errno(sys_inotify_rm_watch(arg1
, arg2
));
11346 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
11347 case TARGET_NR_mq_open
:
11349 struct mq_attr posix_mq_attr
;
11350 struct mq_attr
*pposix_mq_attr
;
11353 host_flags
= target_to_host_bitmask(arg2
, fcntl_flags_tbl
);
11354 pposix_mq_attr
= NULL
;
11356 if (copy_from_user_mq_attr(&posix_mq_attr
, arg4
) != 0) {
11357 return -TARGET_EFAULT
;
11359 pposix_mq_attr
= &posix_mq_attr
;
11361 p
= lock_user_string(arg1
- 1);
11363 return -TARGET_EFAULT
;
11365 ret
= get_errno(mq_open(p
, host_flags
, arg3
, pposix_mq_attr
));
11366 unlock_user (p
, arg1
, 0);
11370 case TARGET_NR_mq_unlink
:
11371 p
= lock_user_string(arg1
- 1);
11373 return -TARGET_EFAULT
;
11375 ret
= get_errno(mq_unlink(p
));
11376 unlock_user (p
, arg1
, 0);
11379 case TARGET_NR_mq_timedsend
:
11381 struct timespec ts
;
11383 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
11385 target_to_host_timespec(&ts
, arg5
);
11386 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, &ts
));
11387 host_to_target_timespec(arg5
, &ts
);
11389 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, NULL
));
11391 unlock_user (p
, arg2
, arg3
);
11395 case TARGET_NR_mq_timedreceive
:
11397 struct timespec ts
;
11400 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
11402 target_to_host_timespec(&ts
, arg5
);
11403 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
11405 host_to_target_timespec(arg5
, &ts
);
11407 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
11410 unlock_user (p
, arg2
, arg3
);
11412 put_user_u32(prio
, arg4
);
11416 /* Not implemented for now... */
11417 /* case TARGET_NR_mq_notify: */
11420 case TARGET_NR_mq_getsetattr
:
11422 struct mq_attr posix_mq_attr_in
, posix_mq_attr_out
;
11425 copy_from_user_mq_attr(&posix_mq_attr_in
, arg2
);
11426 ret
= get_errno(mq_setattr(arg1
, &posix_mq_attr_in
,
11427 &posix_mq_attr_out
));
11428 } else if (arg3
!= 0) {
11429 ret
= get_errno(mq_getattr(arg1
, &posix_mq_attr_out
));
11431 if (ret
== 0 && arg3
!= 0) {
11432 copy_to_user_mq_attr(arg3
, &posix_mq_attr_out
);
11438 #ifdef CONFIG_SPLICE
11439 #ifdef TARGET_NR_tee
11440 case TARGET_NR_tee
:
11442 ret
= get_errno(tee(arg1
,arg2
,arg3
,arg4
));
11446 #ifdef TARGET_NR_splice
11447 case TARGET_NR_splice
:
11449 loff_t loff_in
, loff_out
;
11450 loff_t
*ploff_in
= NULL
, *ploff_out
= NULL
;
11452 if (get_user_u64(loff_in
, arg2
)) {
11453 return -TARGET_EFAULT
;
11455 ploff_in
= &loff_in
;
11458 if (get_user_u64(loff_out
, arg4
)) {
11459 return -TARGET_EFAULT
;
11461 ploff_out
= &loff_out
;
11463 ret
= get_errno(splice(arg1
, ploff_in
, arg3
, ploff_out
, arg5
, arg6
));
11465 if (put_user_u64(loff_in
, arg2
)) {
11466 return -TARGET_EFAULT
;
11470 if (put_user_u64(loff_out
, arg4
)) {
11471 return -TARGET_EFAULT
;
11477 #ifdef TARGET_NR_vmsplice
11478 case TARGET_NR_vmsplice
:
11480 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
11482 ret
= get_errno(vmsplice(arg1
, vec
, arg3
, arg4
));
11483 unlock_iovec(vec
, arg2
, arg3
, 0);
11485 ret
= -host_to_target_errno(errno
);
11490 #endif /* CONFIG_SPLICE */
11491 #ifdef CONFIG_EVENTFD
11492 #if defined(TARGET_NR_eventfd)
11493 case TARGET_NR_eventfd
:
11494 ret
= get_errno(eventfd(arg1
, 0));
11496 fd_trans_register(ret
, &target_eventfd_trans
);
11500 #if defined(TARGET_NR_eventfd2)
11501 case TARGET_NR_eventfd2
:
11503 int host_flags
= arg2
& (~(TARGET_O_NONBLOCK
| TARGET_O_CLOEXEC
));
11504 if (arg2
& TARGET_O_NONBLOCK
) {
11505 host_flags
|= O_NONBLOCK
;
11507 if (arg2
& TARGET_O_CLOEXEC
) {
11508 host_flags
|= O_CLOEXEC
;
11510 ret
= get_errno(eventfd(arg1
, host_flags
));
11512 fd_trans_register(ret
, &target_eventfd_trans
);
11517 #endif /* CONFIG_EVENTFD */
11518 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
11519 case TARGET_NR_fallocate
:
11520 #if TARGET_ABI_BITS == 32
11521 ret
= get_errno(fallocate(arg1
, arg2
, target_offset64(arg3
, arg4
),
11522 target_offset64(arg5
, arg6
)));
11524 ret
= get_errno(fallocate(arg1
, arg2
, arg3
, arg4
));
11528 #if defined(CONFIG_SYNC_FILE_RANGE)
11529 #if defined(TARGET_NR_sync_file_range)
11530 case TARGET_NR_sync_file_range
:
11531 #if TARGET_ABI_BITS == 32
11532 #if defined(TARGET_MIPS)
11533 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
11534 target_offset64(arg5
, arg6
), arg7
));
11536 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg2
, arg3
),
11537 target_offset64(arg4
, arg5
), arg6
));
11538 #endif /* !TARGET_MIPS */
11540 ret
= get_errno(sync_file_range(arg1
, arg2
, arg3
, arg4
));
11544 #if defined(TARGET_NR_sync_file_range2)
11545 case TARGET_NR_sync_file_range2
:
11546 /* This is like sync_file_range but the arguments are reordered */
11547 #if TARGET_ABI_BITS == 32
11548 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
11549 target_offset64(arg5
, arg6
), arg2
));
11551 ret
= get_errno(sync_file_range(arg1
, arg3
, arg4
, arg2
));
11556 #if defined(TARGET_NR_signalfd4)
11557 case TARGET_NR_signalfd4
:
11558 return do_signalfd4(arg1
, arg2
, arg4
);
11560 #if defined(TARGET_NR_signalfd)
11561 case TARGET_NR_signalfd
:
11562 return do_signalfd4(arg1
, arg2
, 0);
11564 #if defined(CONFIG_EPOLL)
11565 #if defined(TARGET_NR_epoll_create)
11566 case TARGET_NR_epoll_create
:
11567 return get_errno(epoll_create(arg1
));
11569 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
11570 case TARGET_NR_epoll_create1
:
11571 return get_errno(epoll_create1(arg1
));
11573 #if defined(TARGET_NR_epoll_ctl)
11574 case TARGET_NR_epoll_ctl
:
11576 struct epoll_event ep
;
11577 struct epoll_event
*epp
= 0;
11579 struct target_epoll_event
*target_ep
;
11580 if (!lock_user_struct(VERIFY_READ
, target_ep
, arg4
, 1)) {
11581 return -TARGET_EFAULT
;
11583 ep
.events
= tswap32(target_ep
->events
);
11584 /* The epoll_data_t union is just opaque data to the kernel,
11585 * so we transfer all 64 bits across and need not worry what
11586 * actual data type it is.
11588 ep
.data
.u64
= tswap64(target_ep
->data
.u64
);
11589 unlock_user_struct(target_ep
, arg4
, 0);
11592 return get_errno(epoll_ctl(arg1
, arg2
, arg3
, epp
));
11596 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
11597 #if defined(TARGET_NR_epoll_wait)
11598 case TARGET_NR_epoll_wait
:
11600 #if defined(TARGET_NR_epoll_pwait)
11601 case TARGET_NR_epoll_pwait
:
11604 struct target_epoll_event
*target_ep
;
11605 struct epoll_event
*ep
;
11607 int maxevents
= arg3
;
11608 int timeout
= arg4
;
11610 if (maxevents
<= 0 || maxevents
> TARGET_EP_MAX_EVENTS
) {
11611 return -TARGET_EINVAL
;
11614 target_ep
= lock_user(VERIFY_WRITE
, arg2
,
11615 maxevents
* sizeof(struct target_epoll_event
), 1);
11617 return -TARGET_EFAULT
;
11620 ep
= g_try_new(struct epoll_event
, maxevents
);
11622 unlock_user(target_ep
, arg2
, 0);
11623 return -TARGET_ENOMEM
;
11627 #if defined(TARGET_NR_epoll_pwait)
11628 case TARGET_NR_epoll_pwait
:
11630 target_sigset_t
*target_set
;
11631 sigset_t _set
, *set
= &_set
;
11634 if (arg6
!= sizeof(target_sigset_t
)) {
11635 ret
= -TARGET_EINVAL
;
11639 target_set
= lock_user(VERIFY_READ
, arg5
,
11640 sizeof(target_sigset_t
), 1);
11642 ret
= -TARGET_EFAULT
;
11645 target_to_host_sigset(set
, target_set
);
11646 unlock_user(target_set
, arg5
, 0);
11651 ret
= get_errno(safe_epoll_pwait(epfd
, ep
, maxevents
, timeout
,
11652 set
, SIGSET_T_SIZE
));
11656 #if defined(TARGET_NR_epoll_wait)
11657 case TARGET_NR_epoll_wait
:
11658 ret
= get_errno(safe_epoll_pwait(epfd
, ep
, maxevents
, timeout
,
11663 ret
= -TARGET_ENOSYS
;
11665 if (!is_error(ret
)) {
11667 for (i
= 0; i
< ret
; i
++) {
11668 target_ep
[i
].events
= tswap32(ep
[i
].events
);
11669 target_ep
[i
].data
.u64
= tswap64(ep
[i
].data
.u64
);
11671 unlock_user(target_ep
, arg2
,
11672 ret
* sizeof(struct target_epoll_event
));
11674 unlock_user(target_ep
, arg2
, 0);
11681 #ifdef TARGET_NR_prlimit64
11682 case TARGET_NR_prlimit64
:
11684 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
11685 struct target_rlimit64
*target_rnew
, *target_rold
;
11686 struct host_rlimit64 rnew
, rold
, *rnewp
= 0;
11687 int resource
= target_to_host_resource(arg2
);
11689 if (!lock_user_struct(VERIFY_READ
, target_rnew
, arg3
, 1)) {
11690 return -TARGET_EFAULT
;
11692 rnew
.rlim_cur
= tswap64(target_rnew
->rlim_cur
);
11693 rnew
.rlim_max
= tswap64(target_rnew
->rlim_max
);
11694 unlock_user_struct(target_rnew
, arg3
, 0);
11698 ret
= get_errno(sys_prlimit64(arg1
, resource
, rnewp
, arg4
? &rold
: 0));
11699 if (!is_error(ret
) && arg4
) {
11700 if (!lock_user_struct(VERIFY_WRITE
, target_rold
, arg4
, 1)) {
11701 return -TARGET_EFAULT
;
11703 target_rold
->rlim_cur
= tswap64(rold
.rlim_cur
);
11704 target_rold
->rlim_max
= tswap64(rold
.rlim_max
);
11705 unlock_user_struct(target_rold
, arg4
, 1);
11710 #ifdef TARGET_NR_gethostname
11711 case TARGET_NR_gethostname
:
11713 char *name
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
11715 ret
= get_errno(gethostname(name
, arg2
));
11716 unlock_user(name
, arg1
, arg2
);
11718 ret
= -TARGET_EFAULT
;
11723 #ifdef TARGET_NR_atomic_cmpxchg_32
11724 case TARGET_NR_atomic_cmpxchg_32
:
11726 /* should use start_exclusive from main.c */
11727 abi_ulong mem_value
;
11728 if (get_user_u32(mem_value
, arg6
)) {
11729 target_siginfo_t info
;
11730 info
.si_signo
= SIGSEGV
;
11732 info
.si_code
= TARGET_SEGV_MAPERR
;
11733 info
._sifields
._sigfault
._addr
= arg6
;
11734 queue_signal((CPUArchState
*)cpu_env
, info
.si_signo
,
11735 QEMU_SI_FAULT
, &info
);
11739 if (mem_value
== arg2
)
11740 put_user_u32(arg1
, arg6
);
11744 #ifdef TARGET_NR_atomic_barrier
11745 case TARGET_NR_atomic_barrier
:
11746 /* Like the kernel implementation and the
11747 qemu arm barrier, no-op this? */
11751 #ifdef TARGET_NR_timer_create
11752 case TARGET_NR_timer_create
:
11754 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
11756 struct sigevent host_sevp
= { {0}, }, *phost_sevp
= NULL
;
11759 int timer_index
= next_free_host_timer();
11761 if (timer_index
< 0) {
11762 ret
= -TARGET_EAGAIN
;
11764 timer_t
*phtimer
= g_posix_timers
+ timer_index
;
11767 phost_sevp
= &host_sevp
;
11768 ret
= target_to_host_sigevent(phost_sevp
, arg2
);
11774 ret
= get_errno(timer_create(clkid
, phost_sevp
, phtimer
));
11778 if (put_user(TIMER_MAGIC
| timer_index
, arg3
, target_timer_t
)) {
11779 return -TARGET_EFAULT
;
11787 #ifdef TARGET_NR_timer_settime
11788 case TARGET_NR_timer_settime
:
11790 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
11791 * struct itimerspec * old_value */
11792 target_timer_t timerid
= get_timer_id(arg1
);
11796 } else if (arg3
== 0) {
11797 ret
= -TARGET_EINVAL
;
11799 timer_t htimer
= g_posix_timers
[timerid
];
11800 struct itimerspec hspec_new
= {{0},}, hspec_old
= {{0},};
11802 if (target_to_host_itimerspec(&hspec_new
, arg3
)) {
11803 return -TARGET_EFAULT
;
11806 timer_settime(htimer
, arg2
, &hspec_new
, &hspec_old
));
11807 if (arg4
&& host_to_target_itimerspec(arg4
, &hspec_old
)) {
11808 return -TARGET_EFAULT
;
11815 #ifdef TARGET_NR_timer_gettime
11816 case TARGET_NR_timer_gettime
:
11818 /* args: timer_t timerid, struct itimerspec *curr_value */
11819 target_timer_t timerid
= get_timer_id(arg1
);
11823 } else if (!arg2
) {
11824 ret
= -TARGET_EFAULT
;
11826 timer_t htimer
= g_posix_timers
[timerid
];
11827 struct itimerspec hspec
;
11828 ret
= get_errno(timer_gettime(htimer
, &hspec
));
11830 if (host_to_target_itimerspec(arg2
, &hspec
)) {
11831 ret
= -TARGET_EFAULT
;
11838 #ifdef TARGET_NR_timer_getoverrun
11839 case TARGET_NR_timer_getoverrun
:
11841 /* args: timer_t timerid */
11842 target_timer_t timerid
= get_timer_id(arg1
);
11847 timer_t htimer
= g_posix_timers
[timerid
];
11848 ret
= get_errno(timer_getoverrun(htimer
));
11850 fd_trans_unregister(ret
);
11855 #ifdef TARGET_NR_timer_delete
11856 case TARGET_NR_timer_delete
:
11858 /* args: timer_t timerid */
11859 target_timer_t timerid
= get_timer_id(arg1
);
11864 timer_t htimer
= g_posix_timers
[timerid
];
11865 ret
= get_errno(timer_delete(htimer
));
11866 g_posix_timers
[timerid
] = 0;
11872 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
11873 case TARGET_NR_timerfd_create
:
11874 return get_errno(timerfd_create(arg1
,
11875 target_to_host_bitmask(arg2
, fcntl_flags_tbl
)));
11878 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
11879 case TARGET_NR_timerfd_gettime
:
11881 struct itimerspec its_curr
;
11883 ret
= get_errno(timerfd_gettime(arg1
, &its_curr
));
11885 if (arg2
&& host_to_target_itimerspec(arg2
, &its_curr
)) {
11886 return -TARGET_EFAULT
;
11892 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
11893 case TARGET_NR_timerfd_settime
:
11895 struct itimerspec its_new
, its_old
, *p_new
;
11898 if (target_to_host_itimerspec(&its_new
, arg3
)) {
11899 return -TARGET_EFAULT
;
11906 ret
= get_errno(timerfd_settime(arg1
, arg2
, p_new
, &its_old
));
11908 if (arg4
&& host_to_target_itimerspec(arg4
, &its_old
)) {
11909 return -TARGET_EFAULT
;
11915 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
11916 case TARGET_NR_ioprio_get
:
11917 return get_errno(ioprio_get(arg1
, arg2
));
11920 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
11921 case TARGET_NR_ioprio_set
:
11922 return get_errno(ioprio_set(arg1
, arg2
, arg3
));
11925 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
11926 case TARGET_NR_setns
:
11927 return get_errno(setns(arg1
, arg2
));
11929 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
11930 case TARGET_NR_unshare
:
11931 return get_errno(unshare(arg1
));
11933 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
11934 case TARGET_NR_kcmp
:
11935 return get_errno(kcmp(arg1
, arg2
, arg3
, arg4
, arg5
));
11937 #ifdef TARGET_NR_swapcontext
11938 case TARGET_NR_swapcontext
:
11939 /* PowerPC specific. */
11940 return do_swapcontext(cpu_env
, arg1
, arg2
, arg3
);
11944 qemu_log_mask(LOG_UNIMP
, "Unsupported syscall: %d\n", num
);
11945 return -TARGET_ENOSYS
;
11950 abi_long
do_syscall(void *cpu_env
, int num
, abi_long arg1
,
11951 abi_long arg2
, abi_long arg3
, abi_long arg4
,
11952 abi_long arg5
, abi_long arg6
, abi_long arg7
,
11955 CPUState
*cpu
= env_cpu(cpu_env
);
11958 #ifdef DEBUG_ERESTARTSYS
11959 /* Debug-only code for exercising the syscall-restart code paths
11960 * in the per-architecture cpu main loops: restart every syscall
11961 * the guest makes once before letting it through.
11967 return -TARGET_ERESTARTSYS
;
11972 trace_guest_user_syscall(cpu
, num
, arg1
, arg2
, arg3
, arg4
,
11973 arg5
, arg6
, arg7
, arg8
);
11975 if (unlikely(do_strace
)) {
11976 print_syscall(num
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
11977 ret
= do_syscall1(cpu_env
, num
, arg1
, arg2
, arg3
, arg4
,
11978 arg5
, arg6
, arg7
, arg8
);
11979 print_syscall_ret(num
, ret
);
11981 ret
= do_syscall1(cpu_env
, num
, arg1
, arg2
, arg3
, arg4
,
11982 arg5
, arg6
, arg7
, arg8
);
11985 trace_guest_user_syscall_ret(cpu
, num
, ret
);