1 HXCOMM Use
DEFHEADING() to define headings
in both help text and rST
.
2 HXCOMM Text between SRST and ERST is copied to the rST version and
3 HXCOMM discarded from C version
.
4 HXCOMM
DEF(option
, HAS_ARG
/0, opt_enum
, opt_help
, arch_mask
) is used to
5 HXCOMM construct option structures
, enums and help message
for specified
7 HXCOMM HXCOMM can be used
for comments
, discarded from both rST and C
.
9 DEFHEADING(Standard options
:)
11 DEF("help", 0, QEMU_OPTION_h
,
12 "-h or -help display this help and exit\n", QEMU_ARCH_ALL
)
18 DEF("version", 0, QEMU_OPTION_version
,
19 "-version display version information and exit\n", QEMU_ARCH_ALL
)
22 Display version information and exit
25 DEF("machine", HAS_ARG
, QEMU_OPTION_machine
, \
26 "-machine [type=]name[,prop[=value][,...]]\n"
27 " selects emulated machine ('-machine help' for list)\n"
28 " property accel=accel1[:accel2[:...]] selects accelerator\n"
29 " supported accelerators are kvm, xen, hax, hvf, nvmm, whpx or tcg (default: tcg)\n"
30 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
31 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
32 " mem-merge=on|off controls memory merge support (default: on)\n"
33 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
34 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
35 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
36 " nvdimm=on|off controls NVDIMM support (default=off)\n"
37 " memory-encryption=@var{} memory encryption object to use (default=none)\n"
38 " hmat=on|off controls ACPI HMAT support (default=off)\n"
39 " memory-backend='backend-id' specifies explicitly provided backend for main RAM (default=none)\n"
40 " cxl-fmw.0.targets.0=firsttarget,cxl-fmw.0.targets.1=secondtarget,cxl-fmw.0.size=size[,cxl-fmw.0.interleave-granularity=granularity]\n",
43 ``
-machine
[type
=]name
[,prop
=value
[,...]]``
44 Select the emulated machine by name
. Use ``
-machine help`` to list
47 For architectures which aim to support live migration compatibility
48 across releases
, each release will introduce a
new versioned machine
49 type
. For example
, the
2.8.0 release introduced machine types
50 "pc-i440fx-2.8" and
"pc-q35-2.8" for the x86\_64
/i686 architectures
.
52 To allow live migration of guests from QEMU version
2.8.0, to QEMU
53 version
2.9.0, the
2.9.0 version must support the
"pc-i440fx-2.8"
54 and
"pc-q35-2.8" machines too
. To allow users live migrating VMs to
55 skip multiple intermediate releases when upgrading
, new releases of
56 QEMU will support machine types from many previous versions
.
58 Supported machine properties are
:
60 ``accel
=accels1
[:accels2
[:...]]``
61 This is used to enable an accelerator
. Depending on the target
62 architecture
, kvm
, xen
, hax
, hvf
, nvmm
, whpx or tcg can be available
.
63 By
default, tcg is used
. If there is more than one accelerator
64 specified
, the next one is used
if the previous one fails to
67 ``vmport
=on|off|auto``
68 Enables emulation of VMWare IO port
, for vmmouse etc
. auto says
69 to select the value based on accel
. For accel
=xen the
default is
70 off otherwise the
default is on
.
72 ``dump
-guest
-core
=on|off``
73 Include guest memory
in a core dump
. The
default is on
.
76 Enables or disables memory merge support
. This feature
, when
77 supported by the host
, de
-duplicates identical memory pages
78 among VMs
instances (enabled by
default).
80 ``aes
-key
-wrap
=on|off``
81 Enables or disables AES key wrapping support on s390
-ccw hosts
.
82 This feature controls whether AES wrapping keys will be created
83 to allow execution of AES cryptographic functions
. The
default
86 ``dea
-key
-wrap
=on|off``
87 Enables or disables DEA key wrapping support on s390
-ccw hosts
.
88 This feature controls whether DEA wrapping keys will be created
89 to allow execution of DEA cryptographic functions
. The
default
93 Enables or disables NVDIMM support
. The
default is off
.
95 ``memory
-encryption
=``
96 Memory encryption object to use
. The
default is none
.
99 Enables or disables ACPI Heterogeneous Memory Attribute Table
100 (HMAT
) support
. The
default is off
.
102 ``memory
-backend
='id'``
103 An alternative to legacy ``
-mem
-path`` and ``mem
-prealloc`` options
.
104 Allows to use a memory backend as main RAM
.
109 -object memory
-backend
-file
,id
=pc
.ram
,size
=512M
,mem
-path
=/hugetlbfs
,prealloc
=on
,share
=on
110 -machine memory
-backend
=pc
.ram
113 Migration compatibility note
:
115 * as backend id one shall use value of
'default-ram-id', advertised by
116 machine
type (available via ``query
-machines`` QMP command
), if migration
117 to
/from old
QEMU (<5.0) is expected
.
118 * for machine types
4.0 and older
, user shall
119 use ``x
-use
-canonical
-path
-for-ramblock
-id
=off`` backend option
120 if migration to
/from old
QEMU (<5.0) is expected
.
125 -object memory
-backend
-ram
,id
=pc
.ram
,size
=512M
,x
-use
-canonical
-path
-for-ramblock
-id
=off
126 -machine memory
-backend
=pc
.ram
129 ``cxl
-fmw
.0.targets
.0=firsttarget
,cxl
-fmw
.0.targets
.1=secondtarget
,cxl
-fmw
.0.size
=size
[,cxl
-fmw
.0.interleave
-granularity
=granularity
]``
130 Define a CXL Fixed Memory
Window (CFMW
).
132 Described
in the CXL
2.0 ECN
: CEDT CFMWS
& QTG _DSM
.
134 They are regions of Host Physical
Addresses (HPA
) on a system which
135 may be interleaved across one or more CXL host bridges
. The system
136 software will assign particular devices into these windows and
137 configure the downstream Host
-managed Device
Memory (HDM
) decoders
138 in root ports
, switch ports and devices appropriately to meet the
139 interleave requirements before enabling the memory devices
.
141 ``targets
.X
=target`` provides the mapping to CXL host bridges
142 which may be identified by the id provied
in the
-device entry
.
143 Multiple entries are needed to specify all the targets when
144 the fixed memory window represents interleaved memory
. X is the
147 ``size
=size`` sets the size of the CFMW
. This must be a multiple of
148 256MiB
. The region will be aligned to
256MiB but the location is
149 platform and configuration dependent
.
151 ``interleave
-granularity
=granularity`` sets the granularity of
152 interleave
. Default
256KiB
. Only
256KiB
, 512KiB
, 1024KiB
, 2048KiB
153 4096KiB
, 8192KiB and
16384KiB granularities supported
.
159 -machine cxl
-fmw
.0.targets
.0=cxl
.0,cxl
-fmw
.0.targets
.1=cxl
.1,cxl
-fmw
.0.size
=128G
,cxl
-fmw
.0.interleave
-granularity
=512k
162 DEF("M", HAS_ARG
, QEMU_OPTION_M
,
163 " sgx-epc.0.memdev=memid,sgx-epc.0.node=numaid\n",
167 ``sgx
-epc
.0.memdev
=@
var{memid
},sgx
-epc
.0.node
=@
var{numaid
}``
168 Define an SGX EPC section
.
171 DEF("cpu", HAS_ARG
, QEMU_OPTION_cpu
,
172 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL
)
175 Select CPU
model (``
-cpu help``
for list and additional feature
179 DEF("accel", HAS_ARG
, QEMU_OPTION_accel
,
180 "-accel [accel=]accelerator[,prop[=value][,...]]\n"
181 " select accelerator (kvm, xen, hax, hvf, nvmm, whpx or tcg; use 'help' for a list)\n"
182 " igd-passthru=on|off (enable Xen integrated Intel graphics passthrough, default=off)\n"
183 " kernel-irqchip=on|off|split controls accelerated irqchip support (default=on)\n"
184 " kvm-shadow-mem=size of KVM shadow MMU in bytes\n"
185 " split-wx=on|off (enable TCG split w^x mapping)\n"
186 " tb-size=n (TCG translation block cache size)\n"
187 " dirty-ring-size=n (KVM dirty ring GFN count, default 0)\n"
188 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL
)
190 ``
-accel name
[,prop
=value
[,...]]``
191 This is used to enable an accelerator
. Depending on the target
192 architecture
, kvm
, xen
, hax
, hvf
, nvmm
, whpx or tcg can be available
. By
193 default, tcg is used
. If there is more than one accelerator
194 specified
, the next one is used
if the previous one fails to
197 ``igd
-passthru
=on|off``
198 When Xen is
in use
, this option controls whether Intel
199 integrated graphics devices can be passed through to the guest
202 ``kernel
-irqchip
=on|off|split``
203 Controls KVM
in-kernel irqchip support
. The
default is full
204 acceleration of the interrupt controllers
. On x86
, split irqchip
205 reduces the kernel attack surface
, at a performance cost
for
206 non
-MSI interrupts
. Disabling the
in-kernel irqchip completely
207 is not recommended except
for debugging purposes
.
209 ``kvm
-shadow
-mem
=size``
210 Defines the size of the KVM shadow MMU
.
213 Controls the use of split w^x mapping
for the TCG code generation
214 buffer
. Some operating systems require
this to be enabled
, and
in
215 such a
case this will
default on
. On other operating systems
, this
216 will
default off
, but one may enable
this for testing or debugging
.
219 Controls the
size (in MiB
) of the TCG translation block cache
.
221 ``thread
=single|multi``
222 Controls number of TCG threads
. When the TCG is multi
-threaded
223 there will be one thread per vCPU therefore taking advantage of
224 additional host cores
. The
default is to enable multi
-threading
225 where both the back
-end and front
-ends support it and no
226 incompatible TCG features have been
enabled (e
.g
.
229 ``dirty
-ring
-size
=n``
230 When the KVM accelerator is used
, it controls the size of the per
-vCPU
231 dirty page ring
buffer (number of entries
for each vCPU
). It should
232 be a value that is power of two
, and it should be
1024 or
bigger (but
233 still less than the maximum value that the kernel supports
). 4096
234 could be a good initial value
if you have no idea which is the best
.
235 Set
this value to
0 to disable the feature
. By
default, this feature
236 is
disabled (dirty
-ring
-size
=0). When enabled
, KVM will instead
237 record dirty pages
in a bitmap
.
241 DEF("smp", HAS_ARG
, QEMU_OPTION_smp
,
242 "-smp [[cpus=]n][,maxcpus=maxcpus][,sockets=sockets][,dies=dies][,clusters=clusters][,cores=cores][,threads=threads]\n"
243 " set the number of initial CPUs to 'n' [default=1]\n"
244 " maxcpus= maximum number of total CPUs, including\n"
245 " offline CPUs for hotplug, etc\n"
246 " sockets= number of sockets on the machine board\n"
247 " dies= number of dies in one socket\n"
248 " clusters= number of clusters in one die\n"
249 " cores= number of cores in one cluster\n"
250 " threads= number of threads in one core\n"
251 "Note: Different machines may have different subsets of the CPU topology\n"
252 " parameters supported, so the actual meaning of the supported parameters\n"
253 " will vary accordingly. For example, for a machine type that supports a\n"
254 " three-level CPU hierarchy of sockets/cores/threads, the parameters will\n"
255 " sequentially mean as below:\n"
256 " sockets means the number of sockets on the machine board\n"
257 " cores means the number of cores in one socket\n"
258 " threads means the number of threads in one core\n"
259 " For a particular machine type board, an expected CPU topology hierarchy\n"
260 " can be defined through the supported sub-option. Unsupported parameters\n"
261 " can also be provided in addition to the sub-option, but their values\n"
262 " must be set as 1 in the purpose of correct parsing.\n",
265 ``
-smp
[[cpus
=]n
][,maxcpus
=maxcpus
][,sockets
=sockets
][,dies
=dies
][,clusters
=clusters
][,cores
=cores
][,threads
=threads
]``
266 Simulate a SMP system with
'\ ``n``\ ' CPUs initially present on
267 the machine type board
. On boards supporting CPU hotplug
, the optional
268 '\ ``maxcpus``\ ' parameter can be set to enable further CPUs to be
269 added at runtime
. When both parameters are omitted
, the maximum number
270 of CPUs will be calculated from the provided topology members and the
271 initial CPU count will match the maximum number
. When only one of them
272 is given then the omitted one will be set to its counterpart
's value.
273 Both parameters may be specified, but the maximum number of CPUs must
274 be equal to or greater than the initial CPU count. Product of the
275 CPU topology hierarchy must be equal to the maximum number of CPUs.
276 Both parameters are subject to an upper limit that is determined by
277 the specific machine type chosen.
279 To control reporting of CPU topology information, values of the topology
280 parameters can be specified. Machines may only support a subset of the
281 parameters and different machines may have different subsets supported
282 which vary depending on capacity of the corresponding CPU targets. So
283 for a particular machine type board, an expected topology hierarchy can
284 be defined through the supported sub-option. Unsupported parameters can
285 also be provided in addition to the sub-option, but their values must be
286 set as 1 in the purpose of correct parsing.
288 Either the initial CPU count, or at least one of the topology parameters
289 must be specified. The specified parameters must be greater than zero,
290 explicit configuration like "cpus=0" is not allowed. Values for any
291 omitted parameters will be computed from those which are given.
293 For example, the following sub-option defines a CPU topology hierarchy
294 (2 sockets totally on the machine, 2 cores per socket, 2 threads per
295 core) for a machine that only supports sockets/cores/threads.
296 Some members of the option can be omitted but their values will be
297 automatically computed:
301 -smp 8,sockets=2,cores=2,threads=2,maxcpus=8
303 The following sub-option defines a CPU topology hierarchy (2 sockets
304 totally on the machine, 2 dies per socket, 2 cores per die, 2 threads
305 per core) for PC machines which support sockets/dies/cores/threads.
306 Some members of the option can be omitted but their values will be
307 automatically computed:
311 -smp 16,sockets=2,dies=2,cores=2,threads=2,maxcpus=16
313 The following sub-option defines a CPU topology hierarchy (2 sockets
314 totally on the machine, 2 clusters per socket, 2 cores per cluster,
315 2 threads per core) for ARM virt machines which support sockets/clusters
316 /cores/threads. Some members of the option can be omitted but their values
317 will be automatically computed:
321 -smp 16,sockets=2,clusters=2,cores=2,threads=2,maxcpus=16
323 Historically preference was given to the coarsest topology parameters
324 when computing missing values (ie sockets preferred over cores, which
325 were preferred over threads), however, this behaviour is considered
326 liable to change. Prior to 6.2 the preference was sockets over cores
327 over threads. Since 6.2 the preference is cores over sockets over threads.
329 For example, the following option defines a machine board with 2 sockets
330 of 1 core before 6.2 and 1 socket of 2 cores after 6.2:
337 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
338 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
339 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
340 "-numa dist,src=source,dst=destination,val=distance\n"
341 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n"
342 "-numa hmat-lb,initiator=node,target=node,hierarchy=memory|first-level|second-level|third-level,data-type=access-latency|read-latency|write-latency[,latency=lat][,bandwidth=bw]\n"
343 "-numa hmat-cache,node-id=node,size=size,level=level[,associativity=none|direct|complex][,policy=none|write-back|write-through][,line=size]\n",
346 ``-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=initiator]``
348 ``-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=initiator]``
350 ``-numa dist,src=source,dst=destination,val=distance``
352 ``-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]``
354 ``-numa hmat-lb,initiator=node,target=node,hierarchy=hierarchy,data-type=tpye[,latency=lat][,bandwidth=bw]``
356 ``-numa hmat-cache,node-id=node,size=size,level=level[,associativity=str][,policy=str][,line=size]``
357 Define a NUMA node and assign RAM and VCPUs to it. Set the NUMA
358 distance from a source node to a destination node. Set the ACPI
359 Heterogeneous Memory Attributes for the given nodes.
361 Legacy VCPU assignment uses '\ ``cpus``\
' option where firstcpu and
362 lastcpu are CPU indexes. Each '\ ``cpus``\
' option represent a
363 contiguous range of CPU indexes (or a single VCPU if lastcpu is
364 omitted). A non-contiguous set of VCPUs can be represented by
365 providing multiple '\ ``cpus``\
' options. If '\ ``cpus``\
' is
366 omitted on all nodes, VCPUs are automatically split between them.
368 For example, the following option assigns VCPUs 0, 1, 2 and 5 to a
373 -numa node,cpus=0-2,cpus=5
375 '\ ``cpu``\
' option is a new alternative to '\ ``cpus``\
' option
376 which uses '\ ``socket
-id|core
-id|thread
-id``\
' properties to
377 assign CPU objects to a node using topology layout properties of
378 CPU. The set of properties is machine specific, and depends on used
379 machine type/'\ ``smp``\
' options. It could be queried with
380 '\ ``hotpluggable
-cpus``\
' monitor command. '\ ``node
-id``\
'
381 property specifies node to which CPU object will be assigned, it's
382 required
for node to be declared with
'\ ``node``\ ' option before
383 it
's used with '\ ``cpu``\
' option.
390 -smp 1,sockets=2,maxcpus=2 \
391 -numa node,nodeid=0 -numa node,nodeid=1 \
392 -numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1
394 Legacy '\ ``mem``\
' assigns a given RAM amount to a node (not supported
395 for 5.1 and newer machine types). '\ ``memdev``\
' assigns RAM from
396 a given memory backend device to a node. If '\ ``mem``\
' and
397 '\ ``memdev``\
' are omitted in all nodes, RAM is split equally between them.
400 '\ ``mem``\
' and '\ ``memdev``\
' are mutually exclusive.
401 Furthermore, if one node uses '\ ``memdev``\
', all of them have to
404 '\ ``initiator``\
' is an additional option that points to an
405 initiator NUMA node that has best performance (the lowest latency or
406 largest bandwidth) to this NUMA node. Note that this option can be
407 set only when the machine property 'hmat
' is set to 'on
'.
409 Following example creates a machine with 2 NUMA nodes, node 0 has
410 CPU. node 1 has only memory, and its initiator is node 0. Note that
411 because node 0 has CPU, by default the initiator of node 0 is itself
417 -m 2G,slots=2,maxmem=4G \
418 -object memory-backend-ram,size=1G,id=m0 \
419 -object memory-backend-ram,size=1G,id=m1 \
420 -numa node,nodeid=0,memdev=m0 \
421 -numa node,nodeid=1,memdev=m1,initiator=0 \
422 -smp 2,sockets=2,maxcpus=2 \
423 -numa cpu,node-id=0,socket-id=0 \
424 -numa cpu,node-id=0,socket-id=1
426 source and destination are NUMA node IDs. distance is the NUMA
427 distance from source to destination. The distance from a node to
428 itself is always 10. If any pair of nodes is given a distance, then
429 all pairs must be given distances. Although, when distances are only
430 given in one direction for each pair of nodes, then the distances in
431 the opposite directions are assumed to be the same. If, however, an
432 asymmetrical pair of distances is given for even one node pair, then
433 all node pairs must be provided distance values for both directions,
434 even when they are symmetrical. When a node is unreachable from
435 another node, set the pair's distance to
255.
437 Note that the
-``numa`` option doesn
't allocate any of the specified
438 resources, it just assigns existing resources to NUMA nodes. This
439 means that one still has to use the ``-m``, ``-smp`` options to
440 allocate RAM and VCPUs respectively.
442 Use '\ ``hmat
-lb``\
' to set System Locality Latency and Bandwidth
443 Information between initiator and target NUMA nodes in ACPI
444 Heterogeneous Attribute Memory Table (HMAT). Initiator NUMA node can
445 create memory requests, usually it has one or more processors.
446 Target NUMA node contains addressable memory.
448 In '\ ``hmat
-lb``\
' option, node are NUMA node IDs. hierarchy is
449 the memory hierarchy of the target NUMA node: if hierarchy is
450 'memory
', the structure represents the memory performance; if
451 hierarchy is 'first
-level\|second
-level\|third
-level
', this
452 structure represents aggregated performance of memory side caches
453 for each domain. type of 'data
-type
' is type of data represented by
454 this structure instance: if 'hierarchy
' is 'memory
', 'data
-type
' is
455 'access\|read\|write
' latency or 'access\|read\|write
' bandwidth of
456 the target memory; if 'hierarchy
' is
457 'first
-level\|second
-level\|third
-level
', 'data
-type
' is
458 'access\|read\|write
' hit latency or 'access\|read\|write
' hit
459 bandwidth of the target memory side cache.
461 lat is latency value in nanoseconds. bw is bandwidth value, the
462 possible value and units are NUM[M\|G\|T], mean that the bandwidth
463 value are NUM byte per second (or MB/s, GB/s or TB/s depending on
464 used suffix). Note that if latency or bandwidth value is 0, means
465 the corresponding latency or bandwidth information is not provided.
467 In '\ ``hmat
-cache``\
' option, node-id is the NUMA-id of the memory
468 belongs. size is the size of memory side cache in bytes. level is
469 the cache level described in this structure, note that the cache
470 level 0 should not be used with '\ ``hmat
-cache``\
' option.
471 associativity is the cache associativity, the possible value is
472 'none
/direct(direct
-mapped
)/complex(complex cache indexing
)'. policy
473 is the write policy. line is the cache Line size in bytes.
475 For example, the following options describe 2 NUMA nodes. Node 0 has
476 2 cpus and a ram, node 1 has only a ram. The processors in node 0
477 access memory in node 0 with access-latency 5 nanoseconds,
478 access-bandwidth is 200 MB/s; The processors in NUMA node 0 access
479 memory in NUMA node 1 with access-latency 10 nanoseconds,
480 access-bandwidth is 100 MB/s. And for memory side cache information,
481 NUMA node 0 and 1 both have 1 level memory cache, size is 10KB,
482 policy is write-back, the cache Line size is 8 bytes:
488 -object memory-backend-ram,size=1G,id=m0 \
489 -object memory-backend-ram,size=1G,id=m1 \
490 -smp 2,sockets=2,maxcpus=2 \
491 -numa node,nodeid=0,memdev=m0 \
492 -numa node,nodeid=1,memdev=m1,initiator=0 \
493 -numa cpu,node-id=0,socket-id=0 \
494 -numa cpu,node-id=0,socket-id=1 \
495 -numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-latency,latency=5 \
496 -numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-bandwidth,bandwidth=200M \
497 -numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-latency,latency=10 \
498 -numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-bandwidth,bandwidth=100M \
499 -numa hmat-cache,node-id=0,size=10K,level=1,associativity=direct,policy=write-back,line=8 \
500 -numa hmat-cache,node-id=1,size=10K,level=1,associativity=direct,policy=write-back,line=8
503 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
504 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
505 " Add 'fd
' to fd 'set
'\n", QEMU_ARCH_ALL)
507 ``-add-fd fd=fd,set=set[,opaque=opaque]``
508 Add a file descriptor to an fd set. Valid options are:
511 This option defines the file descriptor of which a duplicate is
512 added to fd set. The file descriptor cannot be stdin, stdout, or
516 This option defines the ID of the fd set to add the file
520 This option defines a free-form string that can be used to
523 You can open an image using pre-opened file descriptors from an fd
529 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \\
530 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \\
531 -drive file=/dev/fdset/2,index=0,media=disk
534 DEF("set", HAS_ARG, QEMU_OPTION_set,
535 "-set group.id.arg=value\n"
536 " set <arg> parameter for item <id> of type <group>\n"
537 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
539 ``-set group.id.arg=value``
540 Set parameter arg for item id of type group
543 DEF("global", HAS_ARG, QEMU_OPTION_global,
544 "-global driver.property=value\n"
545 "-global driver=driver,property=property,value=value\n"
546 " set a global default for a driver property\n",
549 ``-global driver.prop=value``
551 ``-global driver=driver,property=property,value=value``
552 Set default value of driver's property prop to value
, e
.g
.:
556 |qemu_system_x86|
-global ide
-hd
.physical_block_size
=4096 disk
-image
.img
558 In particular
, you can use
this to set driver properties
for devices
559 which are created automatically by the machine model
. To create a
560 device which is not created automatically and set properties on it
,
563 -global driver
.prop
=value is shorthand
for -global
564 driver
=driver
,property
=prop
,value
=value
. The longhand syntax works
565 even when driver contains a dot
.
568 DEF("boot", HAS_ARG
, QEMU_OPTION_boot
,
569 "-boot [order=drives][,once=drives][,menu=on|off]\n"
570 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
571 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
572 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
573 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
574 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
577 ``
-boot
[order
=drives
][,once
=drives
][,menu
=on|off
][,splash
=sp_name
][,splash
-time
=sp_time
][,reboot
-timeout
=rb_timeout
][,strict
=on|off
]``
578 Specify boot order drives as a string of drive letters
. Valid drive
579 letters depend on the target architecture
. The x86 PC uses
: a
, b
580 (floppy
1 and
2), c (first hard disk
), d (first CD
-ROM
), n
-p
581 (Etherboot from network adapter
1-4), hard disk boot is the
default.
582 To apply a particular boot order only on the first startup
, specify
583 it via ``once``
. Note that the ``order`` or ``once`` parameter
584 should not be used together with the ``bootindex`` property of
585 devices
, since the firmware implementations normally
do not support
586 both at the same time
.
588 Interactive boot menus
/prompts can be enabled via ``menu
=on`` as far
589 as firmware
/BIOS supports them
. The
default is non
-interactive boot
.
591 A splash picture could be passed to bios
, enabling user to show it
592 as logo
, when option splash
=sp\_name is given and menu
=on
, If
593 firmware
/BIOS supports them
. Currently Seabios
for X86 system
594 support it
. limitation
: The splash file could be a jpeg file or a
595 BMP file
in 24 BPP
format(true color
). The resolution should be
596 supported by the SVGA mode
, so the recommended is
320x240
, 640x480
,
599 A timeout could be passed to bios
, guest will pause
for rb\_timeout
600 ms when boot failed
, then reboot
. If rb\_timeout is
'-1', guest will
601 not reboot
, qemu passes
'-1' to bios by
default. Currently Seabios
602 for X86 system support it
.
604 Do strict boot via ``strict
=on`` as far as firmware
/BIOS supports
605 it
. This only effects when boot priority is changed by bootindex
606 options
. The
default is non
-strict boot
.
610 #
try to boot from network first
, then from hard disk
611 |qemu_system_x86|
-boot order
=nc
612 # boot from CD
-ROM first
, switch back to
default order after reboot
613 |qemu_system_x86|
-boot once
=d
614 # boot with a splash picture
for 5 seconds
.
615 |qemu_system_x86|
-boot menu
=on
,splash
=/root
/boot
.bmp
,splash
-time
=5000
617 Note
: The legacy format
'-boot drives' is still supported but its
618 use is discouraged as it may be removed from future versions
.
621 DEF("m", HAS_ARG
, QEMU_OPTION_m
,
622 "-m [size=]megs[,slots=n,maxmem=size]\n"
623 " configure guest RAM\n"
624 " size: initial amount of guest memory\n"
625 " slots: number of hotplug slots (default: none)\n"
626 " maxmem: maximum amount of guest memory (default: none)\n"
627 "NOTE: Some architectures might enforce a specific granularity\n",
630 ``
-m
[size
=]megs
[,slots
=n
,maxmem
=size
]``
631 Sets guest startup RAM size to megs megabytes
. Default is
128 MiB
.
632 Optionally
, a suffix of
"M" or
"G" can be used to signify a value
in
633 megabytes or gigabytes respectively
. Optional pair slots
, maxmem
634 could be used to set amount of hotpluggable memory slots and maximum
635 amount of memory
. Note that maxmem must be aligned to the page size
.
637 For example
, the following command
-line sets the guest startup RAM
638 size to
1GB
, creates
3 slots to hotplug additional memory and sets
639 the maximum memory the guest can reach to
4GB
:
643 |qemu_system|
-m
1G
,slots
=3,maxmem
=4G
645 If slots and maxmem are not specified
, memory hotplug won
't be
646 enabled and the guest startup RAM will never increase.
649 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
650 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
653 Allocate guest RAM from a temporarily created file in path.
656 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
657 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
661 Preallocate memory when using -mem-path.
664 DEF("k", HAS_ARG, QEMU_OPTION_k,
665 "-k language use keyboard layout (for example 'fr
' for French)\n",
669 Use keyboard layout language (for example ``fr`` for French). This
670 option is only needed where it is not easy to get raw PC keycodes
671 (e.g. on Macs, with some X11 servers or with a VNC or curses
672 display). You don't normally need to use it on PC
/Linux or
675 The available layouts are
:
679 ar de
-ch es fo fr
-ca hu ja mk no pt
-br sv
680 da en
-gb et fr fr
-ch is lt nl pl ru th
681 de en
-us fi fr
-be hr it lv nl
-be pt sl tr
683 The
default is ``en
-us``
.
687 HXCOMM Deprecated by
-audiodev
688 DEF("audio-help", 0, QEMU_OPTION_audio_help
,
689 "-audio-help show -audiodev equivalent of the currently specified audio settings\n",
693 Will show the
-audiodev equivalent of the currently specified
694 (deprecated
) environment variables
.
697 DEF("audio", HAS_ARG
, QEMU_OPTION_audio
,
698 "-audio [driver=]driver,model=value[,prop[=value][,...]]\n"
699 " specifies the audio backend and device to use;\n"
700 " apart from 'model', options are the same as for -audiodev.\n"
701 " use '-audio model=help' to show possible devices.\n",
704 ``
-audio
[driver
=]driver
,model
=value
[,prop
[=value
][,...]]``
705 This option is a shortcut
for configuring both the guest audio
706 hardware and the host audio backend
in one go
.
707 The host backend options are the same as with the corresponding
708 ``
-audiodev`` options below
. The guest hardware model can be set with
709 ``model
=modelname``
. Use ``model
=help`` to list the available device
712 The following two example
do exactly the same
, to show how ``
-audio``
713 can be used to shorten the command line length
:
717 |qemu_system|
-audiodev pa
,id
=pa
-device sb16
,audiodev
=pa
718 |qemu_system|
-audio pa
,model
=sb16
721 DEF("audiodev", HAS_ARG
, QEMU_OPTION_audiodev
,
722 "-audiodev [driver=]driver,id=id[,prop[=value][,...]]\n"
723 " specifies the audio backend to use\n"
724 " id= identifier of the backend\n"
725 " timer-period= timer period in microseconds\n"
726 " in|out.mixing-engine= use mixing engine to mix streams inside QEMU\n"
727 " in|out.fixed-settings= use fixed settings for host audio\n"
728 " in|out.frequency= frequency to use with fixed settings\n"
729 " in|out.channels= number of channels to use with fixed settings\n"
730 " in|out.format= sample format to use with fixed settings\n"
731 " valid values: s8, s16, s32, u8, u16, u32, f32\n"
732 " in|out.voices= number of voices to use\n"
733 " in|out.buffer-length= length of buffer in microseconds\n"
734 "-audiodev none,id=id,[,prop[=value][,...]]\n"
735 " dummy driver that discards all output\n"
736 #ifdef CONFIG_AUDIO_ALSA
737 "-audiodev alsa,id=id[,prop[=value][,...]]\n"
738 " in|out.dev= name of the audio device to use\n"
739 " in|out.period-length= length of period in microseconds\n"
740 " in|out.try-poll= attempt to use poll mode\n"
741 " threshold= threshold (in microseconds) when playback starts\n"
743 #ifdef CONFIG_AUDIO_COREAUDIO
744 "-audiodev coreaudio,id=id[,prop[=value][,...]]\n"
745 " in|out.buffer-count= number of buffers\n"
747 #ifdef CONFIG_AUDIO_DSOUND
748 "-audiodev dsound,id=id[,prop[=value][,...]]\n"
749 " latency= add extra latency to playback in microseconds\n"
751 #ifdef CONFIG_AUDIO_OSS
752 "-audiodev oss,id=id[,prop[=value][,...]]\n"
753 " in|out.dev= path of the audio device to use\n"
754 " in|out.buffer-count= number of buffers\n"
755 " in|out.try-poll= attempt to use poll mode\n"
756 " try-mmap= try using memory mapped access\n"
757 " exclusive= open device in exclusive mode\n"
758 " dsp-policy= set timing policy (0..10), -1 to use fragment mode\n"
760 #ifdef CONFIG_AUDIO_PA
761 "-audiodev pa,id=id[,prop[=value][,...]]\n"
762 " server= PulseAudio server address\n"
763 " in|out.name= source/sink device name\n"
764 " in|out.latency= desired latency in microseconds\n"
766 #ifdef CONFIG_AUDIO_SDL
767 "-audiodev sdl,id=id[,prop[=value][,...]]\n"
768 " in|out.buffer-count= number of buffers\n"
771 "-audiodev spice,id=id[,prop[=value][,...]]\n"
773 #ifdef CONFIG_DBUS_DISPLAY
774 "-audiodev dbus,id=id[,prop[=value][,...]]\n"
776 "-audiodev wav,id=id[,prop[=value][,...]]\n"
777 " path= path of wav file to record\n",
780 ``
-audiodev
[driver
=]driver
,id
=id
[,prop
[=value
][,...]]``
781 Adds a
new audio backend driver identified by id
. There are global
782 and driver specific properties
. Some values can be set differently
783 for input and output
, they
're marked with ``in|out.``. You can set
784 the input's property with ``
in.prop`` and the output
's property with
785 ``out.prop``. For example:
789 -audiodev alsa,id=example,in.frequency=44110,out.frequency=8000
790 -audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified
792 NOTE: parameter validation is known to be incomplete, in many cases
793 specifying an invalid option causes QEMU to print an error message
794 and continue emulation without sound.
796 Valid global options are:
799 Identifies the audio backend.
801 ``timer-period=period``
802 Sets the timer period used by the audio subsystem in
803 microseconds. Default is 10000 (10 ms).
805 ``in|out.mixing-engine=on|off``
806 Use QEMU's mixing engine to mix all streams inside QEMU and
807 convert audio formats when not supported by the backend
. When
808 off
, fixed
-settings must be off too
. Note that disabling
this
809 option means that the selected backend must support multiple
810 streams and the audio formats used by the virtual cards
,
811 otherwise you
'll get no sound. It's not recommended to disable
812 this option unless you want to use
5.1 or
7.1 audio
, as mixing
813 engine only supports mono and stereo audio
. Default is on
.
815 ``
in|out
.fixed
-settings
=on|off``
816 Use fixed settings
for host audio
. When off
, it will change
817 based on how the guest opens the sound card
. In
this case you
818 must not specify frequency
, channels or format
. Default is on
.
820 ``
in|out
.frequency
=frequency``
821 Specify the frequency to use when
using fixed
-settings
. Default
824 ``
in|out
.channels
=channels``
825 Specify the number of channels to use when
using fixed
-settings
.
826 Default is
2 (stereo
).
828 ``
in|out
.format
=format``
829 Specify the sample format to use when
using fixed
-settings
.
830 Valid values are
: ``s8``
, ``s16``
, ``s32``
, ``u8``
, ``u16``
,
831 ``u32``
, ``f32``
. Default is ``s16``
.
833 ``
in|out
.voices
=voices``
834 Specify the number of voices to use
. Default is
1.
836 ``
in|out
.buffer
-length
=usecs``
837 Sets the size of the buffer
in microseconds
.
839 ``
-audiodev none
,id
=id
[,prop
[=value
][,...]]``
840 Creates a dummy backend that discards all outputs
. This backend has
841 no backend specific properties
.
843 ``
-audiodev alsa
,id
=id
[,prop
[=value
][,...]]``
844 Creates backend
using the ALSA
. This backend is only available on
847 ALSA specific options are
:
849 ``
in|out
.dev
=device``
850 Specify the ALSA device to use
for input and
/or output
. Default
853 ``
in|out
.period
-length
=usecs``
854 Sets the period length
in microseconds
.
856 ``
in|out
.try-poll
=on|off``
857 Attempt to use poll mode with the device
. Default is on
.
859 ``threshold
=threshold``
860 Threshold (in microseconds
) when playback starts
. Default is
0.
862 ``
-audiodev coreaudio
,id
=id
[,prop
[=value
][,...]]``
863 Creates a backend
using Apple
's Core Audio. This backend is only
864 available on Mac OS and only supports playback.
866 Core Audio specific options are:
868 ``in|out.buffer-count=count``
869 Sets the count of the buffers.
871 ``-audiodev dsound,id=id[,prop[=value][,...]]``
872 Creates a backend using Microsoft's DirectSound
. This backend is
873 only available on Windows and only supports playback
.
875 DirectSound specific options are
:
878 Add extra usecs microseconds latency to playback
. Default is
881 ``
-audiodev oss
,id
=id
[,prop
[=value
][,...]]``
882 Creates a backend
using OSS
. This backend is available on most
885 OSS specific options are
:
887 ``
in|out
.dev
=device``
888 Specify the file name of the OSS device to use
. Default is
891 ``
in|out
.buffer
-count
=count``
892 Sets the count of the buffers
.
894 ``
in|out
.try-poll
=on|of``
895 Attempt to use poll mode with the device
. Default is on
.
898 Try
using memory mapped device access
. Default is off
.
901 Open the device
in exclusive
mode (vmix won
't work in this
902 case). Default is off.
904 ``dsp-policy=policy``
905 Sets the timing policy (between 0 and 10, where smaller number
906 means smaller latency but higher CPU usage). Use -1 to use
907 buffer sizes specified by ``buffer`` and ``buffer-count``. This
908 option is ignored if you do not have OSS 4. Default is 5.
910 ``-audiodev pa,id=id[,prop[=value][,...]]``
911 Creates a backend using PulseAudio. This backend is available on
914 PulseAudio specific options are:
917 Sets the PulseAudio server to connect to.
920 Use the specified source/sink for recording/playback.
922 ``in|out.latency=usecs``
923 Desired latency in microseconds. The PulseAudio server will try
924 to honor this value but actual latencies may be lower or higher.
926 ``-audiodev sdl,id=id[,prop[=value][,...]]``
927 Creates a backend using SDL. This backend is available on most
928 systems, but you should use your platform's native backend
if
931 SDL specific options are
:
933 ``
in|out
.buffer
-count
=count``
934 Sets the count of the buffers
.
936 ``
-audiodev spice
,id
=id
[,prop
[=value
][,...]]``
937 Creates a backend that sends audio through SPICE
. This backend
938 requires ``
-spice`` and automatically selected
in that
case, so
939 usually you can ignore
this option
. This backend has no backend
942 ``
-audiodev wav
,id
=id
[,prop
[=value
][,...]]``
943 Creates a backend that writes audio to a WAV file
.
945 Backend specific options are
:
948 Write recorded audio into the specified file
. Default is
952 DEF("device", HAS_ARG
, QEMU_OPTION_device
,
953 "-device driver[,prop[=value][,...]]\n"
954 " add device (based on driver)\n"
955 " prop=value,... sets driver properties\n"
956 " use '-device help' to print all possible drivers\n"
957 " use '-device driver,help' to print all possible properties\n",
960 ``
-device driver
[,prop
[=value
][,...]]``
961 Add device driver
. prop
=value sets driver properties
. Valid
962 properties depend on the driver
. To get help on possible drivers and
963 properties
, use ``
-device help`` and ``
-device driver
,help``
.
967 ``
-device ipmi
-bmc
-sim
,id
=id
[,prop
[=value
][,...]]``
968 Add an IPMI BMC
. This is a simulation of a hardware management
969 interface processor that normally sits on a system
. It provides a
970 watchdog and the ability to reset and power control the system
. You
971 need to connect
this to an IPMI
interface to make it useful
973 The IPMI slave address to use
for the BMC
. The
default is
0x20. This
974 address is the BMC
's address on the I2C network of management
975 controllers. If you don't know what
this means
, it is safe to ignore
979 The BMC id
for interfaces to use
this device
.
982 Define slave address to use
for the BMC
. The
default is
0x20.
985 file containing raw Sensor Data
Records (SDR
) data
. The
default
989 size of a Field Replaceable
Unit (FRU
) area
. The
default is
993 file containing raw Field Replaceable
Unit (FRU
) inventory data
.
997 value
for the GUID
for the BMC
, in standard UUID format
. If
this
998 is set
, get
"Get GUID" command to the BMC will
return it
.
999 Otherwise
"Get GUID" will
return an error
.
1001 ``
-device ipmi
-bmc
-extern,id
=id
,chardev
=id
[,slave_addr
=val
]``
1002 Add a connection to an external IPMI BMC simulator
. Instead of
1003 locally emulating the BMC like the above item
, instead connect to an
1004 external entity that provides the IPMI services
.
1006 A connection is made to an external BMC simulator
. If you
do this,
1007 it is strongly recommended that you use the
"reconnect=" chardev
1008 option to reconnect to the simulator
if the connection is lost
. Note
1009 that
if this is not used carefully
, it can be a security issue
, as
1010 the
interface has the ability to send resets
, NMIs
, and power off
1011 the VM
. It
's best if QEMU makes a connection to an external
1012 simulator running on a secure port on localhost, so neither the
1013 simulator nor QEMU is exposed to any outside network.
1015 See the "lanserv/README.vm" file in the OpenIPMI library for more
1016 details on the external interface.
1018 ``-device isa-ipmi-kcs,bmc=id[,ioport=val][,irq=val]``
1019 Add a KCS IPMI interafce on the ISA bus. This also adds a
1020 corresponding ACPI and SMBIOS entries, if appropriate.
1023 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern
1027 Define the I/O address of the interface. The default is 0xca0
1031 Define the interrupt to use. The default is 5. To disable
1032 interrupts, set this to 0.
1034 ``-device isa-ipmi-bt,bmc=id[,ioport=val][,irq=val]``
1035 Like the KCS interface, but defines a BT interface. The default port
1036 is 0xe4 and the default interrupt is 5.
1038 ``-device pci-ipmi-kcs,bmc=id``
1039 Add a KCS IPMI interafce on the PCI bus.
1042 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
1044 ``-device pci-ipmi-bt,bmc=id``
1045 Like the KCS interface, but defines a BT interface on the PCI bus.
1047 ``-device intel-iommu[,option=...]``
1048 This is only supported by ``-machine q35``, which will enable Intel VT-d
1049 emulation within the guest. It supports below options:
1051 ``intremap=on|off`` (default: auto)
1052 This enables interrupt remapping feature. It's required to enable
1053 complete x2apic
. Currently it only supports kvm kernel
-irqchip modes
1054 ``off`` or ``split``
, while full kernel
-irqchip is not yet supported
.
1055 The
default value is
"auto", which will be decided by the mode of
1058 ``caching
-mode
=on|off``
(default: off
)
1059 This enables caching mode
for the VT
-d emulated device
. When
1060 caching
-mode is enabled
, each guest DMA buffer mapping will generate an
1061 IOTLB invalidation from the guest IOMMU driver to the vIOMMU device
in
1062 a synchronous way
. It is required
for ``
-device vfio
-pci`` to work
1063 with the VT
-d device
, because host assigned devices requires to setup
1064 the DMA mapping on the host before guest DMA starts
.
1066 ``device
-iotlb
=on|off``
(default: off
)
1067 This enables device
-iotlb capability
for the emulated VT
-d device
. So
1068 far virtio
/vhost should be the only real user
for this parameter
,
1069 paired with ats
=on configured
for the device
.
1071 ``aw
-bits
=39|
48``
(default: 39)
1072 This decides the address width of IOVA address space
. The address
1073 space has
39 bits width
for 3-level IOMMU page tables
, and
48 bits
for
1074 4-level IOMMU page tables
.
1076 Please also refer to the wiki page
for general scenarios of VT
-d
1077 emulation
in QEMU
: https
://wiki.qemu.org/Features/VT-d.
1081 DEF("name", HAS_ARG
, QEMU_OPTION_name
,
1082 "-name string1[,process=string2][,debug-threads=on|off]\n"
1083 " set the name of the guest\n"
1084 " string1 sets the window title and string2 the process name\n"
1085 " When debug-threads is enabled, individual threads are given a separate name\n"
1086 " NOTE: The thread names are for debugging and not a stable API.\n",
1090 Sets the name of the guest
. This name will be displayed
in the SDL
1091 window caption
. The name will also be used
for the VNC server
. Also
1092 optionally set the top visible process name
in Linux
. Naming of
1093 individual threads can also be enabled on Linux to aid debugging
.
1096 DEF("uuid", HAS_ARG
, QEMU_OPTION_uuid
,
1097 "-uuid %08x-%04x-%04x-%04x-%012x\n"
1098 " specify machine UUID\n", QEMU_ARCH_ALL
)
1106 DEFHEADING(Block device options
:)
1108 DEF("fda", HAS_ARG
, QEMU_OPTION_fda
,
1109 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL
)
1110 DEF("fdb", HAS_ARG
, QEMU_OPTION_fdb
, "", QEMU_ARCH_ALL
)
1115 Use file as floppy disk
0/1 image (see the
:ref
:`disk images` chapter
in
1116 the System Emulation Users Guide
).
1119 DEF("hda", HAS_ARG
, QEMU_OPTION_hda
,
1120 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL
)
1121 DEF("hdb", HAS_ARG
, QEMU_OPTION_hdb
, "", QEMU_ARCH_ALL
)
1122 DEF("hdc", HAS_ARG
, QEMU_OPTION_hdc
,
1123 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL
)
1124 DEF("hdd", HAS_ARG
, QEMU_OPTION_hdd
, "", QEMU_ARCH_ALL
)
1133 Use file as hard disk
0, 1, 2 or
3 image (see the
:ref
:`disk images`
1134 chapter
in the System Emulation Users Guide
).
1137 DEF("cdrom", HAS_ARG
, QEMU_OPTION_cdrom
,
1138 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
1142 Use file as CD
-ROM
image (you cannot use ``
-hdc`` and ``
-cdrom`` at
1143 the same time
). You can use the host CD
-ROM by
using ``
/dev
/cdrom``
1147 DEF("blockdev", HAS_ARG
, QEMU_OPTION_blockdev
,
1148 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n"
1149 " [,cache.direct=on|off][,cache.no-flush=on|off]\n"
1150 " [,read-only=on|off][,auto-read-only=on|off]\n"
1151 " [,force-share=on|off][,detect-zeroes=on|off|unmap]\n"
1152 " [,driver specific parameters...]\n"
1153 " configure a block backend\n", QEMU_ARCH_ALL
)
1155 ``
-blockdev option
[,option
[,option
[,...]]]``
1156 Define a
new block driver node
. Some of the options apply to all
1157 block drivers
, other options are only accepted
for a specific block
1158 driver
. See below
for a list of generic options and options
for the
1159 most common block drivers
.
1161 Options that expect a reference to another
node (e
.g
. ``file``
) can
1162 be given
in two ways
. Either you specify the node name of an already
1163 existing
node (file
=node
-name
), or you define a
new node
inline,
1164 adding options
for the referenced node after a dot
1165 (file
.filename
=path
,file
.aio
=native
).
1167 A block driver node created with ``
-blockdev`` can be used
for a
1168 guest device by specifying its node name
for the ``drive`` property
1169 in a ``
-device`` argument that defines a block device
.
1171 ``Valid options
for any block driver node
:``
1173 Specifies the block driver to use
for the given node
.
1176 This defines the name of the block driver node by which it
1177 will be referenced later
. The name must be unique
, i
.e
. it
1178 must not match the name of a different block driver node
, or
1179 (if you use ``
-drive`` as well
) the ID of a drive
.
1181 If no node name is specified
, it is automatically generated
.
1182 The generated node name is not intended to be predictable
1183 and changes between QEMU invocations
. For the top level
, an
1184 explicit node name must be specified
.
1187 Open the node read
-only
. Guest write attempts will fail
.
1189 Note that some block drivers support only read
-only access
,
1190 either generally or
in certain configurations
. In
this case,
1191 the
default value ``read
-only
=off`` does not work and the
1192 option must be specified explicitly
.
1195 If ``auto
-read
-only
=on`` is set
, QEMU may fall back to
1196 read
-only usage even when ``read
-only
=off`` is requested
, or
1197 even
switch between modes as needed
, e
.g
. depending on
1198 whether the image file is writable or whether a writing user
1199 is attached to the node
.
1202 Override the image locking system of QEMU by forcing the
1203 node to utilize weaker shared access
for permissions where
1204 it would normally request exclusive access
. When there is
1205 the potential
for multiple instances to have the same file
1206 open (whether
this invocation of QEMU is the first or the
1207 second instance
), both instances must permit shared access
1208 for the second instance to succeed at opening the file
.
1210 Enabling ``force
-share
=on`` requires ``read
-only
=on``
.
1213 The host page cache can be avoided with ``cache
.direct
=on``
.
1214 This will attempt to
do disk IO directly to the guest
's
1215 memory. QEMU may still perform an internal copy of the data.
1218 In case you don't care about data integrity over host
1219 failures
, you can use ``cache
.no
-flush
=on``
. This option
1220 tells QEMU that it
never needs to write any data to the disk
1221 but can instead keep things
in cache
. If anything goes
1222 wrong
, like your host losing power
, the disk storage getting
1223 disconnected accidentally
, etc
. your image will most
1224 probably be rendered unusable
.
1227 discard is one of
"ignore" (or
"off") or
"unmap" (or
"on")
1228 and controls whether ``discard``
(also known as ``trim`` or
1229 ``unmap``
) requests are ignored or passed to the filesystem
.
1230 Some machine types may not support discard requests
.
1232 ``detect
-zeroes
=detect
-zeroes``
1233 detect
-zeroes is
"off", "on" or
"unmap" and enables the
1234 automatic conversion of plain zero writes by the OS to
1235 driver specific optimized zero write commands
. You may even
1236 choose
"unmap" if discard is set to
"unmap" to allow a zero
1237 write to be converted to an ``unmap`` operation
.
1239 ``Driver
-specific options
for file``
1240 This is the protocol
-level block driver
for accessing regular
1244 The path to the image file
in the local filesystem
1247 Specifies the AIO
backend (threads
/native
/io_uring
,
1251 Specifies whether the image file is protected with Linux OFD
1252 / POSIX locks
. The
default is to use the Linux Open File
1253 Descriptor API
if available
, otherwise no lock is applied
.
1254 (auto
/on
/off
, default: auto
)
1260 -blockdev driver
=file
,node
-name
=disk
,filename
=disk
.img
1262 ``Driver
-specific options
for raw``
1263 This is the image format block driver
for raw images
. It is
1264 usually stacked on top of a protocol level block driver such as
1268 Reference to or definition of the data source block driver
1269 node (e
.g
. a ``file`` driver node
)
1275 -blockdev driver
=file
,node
-name
=disk_file
,filename
=disk
.img
1276 -blockdev driver
=raw
,node
-name
=disk
,file
=disk_file
1282 -blockdev driver
=raw
,node
-name
=disk
,file
.driver
=file
,file
.filename
=disk
.img
1284 ``Driver
-specific options
for qcow2``
1285 This is the image format block driver
for qcow2 images
. It is
1286 usually stacked on top of a protocol level block driver such as
1290 Reference to or definition of the data source block driver
1291 node (e
.g
. a ``file`` driver node
)
1294 Reference to or definition of the backing file block device
1295 (default is taken from the image file
). It is allowed to
1296 pass ``
null``
here in order to disable the
default backing
1300 Whether to enable the lazy refcounts
feature (on
/off
;
1301 default is taken from the image file
)
1304 The maximum total size of the L2 table and refcount block
1305 caches
in bytes (default: the sum of l2
-cache
-size and
1306 refcount
-cache
-size
)
1309 The maximum size of the L2 table cache
in bytes (default: if
1310 cache
-size is not specified
- 32M on Linux platforms
, and
8M
1311 on non
-Linux platforms
; otherwise
, as large as possible
1312 within the cache
-size
, while permitting the requested or the
1313 minimal refcount cache size
)
1315 ``refcount
-cache
-size``
1316 The maximum size of the refcount block cache
in bytes
1317 (default: 4 times the cluster size
; or
if cache
-size is
1318 specified
, the part of it which is not used
for the L2
1321 ``cache
-clean
-interval``
1322 Clean unused entries
in the L2 and refcount caches
. The
1323 interval is
in seconds
. The
default value is
600 on
1324 supporting platforms
, and
0 on other platforms
. Setting it
1325 to
0 disables
this feature
.
1327 ``pass
-discard
-request``
1328 Whether discard requests to the qcow2 device should be
1329 forwarded to the data
source (on
/off
; default: on
if
1330 discard
=unmap is specified
, off otherwise
)
1332 ``pass
-discard
-snapshot``
1333 Whether discard requests
for the data source should be
1334 issued when a snapshot
operation (e
.g
. deleting a snapshot
)
1335 frees clusters
in the qcow2
file (on
/off
; default: on
)
1337 ``pass
-discard
-other``
1338 Whether discard requests
for the data source should be
1339 issued on other occasions where a cluster gets freed
1340 (on
/off
; default: off
)
1343 Which overlap checks to perform
for writes to the image
1344 (none
/constant
/cached
/all
; default: cached
). For details or
1345 finer granularity control refer to the QAPI documentation of
1352 -blockdev driver
=file
,node
-name
=my_file
,filename
=/tmp
/disk
.qcow2
1353 -blockdev driver
=qcow2
,node
-name
=hda
,file
=my_file
,overlap
-check
=none
,cache
-size
=16777216
1359 -blockdev driver
=qcow2
,node
-name
=disk
,file
.driver
=http
,file
.filename
=http
://example.com/image.qcow2
1361 ``Driver
-specific options
for other drivers``
1362 Please refer to the QAPI documentation of the ``blockdev
-add``
1366 DEF("drive", HAS_ARG
, QEMU_OPTION_drive
,
1367 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
1368 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
1369 " [,snapshot=on|off][,rerror=ignore|stop|report]\n"
1370 " [,werror=ignore|stop|report|enospc][,id=name]\n"
1371 " [,aio=threads|native|io_uring]\n"
1372 " [,readonly=on|off][,copy-on-read=on|off]\n"
1373 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
1374 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
1375 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
1376 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
1377 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
1378 " [[,iops_size=is]]\n"
1380 " use 'file' as a drive image\n", QEMU_ARCH_ALL
)
1382 ``
-drive option
[,option
[,option
[,...]]]``
1383 Define a
new drive
. This includes creating a block driver
node (the
1384 backend
) as well as a guest device
, and is mostly a shortcut
for
1385 defining the corresponding ``
-blockdev`` and ``
-device`` options
.
1387 ``
-drive`` accepts all options that are accepted by ``
-blockdev``
.
1388 In addition
, it knows the following options
:
1391 This option defines which disk
image (see the
:ref
:`disk images`
1392 chapter
in the System Emulation Users Guide
) to use with
this drive
.
1393 If the filename contains comma
, you must double
it (for instance
,
1394 "file=my,,file" to use file
"my,file").
1396 Special files such as iSCSI devices can be specified
using
1397 protocol specific URLs
. See the section
for "Device URL Syntax"
1398 for more information
.
1401 This option defines on which type on
interface the drive is
1402 connected
. Available types are
: ide
, scsi
, sd
, mtd
, floppy
,
1403 pflash
, virtio
, none
.
1405 ``bus
=bus
,unit
=unit``
1406 These options define where is connected the drive by defining
1407 the bus number and the unit id
.
1410 This option defines where the drive is connected by
using an
1411 index
in the list of available connectors of a given
interface
1415 This option defines the type of the media
: disk or cdrom
.
1417 ``snapshot
=snapshot``
1418 snapshot is
"on" or
"off" and controls snapshot mode
for the
1419 given
drive (see ``
-snapshot``
).
1422 cache is
"none", "writeback", "unsafe", "directsync" or
1423 "writethrough" and controls how the host cache is used to access
1424 block data
. This is a shortcut that sets the ``cache
.direct``
1425 and ``cache
.no
-flush``
options (as
in ``
-blockdev``
), and
1426 additionally ``cache
.writeback``
, which provides a
default for
1427 the ``write
-cache`` option of block guest
devices (as
in
1428 ``
-device``
). The modes correspond to the following settings
:
1430 ============= =============== ============ ==============
1431 \ cache
.writeback cache
.direct cache
.no
-flush
1432 ============= =============== ============ ==============
1433 writeback on off off
1435 writethrough off off off
1436 directsync off on off
1438 ============= =============== ============ ==============
1440 The
default mode is ``cache
=writeback``
.
1443 aio is
"threads", "native", or
"io_uring" and selects between pthread
1444 based disk I
/O
, native Linux AIO
, or Linux io_uring API
.
1447 Specify which disk format will be used rather than detecting the
1448 format
. Can be used to specify format
=raw to avoid interpreting
1449 an untrusted format header
.
1451 ``werror
=action
,rerror
=action``
1452 Specify which action to take on write and read errors
. Valid
1453 actions are
: "ignore" (ignore the error and
try to
continue),
1454 "stop" (pause QEMU
), "report" (report the error to the guest
),
1455 "enospc" (pause QEMU only
if the host disk is full
; report the
1456 error to the guest otherwise
). The
default setting is
1457 ``werror
=enospc`` and ``rerror
=report``
.
1459 ``copy
-on
-read
=copy
-on
-read``
1460 copy
-on
-read is
"on" or
"off" and enables whether to copy read
1461 backing file sectors into the image file
.
1463 ``bps
=b
,bps_rd
=r
,bps_wr
=w``
1464 Specify bandwidth throttling limits
in bytes per second
, either
1465 for all request types or
for reads or writes only
. Small values
1466 can lead to timeouts or hangs inside the guest
. A safe minimum
1467 for disks is
2 MB
/s
.
1469 ``bps_max
=bm
,bps_rd_max
=rm
,bps_wr_max
=wm``
1470 Specify bursts
in bytes per second
, either
for all request types
1471 or
for reads or writes only
. Bursts allow the guest I
/O to spike
1472 above the limit temporarily
.
1474 ``iops
=i
,iops_rd
=r
,iops_wr
=w``
1475 Specify request rate limits
in requests per second
, either
for
1476 all request types or
for reads or writes only
.
1478 ``iops_max
=bm
,iops_rd_max
=rm
,iops_wr_max
=wm``
1479 Specify bursts
in requests per second
, either
for all request
1480 types or
for reads or writes only
. Bursts allow the guest I
/O to
1481 spike above the limit temporarily
.
1484 Let every is bytes of a request count as a
new request
for iops
1485 throttling purposes
. Use
this option to prevent guests from
1486 circumventing iops limits by sending fewer but larger requests
.
1489 Join a throttling quota group with given name g
. All drives that
1490 are members of the same group are accounted
for together
. Use
1491 this option to prevent guests from circumventing throttling
1492 limits by
using many small disks instead of a single larger
1495 By
default, the ``cache
.writeback
=on`` mode is used
. It will report
1496 data writes as completed as soon as the data is present
in the host
1497 page cache
. This is safe as long as your guest OS makes sure to
1498 correctly flush disk caches where needed
. If your guest OS does not
1499 handle volatile disk write caches correctly and your host crashes or
1500 loses power
, then the guest may experience data corruption
.
1502 For such guests
, you should consider
using ``cache
.writeback
=off``
.
1503 This means that the host page cache will be used to read and write
1504 data
, but write notification will be sent to the guest only after
1505 QEMU has made sure to flush each write to the disk
. Be aware that
1506 this has a major impact on performance
.
1508 When
using the ``
-snapshot`` option
, unsafe caching is always used
.
1510 Copy
-on
-read avoids accessing the same backing file sectors
1511 repeatedly and is useful when the backing file is over a slow
1512 network
. By
default copy
-on
-read is off
.
1514 Instead of ``
-cdrom`` you can use
:
1518 |qemu_system|
-drive file
=file
,index
=2,media
=cdrom
1520 Instead of ``
-hda``
, ``
-hdb``
, ``
-hdc``
, ``
-hdd``
, you can use
:
1524 |qemu_system|
-drive file
=file
,index
=0,media
=disk
1525 |qemu_system|
-drive file
=file
,index
=1,media
=disk
1526 |qemu_system|
-drive file
=file
,index
=2,media
=disk
1527 |qemu_system|
-drive file
=file
,index
=3,media
=disk
1529 You can open an image
using pre
-opened file descriptors from an fd
1535 -add
-fd fd
=3,set
=2,opaque
="rdwr:/path/to/file" \\
1536 -add
-fd fd
=4,set
=2,opaque
="rdonly:/path/to/file" \\
1537 -drive file
=/dev
/fdset
/2,index
=0,media
=disk
1539 You can connect a CDROM to the slave of ide0
:
1543 |qemu_system_x86|
-drive file
=file
,if=ide
,index
=1,media
=cdrom
1545 If you don
't specify the "file=" argument, you define an empty
1550 |qemu_system_x86| -drive if=ide,index=1,media=cdrom
1552 Instead of ``-fda``, ``-fdb``, you can use:
1556 |qemu_system_x86| -drive file=file,index=0,if=floppy
1557 |qemu_system_x86| -drive file=file,index=1,if=floppy
1559 By default, interface is "ide" and index is automatically
1564 |qemu_system_x86| -drive file=a -drive file=b"
1566 is interpreted like:
1570 |qemu_system_x86| -hda a -hdb b
1573 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
1574 "-mtdblock file use 'file
' as on-board Flash memory image\n",
1578 Use file as on-board Flash memory image.
1581 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
1582 "-sd file use 'file
' as SecureDigital card image\n", QEMU_ARCH_ALL)
1585 Use file as SecureDigital card image.
1588 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
1589 "-pflash file use 'file
' as a parallel flash image\n", QEMU_ARCH_ALL)
1592 Use file as a parallel flash image.
1595 DEF("snapshot", 0, QEMU_OPTION_snapshot,
1596 "-snapshot write to temporary files instead of disk image files\n",
1600 Write to temporary files instead of disk image files. In this case,
1601 the raw disk image you use is not written back. You can however
1602 force the write back by pressing C-a s (see the :ref:`disk images`
1603 chapter in the System Emulation Users Guide).
1606 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
1607 "-fsdev local,id=id,path=path,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1608 " [,writeout=immediate][,readonly=on][,fmode=fmode][,dmode=dmode]\n"
1609 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1610 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1611 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1612 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1613 " [[,throttling.iops-size=is]]\n"
1614 "-fsdev proxy,id=id,socket=socket[,writeout=immediate][,readonly=on]\n"
1615 "-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=immediate][,readonly=on]\n"
1616 "-fsdev synth,id=id\n",
1620 ``-fsdev local,id=id,path=path,security_model=security_model [,writeout=writeout][,readonly=on][,fmode=fmode][,dmode=dmode] [,throttling.option=value[,throttling.option=value[,...]]]``
1622 ``-fsdev proxy,id=id,socket=socket[,writeout=writeout][,readonly=on]``
1624 ``-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=writeout][,readonly=on]``
1626 ``-fsdev synth,id=id[,readonly=on]``
1627 Define a new file system device. Valid options are:
1630 Accesses to the filesystem are done by QEMU.
1633 Accesses to the filesystem are done by virtfs-proxy-helper(1).
1636 Synthetic filesystem, only used by QTests.
1639 Specifies identifier for this device.
1642 Specifies the export path for the file system device. Files
1643 under this path will be available to the 9p client on the guest.
1645 ``security_model=security_model``
1646 Specifies the security model to be used for this export path.
1647 Supported security models are "passthrough", "mapped-xattr",
1648 "mapped-file" and "none". In "passthrough" security model, files
1649 are stored using the same credentials as they are created on the
1650 guest. This requires QEMU to run as root. In "mapped-xattr"
1651 security model, some of the file attributes like uid, gid, mode
1652 bits and link target are stored as file attributes. For
1653 "mapped-file" these attributes are stored in the hidden
1654 .virtfs\_metadata directory. Directories exported by this
1655 security model cannot interact with other unix tools. "none"
1656 security model is same as passthrough except the sever won't
1657 report failures
if it fails to set file attributes like
1658 ownership
. Security model is mandatory only
for local fsdriver
.
1659 Other
fsdrivers (like proxy
) don
't take security model as a
1662 ``writeout=writeout``
1663 This is an optional argument. The only supported value is
1664 "immediate". This means that host page cache will be used to
1665 read and write data but write notification will be sent to the
1666 guest only when the data has been reported as written by the
1670 Enables exporting 9p share as a readonly mount for guests. By
1671 default read-write access is given.
1674 Enables proxy filesystem driver to use passed socket file for
1675 communicating with virtfs-proxy-helper(1).
1678 Enables proxy filesystem driver to use passed socket descriptor
1679 for communicating with virtfs-proxy-helper(1). Usually a helper
1680 like libvirt will create socketpair and pass one of the fds as
1684 Specifies the default mode for newly created files on the host.
1685 Works only with security models "mapped-xattr" and
1689 Specifies the default mode for newly created directories on the
1690 host. Works only with security models "mapped-xattr" and
1693 ``throttling.bps-total=b,throttling.bps-read=r,throttling.bps-write=w``
1694 Specify bandwidth throttling limits in bytes per second, either
1695 for all request types or for reads or writes only.
1697 ``throttling.bps-total-max=bm,bps-read-max=rm,bps-write-max=wm``
1698 Specify bursts in bytes per second, either for all request types
1699 or for reads or writes only. Bursts allow the guest I/O to spike
1700 above the limit temporarily.
1702 ``throttling.iops-total=i,throttling.iops-read=r, throttling.iops-write=w``
1703 Specify request rate limits in requests per second, either for
1704 all request types or for reads or writes only.
1706 ``throttling.iops-total-max=im,throttling.iops-read-max=irm, throttling.iops-write-max=iwm``
1707 Specify bursts in requests per second, either for all request
1708 types or for reads or writes only. Bursts allow the guest I/O to
1709 spike above the limit temporarily.
1711 ``throttling.iops-size=is``
1712 Let every is bytes of a request count as a new request for iops
1713 throttling purposes.
1715 -fsdev option is used along with -device driver "virtio-9p-...".
1717 ``-device virtio-9p-type,fsdev=id,mount_tag=mount_tag``
1718 Options for virtio-9p-... driver are:
1721 Specifies the variant to be used. Supported values are "pci",
1722 "ccw" or "device", depending on the machine type.
1725 Specifies the id value specified along with -fsdev option.
1727 ``mount_tag=mount_tag``
1728 Specifies the tag name to be used by the guest to mount this
1732 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
1733 "-virtfs local,path=path,mount_tag=tag,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1734 " [,id=id][,writeout=immediate][,readonly=on][,fmode=fmode][,dmode=dmode][,multidevs=remap|forbid|warn]\n"
1735 "-virtfs proxy,mount_tag=tag,socket=socket[,id=id][,writeout=immediate][,readonly=on]\n"
1736 "-virtfs proxy,mount_tag=tag,sock_fd=sock_fd[,id=id][,writeout=immediate][,readonly=on]\n"
1737 "-virtfs synth,mount_tag=tag[,id=id][,readonly=on]\n",
1741 ``-virtfs local,path=path,mount_tag=mount_tag ,security_model=security_model[,writeout=writeout][,readonly=on] [,fmode=fmode][,dmode=dmode][,multidevs=multidevs]``
1743 ``-virtfs proxy,socket=socket,mount_tag=mount_tag [,writeout=writeout][,readonly=on]``
1745 ``-virtfs proxy,sock_fd=sock_fd,mount_tag=mount_tag [,writeout=writeout][,readonly=on]``
1747 ``-virtfs synth,mount_tag=mount_tag``
1748 Define a new virtual filesystem device and expose it to the guest using
1749 a virtio-9p-device (a.k.a. 9pfs), which essentially means that a certain
1750 directory on host is made directly accessible by guest as a pass-through
1751 file system by using the 9P network protocol for communication between
1752 host and guests, if desired even accessible, shared by several guests
1755 Note that ``-virtfs`` is actually just a convenience shortcut for its
1756 generalized form ``-fsdev -device virtio-9p-pci``.
1758 The general form of pass-through file system options are:
1761 Accesses to the filesystem are done by QEMU.
1764 Accesses to the filesystem are done by virtfs-proxy-helper(1).
1767 Synthetic filesystem, only used by QTests.
1770 Specifies identifier for the filesystem device
1773 Specifies the export path for the file system device. Files
1774 under this path will be available to the 9p client on the guest.
1776 ``security_model=security_model``
1777 Specifies the security model to be used for this export path.
1778 Supported security models are "passthrough", "mapped-xattr",
1779 "mapped-file" and "none". In "passthrough" security model, files
1780 are stored using the same credentials as they are created on the
1781 guest. This requires QEMU to run as root. In "mapped-xattr"
1782 security model, some of the file attributes like uid, gid, mode
1783 bits and link target are stored as file attributes. For
1784 "mapped-file" these attributes are stored in the hidden
1785 .virtfs\_metadata directory. Directories exported by this
1786 security model cannot interact with other unix tools. "none"
1787 security model is same as passthrough except the sever won't
1788 report failures
if it fails to set file attributes like
1789 ownership
. Security model is mandatory only
for local fsdriver
.
1790 Other
fsdrivers (like proxy
) don
't take security model as a
1793 ``writeout=writeout``
1794 This is an optional argument. The only supported value is
1795 "immediate". This means that host page cache will be used to
1796 read and write data but write notification will be sent to the
1797 guest only when the data has been reported as written by the
1801 Enables exporting 9p share as a readonly mount for guests. By
1802 default read-write access is given.
1805 Enables proxy filesystem driver to use passed socket file for
1806 communicating with virtfs-proxy-helper(1). Usually a helper like
1807 libvirt will create socketpair and pass one of the fds as
1811 Enables proxy filesystem driver to use passed 'sock\_fd
' as the
1812 socket descriptor for interfacing with virtfs-proxy-helper(1).
1815 Specifies the default mode for newly created files on the host.
1816 Works only with security models "mapped-xattr" and
1820 Specifies the default mode for newly created directories on the
1821 host. Works only with security models "mapped-xattr" and
1824 ``mount_tag=mount_tag``
1825 Specifies the tag name to be used by the guest to mount this
1828 ``multidevs=multidevs``
1829 Specifies how to deal with multiple devices being shared with a
1830 9p export. Supported behaviours are either "remap", "forbid" or
1831 "warn". The latter is the default behaviour on which virtfs 9p
1832 expects only one device to be shared with the same export, and
1833 if more than one device is shared and accessed via the same 9p
1834 export then only a warning message is logged (once) by qemu on
1835 host side. In order to avoid file ID collisions on guest you
1836 should either create a separate virtfs export for each device to
1837 be shared with guests (recommended way) or you might use "remap"
1838 instead which allows you to share multiple devices with only one
1839 export instead, which is achieved by remapping the original
1840 inode numbers from host to guest in a way that would prevent
1841 such collisions. Remapping inodes in such use cases is required
1842 because the original device IDs from host are never passed and
1843 exposed on guest. Instead all files of an export shared with
1844 virtfs always share the same device id on guest. So two files
1845 with identical inode numbers but from actually different devices
1846 on host would otherwise cause a file ID collision and hence
1847 potential misbehaviours on guest. "forbid" on the other hand
1848 assumes like "warn" that only one device is shared by the same
1849 export, however it will not only log a warning message but also
1850 deny access to additional devices on guest. Note though that
1851 "forbid" does currently not block all possible file access
1852 operations (e.g. readdir() would still return entries from other
1856 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
1857 "-iscsi [user=user][,password=password]\n"
1858 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
1859 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
1860 " [,timeout=timeout]\n"
1861 " iSCSI session parameters\n", QEMU_ARCH_ALL)
1865 Configure iSCSI session parameters.
1870 DEFHEADING(USB convenience options:)
1872 DEF("usb", 0, QEMU_OPTION_usb,
1873 "-usb enable on-board USB host controller (if not enabled by default)\n",
1877 Enable USB emulation on machine types with an on-board USB host
1878 controller (if not enabled by default). Note that on-board USB host
1879 controllers may not support USB 3.0. In this case
1880 ``-device qemu-xhci`` can be used instead on machines with PCI.
1883 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
1884 "-usbdevice name add the host or guest USB device 'name
'\n",
1887 ``-usbdevice devname``
1888 Add the USB device devname, and enable an on-board USB controller
1889 if possible and necessary (just like it can be done via
1890 ``-machine usb=on``). Note that this option is mainly intended for
1891 the user's convenience only
. More fine
-grained control can be
1892 achieved by selecting a USB host
controller (if necessary
) and the
1893 desired USB device via the ``
-device`` option instead
. For example
,
1894 instead of
using ``
-usbdevice mouse`` it is possible to use
1895 ``
-device qemu
-xhci
-device usb
-mouse`` to connect the USB mouse
1896 to a USB
3.0 controller
instead (at least on machines that support
1897 PCI and
do not have an USB controller enabled by
default yet
).
1898 For more details
, see the chapter about
1899 :ref
:`Connecting USB devices`
in the System Emulation Users Guide
.
1900 Possible devices
for devname are
:
1903 Braille device
. This will use BrlAPI to display the braille
1904 output on a real or fake
device (i
.e
. it also creates a
1905 corresponding ``braille`` chardev automatically beside the
1906 ``usb
-braille`` USB device
).
1909 Standard USB keyboard
. Will
override the PS
/2 keyboard (if present
).
1912 Virtual Mouse
. This will
override the PS
/2 mouse emulation when
1916 Pointer device that uses absolute
coordinates (like a
1917 touchscreen
). This means QEMU is able to report the mouse
1918 position without having to grab the mouse
. Also overrides the
1919 PS
/2 mouse emulation when activated
.
1922 Wacom PenPartner USB tablet
.
1929 DEFHEADING(Display options
:)
1931 DEF("display", HAS_ARG
, QEMU_OPTION_display
,
1932 #
if defined(CONFIG_SPICE
)
1933 "-display spice-app[,gl=on|off]\n"
1935 #
if defined(CONFIG_SDL
)
1936 "-display sdl[,gl=on|core|es|off][,grab-mod=<mod>][,show-cursor=on|off]\n"
1937 " [,window-close=on|off]\n"
1939 #
if defined(CONFIG_GTK
)
1940 "-display gtk[,full-screen=on|off][,gl=on|off][,grab-on-hover=on|off]\n"
1941 " [,show-tabs=on|off][,show-cursor=on|off][,window-close=on|off]\n"
1943 #
if defined(CONFIG_VNC
)
1944 "-display vnc=<display>[,<optargs>]\n"
1946 #
if defined(CONFIG_CURSES
)
1947 "-display curses[,charset=<encoding>]\n"
1949 #
if defined(CONFIG_COCOA
)
1950 "-display cocoa[,full-grab=on|off][,swap-opt-cmd=on|off]\n"
1952 #
if defined(CONFIG_OPENGL
)
1953 "-display egl-headless[,rendernode=<file>]\n"
1955 #
if defined(CONFIG_DBUS_DISPLAY
)
1956 "-display dbus[,addr=<dbusaddr>]\n"
1957 " [,gl=on|core|es|off][,rendernode=<file>]\n"
1959 #
if defined(CONFIG_COCOA
)
1960 "-display cocoa[,show-cursor=on|off][,left-command-key=on|off]\n"
1963 " select display backend type\n"
1964 " The default display is equivalent to\n "
1965 #
if defined(CONFIG_GTK
)
1966 "\"-display gtk\"\n"
1967 #elif
defined(CONFIG_SDL
)
1968 "\"-display sdl\"\n"
1969 #elif
defined(CONFIG_COCOA
)
1970 "\"-display cocoa\"\n"
1971 #elif
defined(CONFIG_VNC
)
1972 "\"-vnc localhost:0,to=99,id=default\"\n"
1974 "\"-display none\"\n"
1979 Select type of display to use
. Use ``
-display help`` to list the available
1980 display types
. Valid values
for type are
1982 ``spice
-app
[,gl
=on|off
]``
1983 Start QEMU as a Spice server and launch the
default Spice client
1984 application
. The Spice server will redirect the serial consoles
1985 and QEMU monitors
. (Since
4.0)
1988 Export the display over D
-Bus interfaces
. (Since
7.0)
1990 The connection is registered with the
"org.qemu" name (and queued when
1993 ``addr
=<dbusaddr
>``
: D
-Bus bus address to connect to
.
1995 ``p2p
=yes|no``
: Use peer
-to
-peer connection
, accepted via QMP ``add_client``
.
1997 ``gl
=on|off|core|es``
: Use OpenGL
for rendering (the D
-Bus
interface
1998 will share framebuffers with DMABUF file descriptors
).
2001 Display video output via
SDL (usually
in a separate graphics
2002 window
; see the SDL documentation
for other possibilities
).
2003 Valid parameters are
:
2005 ``grab
-mod
=<mods
>``
: Used to select the modifier keys
for toggling
2006 the mouse grabbing
in conjunction with the
"g" key
. ``
<mods
>`` can be
2007 either ``lshift
-lctrl
-lalt`` or ``rctrl``
.
2009 ``gl
=on|off|core|es``
: Use OpenGL
for displaying
2011 ``show
-cursor
=on|off``
: Force showing the mouse cursor
2013 ``window
-close
=on|off``
: Allow to quit qemu with window close button
2016 Display video output
in a GTK window
. This
interface provides
2017 drop
-down menus and other UI elements to configure and control
2018 the VM during runtime
. Valid parameters are
:
2020 ``full
-screen
=on|off``
: Start
in fullscreen mode
2022 ``gl
=on|off``
: Use OpenGL
for displaying
2024 ``grab
-on
-hover
=on|off``
: Grab keyboard input on mouse hover
2026 ``show
-tabs
=on|off``
: Display the tab bar
for switching between the
2027 various graphical
interfaces (e
.g
. VGA and
2028 virtual console character devices
) by
default.
2030 ``show
-cursor
=on|off``
: Force showing the mouse cursor
2032 ``window
-close
=on|off``
: Allow to quit qemu with window close button
2034 ``curses
[,charset
=<encoding
>]``
2035 Display video output via curses
. For graphics device models
2036 which support a text mode
, QEMU can display
this output
using a
2037 curses
/ncurses
interface. Nothing is displayed when the graphics
2038 device is
in graphical mode or
if the graphics device does not
2039 support a text mode
. Generally only the VGA device models
2040 support text mode
. The font charset used by the guest can be
2041 specified with the ``charset`` option
, for example
2042 ``charset
=CP850``
for IBM CP850 encoding
. The
default is
2046 Display video output
in a Cocoa window
. Mac only
. This
interface
2047 provides drop
-down menus and other UI elements to configure and
2048 control the VM during runtime
. Valid parameters are
:
2050 ``show
-cursor
=on|off``
: Force showing the mouse cursor
2052 ``left
-command
-key
=on|off``
: Disable forwarding left command key to host
2054 ``egl
-headless
[,rendernode
=<file
>]``
2055 Offload all OpenGL operations to a local DRI device
. For any
2056 graphical display
, this display needs to be paired with either
2057 VNC or SPICE displays
.
2060 Start a VNC server on display
<display
>
2063 Do not display video output
. The guest will still see an
2064 emulated graphics card
, but its output will not be displayed to
2065 the QEMU user
. This option differs from the
-nographic option
in
2066 that it only affects what is done with video output
; -nographic
2067 also changes the destination of the serial and parallel port
2071 DEF("nographic", 0, QEMU_OPTION_nographic
,
2072 "-nographic disable graphical output and redirect serial I/Os to console\n",
2076 Normally
, if QEMU is compiled with graphical window support
, it
2077 displays output such as guest graphics
, guest console
, and the QEMU
2078 monitor
in a window
. With
this option
, you can totally disable
2079 graphical output so that QEMU is a simple command line application
.
2080 The emulated serial port is redirected on the console and muxed with
2081 the
monitor (unless redirected elsewhere explicitly
). Therefore
, you
2082 can still use QEMU to debug a Linux kernel with a serial console
.
2083 Use C
-a h
for help on switching between the console and monitor
.
2087 DEF("spice", HAS_ARG
, QEMU_OPTION_spice
,
2088 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
2089 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
2090 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
2091 " [,x509-dh-key-file=<file>][,addr=addr]\n"
2092 " [,ipv4=on|off][,ipv6=on|off][,unix=on|off]\n"
2093 " [,tls-ciphers=<list>]\n"
2094 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
2095 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
2096 " [,sasl=on|off][,disable-ticketing=on|off]\n"
2097 " [,password=<string>][,password-secret=<secret-id>]\n"
2098 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
2099 " [,jpeg-wan-compression=[auto|never|always]]\n"
2100 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
2101 " [,streaming-video=[off|all|filter]][,disable-copy-paste=on|off]\n"
2102 " [,disable-agent-file-xfer=on|off][,agent-mouse=[on|off]]\n"
2103 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
2104 " [,gl=[on|off]][,rendernode=<file>]\n"
2106 " at least one of {port, tls-port} is mandatory\n",
2110 ``
-spice option
[,option
[,...]]``
2111 Enable the spice remote desktop protocol
. Valid options are
2114 Set the TCP port spice is listening on
for plaintext channels
.
2117 Set the IP address spice is listening on
. Default is any
2120 ``ipv4
=on|off``
; \ ``ipv6
=on|off``
; \ ``unix
=on|off``
2121 Force
using the specified IP version
.
2123 ``password
=<string
>``
2124 Set the password you need to authenticate
.
2126 This option is deprecated and insecure because it leaves the
2127 password visible
in the process listing
. Use ``password
-secret``
2130 ``password
-secret
=<secret
-id
>``
2131 Set the ID of the ``secret`` object containing the password
2132 you need to authenticate
.
2135 Require that the client use SASL to authenticate with the spice
.
2136 The exact choice of authentication method used is controlled
2137 from the system
/ user
's SASL configuration file for the 'qemu
'
2138 service. This is typically found in /etc/sasl2/qemu.conf. If
2139 running QEMU as an unprivileged user, an environment variable
2140 SASL\_CONF\_PATH can be used to make it search alternate
2141 locations for the service config. While some SASL auth methods
2142 can also provide data encryption (eg GSSAPI), it is recommended
2143 that SASL always be combined with the 'tls
' and 'x509
' settings
2144 to enable use of SSL and server certificates. This ensures a
2145 data encryption preventing compromise of authentication
2148 ``disable-ticketing=on|off``
2149 Allow client connects without authentication.
2151 ``disable-copy-paste=on|off``
2152 Disable copy paste between the client and the guest.
2154 ``disable-agent-file-xfer=on|off``
2155 Disable spice-vdagent based file-xfer between the client and the
2159 Set the TCP port spice is listening on for encrypted channels.
2162 Set the x509 file directory. Expects same filenames as -vnc
2165 ``x509-key-file=<file>``; \ ``x509-key-password=<file>``; \ ``x509-cert-file=<file>``; \ ``x509-cacert-file=<file>``; \ ``x509-dh-key-file=<file>``
2166 The x509 file names can also be configured individually.
2168 ``tls-ciphers=<list>``
2169 Specify which ciphers to use.
2171 ``tls-channel=[main|display|cursor|inputs|record|playback]``; \ ``plaintext-channel=[main|display|cursor|inputs|record|playback]``
2172 Force specific channel to be used with or without TLS
2173 encryption. The options can be specified multiple times to
2174 configure multiple channels. The special name "default" can be
2175 used to set the default mode. For channels which are not
2176 explicitly forced into one mode the spice client is allowed to
2177 pick tls/plaintext as he pleases.
2179 ``image-compression=[auto_glz|auto_lz|quic|glz|lz|off]``
2180 Configure image compression (lossless). Default is auto\_glz.
2182 ``jpeg-wan-compression=[auto|never|always]``; \ ``zlib-glz-wan-compression=[auto|never|always]``
2183 Configure wan image compression (lossy for slow links). Default
2186 ``streaming-video=[off|all|filter]``
2187 Configure video stream detection. Default is off.
2189 ``agent-mouse=[on|off]``
2190 Enable/disable passing mouse events via vdagent. Default is on.
2192 ``playback-compression=[on|off]``
2193 Enable/disable audio stream compression (using celt 0.5.1).
2196 ``seamless-migration=[on|off]``
2197 Enable/disable spice seamless migration. Default is off.
2200 Enable/disable OpenGL context. Default is off.
2202 ``rendernode=<file>``
2203 DRM render node for OpenGL rendering. If not specified, it will
2204 pick the first available. (Since 2.9)
2207 DEF("portrait", 0, QEMU_OPTION_portrait,
2208 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
2212 Rotate graphical output 90 deg left (only PXA LCD).
2215 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
2216 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
2220 Rotate graphical output some deg left (only PXA LCD).
2223 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
2224 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
2225 " select video card type\n", QEMU_ARCH_ALL)
2228 Select type of VGA card to emulate. Valid values for type are
2231 Cirrus Logic GD5446 Video card. All Windows versions starting
2232 from Windows 95 should recognize and use this graphic card. For
2233 optimal performances, use 16 bit color depth in the guest and
2234 the host OS. (This card was the default before QEMU 2.2)
2237 Standard VGA card with Bochs VBE extensions. If your guest OS
2238 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if
2239 you want to use high resolution modes (>= 1280x1024x16) then you
2240 should use this option. (This card is the default since QEMU
2244 VMWare SVGA-II compatible adapter. Use it if you have
2245 sufficiently recent XFree86/XOrg server or Windows guest with a
2246 driver for this card.
2249 QXL paravirtual graphic card. It is VGA compatible (including
2250 VESA 2.0 VBE support). Works best with qxl guest drivers
2251 installed though. Recommended choice when using the spice
2255 (sun4m only) Sun TCX framebuffer. This is the default
2256 framebuffer for sun4m machines and offers both 8-bit and 24-bit
2257 colour depths at a fixed resolution of 1024x768.
2260 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit
2261 framebuffer for sun4m machines available in both 1024x768
2262 (OpenBIOS) and 1152x900 (OBP) resolutions aimed at people
2263 wishing to run older Solaris versions.
2272 DEF("full-screen", 0, QEMU_OPTION_full_screen,
2273 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
2276 Start in full screen.
2279 DEF("g", HAS_ARG, QEMU_OPTION_g ,
2280 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
2281 QEMU_ARCH_PPC | QEMU_ARCH_SPARC | QEMU_ARCH_M68K)
2283 ``-g`` *width*\ ``x``\ *height*\ ``[x``\ *depth*\ ``]``
2284 Set the initial graphical resolution and depth (PPC, SPARC only).
2286 For PPC the default is 800x600x32.
2288 For SPARC with the TCX graphics device, the default is 1024x768x8
2289 with the option of 1024x768x24. For cgthree, the default is
2290 1024x768x8 with the option of 1152x900x8 for people who wish to use
2294 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
2295 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
2297 ``-vnc display[,option[,option[,...]]]``
2298 Normally, if QEMU is compiled with graphical window support, it
2299 displays output such as guest graphics, guest console, and the QEMU
2300 monitor in a window. With this option, you can have QEMU listen on
2301 VNC display display and redirect the VGA display over the VNC
2302 session. It is very useful to enable the usb tablet device when
2303 using this option (option ``-device usb-tablet``). When using the
2304 VNC display, you must use the ``-k`` parameter to set the keyboard
2305 layout if you are not using en-us. Valid syntax for the display is
2308 With this option, QEMU will try next available VNC displays,
2309 until the number L, if the origianlly defined "-vnc display" is
2310 not available, e.g. port 5900+display is already used by another
2311 application. By default, to=0.
2314 TCP connections will only be allowed from host on display d. By
2315 convention the TCP port is 5900+d. Optionally, host can be
2316 omitted in which case the server will accept connections from
2320 Connections will be allowed over UNIX domain sockets where path
2321 is the location of a unix socket to listen for connections on.
2324 VNC is initialized but not started. The monitor ``change``
2325 command can be used to later start the VNC server.
2327 Following the display value there may be one or more option flags
2328 separated by commas. Valid options are
2331 Connect to a listening VNC client via a "reverse" connection.
2332 The client is specified by the display. For reverse network
2333 connections (host:d,``reverse``), the d argument is a TCP port
2334 number, not a display number.
2336 ``websocket=on|off``
2337 Opens an additional TCP listening port dedicated to VNC
2338 Websocket connections. If a bare websocket option is given, the
2339 Websocket port is 5700+display. An alternative port can be
2340 specified with the syntax ``websocket``\ =port.
2342 If host is specified connections will only be allowed from this
2343 host. It is possible to control the websocket listen address
2344 independently, using the syntax ``websocket``\ =host:port.
2346 If no TLS credentials are provided, the websocket connection
2347 runs in unencrypted mode. If TLS credentials are provided, the
2348 websocket connection requires encrypted client connections.
2351 Require that password based authentication is used for client
2354 The password must be set separately using the ``set_password``
2355 command in the :ref:`QEMU monitor`. The
2356 syntax to change your password is:
2357 ``set_password <protocol> <password>`` where <protocol> could be
2358 either "vnc" or "spice".
2360 If you would like to change <protocol> password expiration, you
2361 should use ``expire_password <protocol> <expiration-time>``
2362 where expiration time could be one of the following options:
2363 now, never, +seconds or UNIX time of expiration, e.g. +60 to
2364 make password expire in 60 seconds, or 1335196800 to make
2365 password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for
2366 this date and time).
2368 You can also use keywords "now" or "never" for the expiration
2369 time to allow <protocol> password to expire immediately or never
2372 ``password-secret=<secret-id>``
2373 Require that password based authentication is used for client
2374 connections, using the password provided by the ``secret``
2375 object identified by ``secret-id``.
2378 Provides the ID of a set of TLS credentials to use to secure the
2379 VNC server. They will apply to both the normal VNC server socket
2380 and the websocket socket (if enabled). Setting TLS credentials
2381 will cause the VNC server socket to enable the VeNCrypt auth
2382 mechanism. The credentials should have been previously created
2383 using the ``-object tls-creds`` argument.
2386 Provides the ID of the QAuthZ authorization object against which
2387 the client's x509 distinguished name will validated
. This object
2388 is only resolved at time of use
, so can be deleted and recreated
2389 on the fly
while the VNC server is active
. If missing
, it will
2390 default to denying access
.
2393 Require that the client use SASL to authenticate with the VNC
2394 server
. The exact choice of authentication method used is
2395 controlled from the system
/ user
's SASL configuration file for
2396 the 'qemu
' service. This is typically found in
2397 /etc/sasl2/qemu.conf. If running QEMU as an unprivileged user,
2398 an environment variable SASL\_CONF\_PATH can be used to make it
2399 search alternate locations for the service config. While some
2400 SASL auth methods can also provide data encryption (eg GSSAPI),
2401 it is recommended that SASL always be combined with the 'tls
'
2402 and 'x509
' settings to enable use of SSL and server
2403 certificates. This ensures a data encryption preventing
2404 compromise of authentication credentials. See the
2405 :ref:`VNC security` section in the System Emulation Users Guide
2406 for details on using SASL authentication.
2409 Provides the ID of the QAuthZ authorization object against which
2410 the client's SASL username will validated
. This object is only
2411 resolved at time of use
, so can be deleted and recreated on the
2412 fly
while the VNC server is active
. If missing
, it will
default
2416 Legacy method
for enabling authorization of clients against the
2417 x509 distinguished name and SASL username
. It results
in the
2418 creation of two ``authz
-list`` objects with IDs of
2419 ``vnc
.username`` and ``vnc
.x509dname``
. The rules
for these
2420 objects must be configured with the HMP ACL commands
.
2422 This option is deprecated and should no longer be used
. The
new
2423 ``sasl
-authz`` and ``tls
-authz`` options are a replacement
.
2426 Enable lossy compression
methods (gradient
, JPEG
, ...). If
this
2427 option is set
, VNC client may receive lossy framebuffer updates
2428 depending on its encoding settings
. Enabling
this option can
2429 save a lot of bandwidth at the expense of quality
.
2431 ``non
-adaptive
=on|off``
2432 Disable adaptive encodings
. Adaptive encodings are enabled by
2433 default. An adaptive encoding will
try to detect frequently
2434 updated screen regions
, and send updates
in these regions
using
2435 a lossy
encoding (like JPEG
). This can be really helpful to save
2436 bandwidth when playing videos
. Disabling adaptive encodings
2437 restores the original
static behavior of encodings like Tight
.
2439 ``share
=[allow
-exclusive|force
-shared|ignore
]``
2440 Set display sharing policy
. 'allow-exclusive' allows clients to
2441 ask
for exclusive access
. As suggested by the rfb spec
this is
2442 implemented by dropping other connections
. Connecting multiple
2443 clients
in parallel requires all clients asking
for a shared
2444 session (vncviewer
: -shared
switch). This is the
default.
2445 'force-shared' disables exclusive client access
. Useful
for
2446 shared desktop sessions
, where you don
't want someone forgetting
2447 specify -shared disconnect everybody else. 'ignore
' completely
2448 ignores the shared flag and allows everybody connect
2449 unconditionally. Doesn't conform to the rfb spec but is
2450 traditional QEMU behavior
.
2453 Set keyboard delay
, for key down and key up events
, in
2454 milliseconds
. Default is
10. Keyboards are low
-bandwidth
2455 devices
, so
this slowdown can help the device and guest to keep
2456 up and not lose events
in case events are arriving
in bulk
.
2457 Possible causes
for the latter are flaky network connections
, or
2458 scripts
for automated testing
.
2460 ``audiodev
=audiodev``
2461 Use the specified audiodev when the VNC client requests audio
2462 transmission
. When not
using an
-audiodev argument
, this option
2463 must be omitted
, otherwise is must be present and specify a
2466 ``power
-control
=on|off``
2467 Permit the remote client to issue shutdown
, reboot or reset power
2471 ARCHHEADING(, QEMU_ARCH_I386
)
2473 ARCHHEADING(i386 target only
:, QEMU_ARCH_I386
)
2475 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack
,
2476 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
2480 Use it when installing Windows
2000 to avoid a disk full bug
. After
2481 Windows
2000 is installed
, you no longer need
this option (this
2482 option slows down the IDE transfers
).
2485 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk
,
2486 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
2490 Disable boot signature checking
for floppy disks
in BIOS
. May be
2491 needed to boot from old floppy disks
.
2494 DEF("no-acpi", 0, QEMU_OPTION_no_acpi
,
2495 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM
)
2498 Disable
ACPI (Advanced Configuration and Power Interface
) support
.
2499 Use it
if your guest OS complains about ACPI
problems (PC target
2503 DEF("no-hpet", 0, QEMU_OPTION_no_hpet
,
2504 "-no-hpet disable HPET\n", QEMU_ARCH_I386
)
2507 Disable HPET support
.
2510 DEF("acpitable", HAS_ARG
, QEMU_OPTION_acpitable
,
2511 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
2512 " ACPI table description\n", QEMU_ARCH_I386
)
2514 ``
-acpitable
[sig
=str
][,rev
=n
][,oem_id
=str
][,oem_table_id
=str
][,oem_rev
=n
] [,asl_compiler_id
=str
][,asl_compiler_rev
=n
][,data
=file1
[:file2
]...]``
2515 Add ACPI table with specified header fields and context from
2516 specified files
. For file
=, take whole ACPI table from the specified
2517 files
, including all ACPI
headers (possible overridden by other
2518 options
). For data
=, only data portion of the table is used
, all
2519 header information is specified
in the command line
. If a SLIC table
2520 is supplied to QEMU
, then the SLIC
's oem\_id and oem\_table\_id
2521 fields will override the same in the RSDT and the FADT (a.k.a.
2522 FACP), in order to ensure the field matches required by the
2523 Microsoft SLIC spec and the ACPI spec.
2526 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
2527 "-smbios file=binary\n"
2528 " load SMBIOS entry from binary file\n"
2529 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
2531 " specify SMBIOS type 0 fields\n"
2532 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2533 " [,uuid=uuid][,sku=str][,family=str]\n"
2534 " specify SMBIOS type 1 fields\n"
2535 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2536 " [,asset=str][,location=str]\n"
2537 " specify SMBIOS type 2 fields\n"
2538 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
2540 " specify SMBIOS type 3 fields\n"
2541 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
2542 " [,asset=str][,part=str][,max-speed=%d][,current-speed=%d]\n"
2543 " [,processor-id=%d]\n"
2544 " specify SMBIOS type 4 fields\n"
2545 "-smbios type=11[,value=str][,path=filename]\n"
2546 " specify SMBIOS type 11 fields\n"
2547 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
2548 " [,asset=str][,part=str][,speed=%d]\n"
2549 " specify SMBIOS type 17 fields\n"
2550 "-smbios type=41[,designation=str][,kind=str][,instance=%d][,pcidev=str]\n"
2551 " specify SMBIOS type 41 fields\n",
2552 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2554 ``-smbios file=binary``
2555 Load SMBIOS entry from binary file.
2557 ``-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d][,uefi=on|off]``
2558 Specify SMBIOS type 0 fields
2560 ``-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str][,uuid=uuid][,sku=str][,family=str]``
2561 Specify SMBIOS type 1 fields
2563 ``-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str][,asset=str][,location=str]``
2564 Specify SMBIOS type 2 fields
2566 ``-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str][,sku=str]``
2567 Specify SMBIOS type 3 fields
2569 ``-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str][,asset=str][,part=str][,processor-id=%d]``
2570 Specify SMBIOS type 4 fields
2572 ``-smbios type=11[,value=str][,path=filename]``
2573 Specify SMBIOS type 11 fields
2575 This argument can be repeated multiple times, and values are added in the order they are parsed.
2576 Applications intending to use OEM strings data are encouraged to use their application name as
2577 a prefix for the value string. This facilitates passing information for multiple applications
2580 The ``value=str`` syntax provides the string data inline, while the ``path=filename`` syntax
2581 loads data from a file on disk. Note that the file is not permitted to contain any NUL bytes.
2583 Both the ``value`` and ``path`` options can be repeated multiple times and will be added to
2584 the SMBIOS table in the order in which they appear.
2586 Note that on the x86 architecture, the total size of all SMBIOS tables is limited to 65535
2587 bytes. Thus the OEM strings data is not suitable for passing large amounts of data into the
2588 guest. Instead it should be used as a indicator to inform the guest where to locate the real
2589 data set, for example, by specifying the serial ID of a block device.
2591 An example passing three strings is
2595 -smbios type=11,value=cloud-init:ds=nocloud-net;s=http://10.10.0.1:8000/,\\
2596 value=anaconda:method=http://dl.fedoraproject.org/pub/fedora/linux/releases/25/x86_64/os,\\
2597 path=/some/file/with/oemstringsdata.txt
2599 In the guest OS this is visible with the ``dmidecode`` command
2604 Handle 0x0E00, DMI type 11, 5 bytes
2606 String 1: cloud-init:ds=nocloud-net;s=http://10.10.0.1:8000/
2607 String 2: anaconda:method=http://dl.fedoraproject.org/pub/fedora/linux/releases/25/x86_64/os
2608 String 3: myapp:some extra data
2611 ``-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str][,asset=str][,part=str][,speed=%d]``
2612 Specify SMBIOS type 17 fields
2614 ``-smbios type=41[,designation=str][,kind=str][,instance=%d][,pcidev=str]``
2615 Specify SMBIOS type 41 fields
2617 This argument can be repeated multiple times. Its main use is to allow network interfaces be created
2618 as ``enoX`` on Linux, with X being the instance number, instead of the name depending on the interface
2619 position on the PCI bus.
2621 Here is an example of use:
2625 -netdev user,id=internet \\
2626 -device virtio-net-pci,mac=50:54:00:00:00:42,netdev=internet,id=internet-dev \\
2627 -smbios type=41,designation='Onboard LAN
',instance=1,kind=ethernet,pcidev=internet-dev
2629 In the guest OS, the device should then appear as ``eno1``:
2634 lo UNKNOWN 00:00:00:00:00:00 <LOOPBACK,UP,LOWER_UP>
2635 eno1 UP 50:54:00:00:00:42 <BROADCAST,MULTICAST,UP,LOWER_UP>
2637 Currently, the PCI device has to be attached to the root bus.
2643 DEFHEADING(Network options:)
2645 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
2647 "-netdev user,id=str[,ipv4=on|off][,net=addr[/mask]][,host=addr]\n"
2648 " [,ipv6=on|off][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
2649 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
2650 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n"
2651 " [,tftp=dir][,tftp-server-name=name][,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
2653 "[,smb=dir[,smbserver=addr]]\n"
2655 " configure a user mode network backend with ID 'str
',\n"
2656 " its DHCP server and optional services\n"
2659 "-netdev tap,id=str,ifname=name\n"
2660 " configure a host TAP network backend with ID 'str
'\n"
2662 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
2663 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
2664 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
2666 " configure a host TAP network backend with ID 'str
'\n"
2667 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2668 " use network scripts 'file
' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
2669 " to configure it and 'dfile
' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
2670 " to deconfigure it\n"
2671 " use '[down
]script
=no
' to disable script execution\n"
2672 " use network helper 'helper
' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
2674 " use 'fd
=h
' to connect to an already opened TAP interface\n"
2675 " use 'fds
=x
:y
:...:z
' to connect to already opened multiqueue capable TAP interfaces\n"
2676 " use 'sndbuf
=nbytes
' to limit the size of the send buffer (the\n"
2677 " default is disabled 'sndbuf
=0' to enable flow control set 'sndbuf
=1048576')\n"
2678 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
2679 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
2680 " use vhost=on to enable experimental in kernel accelerator\n"
2681 " (only has effect for virtio guests which use MSIX)\n"
2682 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
2683 " use 'vhostfd
=h
' to connect to an already opened vhost net device\n"
2684 " use 'vhostfds
=x
:y
:...:z to connect to multiple already opened vhost net devices
\n"
2685 " use
'queues=n' to specify the number of queues to be created
for multiqueue TAP
\n"
2686 " use
'poll-us=n' to specify the maximum number of microseconds that could be
\n"
2687 " spent on busy polling
for vhost net
\n"
2688 "-netdev bridge
,id
=str
[,br
=bridge
][,helper
=helper
]\n"
2689 " configure a host TAP network backend with ID
'str' that is
\n"
2690 " connected to a
bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2691 " using the program
'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
2694 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
2695 " [,rxsession=rxsession],txsession=txsession[,ipv6=on|off][,udp=on|off]\n"
2696 " [,cookie64=on|off][,counter][,pincounter][,txcookie=txcookie]\n"
2697 " [,rxcookie=rxcookie][,offset=offset]\n"
2698 " configure a network backend with ID 'str
' connected to\n"
2699 " an Ethernet over L2TPv3 pseudowire.\n"
2700 " Linux kernel 3.3+ as well as most routers can talk\n"
2701 " L2TPv3. This transport allows connecting a VM to a VM,\n"
2702 " VM to a router and even VM to Host. It is a nearly-universal\n"
2703 " standard (RFC3931). Note - this implementation uses static\n"
2704 " pre-configured tunnels (same as the Linux kernel).\n"
2705 " use 'src
=' to specify source address\n"
2706 " use 'dst
=' to specify destination address\n"
2707 " use 'udp
=on
' to specify udp encapsulation\n"
2708 " use 'srcport
=' to specify source udp port\n"
2709 " use 'dstport
=' to specify destination udp port\n"
2710 " use 'ipv6
=on
' to force v6\n"
2711 " L2TPv3 uses cookies to prevent misconfiguration as\n"
2712 " well as a weak security measure\n"
2713 " use 'rxcookie
=0x012345678' to specify a rxcookie\n"
2714 " use 'txcookie
=0x012345678' to specify a txcookie\n"
2715 " use 'cookie64
=on
' to set cookie size to 64 bit, otherwise 32\n"
2716 " use 'counter
=off
' to force a 'cut
-down
' L2TPv3 with no counter\n"
2717 " use 'pincounter
=on
' to work around broken counter handling in peer\n"
2718 " use 'offset
=X
' to add an extra offset between header and data\n"
2720 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
2721 " configure a network backend to connect to another network\n"
2722 " using a socket connection\n"
2723 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
2724 " configure a network backend to connect to a multicast maddr and port\n"
2725 " use 'localaddr
=addr
' to specify the host address to send packets from\n"
2726 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
2727 " configure a network backend to connect to another network\n"
2728 " using an UDP tunnel\n"
2730 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
2731 " configure a network backend to connect to port 'n
' of a vde switch\n"
2732 " running on host and listening for incoming connections on 'socketpath
'.\n"
2733 " Use group 'groupname
' and mode 'octalmode
' to change default\n"
2734 " ownership and permissions for communication port.\n"
2736 #ifdef CONFIG_NETMAP
2737 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
2738 " attach to the existing netmap-enabled network interface 'name
', or to a\n"
2739 " VALE port (created on the fly) called 'name
' ('nmname
' is name of the \n"
2740 " netmap device, defaults to '/dev
/netmap
')\n"
2743 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
2744 " configure a vhost-user network, backed by a chardev 'dev
'\n"
2747 "-netdev vhost-vdpa,id=str,vhostdev=/path/to/dev\n"
2748 " configure a vhost-vdpa network,Establish a vhost-vdpa netdev\n"
2751 "-netdev vmnet-host,id=str[,isolated=on|off][,net-uuid=uuid]\n"
2752 " [,start-address=addr,end-address=addr,subnet-mask=mask]\n"
2753 " configure a vmnet network backend in host mode with ID 'str
',\n"
2754 " isolate this interface from others with 'isolated
',\n"
2755 " configure the address range and choose a subnet mask,\n"
2756 " specify network UUID 'uuid
' to disable DHCP and interact with\n"
2757 " vmnet-host interfaces within this isolated network\n"
2758 "-netdev vmnet-shared,id=str[,isolated=on|off][,nat66-prefix=addr]\n"
2759 " [,start-address=addr,end-address=addr,subnet-mask=mask]\n"
2760 " configure a vmnet network backend in shared mode with ID 'str
',\n"
2761 " configure the address range and choose a subnet mask,\n"
2762 " set IPv6 ULA prefix (of length 64) to use for internal network,\n"
2763 " isolate this interface from others with 'isolated
'\n"
2764 "-netdev vmnet-bridged,id=str,ifname=name[,isolated=on|off]\n"
2765 " configure a vmnet network backend in bridged mode with ID 'str
',\n"
2766 " use 'ifname
=name
' to select a physical network interface to be bridged,\n"
2767 " isolate this interface from others with 'isolated
'\n"
2769 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n"
2770 " configure a hub port on the hub with ID 'n
'\n", QEMU_ARCH_ALL)
2771 DEF("nic", HAS_ARG, QEMU_OPTION_nic,
2782 #ifdef CONFIG_NETMAP
2789 "vmnet-host|vmnet-shared|vmnet-bridged|"
2791 "socket][,option][,...][mac=macaddr]\n"
2792 " initialize an on-board / default host NIC (using MAC address\n"
2793 " macaddr) and connect it to the given host network backend\n"
2794 "-nic none use it alone to have zero network devices (the default is to\n"
2795 " provided a 'user
' network connection)\n",
2797 DEF("net", HAS_ARG, QEMU_OPTION_net,
2798 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
2799 " configure or create an on-board (or machine default) NIC and\n"
2800 " connect it to hub 0 (please use -nic unless you need a hub)\n"
2810 #ifdef CONFIG_NETMAP
2814 "vmnet-host|vmnet-shared|vmnet-bridged|"
2816 "socket][,option][,option][,...]\n"
2817 " old way to initialize a host network interface\n"
2818 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
2820 ``-nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]``
2821 This option is a shortcut for configuring both the on-board
2822 (default) guest NIC hardware and the host network backend in one go.
2823 The host backend options are the same as with the corresponding
2824 ``-netdev`` options below. The guest NIC model can be set with
2825 ``model=modelname``. Use ``model=help`` to list the available device
2826 types. The hardware MAC address can be set with ``mac=macaddr``.
2828 The following two example do exactly the same, to show how ``-nic``
2829 can be used to shorten the command line length:
2833 |qemu_system| -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
2834 |qemu_system| -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
2837 Indicate that no network devices should be configured. It is used to
2838 override the default configuration (default NIC with "user" host
2839 network backend) which is activated if no other networking options
2842 ``-netdev user,id=id[,option][,option][,...]``
2843 Configure user mode host network backend which requires no
2844 administrator privilege to run. Valid options are:
2847 Assign symbolic name for use in monitor commands.
2849 ``ipv4=on|off and ipv6=on|off``
2850 Specify that either IPv4 or IPv6 must be enabled. If neither is
2851 specified both protocols are enabled.
2854 Set IP network address the guest will see. Optionally specify
2855 the netmask, either in the form a.b.c.d or as number of valid
2856 top-most bits. Default is 10.0.2.0/24.
2859 Specify the guest-visible address of the host. Default is the
2860 2nd IP in the guest network, i.e. x.x.x.2.
2862 ``ipv6-net=addr[/int]``
2863 Set IPv6 network address the guest will see (default is
2864 fec0::/64). The network prefix is given in the usual hexadecimal
2865 IPv6 address notation. The prefix size is optional, and is given
2866 as the number of valid top-most bits (default is 64).
2869 Specify the guest-visible IPv6 address of the host. Default is
2870 the 2nd IPv6 in the guest network, i.e. xxxx::2.
2873 If this option is enabled, the guest will be isolated, i.e. it
2874 will not be able to contact the host and no guest IP packets
2875 will be routed over the host to the outside. This option does
2876 not affect any explicitly set forwarding rules.
2879 Specifies the client hostname reported by the built-in DHCP
2883 Specify the first of the 16 IPs the built-in DHCP server can
2884 assign. Default is the 15th to 31st IP in the guest network,
2885 i.e. x.x.x.15 to x.x.x.31.
2888 Specify the guest-visible address of the virtual nameserver. The
2889 address must be different from the host address. Default is the
2890 3rd IP in the guest network, i.e. x.x.x.3.
2893 Specify the guest-visible address of the IPv6 virtual
2894 nameserver. The address must be different from the host address.
2895 Default is the 3rd IP in the guest network, i.e. xxxx::3.
2897 ``dnssearch=domain``
2898 Provides an entry for the domain-search list sent by the
2899 built-in DHCP server. More than one domain suffix can be
2900 transmitted by specifying this option multiple times. If
2901 supported, this will cause the guest to automatically try to
2902 append the given domain suffix(es) in case a domain name can not
2909 |qemu_system| -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
2911 ``domainname=domain``
2912 Specifies the client domain name reported by the built-in DHCP
2916 When using the user mode network stack, activate a built-in TFTP
2917 server. The files in dir will be exposed as the root of a TFTP
2918 server. The TFTP client on the guest must be configured in
2919 binary mode (use the command ``bin`` of the Unix TFTP client).
2921 ``tftp-server-name=name``
2922 In BOOTP reply, broadcast name as the "TFTP server name"
2923 (RFC2132 option 66). This can be used to advise the guest to
2924 load boot files or configurations from a different server than
2928 When using the user mode network stack, broadcast file as the
2929 BOOTP filename. In conjunction with ``tftp``, this can be used
2930 to network boot a guest from a local directory.
2932 Example (using pxelinux):
2936 |qemu_system| -hda linux.img -boot n -device e1000,netdev=n1 \\
2937 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2939 ``smb=dir[,smbserver=addr]``
2940 When using the user mode network stack, activate a built-in SMB
2941 server so that Windows OSes can access to the host files in
2942 ``dir`` transparently. The IP address of the SMB server can be
2943 set to addr. By default the 4th IP in the guest network is used,
2946 In the guest Windows OS, the line:
2952 must be added in the file ``C:\WINDOWS\LMHOSTS`` (for windows
2953 9x/Me) or ``C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS`` (Windows
2956 Then ``dir`` can be accessed in ``\\smbserver\qemu``.
2958 Note that a SAMBA server must be installed on the host OS.
2960 ``hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport``
2961 Redirect incoming TCP or UDP connections to the host port
2962 hostport to the guest IP address guestaddr on guest port
2963 guestport. If guestaddr is not specified, its value is x.x.x.15
2964 (default first address given by the built-in DHCP server). By
2965 specifying hostaddr, the rule can be bound to a specific host
2966 interface. If no connection type is set, TCP is used. This
2967 option can be given multiple times.
2969 For example, to redirect host X11 connection from screen 1 to
2970 guest screen 0, use the following:
2975 |qemu_system| -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
2976 # this host xterm should open in the guest X11 server
2979 To redirect telnet connections from host port 5555 to telnet
2980 port on the guest, use the following:
2985 |qemu_system| -nic user,hostfwd=tcp::5555-:23
2986 telnet localhost 5555
2988 Then when you use on the host ``telnet localhost 5555``, you
2989 connect to the guest telnet server.
2991 ``guestfwd=[tcp]:server:port-dev``; \ ``guestfwd=[tcp]:server:port-cmd:command``
2992 Forward guest TCP connections to the IP address server on port
2993 port to the character device dev or to a program executed by
2994 cmd:command which gets spawned for each connection. This option
2995 can be given multiple times.
2997 You can either use a chardev directly and have that one used
2998 throughout QEMU's lifetime
, like
in the following example
:
3002 # open
10.10.1.1:4321 on bootup
, connect
10.0.2.100:1234 to it whenever
3003 # the guest accesses it
3004 |qemu_system|
-nic user
,guestfwd
=tcp
:10.0.2.100:1234-tcp
:10.10.1.1:4321
3006 Or you can execute a command on every TCP connection established
3007 by the guest
, so that QEMU behaves similar to an inetd process
3008 for that virtual server
:
3012 # call
"netcat 10.10.1.1 4321" on every TCP connection to
10.0.2.100:1234
3013 # and connect the TCP stream to its stdin
/stdout
3014 |qemu_system|
-nic
'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
3016 ``
-netdev tap
,id
=id
[,fd
=h
][,ifname
=name
][,script
=file
][,downscript
=dfile
][,br
=bridge
][,helper
=helper
]``
3017 Configure a host TAP network backend with ID id
.
3019 Use the network script file to configure it and the network script
3020 dfile to deconfigure it
. If name is not provided
, the OS
3021 automatically provides one
. The
default network configure script is
3022 ``
/etc
/qemu
-ifup`` and the
default network deconfigure script is
3023 ``
/etc
/qemu
-ifdown``
. Use ``script
=no`` or ``downscript
=no`` to
3024 disable script execution
.
3026 If running QEMU as an unprivileged user
, use the network helper
3027 to configure the TAP
interface and attach it to the bridge
.
3028 The
default network helper executable is
3029 ``
/path
/to
/qemu
-bridge
-helper`` and the
default bridge device is
3032 ``fd``\
=h can be used to specify the handle of an already opened
3039 #launch a QEMU instance with the
default network script
3040 |qemu_system| linux
.img
-nic tap
3044 #launch a QEMU instance with two NICs
, each one connected
3046 |qemu_system| linux
.img
\\
3047 -netdev tap
,id
=nd0
,ifname
=tap0
-device e1000
,netdev
=nd0
\\
3048 -netdev tap
,id
=nd1
,ifname
=tap1
-device rtl8139
,netdev
=nd1
3052 #launch a QEMU instance with the
default network helper to
3053 #connect a TAP device to bridge br0
3054 |qemu_system| linux
.img
-device virtio
-net
-pci
,netdev
=n1
\\
3055 -netdev tap
,id
=n1
,"helper=/path/to/qemu-bridge-helper"
3057 ``
-netdev bridge
,id
=id
[,br
=bridge
][,helper
=helper
]``
3058 Connect a host TAP network
interface to a host bridge device
.
3060 Use the network helper helper to configure the TAP
interface and
3061 attach it to the bridge
. The
default network helper executable is
3062 ``
/path
/to
/qemu
-bridge
-helper`` and the
default bridge device is
3069 #launch a QEMU instance with the
default network helper to
3070 #connect a TAP device to bridge br0
3071 |qemu_system| linux
.img
-netdev bridge
,id
=n1
-device virtio
-net
,netdev
=n1
3075 #launch a QEMU instance with the
default network helper to
3076 #connect a TAP device to bridge qemubr0
3077 |qemu_system| linux
.img
-netdev bridge
,br
=qemubr0
,id
=n1
-device virtio
-net
,netdev
=n1
3079 ``
-netdev socket
,id
=id
[,fd
=h
][,listen
=[host
]:port
][,connect
=host
:port
]``
3080 This host network backend can be used to connect the guest
's network
3081 to another QEMU virtual machine using a TCP socket connection. If
3082 ``listen`` is specified, QEMU waits for incoming connections on port
3083 (host is optional). ``connect`` is used to connect to another QEMU
3084 instance using the ``listen`` option. ``fd``\ =h specifies an
3085 already opened TCP socket.
3091 # launch a first QEMU instance
3092 |qemu_system| linux.img \\
3093 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \\
3094 -netdev socket,id=n1,listen=:1234
3095 # connect the network of this instance to the network of the first instance
3096 |qemu_system| linux.img \\
3097 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \\
3098 -netdev socket,id=n2,connect=127.0.0.1:1234
3100 ``-netdev socket,id=id[,fd=h][,mcast=maddr:port[,localaddr=addr]]``
3101 Configure a socket host network backend to share the guest's network
3102 traffic with another QEMU virtual machines
using a UDP multicast
3103 socket
, effectively making a bus
for every QEMU with same multicast
3104 address maddr and port
. NOTES
:
3106 1. Several QEMU can be running on different hosts and share same bus
3107 (assuming correct multicast setup
for these hosts
).
3109 2. mcast support is compatible with User Mode
Linux (argument
3110 ``ethN
=mcast``
), see http
://user-mode-linux.sf.net.
3112 3. Use ``fd
=h`` to specify an already opened UDP multicast socket
.
3118 # launch one QEMU instance
3119 |qemu_system| linux
.img
\\
3120 -device e1000
,netdev
=n1
,mac
=52:54:00:12:34:56 \\
3121 -netdev socket
,id
=n1
,mcast
=230.0.0.1:1234
3122 # launch another QEMU instance on same
"bus"
3123 |qemu_system| linux
.img
\\
3124 -device e1000
,netdev
=n2
,mac
=52:54:00:12:34:57 \\
3125 -netdev socket
,id
=n2
,mcast
=230.0.0.1:1234
3126 # launch yet another QEMU instance on same
"bus"
3127 |qemu_system| linux
.img
\\
3128 -device e1000
,netdev
=n3
,mac
=52:54:00:12:34:58 \\
3129 -netdev socket
,id
=n3
,mcast
=230.0.0.1:1234
3131 Example (User Mode Linux compat
.):
3135 # launch QEMU
instance (note mcast address selected is UML
's default)
3136 |qemu_system| linux.img \\
3137 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \\
3138 -netdev socket,id=n1,mcast=239.192.168.1:1102
3140 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
3142 Example (send packets from host's
1.2.3.4):
3146 |qemu_system| linux
.img
\\
3147 -device e1000
,netdev
=n1
,mac
=52:54:00:12:34:56 \\
3148 -netdev socket
,id
=n1
,mcast
=239.192.168.1:1102,localaddr
=1.2.3.4
3150 ``
-netdev l2tpv3
,id
=id
,src
=srcaddr
,dst
=dstaddr
[,srcport
=srcport
][,dstport
=dstport
],txsession
=txsession
[,rxsession
=rxsession
][,ipv6
=on|off
][,udp
=on|off
][,cookie64
][,counter
][,pincounter
][,txcookie
=txcookie
][,rxcookie
=rxcookie
][,offset
=offset
]``
3151 Configure a L2TPv3 pseudowire host network backend
. L2TPv3 (RFC3931
)
3152 is a popular protocol to transport
Ethernet (and other Layer
2) data
3153 frames between two systems
. It is present
in routers
, firewalls and
3154 the Linux
kernel (from version
3.3 onwards
).
3156 This transport allows a VM to communicate to another VM
, router or
3160 source
address (mandatory
)
3163 destination
address (mandatory
)
3166 select udp
encapsulation (default is ip
).
3172 destination udp port
.
3175 force v6
, otherwise defaults to v4
.
3177 ``rxcookie
=rxcookie``
; \ ``txcookie
=txcookie``
3178 Cookies are a weak form of security
in the l2tpv3 specification
.
3179 Their
function is mostly to prevent misconfiguration
. By
default
3183 Set cookie size to
64 bit instead of the
default 32
3186 Force a
'cut-down' L2TPv3 with no counter as
in
3187 draft
-mkonstan
-l2tpext
-keyed
-ipv6
-tunnel
-00
3190 Work around broken counter handling
in peer
. This may also help
3191 on networks which have packet reorder
.
3194 Add an extra offset between header and data
3196 For example
, to attach a VM running on host
4.3.2.1 via L2TPv3 to
3197 the bridge br
-lan on the remote Linux host
1.2.3.4:
3201 # Setup tunnel on linux host
using raw ip as encapsulation
3203 ip l2tp add tunnel remote
4.3.2.1 local
1.2.3.4 tunnel_id
1 peer_tunnel_id
1 \\
3204 encap udp udp_sport
16384 udp_dport
16384
3205 ip l2tp add session tunnel_id
1 name vmtunnel0 session_id
\\
3206 0xFFFFFFFF peer_session_id
0xFFFFFFFF
3207 ifconfig vmtunnel0 mtu
1500
3208 ifconfig vmtunnel0 up
3209 brctl addif br
-lan vmtunnel0
3213 # launch QEMU instance
- if your network has reorder or is very lossy add
,pincounter
3215 |qemu_system| linux
.img
-device e1000
,netdev
=n1
\\
3216 -netdev l2tpv3
,id
=n1
,src
=4.2.3.1,dst
=1.2.3.4,udp
,srcport
=16384,dstport
=16384,rxsession
=0xffffffff,txsession
=0xffffffff,counter
3218 ``
-netdev vde
,id
=id
[,sock
=socketpath
][,port
=n
][,group
=groupname
][,mode
=octalmode
]``
3219 Configure VDE backend to connect to PORT n of a vde
switch running
3220 on host and listening
for incoming connections on socketpath
. Use
3221 GROUP groupname and MODE octalmode to change
default ownership and
3222 permissions
for communication port
. This option is only available
if
3223 QEMU has been compiled with vde support enabled
.
3230 vde_switch
-F
-sock
/tmp
/myswitch
3231 # launch QEMU instance
3232 |qemu_system| linux
.img
-nic vde
,sock
=/tmp
/myswitch
3234 ``
-netdev vhost
-user
,chardev
=id
[,vhostforce
=on|off
][,queues
=n
]``
3235 Establish a vhost
-user netdev
, backed by a chardev id
. The chardev
3236 should be a unix domain socket backed one
. The vhost
-user uses a
3237 specifically defined protocol to pass vhost ioctl replacement
3238 messages to an application on the other end of the socket
. On
3239 non
-MSIX guests
, the feature can be forced with vhostforce
. Use
3240 'queues=n' to specify the number of queues to be created
for
3241 multiqueue vhost
-user
.
3247 qemu
-m
512 -object memory
-backend
-file
,id
=mem
,size
=512M
,mem
-path
=/hugetlbfs
,share
=on \
3248 -numa node
,memdev
=mem \
3249 -chardev socket
,id
=chr0
,path
=/path
/to
/socket \
3250 -netdev type
=vhost
-user
,id
=net0
,chardev
=chr0 \
3251 -device virtio
-net
-pci
,netdev
=net0
3253 ``
-netdev vhost
-vdpa
,vhostdev
=/path
/to
/dev``
3254 Establish a vhost
-vdpa netdev
.
3256 vDPA device is a device that uses a datapath which complies with
3257 the virtio specifications with a vendor specific control path
.
3258 vDPA devices can be both physically located on the hardware or
3259 emulated by software
.
3261 ``
-netdev hubport
,id
=id
,hubid
=hubid
[,netdev
=nd
]``
3262 Create a hub port on the emulated hub with ID hubid
.
3264 The hubport netdev lets you connect a NIC to a QEMU emulated hub
3265 instead of a single netdev
. Alternatively
, you can also connect the
3266 hubport to another netdev with ID nd by
using the ``netdev
=nd``
3269 ``
-net nic
[,netdev
=nd
][,macaddr
=mac
][,model
=type
] [,name
=name
][,addr
=addr
][,vectors
=v
]``
3270 Legacy option to configure or create an on
-board (or machine
3271 default) Network Interface
Card(NIC
) and connect it either to the
3272 emulated hub with ID
0 (i
.e
. the
default hub
), or to the netdev nd
.
3273 If model is omitted
, then the
default NIC model associated with the
3274 machine type is used
. Note that the
default NIC model may change
in
3275 future QEMU releases
, so it is highly recommended to always specify
3276 a model
. Optionally
, the MAC address can be changed to mac
, the
3277 device address set to
addr (PCI cards only
), and a name can be
3278 assigned
for use
in monitor commands
. Optionally
, for PCI cards
, you
3279 can specify the number v of MSI
-X vectors that the card should have
;
3280 this option currently only affects virtio cards
; set v
= 0 to
3281 disable MSI
-X
. If no ``
-net`` option is specified
, a single NIC is
3282 created
. QEMU can emulate several different models of network card
.
3283 Use ``
-net nic
,model
=help``
for a list of available devices
for your
3286 ``
-net user|tap|bridge|socket|l2tpv3|vde
[,...][,name
=name
]``
3287 Configure a host network
backend (with the options corresponding to
3288 the same ``
-netdev`` option
) and connect it to the emulated hub
0
3289 (the
default hub
). Use name to specify the name of the hub port
.
3294 DEFHEADING(Character device options
:)
3296 DEF("chardev", HAS_ARG
, QEMU_OPTION_chardev
,
3298 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3299 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4=on|off][,ipv6=on|off][,nodelay=on|off]\n"
3300 " [,server=on|off][,wait=on|off][,telnet=on|off][,websocket=on|off][,reconnect=seconds][,mux=on|off]\n"
3301 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID][,tls-authz=ID] (tcp)\n"
3302 "-chardev socket,id=id,path=path[,server=on|off][,wait=on|off][,telnet=on|off][,websocket=on|off][,reconnect=seconds]\n"
3303 " [,mux=on|off][,logfile=PATH][,logappend=on|off][,abstract=on|off][,tight=on|off] (unix)\n"
3304 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
3305 " [,localport=localport][,ipv4=on|off][,ipv6=on|off][,mux=on|off]\n"
3306 " [,logfile=PATH][,logappend=on|off]\n"
3307 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3308 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
3309 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3310 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
3311 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3312 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3314 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3315 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3317 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3318 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
3320 #ifdef CONFIG_BRLAPI
3321 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3323 #
if defined(__linux__
) ||
defined(__sun__
) ||
defined(__FreeBSD__
) \
3324 ||
defined(__NetBSD__
) ||
defined(__OpenBSD__
) ||
defined(__DragonFly__
)
3325 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3326 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3328 #
if defined(__linux__
) ||
defined(__FreeBSD__
) ||
defined(__DragonFly__
)
3329 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3330 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3332 #
if defined(CONFIG_SPICE
)
3333 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
3334 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
3340 The general form of a character device option is
:
3342 ``
-chardev backend
,id
=id
[,mux
=on|off
][,options
]``
3343 Backend is one of
: ``
null``
, ``socket``
, ``udp``
, ``msmouse``
,
3344 ``vc``
, ``ringbuf``
, ``file``
, ``pipe``
, ``console``
, ``serial``
,
3345 ``pty``
, ``stdio``
, ``braille``
, ``tty``
, ``parallel``
, ``parport``
,
3346 ``spicevmc``
, ``spiceport``
. The specific backend will determine the
3349 Use ``
-chardev help`` to print all available chardev backend types
.
3351 All devices must have an id
, which can be any string up to
127
3352 characters long
. It is used to uniquely identify
this device
in
3353 other command line directives
.
3355 A character device may be used
in multiplexing mode by multiple
3356 front
-ends
. Specify ``mux
=on`` to enable
this mode
. A multiplexer is
3357 a
"1:N" device
, and
here the
"1" end is your specified chardev
3358 backend
, and the
"N" end is the various parts of QEMU that can talk
3359 to a chardev
. If you create a chardev with ``id
=myid`` and
3360 ``mux
=on``
, QEMU will create a multiplexer with your specified ID
,
3361 and you can then configure multiple front ends to use that chardev
3362 ID
for their input
/output
. Up to four different front ends can be
3363 connected to a single multiplexed chardev
. (Without multiplexing
3364 enabled
, a chardev can only be used by a single front end
.) For
3365 instance you could use
this to allow a single stdio chardev to be
3366 used by two serial ports and the QEMU monitor
:
3370 -chardev stdio
,mux
=on
,id
=char0 \
3371 -mon chardev
=char0
,mode
=readline \
3372 -serial chardev
:char0 \
3373 -serial chardev
:char0
3375 You can have more than one multiplexer
in a system configuration
;
3376 for instance you could have a TCP port multiplexed between UART
0
3377 and UART
1, and stdio multiplexed between the QEMU monitor and a
3382 -chardev stdio
,mux
=on
,id
=char0 \
3383 -mon chardev
=char0
,mode
=readline \
3384 -parallel chardev
:char0 \
3385 -chardev tcp
,...,mux
=on
,id
=char1 \
3386 -serial chardev
:char1 \
3387 -serial chardev
:char1
3389 When you
're using a multiplexed character device, some escape
3390 sequences are interpreted in the input. See the chapter about
3391 :ref:`keys in the character backend multiplexer` in the
3392 System Emulation Users Guide for more details.
3394 Note that some other command line options may implicitly create
3395 multiplexed character backends; for instance ``-serial mon:stdio``
3396 creates a multiplexed stdio backend connected to the serial port and
3397 the QEMU monitor, and ``-nographic`` also multiplexes the console
3398 and the monitor to stdio.
3400 There is currently no support for multiplexing in the other
3401 direction (where a single QEMU front end takes input and output from
3404 Every backend supports the ``logfile`` option, which supplies the
3405 path to a file to record all data transmitted via the backend. The
3406 ``logappend`` option controls whether the log file will be truncated
3407 or appended to when opened.
3409 The available backends are:
3411 ``-chardev null,id=id``
3412 A void device. This device will not emit any data, and will drop any
3413 data it receives. The null backend does not take any options.
3415 ``-chardev socket,id=id[,TCP options or unix options][,server=on|off][,wait=on|off][,telnet=on|off][,websocket=on|off][,reconnect=seconds][,tls-creds=id][,tls-authz=id]``
3416 Create a two-way stream socket, which can be either a TCP or a unix
3417 socket. A unix socket will be created if ``path`` is specified.
3418 Behaviour is undefined if TCP options are specified for a unix
3421 ``server=on|off`` specifies that the socket shall be a listening socket.
3423 ``wait=on|off`` specifies that QEMU should not block waiting for a client
3424 to connect to a listening socket.
3426 ``telnet=on|off`` specifies that traffic on the socket should interpret
3427 telnet escape sequences.
3429 ``websocket=on|off`` specifies that the socket uses WebSocket protocol for
3432 ``reconnect`` sets the timeout for reconnecting on non-server
3433 sockets when the remote end goes away. qemu will delay this many
3434 seconds and then attempt to reconnect. Zero disables reconnecting,
3437 ``tls-creds`` requests enablement of the TLS protocol for
3438 encryption, and specifies the id of the TLS credentials to use for
3439 the handshake. The credentials must be previously created with the
3440 ``-object tls-creds`` argument.
3442 ``tls-auth`` provides the ID of the QAuthZ authorization object
3443 against which the client's x509 distinguished name will be
3444 validated
. This object is only resolved at time of use
, so can be
3445 deleted and recreated on the fly
while the chardev server is active
.
3446 If missing
, it will
default to denying access
.
3448 TCP and unix socket options are given below
:
3450 ``TCP options
: port
=port
[,host
=host
][,to
=to
][,ipv4
=on|off
][,ipv6
=on|off
][,nodelay
=on|off
]``
3451 ``host``
for a listening socket specifies the local address to
3452 be bound
. For a connecting socket species the remote host to
3453 connect to
. ``host`` is optional
for listening sockets
. If not
3454 specified it defaults to ``
0.0.0.0``
.
3456 ``port``
for a listening socket specifies the local port to be
3457 bound
. For a connecting socket specifies the port on the remote
3458 host to connect to
. ``port`` can be given as either a port
3459 number or a service name
. ``port`` is required
.
3461 ``to`` is only relevant to listening sockets
. If it is
3462 specified
, and ``port`` cannot be bound
, QEMU will attempt to
3463 bind to subsequent ports up to and including ``to`` until it
3464 succeeds
. ``to`` must be specified as a port number
.
3466 ``ipv4
=on|off`` and ``ipv6
=on|off`` specify that either IPv4
3467 or IPv6 must be used
. If neither is specified the socket may
3468 use either protocol
.
3470 ``nodelay
=on|off`` disables the Nagle algorithm
.
3472 ``unix options
: path
=path
[,abstract
=on|off
][,tight
=on|off
]``
3473 ``path`` specifies the local path of the unix socket
. ``path``
3475 ``abstract
=on|off`` specifies the use of the abstract socket namespace
,
3476 rather than the filesystem
. Optional
, defaults to
false.
3477 ``tight
=on|off`` sets the socket length of abstract sockets to their minimum
,
3478 rather than the full sun_path length
. Optional
, defaults to
true.
3480 ``
-chardev udp
,id
=id
[,host
=host
],port
=port
[,localaddr
=localaddr
][,localport
=localport
][,ipv4
=on|off
][,ipv6
=on|off
]``
3481 Sends all traffic from the guest to a remote host over UDP
.
3483 ``host`` specifies the remote host to connect to
. If not specified
3484 it defaults to ``localhost``
.
3486 ``port`` specifies the port on the remote host to connect to
.
3487 ``port`` is required
.
3489 ``localaddr`` specifies the local address to bind to
. If not
3490 specified it defaults to ``
0.0.0.0``
.
3492 ``localport`` specifies the local port to bind to
. If not specified
3493 any available local port will be used
.
3495 ``ipv4
=on|off`` and ``ipv6
=on|off`` specify that either IPv4 or IPv6 must be used
.
3496 If neither is specified the device may use either protocol
.
3498 ``
-chardev msmouse
,id
=id``
3499 Forward QEMU
's emulated msmouse events to the guest. ``msmouse``
3500 does not take any options.
3502 ``-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]``
3503 Connect to a QEMU text console. ``vc`` may optionally be given a
3506 ``width`` and ``height`` specify the width and height respectively
3507 of the console, in pixels.
3509 ``cols`` and ``rows`` specify that the console be sized to fit a
3510 text console with the given dimensions.
3512 ``-chardev ringbuf,id=id[,size=size]``
3513 Create a ring buffer with fixed size ``size``. size must be a power
3514 of two and defaults to ``64K``.
3516 ``-chardev file,id=id,path=path``
3517 Log all traffic received from the guest to a file.
3519 ``path`` specifies the path of the file to be opened. This file will
3520 be created if it does not already exist, and overwritten if it does.
3521 ``path`` is required.
3523 ``-chardev pipe,id=id,path=path``
3524 Create a two-way connection to the guest. The behaviour differs
3525 slightly between Windows hosts and other hosts:
3527 On Windows, a single duplex pipe will be created at
3530 On other hosts, 2 pipes will be created called ``path.in`` and
3531 ``path.out``. Data written to ``path.in`` will be received by the
3532 guest. Data written by the guest can be read from ``path.out``. QEMU
3533 will not create these fifos, and requires them to be present.
3535 ``path`` forms part of the pipe path as described above. ``path`` is
3538 ``-chardev console,id=id``
3539 Send traffic from the guest to QEMU's standard output
. ``console``
3540 does not take any options
.
3542 ``console`` is only available on Windows hosts
.
3544 ``
-chardev serial
,id
=id
,path
=path``
3545 Send traffic from the guest to a serial device on the host
.
3547 On Unix hosts serial will actually accept any tty device
, not only
3550 ``path`` specifies the name of the serial device to open
.
3552 ``
-chardev pty
,id
=id``
3553 Create a
new pseudo
-terminal on the host and connect to it
. ``pty``
3554 does not take any options
.
3556 ``pty`` is not available on Windows hosts
.
3558 ``
-chardev stdio
,id
=id
[,signal
=on|off
]``
3559 Connect to standard input and standard output of the QEMU process
.
3561 ``signal`` controls
if signals are enabled on the terminal
, that
3562 includes exiting QEMU with the key sequence Control
-c
. This option
3563 is enabled by
default, use ``signal
=off`` to disable it
.
3565 ``
-chardev braille
,id
=id``
3566 Connect to a local BrlAPI server
. ``braille`` does not take any
3569 ``
-chardev tty
,id
=id
,path
=path``
3570 ``tty`` is only available on Linux
, Sun
, FreeBSD
, NetBSD
, OpenBSD
3571 and DragonFlyBSD hosts
. It is an alias
for ``serial``
.
3573 ``path`` specifies the path to the tty
. ``path`` is required
.
3575 ``
-chardev parallel
,id
=id
,path
=path``
3577 ``
-chardev parport
,id
=id
,path
=path``
3578 ``parallel`` is only available on Linux
, FreeBSD and DragonFlyBSD
3581 Connect to a local parallel port
.
3583 ``path`` specifies the path to the parallel port device
. ``path`` is
3586 ``
-chardev spicevmc
,id
=id
,debug
=debug
,name
=name``
3587 ``spicevmc`` is only available when spice support is built
in.
3589 ``debug`` debug level
for spicevmc
3591 ``name`` name of spice channel to connect to
3593 Connect to a spice virtual machine channel
, such as vdiport
.
3595 ``
-chardev spiceport
,id
=id
,debug
=debug
,name
=name``
3596 ``spiceport`` is only available when spice support is built
in.
3598 ``debug`` debug level
for spicevmc
3600 ``name`` name of spice port to connect to
3602 Connect to a spice port
, allowing a Spice client to handle the
3603 traffic identified by a
name (preferably a fqdn
).
3609 DEFHEADING(TPM device options
:)
3611 DEF("tpmdev", HAS_ARG
, QEMU_OPTION_tpmdev
, \
3612 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
3613 " use path to provide path to a character device; default is /dev/tpm0\n"
3614 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
3615 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
3616 "-tpmdev emulator,id=id,chardev=dev\n"
3617 " configure the TPM device using chardev backend\n",
3620 The general form of a TPM device option is
:
3622 ``
-tpmdev backend
,id
=id
[,options
]``
3623 The specific backend type will determine the applicable options
. The
3624 ``
-tpmdev`` option creates the TPM backend and requires a
3625 ``
-device`` option that specifies the TPM frontend
interface model
.
3627 Use ``
-tpmdev help`` to print all available TPM backend types
.
3629 The available backends are
:
3631 ``
-tpmdev passthrough
,id
=id
,path
=path
,cancel
-path
=cancel
-path``
3632 (Linux
-host only
) Enable access to the host
's TPM using the
3635 ``path`` specifies the path to the host's TPM device
, i
.e
., on a
3636 Linux host
this would be ``
/dev
/tpm0``
. ``path`` is optional and by
3637 default ``
/dev
/tpm0`` is used
.
3639 ``cancel
-path`` specifies the path to the host TPM device
's sysfs
3640 entry allowing for cancellation of an ongoing TPM command.
3641 ``cancel-path`` is optional and by default QEMU will search for the
3644 Some notes about using the host's TPM with the passthrough driver
:
3646 The TPM device accessed by the passthrough driver must not be used
3647 by any other application on the host
.
3649 Since the host
's firmware (BIOS/UEFI) has already initialized the
3650 TPM, the VM's
firmware (BIOS
/UEFI
) will not be able to initialize
3651 the TPM again and may therefore not show a TPM
-specific menu that
3652 would otherwise allow the user to configure the TPM
, e
.g
., allow the
3653 user to enable
/disable or activate
/deactivate the TPM
. Further
, if
3654 TPM ownership is released from within a VM then the host
's TPM will
3655 get disabled and deactivated. To enable and activate the TPM again
3656 afterwards, the host has to be rebooted and the user is required to
3657 enter the firmware's menu to enable and activate the TPM
. If the TPM
3658 is left disabled and
/or deactivated most TPM commands will fail
.
3660 To create a passthrough TPM use the following two options
:
3664 -tpmdev passthrough
,id
=tpm0
-device tpm
-tis
,tpmdev
=tpm0
3666 Note that the ``
-tpmdev`` id is ``tpm0`` and is referenced by
3667 ``tpmdev
=tpm0``
in the device option
.
3669 ``
-tpmdev emulator
,id
=id
,chardev
=dev``
3670 (Linux
-host only
) Enable access to a TPM emulator
using Unix domain
3671 socket based chardev backend
.
3673 ``chardev`` specifies the unique ID of a character device backend
3674 that provides connection to the software TPM server
.
3676 To create a TPM emulator backend device with chardev socket backend
:
3680 -chardev socket
,id
=chrtpm
,path
=/tmp
/swtpm
-sock
-tpmdev emulator
,id
=tpm0
,chardev
=chrtpm
-device tpm
-tis
,tpmdev
=tpm0
3687 DEFHEADING(Linux
/Multiboot boot specific
:)
3689 When
using these options
, you can use a given Linux or Multiboot kernel
3690 without installing it
in the disk image
. It can be useful
for easier
3691 testing of various kernels
.
3696 DEF("kernel", HAS_ARG
, QEMU_OPTION_kernel
, \
3697 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL
)
3700 Use bzImage as kernel image
. The kernel can be either a Linux kernel
3701 or
in multiboot format
.
3704 DEF("append", HAS_ARG
, QEMU_OPTION_append
, \
3705 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL
)
3708 Use cmdline as kernel command line
3711 DEF("initrd", HAS_ARG
, QEMU_OPTION_initrd
, \
3712 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL
)
3715 Use file as initial ram disk
.
3717 ``
-initrd
"file1 arg=foo,file2"``
3718 This syntax is only available with multiboot
.
3720 Use file1 and file2 as modules and pass arg
=foo as parameter to the
3724 DEF("dtb", HAS_ARG
, QEMU_OPTION_dtb
, \
3725 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL
)
3728 Use file as a device tree
binary (dtb
) image and pass it to the
3734 DEFHEADING(Debug
/Expert options
:)
3736 DEF("compat", HAS_ARG
, QEMU_OPTION_compat
,
3737 "-compat [deprecated-input=accept|reject|crash][,deprecated-output=accept|hide]\n"
3738 " Policy for handling deprecated management interfaces\n"
3739 "-compat [unstable-input=accept|reject|crash][,unstable-output=accept|hide]\n"
3740 " Policy for handling unstable management interfaces\n",
3743 ``
-compat
[deprecated
-input
=@
var{input
-policy
}][,deprecated
-output
=@
var{output
-policy
}]``
3744 Set policy
for handling deprecated management
interfaces (experimental
):
3746 ``deprecated
-input
=accept``
(default)
3747 Accept deprecated commands and arguments
3748 ``deprecated
-input
=reject``
3749 Reject deprecated commands and arguments
3750 ``deprecated
-input
=crash``
3751 Crash on deprecated commands and arguments
3752 ``deprecated
-output
=accept``
(default)
3753 Emit deprecated command results and events
3754 ``deprecated
-output
=hide``
3755 Suppress deprecated command results and events
3757 Limitation
: covers only syntactic aspects of QMP
.
3759 ``
-compat
[unstable
-input
=@
var{input
-policy
}][,unstable
-output
=@
var{output
-policy
}]``
3760 Set policy
for handling unstable management
interfaces (experimental
):
3762 ``unstable
-input
=accept``
(default)
3763 Accept unstable commands and arguments
3764 ``unstable
-input
=reject``
3765 Reject unstable commands and arguments
3766 ``unstable
-input
=crash``
3767 Crash on unstable commands and arguments
3768 ``unstable
-output
=accept``
(default)
3769 Emit unstable command results and events
3770 ``unstable
-output
=hide``
3771 Suppress unstable command results and events
3773 Limitation
: covers only syntactic aspects of QMP
.
3776 DEF("fw_cfg", HAS_ARG
, QEMU_OPTION_fwcfg
,
3777 "-fw_cfg [name=]<name>,file=<file>\n"
3778 " add named fw_cfg entry with contents from file\n"
3779 "-fw_cfg [name=]<name>,string=<str>\n"
3780 " add named fw_cfg entry with contents from string\n",
3783 ``
-fw_cfg
[name
=]name
,file
=file``
3784 Add named fw\_cfg entry with contents from file file
.
3786 ``
-fw_cfg
[name
=]name
,string
=str``
3787 Add named fw\_cfg entry with contents from string str
.
3789 The terminating NUL character of the contents of str will not be
3790 included as part of the fw\_cfg item data
. To insert contents with
3791 embedded NUL characters
, you have to use the file parameter
.
3793 The fw\_cfg entries are passed by QEMU through to the guest
.
3799 -fw_cfg name
=opt
/com
.mycompany
/blob
,file
=./my_blob
.bin
3801 creates an fw\_cfg entry named opt
/com
.mycompany
/blob with contents
3802 from
./my\_blob
.bin
.
3805 DEF("serial", HAS_ARG
, QEMU_OPTION_serial
, \
3806 "-serial dev redirect the serial port to char device 'dev'\n",
3810 Redirect the virtual serial port to host character device dev
. The
3811 default device is ``vc``
in graphical mode and ``stdio``
in non
3814 This option can be used several times to simulate up to
4 serial
3817 Use ``
-serial none`` to disable all serial ports
.
3819 Available character devices are
:
3822 Virtual console
. Optionally
, a width and height can be given
in
3829 It is also possible to specify width or height
in characters
:
3836 [Linux only
] Pseudo
TTY (a
new PTY is automatically allocated
)
3839 No device is allocated
.
3845 Use a named character device defined with the ``
-chardev``
3849 [Linux only
] Use host tty
, e
.g
. ``
/dev
/ttyS0``
. The host serial
3850 port parameters are set according to the emulated ones
.
3853 [Linux only
, parallel port only
] Use host parallel port N
.
3854 Currently SPP and EPP parallel port features can be used
.
3857 Write output to filename
. No character can be read
.
3860 [Unix only
] standard input
/output
3866 [Windows only
] Use host serial port n
3868 ``udp
:[remote_host
]:remote_port
[@
[src_ip
]:src_port
]``
3869 This
implements UDP Net Console
. When remote\_host or src\_ip
3870 are not specified they
default to ``
0.0.0.0``
. When not
using a
3871 specified src\_port a random port is automatically chosen
.
3873 If you just want a simple readonly console you can use
3874 ``netcat`` or ``nc``
, by starting QEMU with
:
3875 ``
-serial udp
::4555`` and nc as
: ``nc
-u
-l
-p
4555``
. Any time
3876 QEMU writes something to that port it will appear
in the
3879 If you plan to send characters back via netconsole or you want
3880 to stop and start QEMU a lot of times
, you should have QEMU use
3881 the same source port each time by
using something like ``
-serial
3882 udp
::4555@
:4556`` to QEMU
. Another approach is to use a patched
3883 version of netcat which can listen to a TCP port and send and
3884 receive characters via udp
. If you have a patched version of
3885 netcat which activates telnet remote echo and single char
3886 transfer
, then you can use the following options to set up a
3887 netcat redirector to allow telnet on port
5555 to access the
3891 -serial udp
::4555@
:4556
3894 -u
-P
4555 -L
0.0.0.0:4556 -t
-p
5555 -I
-T
3899 ``tcp
:[host
]:port
[,server
=on|off
][,wait
=on|off
][,nodelay
=on|off
][,reconnect
=seconds
]``
3900 The TCP Net Console has two modes of operation
. It can send the
3901 serial I
/O to a location or wait
for a connection from a
3902 location
. By
default the TCP Net Console is sent to host at the
3903 port
. If you use the ``server
=on`` option QEMU will wait
for a client
3904 socket application to connect to the port before continuing
,
3905 unless the ``wait
=on|off`` option was specified
. The ``nodelay
=on|off``
3906 option disables the Nagle buffering algorithm
. The ``reconnect
=on``
3907 option only applies
if ``server
=no`` is set
, if the connection goes
3908 down it will attempt to reconnect at the given interval
. If host
3909 is omitted
, 0.0.0.0 is assumed
. Only one TCP connection at a
3910 time is accepted
. You can use ``telnet
=on`` to connect to the
3911 corresponding character device
.
3913 ``Example to send tcp console to
192.168.0.2 port
4444``
3914 -serial tcp
:192.168.0.2:4444
3916 ``Example to listen and wait on port
4444 for connection``
3917 -serial tcp
::4444,server
=on
3919 ``Example to not wait and listen on ip
192.168.0.100 port
4444``
3920 -serial tcp
:192.168.0.100:4444,server
=on
,wait
=off
3922 ``telnet
:host
:port
[,server
=on|off
][,wait
=on|off
][,nodelay
=on|off
]``
3923 The telnet protocol is used instead of raw tcp sockets
. The
3924 options work the same as
if you had specified ``
-serial tcp``
.
3925 The difference is that the port acts like a telnet server or
3926 client
using telnet option negotiation
. This will also allow you
3927 to send the MAGIC\_SYSRQ sequence
if you use a telnet that
3928 supports sending the
break sequence
. Typically
in unix telnet
3929 you
do it with Control
-] and then type
"send break" followed by
3930 pressing the enter key
.
3932 ``websocket
:host
:port
,server
=on
[,wait
=on|off
][,nodelay
=on|off
]``
3933 The WebSocket protocol is used instead of raw tcp socket
. The
3934 port acts as a WebSocket server
. Client mode is not supported
.
3936 ``unix
:path
[,server
=on|off
][,wait
=on|off
][,reconnect
=seconds
]``
3937 A unix domain socket is used instead of a tcp socket
. The option
3938 works the same as
if you had specified ``
-serial tcp`` except
3939 the unix domain socket path is used
for connections
.
3942 This is a special option to allow the monitor to be multiplexed
3943 onto another serial port
. The monitor is accessed with key
3944 sequence of Control
-a and then pressing c
. dev\_string should be
3945 any one of the serial devices specified above
. An example to
3946 multiplex the monitor onto a telnet server listening on port
3949 ``
-serial mon
:telnet
::4444,server
=on
,wait
=off``
3951 When the monitor is multiplexed to stdio
in this way
, Ctrl
+C
3952 will not terminate QEMU any more but will be passed to the guest
3956 Braille device
. This will use BrlAPI to display the braille
3957 output on a real or fake device
.
3960 Three button serial mouse
. Configure the guest to use Microsoft
3964 DEF("parallel", HAS_ARG
, QEMU_OPTION_parallel
, \
3965 "-parallel dev redirect the parallel port to char device 'dev'\n",
3969 Redirect the virtual parallel port to host device
dev (same devices
3970 as the serial port
). On Linux hosts
, ``
/dev
/parportN`` can be used
3971 to use hardware devices connected on the corresponding host parallel
3974 This option can be used several times to simulate up to
3 parallel
3977 Use ``
-parallel none`` to disable all parallel ports
.
3980 DEF("monitor", HAS_ARG
, QEMU_OPTION_monitor
, \
3981 "-monitor dev redirect the monitor to char device 'dev'\n",
3985 Redirect the monitor to host device
dev (same devices as the serial
3986 port
). The
default device is ``vc``
in graphical mode and ``stdio``
3987 in non graphical mode
. Use ``
-monitor none`` to disable the
default
3990 DEF("qmp", HAS_ARG
, QEMU_OPTION_qmp
, \
3991 "-qmp dev like -monitor but opens in 'control' mode\n",
3995 Like
-monitor but opens
in 'control' mode
.
3997 DEF("qmp-pretty", HAS_ARG
, QEMU_OPTION_qmp_pretty
, \
3998 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
4002 Like
-qmp but uses pretty JSON formatting
.
4005 DEF("mon", HAS_ARG
, QEMU_OPTION_mon
, \
4006 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL
)
4008 ``
-mon
[chardev
=]name
[,mode
=readline|control
][,pretty
[=on|off
]]``
4009 Setup monitor on chardev name
. ``mode
=control`` configures
4010 a QMP
monitor (a JSON RPC
-style protocol
) and it is not the
4011 same as HMP
, the human monitor that has a
"(qemu)" prompt
.
4012 ``pretty`` is only valid when ``mode
=control``
,
4013 turning on JSON pretty printing to ease
4014 human reading and debugging
.
4017 DEF("debugcon", HAS_ARG
, QEMU_OPTION_debugcon
, \
4018 "-debugcon dev redirect the debug console to char device 'dev'\n",
4022 Redirect the debug console to host device
dev (same devices as the
4023 serial port
). The debug console is an I
/O port which is typically
4024 port
0xe9; writing to that I
/O port sends output to
this device
. The
4025 default device is ``vc``
in graphical mode and ``stdio``
in non
4029 DEF("pidfile", HAS_ARG
, QEMU_OPTION_pidfile
, \
4030 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL
)
4033 Store the QEMU process PID
in file
. It is useful
if you launch QEMU
4037 DEF("singlestep", 0, QEMU_OPTION_singlestep
, \
4038 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL
)
4041 Run the emulation
in single step mode
.
4044 DEF("preconfig", 0, QEMU_OPTION_preconfig
, \
4045 "--preconfig pause QEMU before machine is initialized (experimental)\n",
4049 Pause QEMU
for interactive configuration before the machine is
4050 created
, which allows querying and configuring properties that will
4051 affect machine initialization
. Use QMP command
'x-exit-preconfig' to
4052 exit the preconfig state and move to the next
state (i
.e
. run guest
4053 if -S isn
't used or pause the second time if -S is used). This
4054 option is experimental.
4057 DEF("S", 0, QEMU_OPTION_S, \
4058 "-S freeze CPU at startup (use 'c
' to start execution)\n",
4062 Do not start CPU at startup (you must type 'c
' in the monitor).
4065 DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit,
4066 "-overcommit [mem-lock=on|off][cpu-pm=on|off]\n"
4067 " run qemu with overcommit hints\n"
4068 " mem-lock=on|off controls memory lock support (default: off)\n"
4069 " cpu-pm=on|off controls cpu power management (default: off)\n",
4072 ``-overcommit mem-lock=on|off``
4074 ``-overcommit cpu-pm=on|off``
4075 Run qemu with hints about host resource overcommit. The default is
4076 to assume that host overcommits all resources.
4078 Locking qemu and guest memory can be enabled via ``mem-lock=on``
4079 (disabled by default). This works when host memory is not
4080 overcommitted and reduces the worst-case latency for guest.
4082 Guest ability to manage power state of host cpus (increasing latency
4083 for other processes on the same host cpu, but decreasing latency for
4084 guest) can be enabled via ``cpu-pm=on`` (disabled by default). This
4085 works best when host CPU is not overcommitted. When used, host
4086 estimates of CPU cycle and power utilization will be incorrect, not
4087 taking into account guest idle time.
4090 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
4091 "-gdb dev accept gdb connection on 'dev
'. (QEMU defaults to starting\n"
4092 " the guest without waiting for gdb to connect; use -S too\n"
4093 " if you want it to not start execution.)\n",
4097 Accept a gdb connection on device dev (see the :ref:`GDB usage` chapter
4098 in the System Emulation Users Guide). Note that this option does not pause QEMU
4099 execution -- if you want QEMU to not start the guest until you
4100 connect with gdb and issue a ``continue`` command, you will need to
4101 also pass the ``-S`` option to QEMU.
4103 The most usual configuration is to listen on a local TCP socket::
4107 but you can specify other backends; UDP, pseudo TTY, or even stdio
4108 are all reasonable use cases. For example, a stdio connection
4109 allows you to start QEMU from within gdb and establish the
4110 connection via a pipe:
4114 (gdb) target remote | exec |qemu_system| -gdb stdio ...
4117 DEF("s", 0, QEMU_OPTION_s, \
4118 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
4122 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
4123 (see the :ref:`GDB usage` chapter in the System Emulation Users Guide).
4126 DEF("d", HAS_ARG, QEMU_OPTION_d, \
4127 "-d item1,... enable logging of specified items (use '-d help
' for a list of log items)\n",
4131 Enable logging of specified items. Use '-d help
' for a list of log
4135 DEF("D", HAS_ARG, QEMU_OPTION_D, \
4136 "-D logfile output log to logfile (default stderr)\n",
4140 Output log in logfile instead of to stderr
4143 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
4144 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
4147 ``-dfilter range1[,...]``
4148 Filter debug output to that relevant to a range of target addresses.
4149 The filter spec can be either start+size, start-size or start..end
4150 where start end and size are the addresses and sizes required. For
4155 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
4157 Will dump output for any code in the 0x1000 sized block starting at
4158 0x8000 and the 0x200 sized block starting at 0xffffffc000080000 and
4159 another 0x1000 sized block starting at 0xffffffc00005f000.
4162 DEF("seed", HAS_ARG, QEMU_OPTION_seed, \
4163 "-seed number seed the pseudo-random number generator\n",
4167 Force the guest to use a deterministic pseudo-random number
4168 generator, seeded with number. This does not affect crypto routines
4172 DEF("L", HAS_ARG, QEMU_OPTION_L, \
4173 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
4177 Set the directory for the BIOS, VGA BIOS and keymaps.
4179 To list all the data directories, use ``-L help``.
4182 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
4183 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
4186 Set the filename for the BIOS.
4189 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
4190 "-enable-kvm enable KVM full virtualization support\n",
4191 QEMU_ARCH_ARM | QEMU_ARCH_I386 | QEMU_ARCH_MIPS | QEMU_ARCH_PPC |
4192 QEMU_ARCH_RISCV | QEMU_ARCH_S390X)
4195 Enable KVM full virtualization support. This option is only
4196 available if KVM support is enabled when compiling.
4199 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
4200 "-xen-domid id specify xen guest domain id\n",
4201 QEMU_ARCH_ARM | QEMU_ARCH_I386)
4202 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
4203 "-xen-attach attach to existing xen domain\n"
4204 " libxl will use this when starting QEMU\n",
4205 QEMU_ARCH_ARM | QEMU_ARCH_I386)
4206 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
4207 "-xen-domid-restrict restrict set of available xen operations\n"
4208 " to specified domain id. (Does not affect\n"
4209 " xenpv machine type).\n",
4210 QEMU_ARCH_ARM | QEMU_ARCH_I386)
4213 Specify xen guest domain id (XEN only).
4216 Attach to existing xen domain. libxl will use this when starting
4217 QEMU (XEN only). Restrict set of available xen operations to
4218 specified domain id (XEN only).
4221 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
4222 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
4225 Exit instead of rebooting.
4228 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
4229 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
4232 Don't exit QEMU on guest shutdown
, but instead only stop the
4233 emulation
. This allows
for instance switching to monitor to commit
4234 changes to the disk image
.
4237 DEF("action", HAS_ARG
, QEMU_OPTION_action
,
4238 "-action reboot=reset|shutdown\n"
4239 " action when guest reboots [default=reset]\n"
4240 "-action shutdown=poweroff|pause\n"
4241 " action when guest shuts down [default=poweroff]\n"
4242 "-action panic=pause|shutdown|none\n"
4243 " action when guest panics [default=shutdown]\n"
4244 "-action watchdog=reset|shutdown|poweroff|inject-nmi|pause|debug|none\n"
4245 " action when watchdog fires [default=reset]\n",
4248 ``
-action event
=action``
4249 The action parameter serves to modify QEMU
's default behavior when
4250 certain guest events occur. It provides a generic method for specifying the
4251 same behaviors that are modified by the ``-no-reboot`` and ``-no-shutdown``
4256 ``-action panic=none``
4257 ``-action reboot=shutdown,shutdown=pause``
4258 ``-watchdog i6300esb -action watchdog=pause``
4262 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
4263 "-loadvm [tag|id]\n" \
4264 " start right away with a saved state (loadvm in monitor)\n",
4268 Start right away with a saved state (``loadvm`` in monitor)
4272 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
4273 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
4277 Daemonize the QEMU process after initialization. QEMU will not
4278 detach from standard IO until it is ready to receive connections on
4279 any of its devices. This option is a useful way for external
4280 programs to launch QEMU without having to cope with initialization
4284 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
4285 "-option-rom rom load a file, rom, into the option ROM space\n",
4288 ``-option-rom file``
4289 Load the contents of file as an option ROM. This option is useful to
4290 load things like EtherBoot.
4293 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
4294 "-rtc [base=utc|localtime|<datetime>][,clock=host|rt|vm][,driftfix=none|slew]\n" \
4295 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
4299 ``-rtc [base=utc|localtime|datetime][,clock=host|rt|vm][,driftfix=none|slew]``
4300 Specify ``base`` as ``utc`` or ``localtime`` to let the RTC start at
4301 the current UTC or local time, respectively. ``localtime`` is
4302 required for correct date in MS-DOS or Windows. To start at a
4303 specific point in time, provide datetime in the format
4304 ``2006-06-17T16:01:21`` or ``2006-06-17``. The default base is UTC.
4306 By default the RTC is driven by the host system time. This allows
4307 using of the RTC as accurate reference clock inside the guest,
4308 specifically if the host time is smoothly following an accurate
4309 external reference clock, e.g. via NTP. If you want to isolate the
4310 guest time from the host, you can set ``clock`` to ``rt`` instead,
4311 which provides a host monotonic clock if host support it. To even
4312 prevent the RTC from progressing during suspension, you can set
4313 ``clock`` to ``vm`` (virtual clock). '\ ``clock
=vm``\
' is
4314 recommended especially in icount mode in order to preserve
4315 determinism; however, note that in icount mode the speed of the
4316 virtual clock is variable and can in general differ from the host
4319 Enable ``driftfix`` (i386 targets only) if you experience time drift
4320 problems, specifically with Windows' ACPI HAL
. This option will
try
4321 to figure out how many timer interrupts were not processed by the
4322 Windows guest and will re
-inject them
.
4325 DEF("icount", HAS_ARG
, QEMU_OPTION_icount
, \
4326 "-icount [shift=N|auto][,align=on|off][,sleep=on|off][,rr=record|replay,rrfile=<filename>[,rrsnapshot=<snapshot>]]\n" \
4327 " enable virtual instruction counter with 2^N clock ticks per\n" \
4328 " instruction, enable aligning the host and virtual clocks\n" \
4329 " or disable real time cpu sleeping, and optionally enable\n" \
4330 " record-and-replay mode\n", QEMU_ARCH_ALL
)
4332 ``
-icount
[shift
=N|auto
][,align
=on|off
][,sleep
=on|off
][,rr
=record|replay
,rrfile
=filename
[,rrsnapshot
=snapshot
]]``
4333 Enable virtual instruction counter
. The virtual cpu will execute one
4334 instruction every
2^N ns of virtual time
. If ``auto`` is specified
4335 then the virtual cpu speed will be automatically adjusted to keep
4336 virtual time within a few seconds of real time
.
4338 Note that
while this option can give deterministic behavior
, it does
4339 not provide cycle accurate emulation
. Modern CPUs contain
4340 superscalar out of order cores with complex cache hierarchies
. The
4341 number of instructions executed often has little or no correlation
4342 with actual performance
.
4344 When the virtual cpu is sleeping
, the virtual time will advance at
4345 default speed unless ``sleep
=on`` is specified
. With
4346 ``sleep
=on``
, the virtual time will jump to the next timer
4347 deadline instantly whenever the virtual cpu goes to sleep mode and
4348 will not advance
if no timer is enabled
. This behavior gives
4349 deterministic execution times from the guest point of view
.
4350 The
default if icount is enabled is ``sleep
=off``
.
4351 ``sleep
=on`` cannot be used together with either ``shift
=auto``
4354 ``align
=on`` will activate the delay algorithm which will
try to
4355 synchronise the host clock and the virtual clock
. The goal is to
4356 have a guest running at the real frequency imposed by the shift
4357 option
. Whenever the guest clock is behind the host clock and
if
4358 ``align
=on`` is specified then we print a message to the user to
4359 inform about the delay
. Currently
this option does not work when
4360 ``shift`` is ``auto``
. Note
: The sync algorithm will work
for those
4361 shift values
for which the guest clock runs ahead of the host clock
.
4362 Typically
this happens when the shift value is
high (how high
4363 depends on the host machine
). The
default if icount is enabled
4366 When the ``rr`` option is specified deterministic record
/replay is
4367 enabled
. The ``rrfile
=`` option must also be provided to
4368 specify the path to the replay log
. In record mode data is written
4369 to
this file
, and
in replay mode it is read back
.
4370 If the ``rrsnapshot`` option is given then it specifies a VM snapshot
4371 name
. In record mode
, a
new VM snapshot with the given name is created
4372 at the start of execution recording
. In replay mode
this option
4373 specifies the snapshot name used to load the initial VM state
.
4376 DEF("watchdog", HAS_ARG
, QEMU_OPTION_watchdog
, \
4377 "-watchdog model\n" \
4378 " enable virtual hardware watchdog [default=none]\n",
4382 Create a virtual hardware watchdog device
. Once
enabled (by a guest
4383 action
), the watchdog must be periodically polled by an agent inside
4384 the guest or
else the guest will be restarted
. Choose a model
for
4385 which your guest has drivers
.
4387 The model is the model of hardware watchdog to emulate
. Use
4388 ``
-watchdog help`` to list available hardware models
. Only one
4389 watchdog can be enabled
for a guest
.
4391 The following models may be available
:
4394 iBASE
700 is a very simple ISA watchdog with a single timer
.
4397 Intel
6300ESB I
/O controller hub is a much more featureful
4398 PCI
-based dual
-timer watchdog
.
4401 A virtual watchdog
for s390x backed by the diagnose
288
4402 hypercall (currently KVM only
).
4405 DEF("watchdog-action", HAS_ARG
, QEMU_OPTION_watchdog_action
, \
4406 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \
4407 " action when watchdog fires [default=reset]\n",
4410 ``
-watchdog
-action action``
4411 The action controls what QEMU will
do when the watchdog timer
4412 expires
. The
default is ``reset``
(forcefully reset the guest
).
4413 Other possible actions are
: ``shutdown``
(attempt to gracefully
4414 shutdown the guest
), ``poweroff``
(forcefully poweroff the guest
),
4415 ``inject
-nmi``
(inject a NMI into the guest
), ``pause``
(pause the
4416 guest
), ``debug``
(print a debug message and
continue), or ``none``
4419 Note that the ``shutdown`` action requires that the guest responds
4420 to ACPI signals
, which it may not be able to
do in the sort of
4421 situations where the watchdog would have expired
, and thus
4422 ``
-watchdog
-action shutdown`` is not recommended
for production use
.
4426 ``
-watchdog i6300esb
-watchdog
-action pause``
; \ ``
-watchdog ib700``
4430 DEF("echr", HAS_ARG
, QEMU_OPTION_echr
, \
4431 "-echr chr set terminal escape character instead of ctrl-a\n",
4434 ``
-echr numeric_ascii_value``
4435 Change the escape character used
for switching to the monitor when
4436 using monitor and serial sharing
. The
default is ``
0x01`` when
using
4437 the ``
-nographic`` option
. ``
0x01`` is equal to pressing
4438 ``Control
-a``
. You can select a different character from the ascii
4439 control keys where
1 through
26 map to Control
-a through Control
-z
.
4440 For instance you could use the either of the following to change the
4441 escape character to Control
-t
.
4443 ``
-echr
0x14``
; \ ``
-echr
20``
4447 DEF("incoming", HAS_ARG
, QEMU_OPTION_incoming
, \
4448 "-incoming tcp:[host]:port[,to=maxport][,ipv4=on|off][,ipv6=on|off]\n" \
4449 "-incoming rdma:host:port[,ipv4=on|off][,ipv6=on|off]\n" \
4450 "-incoming unix:socketpath\n" \
4451 " prepare for incoming migration, listen on\n" \
4452 " specified protocol and socket address\n" \
4453 "-incoming fd:fd\n" \
4454 "-incoming exec:cmdline\n" \
4455 " accept incoming migration on given file descriptor\n" \
4456 " or from given external command\n" \
4457 "-incoming defer\n" \
4458 " wait for the URI to be specified via migrate_incoming\n",
4461 ``
-incoming tcp
:[host
]:port
[,to
=maxport
][,ipv4
=on|off
][,ipv6
=on|off
]``
4463 ``
-incoming rdma
:host
:port
[,ipv4
=on|off
][,ipv6
=on|off
]``
4464 Prepare
for incoming migration
, listen on a given tcp port
.
4466 ``
-incoming unix
:socketpath``
4467 Prepare
for incoming migration
, listen on a given unix socket
.
4470 Accept incoming migration from a given filedescriptor
.
4472 ``
-incoming exec
:cmdline``
4473 Accept incoming migration as an output from specified external
4477 Wait
for the URI to be specified via migrate\_incoming
. The monitor
4478 can be used to change
settings (such as migration parameters
) prior
4479 to issuing the migrate\_incoming to allow the migration to begin
.
4482 DEF("only-migratable", 0, QEMU_OPTION_only_migratable
, \
4483 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL
)
4485 ``
-only
-migratable``
4486 Only allow migratable devices
. Devices will not be allowed to enter
4487 an unmigratable state
.
4490 DEF("nodefaults", 0, QEMU_OPTION_nodefaults
, \
4491 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL
)
4494 Don
't create default devices. Normally, QEMU sets the default
4495 devices like serial port, parallel port, virtual console, monitor
4496 device, VGA adapter, floppy and CD-ROM drive and others. The
4497 ``-nodefaults`` option will disable all those default devices.
4501 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
4502 "-chroot dir chroot to dir just before starting the VM\n",
4507 Immediately before starting guest execution, chroot to the specified
4508 directory. Especially useful in combination with -runas.
4512 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
4513 "-runas user change to user id user just before starting the VM\n" \
4514 " user can be numeric uid:gid instead\n",
4519 Immediately before starting guest execution, drop root privileges,
4520 switching to the specified user.
4523 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
4524 "-prom-env variable=value\n"
4525 " set OpenBIOS nvram variables\n",
4526 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
4528 ``-prom-env variable=value``
4529 Set OpenBIOS nvram variable to given value (PPC, SPARC only).
4533 qemu-system-sparc -prom-env 'auto
-boot?
=false' \
4534 -prom-env 'boot
-device
=sd(0,2,0):d
' -prom-env 'boot
-args
=linux single
'
4538 qemu-system-ppc -prom-env 'auto
-boot?
=false' \
4539 -prom-env 'boot
-device
=hd
:2,\yaboot
' \
4540 -prom-env 'boot
-args
=conf
=hd
:2,\yaboot
.conf
'
4542 DEF("semihosting", 0, QEMU_OPTION_semihosting,
4543 "-semihosting semihosting mode\n",
4544 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA |
4545 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2 | QEMU_ARCH_RISCV)
4548 Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios II, RISC-V only).
4550 Note that this allows guest direct access to the host filesystem, so
4551 should only be used with a trusted guest OS.
4553 See the -semihosting-config option documentation for further
4554 information about the facilities this enables.
4556 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
4557 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]\n" \
4558 " semihosting configuration\n",
4559 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA |
4560 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2 | QEMU_ARCH_RISCV)
4562 ``-semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]``
4563 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios II, RISC-V
4566 Note that this allows guest direct access to the host filesystem, so
4567 should only be used with a trusted guest OS.
4569 On Arm this implements the standard semihosting API, version 2.0.
4571 On M68K this implements the "ColdFire GDB" interface used by
4574 Xtensa semihosting provides basic file IO calls, such as
4575 open/read/write/seek/select. Tensilica baremetal libc for ISS and
4576 linux platform "sim" use this interface.
4578 On RISC-V this implements the standard semihosting API, version 0.2.
4580 ``target=native|gdb|auto``
4581 Defines where the semihosting calls will be addressed, to QEMU
4582 (``native``) or to GDB (``gdb``). The default is ``auto``, which
4583 means ``gdb`` during debug sessions and ``native`` otherwise.
4586 Send the output to a chardev backend output for native or auto
4587 output when not in gdb
4589 ``arg=str1,arg=str2,...``
4590 Allows the user to pass input arguments, and can be used
4591 multiple times to build up a list. The old-style
4592 ``-kernel``/``-append`` method of passing a command line is
4593 still supported for backward compatibility. If both the
4594 ``--semihosting-config arg`` and the ``-kernel``/``-append`` are
4595 specified, the former is passed to semihosting as it always
4598 DEF("old-param", 0, QEMU_OPTION_old_param,
4599 "-old-param old param mode\n", QEMU_ARCH_ARM)
4602 Old param mode (ARM only).
4605 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
4606 "-sandbox on[,obsolete=allow|deny][,elevateprivileges=allow|deny|children]\n" \
4607 " [,spawn=allow|deny][,resourcecontrol=allow|deny]\n" \
4608 " Enable seccomp mode 2 system call filter (default 'off
').\n" \
4609 " use 'obsolete
' to allow obsolete system calls that are provided\n" \
4610 " by the kernel, but typically no longer used by modern\n" \
4611 " C library implementations.\n" \
4612 " use 'elevateprivileges
' to allow or deny the QEMU process ability\n" \
4613 " to elevate privileges using set*uid|gid system calls.\n" \
4614 " The value 'children
' will deny set*uid|gid system calls for\n" \
4615 " main QEMU process but will allow forks and execves to run unprivileged\n" \
4616 " use 'spawn
' to avoid QEMU to spawn new threads or processes by\n" \
4617 " blocking *fork and execve\n" \
4618 " use 'resourcecontrol
' to disable process affinity and schedular priority\n",
4621 ``-sandbox arg[,obsolete=string][,elevateprivileges=string][,spawn=string][,resourcecontrol=string]``
4622 Enable Seccomp mode 2 system call filter. 'on
' will enable syscall
4623 filtering and 'off
' will disable it. The default is 'off
'.
4626 Enable Obsolete system calls
4628 ``elevateprivileges=string``
4629 Disable set\*uid\|gid system calls
4632 Disable \*fork and execve
4634 ``resourcecontrol=string``
4635 Disable process affinity and schedular priority
4638 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
4639 "-readconfig <file>\n"
4640 " read config file\n", QEMU_ARCH_ALL)
4642 ``-readconfig file``
4643 Read device configuration from file. This approach is useful when
4644 you want to spawn QEMU process with many command line options but
4645 you don't want to exceed the command line character limit
.
4648 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig
,
4650 " do not load default user-provided config files at startup\n",
4654 The ``
-no
-user
-config`` option makes QEMU not load any of the
4655 user
-provided config files on sysconfdir
.
4658 DEF("trace", HAS_ARG
, QEMU_OPTION_trace
,
4659 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
4660 " specify tracing options\n",
4663 ``
-trace [[enable
=]pattern
][,events
=file
][,file
=file
]``
4664 .. include
:: ../qemu
-option
-trace.rst
.inc
4667 DEF("plugin", HAS_ARG
, QEMU_OPTION_plugin
,
4668 "-plugin [file=]<file>[,<argname>=<argvalue>]\n"
4672 ``
-plugin file
=file
[,argname
=argvalue
]``
4676 Load the given plugin from a shared library file
.
4678 ``argname
=argvalue``
4679 Argument passed to the plugin
. (Can be given multiple times
.)
4683 DEF("qtest", HAS_ARG
, QEMU_OPTION_qtest
, "", QEMU_ARCH_ALL
)
4684 DEF("qtest-log", HAS_ARG
, QEMU_OPTION_qtest_log
, "", QEMU_ARCH_ALL
)
4686 DEF("msg", HAS_ARG
, QEMU_OPTION_msg
,
4687 "-msg [timestamp[=on|off]][,guest-name=[on|off]]\n"
4688 " control error message format\n"
4689 " timestamp=on enables timestamps (default: off)\n"
4690 " guest-name=on enables guest name prefix but only if\n"
4691 " -name guest option is set (default: off)\n",
4694 ``
-msg
[timestamp
[=on|off
]][,guest
-name
[=on|off
]]``
4695 Control error message format
.
4697 ``timestamp
=on|off``
4698 Prefix messages with a timestamp
. Default is off
.
4700 ``guest
-name
=on|off``
4701 Prefix messages with guest name but only
if -name guest option is set
4702 otherwise the option is ignored
. Default is off
.
4705 DEF("dump-vmstate", HAS_ARG
, QEMU_OPTION_dump_vmstate
,
4706 "-dump-vmstate <file>\n"
4707 " Output vmstate information in JSON format to file.\n"
4708 " Use the scripts/vmstate-static-checker.py file to\n"
4709 " check for possible regressions in migration code\n"
4710 " by comparing two such vmstate dumps.\n",
4713 ``
-dump
-vmstate file``
4714 Dump json
-encoded vmstate information
for current machine type to
4718 DEF("enable-sync-profile", 0, QEMU_OPTION_enable_sync_profile
,
4719 "-enable-sync-profile\n"
4720 " enable synchronization profiling\n",
4723 ``
-enable
-sync
-profile``
4724 Enable synchronization profiling
.
4729 DEFHEADING(Generic object creation
:)
4731 DEF("object", HAS_ARG
, QEMU_OPTION_object
,
4732 "-object TYPENAME[,PROP1=VALUE1,...]\n"
4733 " create a new object of type TYPENAME setting properties\n"
4734 " in the order they are specified. Note that the 'id'\n"
4735 " property must be set. These objects are placed in the\n"
4736 " '/objects' path.\n",
4739 ``
-object typename
[,prop1
=value1
,...]``
4740 Create a
new object of type typename setting properties
in the order
4741 they are specified
. Note that the
'id' property must be set
. These
4742 objects are placed
in the
'/objects' path
.
4744 ``
-object memory
-backend
-file
,id
=id
,size
=size
,mem
-path
=dir
,share
=on|off
,discard
-data
=on|off
,merge
=on|off
,dump
=on|off
,prealloc
=on|off
,host
-nodes
=host
-nodes
,policy
=default|preferred|bind|interleave
,align
=align
,readonly
=on|off``
4745 Creates a memory file backend object
, which can be used to back
4746 the guest RAM with huge pages
.
4748 The ``id`` parameter is a unique ID that will be used to
4749 reference
this memory region
in other parameters
, e
.g
. ``
-numa``
,
4750 ``
-device nvdimm``
, etc
.
4752 The ``size`` option provides the size of the memory region
, and
4753 accepts common suffixes
, e
.g
. ``
500M``
.
4755 The ``mem
-path`` provides the path to either a shared memory or
4756 huge page filesystem mount
.
4758 The ``share`` boolean option determines whether the memory
4759 region is marked as
private to QEMU
, or shared
. The latter
4760 allows a co
-operating external process to access the QEMU memory
4763 The ``share`` is also required
for pvrdma devices due to
4764 limitations
in the RDMA API provided by Linux
.
4766 Setting share
=on might affect the ability to configure NUMA
4767 bindings
for the memory backend under some circumstances
, see
4768 Documentation
/vm
/numa\_memory\_policy
.txt on the Linux kernel
4769 source tree
for additional details
.
4771 Setting the ``discard
-data`` boolean option to on indicates that
4772 file contents can be destroyed when QEMU exits
, to avoid
4773 unnecessarily flushing data to the backing file
. Note that
4774 ``discard
-data`` is only an optimization
, and QEMU might not
4775 discard file contents
if it aborts unexpectedly or is terminated
4778 The ``merge`` boolean option enables memory merge
, also known as
4779 MADV\_MERGEABLE
, so that Kernel Samepage Merging will consider
4780 the pages
for memory deduplication
.
4782 Setting the ``dump`` boolean option to off excludes the memory
4783 from core dumps
. This feature is also known as MADV\_DONTDUMP
.
4785 The ``prealloc`` boolean option enables memory preallocation
.
4787 The ``host
-nodes`` option binds the memory range to a list of
4790 The ``policy`` option sets the NUMA policy to one of the
4797 prefer the given host node list
for allocation
4800 restrict memory allocation to the given host node list
4803 interleave memory allocations across the given host node
4806 The ``align`` option specifies the base address alignment when
4807 QEMU
mmap(2) ``mem
-path``
, and accepts common suffixes
, eg
4808 ``
2M``
. Some backend store specified by ``mem
-path`` requires an
4809 alignment different than the
default one used by QEMU
, eg the
4810 device DAX
/dev
/dax0
.0 requires
2M alignment rather than
4K
. In
4811 such cases
, users can specify the required alignment via
this
4814 The ``pmem`` option specifies whether the backing file specified
4815 by ``mem
-path`` is
in host persistent memory that can be
4816 accessed
using the SNIA NVM programming
model (e
.g
. Intel
4817 NVDIMM
). If ``pmem`` is set to
'on', QEMU will take necessary
4818 operations to guarantee the persistence of its own writes to
4819 ``mem
-path``
(e
.g
. in vNVDIMM label emulation and live
4820 migration
). Also
, we will map the backend
-file with MAP\_SYNC
4821 flag
, which ensures the file metadata is
in sync
for
4822 ``mem
-path``
in case of host crash or a power failure
. MAP\_SYNC
4823 requires support from both the host
kernel (since Linux kernel
4824 4.15) and the filesystem of ``mem
-path`` mounted with DAX
4827 The ``readonly`` option specifies whether the backing file is opened
4828 read
-only or read
-write (default).
4830 ``
-object memory
-backend
-ram
,id
=id
,merge
=on|off
,dump
=on|off
,share
=on|off
,prealloc
=on|off
,size
=size
,host
-nodes
=host
-nodes
,policy
=default|preferred|bind|interleave``
4831 Creates a memory backend object
, which can be used to back the
4832 guest RAM
. Memory backend objects offer more control than the
4833 ``
-m`` option that is traditionally used to define guest RAM
.
4834 Please refer to ``memory
-backend
-file``
for a description of the
4837 ``
-object memory
-backend
-memfd
,id
=id
,merge
=on|off
,dump
=on|off
,share
=on|off
,prealloc
=on|off
,size
=size
,host
-nodes
=host
-nodes
,policy
=default|preferred|bind|interleave
,seal
=on|off
,hugetlb
=on|off
,hugetlbsize
=size``
4838 Creates an anonymous memory file backend object
, which allows
4839 QEMU to share the memory with an external
process (e
.g
. when
4840 using vhost
-user
). The memory is allocated with memfd and
4841 optional sealing
. (Linux only
)
4843 The ``seal`` option creates a sealed
-file
, that will block
4844 further resizing the
memory ('on' by
default).
4846 The ``hugetlb`` option specify the file to be created resides
in
4847 the hugetlbfs
filesystem (since Linux
4.14). Used
in conjunction
4848 with the ``hugetlb`` option
, the ``hugetlbsize`` option specify
4849 the hugetlb page size on systems that support multiple hugetlb
4850 page
sizes (it must be a power of
2 value supported by the
4853 In some versions of Linux
, the ``hugetlb`` option is
4854 incompatible with the ``seal``
option (requires at least Linux
4857 Please refer to ``memory
-backend
-file``
for a description of the
4860 The ``share`` boolean option is on by
default with memfd
.
4862 ``
-object rng
-builtin
,id
=id``
4863 Creates a random number generator backend which obtains entropy
4864 from QEMU builtin functions
. The ``id`` parameter is a unique ID
4865 that will be used to reference
this entropy backend from the
4866 ``virtio
-rng`` device
. By
default, the ``virtio
-rng`` device
4867 uses
this RNG backend
.
4869 ``
-object rng
-random
,id
=id
,filename
=/dev
/random``
4870 Creates a random number generator backend which obtains entropy
4871 from a device on the host
. The ``id`` parameter is a unique ID
4872 that will be used to reference
this entropy backend from the
4873 ``virtio
-rng`` device
. The ``filename`` parameter specifies
4874 which file to obtain entropy from and
if omitted defaults to
4877 ``
-object rng
-egd
,id
=id
,chardev
=chardevid``
4878 Creates a random number generator backend which obtains entropy
4879 from an external daemon running on the host
. The ``id``
4880 parameter is a unique ID that will be used to reference
this
4881 entropy backend from the ``virtio
-rng`` device
. The ``chardev``
4882 parameter is the unique ID of a character device backend that
4883 provides the connection to the RNG daemon
.
4885 ``
-object tls
-creds
-anon
,id
=id
,endpoint
=endpoint
,dir
=/path
/to
/cred
/dir
,verify
-peer
=on|off``
4886 Creates a TLS anonymous credentials object
, which can be used to
4887 provide TLS support on network backends
. The ``id`` parameter is
4888 a unique ID which network backends will use to access the
4889 credentials
. The ``endpoint`` is either ``server`` or ``client``
4890 depending on whether the QEMU network backend that uses the
4891 credentials will be acting as a client or as a server
. If
4892 ``verify
-peer`` is
enabled (the
default) then once the handshake
4893 is completed
, the peer credentials will be verified
, though
this
4894 is a no
-op
for anonymous credentials
.
4896 The dir parameter tells QEMU where to find the credential files
.
4897 For server endpoints
, this directory may contain a file
4898 dh
-params
.pem providing diffie
-hellman parameters to use
for the
4899 TLS server
. If the file is missing
, QEMU will generate a set of
4900 DH parameters at startup
. This is a computationally expensive
4901 operation that consumes random pool entropy
, so it is
4902 recommended that a persistent set of parameters be generated
4905 ``
-object tls
-creds
-psk
,id
=id
,endpoint
=endpoint
,dir
=/path
/to
/keys
/dir
[,username
=username
]``
4906 Creates a TLS Pre
-Shared
Keys (PSK
) credentials object
, which
4907 can be used to provide TLS support on network backends
. The
4908 ``id`` parameter is a unique ID which network backends will use
4909 to access the credentials
. The ``endpoint`` is either ``server``
4910 or ``client`` depending on whether the QEMU network backend that
4911 uses the credentials will be acting as a client or as a server
.
4912 For clients only
, ``username`` is the username which will be
4913 sent to the server
. If omitted it defaults to
"qemu".
4915 The dir parameter tells QEMU where to find the keys file
. It is
4916 called
"dir/keys.psk" and contains
"username:key" pairs
. This
4917 file can most easily be created
using the GnuTLS ``psktool``
4920 For server endpoints
, dir may also contain a file dh
-params
.pem
4921 providing diffie
-hellman parameters to use
for the TLS server
.
4922 If the file is missing
, QEMU will generate a set of DH
4923 parameters at startup
. This is a computationally expensive
4924 operation that consumes random pool entropy
, so it is
4925 recommended that a persistent set of parameters be generated up
4928 ``
-object tls
-creds
-x509
,id
=id
,endpoint
=endpoint
,dir
=/path
/to
/cred
/dir
,priority
=priority
,verify
-peer
=on|off
,passwordid
=id``
4929 Creates a TLS anonymous credentials object
, which can be used to
4930 provide TLS support on network backends
. The ``id`` parameter is
4931 a unique ID which network backends will use to access the
4932 credentials
. The ``endpoint`` is either ``server`` or ``client``
4933 depending on whether the QEMU network backend that uses the
4934 credentials will be acting as a client or as a server
. If
4935 ``verify
-peer`` is
enabled (the
default) then once the handshake
4936 is completed
, the peer credentials will be verified
. With x509
4937 certificates
, this implies that the clients must be provided
4938 with valid client certificates too
.
4940 The dir parameter tells QEMU where to find the credential files
.
4941 For server endpoints
, this directory may contain a file
4942 dh
-params
.pem providing diffie
-hellman parameters to use
for the
4943 TLS server
. If the file is missing
, QEMU will generate a set of
4944 DH parameters at startup
. This is a computationally expensive
4945 operation that consumes random pool entropy
, so it is
4946 recommended that a persistent set of parameters be generated
4949 For x509 certificate credentials the directory will contain
4950 further files providing the x509 certificates
. The certificates
4951 must be stored
in PEM format
, in filenames ca
-cert
.pem
,
4952 ca
-crl
.pem (optional
), server
-cert
.pem (only servers
),
4953 server
-key
.pem (only servers
), client
-cert
.pem (only clients
),
4954 and client
-key
.pem (only clients
).
4956 For the server
-key
.pem and client
-key
.pem files which contain
4957 sensitive
private keys
, it is possible to use an encrypted
4958 version by providing the passwordid parameter
. This provides the
4959 ID of a previously created ``secret`` object containing the
4960 password
for decryption
.
4962 The priority parameter allows to
override the global
default
4963 priority used by gnutls
. This can be useful
if the system
4964 administrator needs to use a weaker set of crypto priorities
for
4965 QEMU without potentially forcing the weakness onto all
4966 applications
. Or conversely
if one wants wants a stronger
4967 default for QEMU than
for all other applications
, they can
do
4968 this through
this parameter
. Its format is a gnutls priority
4969 string as described at
4970 https
://gnutls.org/manual/html_node/Priority-Strings.html.
4972 ``
-object tls
-cipher
-suites
,id
=id
,priority
=priority``
4973 Creates a TLS cipher suites object
, which can be used to control
4974 the TLS cipher
/protocol algorithms that applications are permitted
4977 The ``id`` parameter is a unique ID which frontends will use to
4978 access the ordered list of permitted TLS cipher suites from the
4981 The ``priority`` parameter allows to
override the global
default
4982 priority used by gnutls
. This can be useful
if the system
4983 administrator needs to use a weaker set of crypto priorities
for
4984 QEMU without potentially forcing the weakness onto all
4985 applications
. Or conversely
if one wants wants a stronger
4986 default for QEMU than
for all other applications
, they can
do
4987 this through
this parameter
. Its format is a gnutls priority
4988 string as described at
4989 https
://gnutls.org/manual/html_node/Priority-Strings.html.
4991 An example of use of
this object is to control UEFI HTTPS Boot
.
4992 The tls
-cipher
-suites object exposes the ordered list of permitted
4993 TLS cipher suites from the host side to the guest firmware
, via
4994 fw_cfg
. The list is represented as an array of IANA_TLS_CIPHER
4995 objects
. The firmware uses the IANA_TLS_CIPHER array
for configuring
4998 In the following example
, the priority at which the host
-side policy
4999 is retrieved is given by the ``priority`` property
.
5000 Given that QEMU uses GNUTLS
, ``priority
=@SYSTEM`` may be used to
5001 refer to
/etc
/crypto
-policies
/back
-ends
/gnutls
.config
.
5006 -object tls
-cipher
-suites
,id
=mysuite0
,priority
=@SYSTEM
\\
5007 -fw_cfg name
=etc
/edk2
/https
/ciphers
,gen_id
=mysuite0
5009 ``
-object filter
-buffer
,id
=id
,netdev
=netdevid
,interval
=t
[,queue
=all|rx|tx
][,status
=on|off
][,position
=head|tail|id
=<id
>][,insert
=behind|before
]``
5010 Interval t can
't be 0, this filter batches the packet delivery:
5011 all packets arriving in a given interval on netdev netdevid are
5012 delayed until the end of the interval. Interval is in
5013 microseconds. ``status`` is optional that indicate whether the
5014 netfilter is on (enabled) or off (disabled), the default status
5015 for netfilter will be 'on
'.
5017 queue all\|rx\|tx is an option that can be applied to any
5020 ``all``: the filter is attached both to the receive and the
5021 transmit queue of the netdev (default).
5023 ``rx``: the filter is attached to the receive queue of the
5024 netdev, where it will receive packets sent to the netdev.
5026 ``tx``: the filter is attached to the transmit queue of the
5027 netdev, where it will receive packets sent by the netdev.
5029 position head\|tail\|id=<id> is an option to specify where the
5030 filter should be inserted in the filter list. It can be applied
5033 ``head``: the filter is inserted at the head of the filter list,
5034 before any existing filters.
5036 ``tail``: the filter is inserted at the tail of the filter list,
5037 behind any existing filters (default).
5039 ``id=<id>``: the filter is inserted before or behind the filter
5040 specified by <id>, see the insert option below.
5042 insert behind\|before is an option to specify where to insert
5043 the new filter relative to the one specified with
5044 position=id=<id>. It can be applied to any netfilter.
5046 ``before``: insert before the specified filter.
5048 ``behind``: insert behind the specified filter (default).
5050 ``-object filter-mirror,id=id,netdev=netdevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support][,position=head|tail|id=<id>][,insert=behind|before]``
5051 filter-mirror on netdev netdevid,mirror net packet to
5052 chardevchardevid, if it has the vnet\_hdr\_support flag,
5053 filter-mirror will mirror packet with vnet\_hdr\_len.
5055 ``-object filter-redirector,id=id,netdev=netdevid,indev=chardevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support][,position=head|tail|id=<id>][,insert=behind|before]``
5056 filter-redirector on netdev netdevid,redirect filter's net
5057 packet to chardev chardevid
,and redirect indev
's packet to
5058 filter.if it has the vnet\_hdr\_support flag, filter-redirector
5059 will redirect packet with vnet\_hdr\_len. Create a
5060 filter-redirector we need to differ outdev id from indev id, id
5061 can not be the same. we can just use indev or outdev, but at
5062 least one of indev or outdev need to be specified.
5064 ``-object filter-rewriter,id=id,netdev=netdevid,queue=all|rx|tx,[vnet_hdr_support][,position=head|tail|id=<id>][,insert=behind|before]``
5065 Filter-rewriter is a part of COLO project.It will rewrite tcp
5066 packet to secondary from primary to keep secondary tcp
5067 connection,and rewrite tcp packet to primary from secondary make
5068 tcp packet can be handled by client.if it has the
5069 vnet\_hdr\_support flag, we can parse packet with vnet header.
5071 usage: colo secondary: -object
5072 filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0 -object
5073 filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1 -object
5074 filter-rewriter,id=rew0,netdev=hn0,queue=all
5076 ``-object filter-dump,id=id,netdev=dev[,file=filename][,maxlen=len][,position=head|tail|id=<id>][,insert=behind|before]``
5077 Dump the network traffic on netdev dev to the file specified by
5078 filename. At most len bytes (64k by default) per packet are
5079 stored. The file format is libpcap, so it can be analyzed with
5080 tools such as tcpdump or Wireshark.
5082 ``-object colo-compare,id=id,primary_in=chardevid,secondary_in=chardevid,outdev=chardevid,iothread=id[,vnet_hdr_support][,notify_dev=id][,compare_timeout=@var{ms}][,expired_scan_cycle=@var{ms}][,max_queue_size=@var{size}]``
5083 Colo-compare gets packet from primary\_in chardevid and
5084 secondary\_in, then compare whether the payload of primary packet
5085 and secondary packet are the same. If same, it will output
5086 primary packet to out\_dev, else it will notify COLO-framework to do
5087 checkpoint and send primary packet to out\_dev. In order to
5088 improve efficiency, we need to put the task of comparison in
5089 another iothread. If it has the vnet\_hdr\_support flag,
5090 colo compare will send/recv packet with vnet\_hdr\_len.
5091 The compare\_timeout=@var{ms} determines the maximum time of the
5092 colo-compare hold the packet. The expired\_scan\_cycle=@var{ms}
5093 is to set the period of scanning expired primary node network packets.
5094 The max\_queue\_size=@var{size} is to set the max compare queue
5095 size depend on user environment.
5096 If user want to use Xen COLO, need to add the notify\_dev to
5097 notify Xen colo-frame to do checkpoint.
5099 COLO-compare must be used with the help of filter-mirror,
5100 filter-redirector and filter-rewriter.
5107 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
5108 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
5109 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server=on,wait=off
5110 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server=on,wait=off
5111 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server=on,wait=off
5112 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
5113 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server=on,wait=off
5114 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
5115 -object iothread,id=iothread1
5116 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
5117 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
5118 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
5119 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,iothread=iothread1
5122 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
5123 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
5124 -chardev socket,id=red0,host=3.3.3.3,port=9003
5125 -chardev socket,id=red1,host=3.3.3.3,port=9004
5126 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
5127 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
5133 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
5134 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
5135 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server=on,wait=off
5136 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server=on,wait=off
5137 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server=on,wait=off
5138 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
5139 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server=on,wait=off
5140 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
5141 -chardev socket,id=notify_way,host=3.3.3.3,port=9009,server=on,wait=off
5142 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
5143 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
5144 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
5145 -object iothread,id=iothread1
5146 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,notify_dev=nofity_way,iothread=iothread1
5149 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
5150 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
5151 -chardev socket,id=red0,host=3.3.3.3,port=9003
5152 -chardev socket,id=red1,host=3.3.3.3,port=9004
5153 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
5154 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
5156 If you want to know the detail of above command line, you can
5157 read the colo-compare git log.
5159 ``-object cryptodev-backend-builtin,id=id[,queues=queues]``
5160 Creates a cryptodev backend which executes crypto opreation from
5161 the QEMU cipher APIS. The id parameter is a unique ID that will
5162 be used to reference this cryptodev backend from the
5163 ``virtio-crypto`` device. The queues parameter is optional,
5164 which specify the queue number of cryptodev backend, the default
5171 -object cryptodev-backend-builtin,id=cryptodev0 \\
5172 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \\
5175 ``-object cryptodev-vhost-user,id=id,chardev=chardevid[,queues=queues]``
5176 Creates a vhost-user cryptodev backend, backed by a chardev
5177 chardevid. The id parameter is a unique ID that will be used to
5178 reference this cryptodev backend from the ``virtio-crypto``
5179 device. The chardev should be a unix domain socket backed one.
5180 The vhost-user uses a specifically defined protocol to pass
5181 vhost ioctl replacement messages to an application on the other
5182 end of the socket. The queues parameter is optional, which
5183 specify the queue number of cryptodev backend for multiqueue
5184 vhost-user, the default of queues is 1.
5190 -chardev socket,id=chardev0,path=/path/to/socket \\
5191 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \\
5192 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \\
5195 ``-object secret,id=id,data=string,format=raw|base64[,keyid=secretid,iv=string]``
5197 ``-object secret,id=id,file=filename,format=raw|base64[,keyid=secretid,iv=string]``
5198 Defines a secret to store a password, encryption key, or some
5199 other sensitive data. The sensitive data can either be passed
5200 directly via the data parameter, or indirectly via the file
5201 parameter. Using the data parameter is insecure unless the
5202 sensitive data is encrypted.
5204 The sensitive data can be provided in raw format (the default),
5205 or base64. When encoded as JSON, the raw format only supports
5206 valid UTF-8 characters, so base64 is recommended for sending
5207 binary data. QEMU will convert from which ever format is
5208 provided to the format it needs internally. eg, an RBD password
5209 can be provided in raw format, even though it will be base64
5210 encoded when passed onto the RBD sever.
5212 For added protection, it is possible to encrypt the data
5213 associated with a secret using the AES-256-CBC cipher. Use of
5214 encryption is indicated by providing the keyid and iv
5215 parameters. The keyid parameter provides the ID of a previously
5216 defined secret that contains the AES-256 decryption key. This
5217 key should be 32-bytes long and be base64 encoded. The iv
5218 parameter provides the random initialization vector used for
5219 encryption of this particular secret and should be a base64
5220 encrypted string of the 16-byte IV.
5222 The simplest (insecure) usage is to provide the secret inline
5226 # |qemu_system| -object secret,id=sec0,data=letmein,format=raw
5228 The simplest secure usage is to provide the secret via a file
5230 # printf "letmein" > mypasswd.txt # QEMU\_SYSTEM\_MACRO -object
5231 secret,id=sec0,file=mypasswd.txt,format=raw
5233 For greater security, AES-256-CBC should be used. To illustrate
5234 usage, consider the openssl command line tool which can encrypt
5235 the data. Note that when encrypting, the plaintext must be
5236 padded to the cipher block size (32 bytes) using the standard
5237 PKCS#5/6 compatible padding algorithm.
5239 First a master key needs to be created in base64 encoding:
5243 # openssl rand -base64 32 > key.b64
5244 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
5246 Each secret to be encrypted needs to have a random
5247 initialization vector generated. These do not need to be kept
5252 # openssl rand -base64 16 > iv.b64
5253 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
5255 The secret to be defined can now be encrypted, in this case
5256 we're telling openssl to base64 encode the result
, but it could
5257 be left as raw bytes
if desired
.
5261 # SECRET
=$
(printf
"letmein" |
5262 openssl enc
-aes
-256-cbc
-a
-K $KEY
-iv $IV
)
5264 When launching QEMU
, create a master secret pointing to
5265 ``key
.b64`` and specify that to be used to decrypt the user
5266 password
. Pass the contents of ``iv
.b64`` to the second secret
5271 -object secret
,id
=secmaster0
,format
=base64
,file
=key
.b64
\\
5272 -object secret
,id
=sec0
,keyid
=secmaster0
,format
=base64
,\\
5273 data
=$SECRET
,iv
=$
(<iv
.b64
)
5275 ``
-object sev
-guest
,id
=id
,cbitpos
=cbitpos
,reduced
-phys
-bits
=val
,[sev
-device
=string
,policy
=policy
,handle
=handle
,dh
-cert
-file
=file
,session
-file
=file
,kernel
-hashes
=on|off
]``
5276 Create a Secure Encrypted
Virtualization (SEV
) guest object
,
5277 which can be used to provide the guest memory encryption support
5280 When memory encryption is enabled
, one of the physical address
5281 bit (aka the C
-bit
) is utilized to mark
if a memory page is
5282 protected
. The ``cbitpos`` is used to provide the C
-bit
5283 position
. The C
-bit position is Host family dependent hence user
5284 must provide
this value
. On EPYC
, the value should be
47.
5286 When memory encryption is enabled
, we loose certain bits
in
5287 physical address space
. The ``reduced
-phys
-bits`` is used to
5288 provide the number of bits we loose
in physical address space
.
5289 Similar to C
-bit
, the value is Host family dependent
. On EPYC
,
5290 the value should be
5.
5292 The ``sev
-device`` provides the device file to use
for
5293 communicating with the SEV firmware running inside AMD Secure
5294 Processor
. The
default device is
'/dev/sev'. If hardware
5295 supports memory encryption then
/dev
/sev devices are created by
5298 The ``policy`` provides the guest policy to be enforced by the
5299 SEV firmware and restrict what configuration and operational
5300 commands can be performed on
this guest by the hypervisor
. The
5301 policy should be provided by the guest owner and is bound to the
5302 guest and cannot be changed throughout the lifetime of the
5303 guest
. The
default is
0.
5305 If guest ``policy`` allows sharing the key with another SEV
5306 guest then ``handle`` can be use to provide handle of the guest
5307 from which to share the key
.
5309 The ``dh
-cert
-file`` and ``session
-file`` provides the guest
5310 owner
's Public Diffie-Hillman key defined in SEV spec. The PDH
5311 and session parameters are used for establishing a cryptographic
5312 session with the guest owner to negotiate keys used for
5313 attestation. The file must be encoded in base64.
5315 The ``kernel-hashes`` adds the hashes of given kernel/initrd/
5316 cmdline to a designated guest firmware page for measured Linux
5317 boot with -kernel. The default is off. (Since 6.2)
5319 e.g to launch a SEV guest
5323 # |qemu_system_x86| \\
5325 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \\
5326 -machine ...,memory-encryption=sev0 \\
5329 ``-object authz-simple,id=id,identity=string``
5330 Create an authorization object that will control access to
5333 The ``identity`` parameter is identifies the user and its format
5334 depends on the network service that authorization object is
5335 associated with. For authorizing based on TLS x509 certificates,
5336 the identity must be the x509 distinguished name. Note that care
5337 must be taken to escape any commas in the distinguished name.
5339 An example authorization object to validate a x509 distinguished
5340 name would look like:
5346 -object 'authz
-simple
,id
=auth0
,identity
=CN
=laptop
.example
.com
,,O
=Example Org
,,L
=London
,,ST
=London
,,C
=GB
' \\
5349 Note the use of quotes due to the x509 distinguished name
5350 containing whitespace, and escaping of ','.
5352 ``-object authz-listfile,id=id,filename=path,refresh=on|off``
5353 Create an authorization object that will control access to
5356 The ``filename`` parameter is the fully qualified path to a file
5357 containing the access control list rules in JSON format.
5359 An example set of rules that match against SASL usernames might
5366 { "match": "fred", "policy": "allow", "format": "exact" },
5367 { "match": "bob", "policy": "allow", "format": "exact" },
5368 { "match": "danb", "policy": "deny", "format": "glob" },
5369 { "match": "dan*", "policy": "allow", "format": "exact" },
5374 When checking access the object will iterate over all the rules
5375 and the first rule to match will have its ``policy`` value
5376 returned as the result. If no rules match, then the default
5377 ``policy`` value is returned.
5379 The rules can either be an exact string match, or they can use
5380 the simple UNIX glob pattern matching to allow wildcards to be
5383 If ``refresh`` is set to true the file will be monitored and
5384 automatically reloaded whenever its content changes.
5386 As with the ``authz-simple`` object, the format of the identity
5387 strings being matched depends on the network service, but is
5388 usually a TLS x509 distinguished name, or a SASL username.
5390 An example authorization object to validate a SASL username
5397 -object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=on \\
5400 ``-object authz-pam,id=id,service=string``
5401 Create an authorization object that will control access to
5404 The ``service`` parameter provides the name of a PAM service to
5405 use for authorization. It requires that a file
5406 ``/etc/pam.d/service`` exist to provide the configuration for
5407 the ``account`` subsystem.
5409 An example authorization object to validate a TLS x509
5410 distinguished name would look like:
5416 -object authz-pam,id=auth0,service=qemu-vnc \\
5419 There would then be a corresponding config file for PAM at
5420 ``/etc/pam.d/qemu-vnc`` that contains:
5424 account requisite pam_listfile.so item=user sense=allow \
5425 file=/etc/qemu/vnc.allow
5427 Finally the ``/etc/qemu/vnc.allow`` file would contain the list
5428 of x509 distingished names that are permitted access
5432 CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB
5434 ``-object iothread,id=id,poll-max-ns=poll-max-ns,poll-grow=poll-grow,poll-shrink=poll-shrink,aio-max-batch=aio-max-batch``
5435 Creates a dedicated event loop thread that devices can be
5436 assigned to. This is known as an IOThread. By default device
5437 emulation happens in vCPU threads or the main event loop thread.
5438 This can become a scalability bottleneck. IOThreads allow device
5439 emulation and I/O to run on other host CPUs.
5441 The ``id`` parameter is a unique ID that will be used to
5442 reference this IOThread from ``-device ...,iothread=id``.
5443 Multiple devices can be assigned to an IOThread. Note that not
5444 all devices support an ``iothread`` parameter.
5446 The ``query-iothreads`` QMP command lists IOThreads and reports
5447 their thread IDs so that the user can configure host CPU
5450 IOThreads use an adaptive polling algorithm to reduce event loop
5451 latency. Instead of entering a blocking system call to monitor
5452 file descriptors and then pay the cost of being woken up when an
5453 event occurs, the polling algorithm spins waiting for events for
5454 a short time. The algorithm's
default parameters are suitable
5455 for many cases but can be adjusted based on knowledge of the
5456 workload and
/or host device latency
.
5458 The ``poll
-max
-ns`` parameter is the maximum number of
5459 nanoseconds to busy wait
for events
. Polling can be disabled by
5460 setting
this value to
0.
5462 The ``poll
-grow`` parameter is the multiplier used to increase
5463 the polling time when the algorithm detects it is missing events
5464 due to not polling long enough
.
5466 The ``poll
-shrink`` parameter is the divisor used to decrease
5467 the polling time when the algorithm detects it is spending too
5468 long polling without encountering events
.
5470 The ``aio
-max
-batch`` parameter is the maximum number of requests
5471 in a batch
for the AIO engine
, 0 means that the engine will use
5474 The IOThread parameters can be modified at run
-time
using the
5475 ``qom
-set``
command (where ``iothread1`` is the IOThread
's
5480 (qemu) qom-set /objects/iothread1 poll-max-ns 100000
5484 HXCOMM This is the last statement. Insert new options before this line!