1 HXCOMM Use
DEFHEADING() to define headings
in both help text and rST
.
2 HXCOMM Text between SRST and ERST is copied to the rST version and
3 HXCOMM discarded from C version
.
4 HXCOMM
DEF(option
, HAS_ARG
/0, opt_enum
, opt_help
, arch_mask
) is used to
5 HXCOMM construct option structures
, enums and help message
for specified
7 HXCOMM HXCOMM can be used
for comments
, discarded from both rST and C
.
9 DEFHEADING(Standard options
:)
11 DEF("help", 0, QEMU_OPTION_h
,
12 "-h or -help display this help and exit\n", QEMU_ARCH_ALL
)
18 DEF("version", 0, QEMU_OPTION_version
,
19 "-version display version information and exit\n", QEMU_ARCH_ALL
)
22 Display version information and exit
25 DEF("machine", HAS_ARG
, QEMU_OPTION_machine
, \
26 "-machine [type=]name[,prop[=value][,...]]\n"
27 " selects emulated machine ('-machine help' for list)\n"
28 " property accel=accel1[:accel2[:...]] selects accelerator\n"
29 " supported accelerators are kvm, xen, hax, hvf, whpx or tcg (default: tcg)\n"
30 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
31 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
32 " mem-merge=on|off controls memory merge support (default: on)\n"
33 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
34 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
35 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
36 " nvdimm=on|off controls NVDIMM support (default=off)\n"
37 " enforce-config-section=on|off enforce configuration section migration (default=off)\n"
38 " memory-encryption=@var{} memory encryption object to use (default=none)\n"
39 " hmat=on|off controls ACPI HMAT support (default=off)\n",
42 ``
-machine
[type
=]name
[,prop
=value
[,...]]``
43 Select the emulated machine by name
. Use ``
-machine help`` to list
46 For architectures which aim to support live migration compatibility
47 across releases
, each release will introduce a
new versioned machine
48 type
. For example
, the
2.8.0 release introduced machine types
49 "pc-i440fx-2.8" and
"pc-q35-2.8" for the x86\_64
/i686 architectures
.
51 To allow live migration of guests from QEMU version
2.8.0, to QEMU
52 version
2.9.0, the
2.9.0 version must support the
"pc-i440fx-2.8"
53 and
"pc-q35-2.8" machines too
. To allow users live migrating VMs to
54 skip multiple intermediate releases when upgrading
, new releases of
55 QEMU will support machine types from many previous versions
.
57 Supported machine properties are
:
59 ``accel
=accels1
[:accels2
[:...]]``
60 This is used to enable an accelerator
. Depending on the target
61 architecture
, kvm
, xen
, hax
, hvf
, whpx or tcg can be available
.
62 By
default, tcg is used
. If there is more than one accelerator
63 specified
, the next one is used
if the previous one fails to
66 ``vmport
=on|off|auto``
67 Enables emulation of VMWare IO port
, for vmmouse etc
. auto says
68 to select the value based on accel
. For accel
=xen the
default is
69 off otherwise the
default is on
.
71 ``dump
-guest
-core
=on|off``
72 Include guest memory
in a core dump
. The
default is on
.
75 Enables or disables memory merge support
. This feature
, when
76 supported by the host
, de
-duplicates identical memory pages
77 among VMs
instances (enabled by
default).
79 ``aes
-key
-wrap
=on|off``
80 Enables or disables AES key wrapping support on s390
-ccw hosts
.
81 This feature controls whether AES wrapping keys will be created
82 to allow execution of AES cryptographic functions
. The
default
85 ``dea
-key
-wrap
=on|off``
86 Enables or disables DEA key wrapping support on s390
-ccw hosts
.
87 This feature controls whether DEA wrapping keys will be created
88 to allow execution of DEA cryptographic functions
. The
default
92 Enables or disables NVDIMM support
. The
default is off
.
94 ``enforce
-config
-section
=on|off``
95 If ``enforce
-config
-section`` is set to on
, force migration code
96 to send configuration section even
if the machine
-type sets the
97 ``migration
.send
-configuration`` property to off
. NOTE
: this
98 parameter is deprecated
. Please use ``
-global``
99 ``migration
.send
-configuration``\
=on\|off instead
.
101 ``memory
-encryption
=``
102 Memory encryption object to use
. The
default is none
.
105 Enables or disables ACPI Heterogeneous Memory Attribute Table
106 (HMAT
) support
. The
default is off
.
109 HXCOMM Deprecated by
-machine
110 DEF("M", HAS_ARG
, QEMU_OPTION_M
, "", QEMU_ARCH_ALL
)
112 DEF("cpu", HAS_ARG
, QEMU_OPTION_cpu
,
113 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL
)
116 Select CPU
model (``
-cpu help``
for list and additional feature
120 DEF("accel", HAS_ARG
, QEMU_OPTION_accel
,
121 "-accel [accel=]accelerator[,prop[=value][,...]]\n"
122 " select accelerator (kvm, xen, hax, hvf, whpx or tcg; use 'help' for a list)\n"
123 " igd-passthru=on|off (enable Xen integrated Intel graphics passthrough, default=off)\n"
124 " kernel-irqchip=on|off|split controls accelerated irqchip support (default=on)\n"
125 " kvm-shadow-mem=size of KVM shadow MMU in bytes\n"
126 " tb-size=n (TCG translation block cache size)\n"
127 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL
)
129 ``
-accel name
[,prop
=value
[,...]]``
130 This is used to enable an accelerator
. Depending on the target
131 architecture
, kvm
, xen
, hax
, hvf
, whpx or tcg can be available
. By
132 default, tcg is used
. If there is more than one accelerator
133 specified
, the next one is used
if the previous one fails to
136 ``igd
-passthru
=on|off``
137 When Xen is
in use
, this option controls whether Intel
138 integrated graphics devices can be passed through to the guest
141 ``kernel
-irqchip
=on|off|split``
142 Controls KVM
in-kernel irqchip support
. The
default is full
143 acceleration of the interrupt controllers
. On x86
, split irqchip
144 reduces the kernel attack surface
, at a performance cost
for
145 non
-MSI interrupts
. Disabling the
in-kernel irqchip completely
146 is not recommended except
for debugging purposes
.
148 ``kvm
-shadow
-mem
=size``
149 Defines the size of the KVM shadow MMU
.
152 Controls the
size (in MiB
) of the TCG translation block cache
.
154 ``thread
=single|multi``
155 Controls number of TCG threads
. When the TCG is multi
-threaded
156 there will be one thread per vCPU therefor taking advantage of
157 additional host cores
. The
default is to enable multi
-threading
158 where both the back
-end and front
-ends support it and no
159 incompatible TCG features have been
enabled (e
.g
.
163 DEF("smp", HAS_ARG
, QEMU_OPTION_smp
,
164 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,dies=dies][,sockets=sockets]\n"
165 " set the number of CPUs to 'n' [default=1]\n"
166 " maxcpus= maximum number of total cpus, including\n"
167 " offline CPUs for hotplug, etc\n"
168 " cores= number of CPU cores on one socket (for PC, it's on one die)\n"
169 " threads= number of threads on one CPU core\n"
170 " dies= number of CPU dies on one socket (for PC only)\n"
171 " sockets= number of discrete sockets in the system\n",
174 ``
-smp
[cpus
=]n
[,cores
=cores
][,threads
=threads
][,dies
=dies
][,sockets
=sockets
][,maxcpus
=maxcpus
]``
175 Simulate an SMP system with n CPUs
. On the PC target
, up to
255 CPUs
176 are supported
. On Sparc32 target
, Linux limits the number of usable
177 CPUs to
4. For the PC target
, the number of cores per die
, the
178 number of threads per cores
, the number of dies per packages and the
179 total number of sockets can be specified
. Missing values will be
180 computed
. If any on the three values is given
, the total number of
181 CPUs n can be omitted
. maxcpus specifies the maximum number of
185 DEF("numa", HAS_ARG
, QEMU_OPTION_numa
,
186 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
187 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
188 "-numa dist,src=source,dst=destination,val=distance\n"
189 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n"
190 "-numa hmat-lb,initiator=node,target=node,hierarchy=memory|first-level|second-level|third-level,data-type=access-latency|read-latency|write-latency[,latency=lat][,bandwidth=bw]\n"
191 "-numa hmat-cache,node-id=node,size=size,level=level[,associativity=none|direct|complex][,policy=none|write-back|write-through][,line=size]\n",
194 ``
-numa node
[,mem
=size
][,cpus
=firstcpu
[-lastcpu
]][,nodeid
=node
][,initiator
=initiator
]``
196 ``
-numa node
[,memdev
=id
][,cpus
=firstcpu
[-lastcpu
]][,nodeid
=node
][,initiator
=initiator
]``
198 ``
-numa dist
,src
=source
,dst
=destination
,val
=distance``
200 ``
-numa cpu
,node
-id
=node
[,socket
-id
=x
][,core
-id
=y
][,thread
-id
=z
]``
202 ``
-numa hmat
-lb
,initiator
=node
,target
=node
,hierarchy
=hierarchy
,data
-type
=tpye
[,latency
=lat
][,bandwidth
=bw
]``
204 ``
-numa hmat
-cache
,node
-id
=node
,size
=size
,level
=level
[,associativity
=str
][,policy
=str
][,line
=size
]``
205 Define a NUMA node and assign RAM and VCPUs to it
. Set the NUMA
206 distance from a source node to a destination node
. Set the ACPI
207 Heterogeneous Memory Attributes
for the given nodes
.
209 Legacy VCPU assignment uses
'\ ``cpus``\ ' option where firstcpu and
210 lastcpu are CPU indexes
. Each
'\ ``cpus``\ ' option represent a
211 contiguous range of CPU
indexes (or a single VCPU
if lastcpu is
212 omitted
). A non
-contiguous set of VCPUs can be represented by
213 providing multiple
'\ ``cpus``\ ' options
. If
'\ ``cpus``\ ' is
214 omitted on all nodes
, VCPUs are automatically split between them
.
216 For example
, the following option assigns VCPUs
0, 1, 2 and
5 to a
221 -numa node
,cpus
=0-2,cpus
=5
223 '\ ``cpu``\ ' option is a
new alternative to
'\ ``cpus``\ ' option
224 which uses
'\ ``socket-id|core-id|thread-id``\ ' properties to
225 assign CPU objects to a node
using topology layout properties of
226 CPU
. The set of properties is machine specific
, and depends on used
227 machine type
/'\ ``smp``\ ' options
. It could be queried with
228 '\ ``hotpluggable-cpus``\ ' monitor command
. '\ ``node-id``\ '
229 property specifies node to which CPU object will be assigned
, it
's
230 required for node to be declared with '\ ``node``\
' option before
231 it's used with
'\ ``cpu``\ ' option
.
238 -smp
1,sockets
=2,maxcpus
=2 \
239 -numa node
,nodeid
=0 -numa node
,nodeid
=1 \
240 -numa cpu
,node
-id
=0,socket
-id
=0 -numa cpu
,node
-id
=1,socket
-id
=1
242 '\ ``mem``\ ' assigns a given RAM amount to a node
. '\ ``memdev``\ '
243 assigns RAM from a given memory backend device to a node
. If
244 '\ ``mem``\ ' and
'\ ``memdev``\ ' are omitted
in all nodes
, RAM is
245 split equally between them
.
247 '\ ``mem``\ ' and
'\ ``memdev``\ ' are mutually exclusive
.
248 Furthermore
, if one node uses
'\ ``memdev``\ ', all of them have to
251 '\ ``initiator``\ ' is an additional option that points to an
252 initiator NUMA node that has best
performance (the lowest latency or
253 largest bandwidth
) to
this NUMA node
. Note that
this option can be
254 set only when the machine property
'hmat' is set to
'on'.
256 Following example creates a machine with
2 NUMA nodes
, node
0 has
257 CPU
. node
1 has only memory
, and its initiator is node
0. Note that
258 because node
0 has CPU
, by
default the initiator of node
0 is itself
264 -m
2G
,slots
=2,maxmem
=4G \
265 -object memory
-backend
-ram
,size
=1G
,id
=m0 \
266 -object memory
-backend
-ram
,size
=1G
,id
=m1 \
267 -numa node
,nodeid
=0,memdev
=m0 \
268 -numa node
,nodeid
=1,memdev
=m1
,initiator
=0 \
269 -smp
2,sockets
=2,maxcpus
=2 \
270 -numa cpu
,node
-id
=0,socket
-id
=0 \
271 -numa cpu
,node
-id
=0,socket
-id
=1
273 source and destination are NUMA node IDs
. distance is the NUMA
274 distance from source to destination
. The distance from a node to
275 itself is always
10. If any pair of nodes is given a distance
, then
276 all pairs must be given distances
. Although
, when distances are only
277 given
in one direction
for each pair of nodes
, then the distances
in
278 the opposite directions are assumed to be the same
. If
, however
, an
279 asymmetrical pair of distances is given
for even one node pair
, then
280 all node pairs must be provided distance values
for both directions
,
281 even when they are symmetrical
. When a node is unreachable from
282 another node
, set the pair
's distance to 255.
284 Note that the -``numa`` option doesn't allocate any of the specified
285 resources
, it just assigns existing resources to NUMA nodes
. This
286 means that one still has to use the ``
-m``
, ``
-smp`` options to
287 allocate RAM and VCPUs respectively
.
289 Use
'\ ``hmat-lb``\ ' to set System Locality Latency and Bandwidth
290 Information between initiator and target NUMA nodes
in ACPI
291 Heterogeneous Attribute Memory
Table (HMAT
). Initiator NUMA node can
292 create memory requests
, usually it has one or more processors
.
293 Target NUMA node contains addressable memory
.
295 In
'\ ``hmat-lb``\ ' option
, node are NUMA node IDs
. hierarchy is
296 the memory hierarchy of the target NUMA node
: if hierarchy is
297 'memory', the structure represents the memory performance
; if
298 hierarchy is
'first-level\|second-level\|third-level', this
299 structure represents aggregated performance of memory side caches
300 for each domain
. type of
'data-type' is type of data represented by
301 this structure instance
: if 'hierarchy' is
'memory', 'data-type' is
302 'access\|read\|write' latency or
'access\|read\|write' bandwidth of
303 the target memory
; if 'hierarchy' is
304 'first-level\|second-level\|third-level', 'data-type' is
305 'access\|read\|write' hit latency or
'access\|read\|write' hit
306 bandwidth of the target memory side cache
.
308 lat is latency value
in nanoseconds
. bw is bandwidth value
, the
309 possible value and units are NUM
[M\|G\|T
], mean that the bandwidth
310 value are NUM byte per
second (or MB
/s
, GB
/s or TB
/s depending on
311 used suffix
). Note that
if latency or bandwidth value is
0, means
312 the corresponding latency or bandwidth information is not provided
.
314 In
'\ ``hmat-cache``\ ' option
, node
-id is the NUMA
-id of the memory
315 belongs
. size is the size of memory side cache
in bytes
. level is
316 the cache level described
in this structure
, note that the cache
317 level
0 should not be used with
'\ ``hmat-cache``\ ' option
.
318 associativity is the cache associativity
, the possible value is
319 'none/direct(direct-mapped)/complex(complex cache indexing)'. policy
320 is the write policy
. line is the cache Line size
in bytes
.
322 For example
, the following options describe
2 NUMA nodes
. Node
0 has
323 2 cpus and a ram
, node
1 has only a ram
. The processors
in node
0
324 access memory
in node
0 with access
-latency
5 nanoseconds
,
325 access
-bandwidth is
200 MB
/s
; The processors
in NUMA node
0 access
326 memory
in NUMA node
1 with access
-latency
10 nanoseconds
,
327 access
-bandwidth is
100 MB
/s
. And
for memory side cache information
,
328 NUMA node
0 and
1 both have
1 level memory cache
, size is
10KB
,
329 policy is write
-back
, the cache Line size is
8 bytes
:
335 -object memory
-backend
-ram
,size
=1G
,id
=m0 \
336 -object memory
-backend
-ram
,size
=1G
,id
=m1 \
338 -numa node
,nodeid
=0,memdev
=m0 \
339 -numa node
,nodeid
=1,memdev
=m1
,initiator
=0 \
340 -numa cpu
,node
-id
=0,socket
-id
=0 \
341 -numa cpu
,node
-id
=0,socket
-id
=1 \
342 -numa hmat
-lb
,initiator
=0,target
=0,hierarchy
=memory
,data
-type
=access
-latency
,latency
=5 \
343 -numa hmat
-lb
,initiator
=0,target
=0,hierarchy
=memory
,data
-type
=access
-bandwidth
,bandwidth
=200M \
344 -numa hmat
-lb
,initiator
=0,target
=1,hierarchy
=memory
,data
-type
=access
-latency
,latency
=10 \
345 -numa hmat
-lb
,initiator
=0,target
=1,hierarchy
=memory
,data
-type
=access
-bandwidth
,bandwidth
=100M \
346 -numa hmat
-cache
,node
-id
=0,size
=10K
,level
=1,associativity
=direct
,policy
=write
-back
,line
=8 \
347 -numa hmat
-cache
,node
-id
=1,size
=10K
,level
=1,associativity
=direct
,policy
=write
-back
,line
=8
350 DEF("add-fd", HAS_ARG
, QEMU_OPTION_add_fd
,
351 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
352 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL
)
354 ``
-add
-fd fd
=fd
,set
=set
[,opaque
=opaque
]``
355 Add a file descriptor to an fd set
. Valid options are
:
358 This option defines the file descriptor of which a duplicate is
359 added to fd set
. The file descriptor cannot be stdin
, stdout
, or
363 This option defines the ID of the fd set to add the file
367 This option defines a free
-form string that can be used to
370 You can open an image
using pre
-opened file descriptors from an fd
376 -add
-fd fd
=3,set
=2,opaque
="rdwr:/path/to/file" \
377 -add
-fd fd
=4,set
=2,opaque
="rdonly:/path/to/file" \
378 -drive file
=/dev
/fdset
/2,index
=0,media
=disk
381 DEF("set", HAS_ARG
, QEMU_OPTION_set
,
382 "-set group.id.arg=value\n"
383 " set <arg> parameter for item <id> of type <group>\n"
384 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL
)
386 ``
-set group
.id
.arg
=value``
387 Set parameter arg
for item id of type group
390 DEF("global", HAS_ARG
, QEMU_OPTION_global
,
391 "-global driver.property=value\n"
392 "-global driver=driver,property=property,value=value\n"
393 " set a global default for a driver property\n",
396 ``
-global driver
.prop
=value``
398 ``
-global driver
=driver
,property
=property
,value
=value``
399 Set
default value of driver
's property prop to value, e.g.:
403 |qemu_system_x86| -global ide-hd.physical_block_size=4096 disk-image.img
405 In particular, you can use this to set driver properties for devices
406 which are created automatically by the machine model. To create a
407 device which is not created automatically and set properties on it,
410 -global driver.prop=value is shorthand for -global
411 driver=driver,property=prop,value=value. The longhand syntax works
412 even when driver contains a dot.
415 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
416 "-boot [order=drives][,once=drives][,menu=on|off]\n"
417 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
418 " 'drives
': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
419 " 'sp_name
': the file's name that would be passed to bios as logo picture
, if menu
=on
\n"
420 " 'sp_time': the period that splash picture last
if menu
=on
, unit is ms
\n"
421 " 'rb_timeout': the timeout before guest reboot when boot failed
, unit is ms
\n",
424 ``-boot [order=drives][,once=drives][,menu=on|off][,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_timeout][,strict=on|off]``
425 Specify boot order drives as a string of drive letters. Valid drive
426 letters depend on the target architecture. The x86 PC uses: a, b
427 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p
428 (Etherboot from network adapter 1-4), hard disk boot is the default.
429 To apply a particular boot order only on the first startup, specify
430 it via ``once``. Note that the ``order`` or ``once`` parameter
431 should not be used together with the ``bootindex`` property of
432 devices, since the firmware implementations normally do not support
433 both at the same time.
435 Interactive boot menus/prompts can be enabled via ``menu=on`` as far
436 as firmware/BIOS supports them. The default is non-interactive boot.
438 A splash picture could be passed to bios, enabling user to show it
439 as logo, when option splash=sp\_name is given and menu=on, If
440 firmware/BIOS supports them. Currently Seabios for X86 system
441 support it. limitation: The splash file could be a jpeg file or a
442 BMP file in 24 BPP format(true color). The resolution should be
443 supported by the SVGA mode, so the recommended is 320x240, 640x480,
446 A timeout could be passed to bios, guest will pause for rb\_timeout
447 ms when boot failed, then reboot. If rb\_timeout is '-1', guest will
448 not reboot, qemu passes '-1' to bios by default. Currently Seabios
449 for X86 system support it.
451 Do strict boot via ``strict=on`` as far as firmware/BIOS supports
452 it. This only effects when boot priority is changed by bootindex
453 options. The default is non-strict boot.
457 # try to boot from network first, then from hard disk
458 |qemu_system_x86| -boot order=nc
459 # boot from CD-ROM first, switch back to default order after reboot
460 |qemu_system_x86| -boot once=d
461 # boot with a splash picture for 5 seconds.
462 |qemu_system_x86| -boot menu=on,splash=/root/boot.bmp,splash-time=5000
464 Note: The legacy format '-boot drives' is still supported but its
465 use is discouraged as it may be removed from future versions.
468 DEF("m
", HAS_ARG, QEMU_OPTION_m,
469 "-m
[size
=]megs
[,slots
=n
,maxmem
=size
]\n"
470 " configure guest RAM
\n"
471 " size
: initial amount of guest memory
\n"
472 " slots
: number of hotplug
slots (default: none
)\n"
473 " maxmem
: maximum amount of guest
memory (default: none
)\n"
474 "NOTE
: Some architectures might enforce a specific granularity
\n",
477 ``-m [size=]megs[,slots=n,maxmem=size]``
478 Sets guest startup RAM size to megs megabytes. Default is 128 MiB.
479 Optionally, a suffix of "M
" or "G
" can be used to signify a value in
480 megabytes or gigabytes respectively. Optional pair slots, maxmem
481 could be used to set amount of hotpluggable memory slots and maximum
482 amount of memory. Note that maxmem must be aligned to the page size.
484 For example, the following command-line sets the guest startup RAM
485 size to 1GB, creates 3 slots to hotplug additional memory and sets
486 the maximum memory the guest can reach to 4GB:
490 |qemu_system| -m 1G,slots=3,maxmem=4G
492 If slots and maxmem are not specified, memory hotplug won't be
493 enabled and the guest startup RAM will never increase.
496 DEF("mem
-path
", HAS_ARG, QEMU_OPTION_mempath,
497 "-mem
-path FILE provide backing storage
for guest RAM
\n", QEMU_ARCH_ALL)
500 Allocate guest RAM from a temporarily created file in path.
503 DEF("mem
-prealloc
", 0, QEMU_OPTION_mem_prealloc,
504 "-mem
-prealloc preallocate guest
memory (use with
-mem
-path
)\n",
508 Preallocate memory when using -mem-path.
511 DEF("k
", HAS_ARG, QEMU_OPTION_k,
512 "-k language use keyboard
layout (for example
'fr' for French
)\n",
516 Use keyboard layout language (for example ``fr`` for French). This
517 option is only needed where it is not easy to get raw PC keycodes
518 (e.g. on Macs, with some X11 servers or with a VNC or curses
519 display). You don't normally need to use it on PC/Linux or
522 The available layouts are:
526 ar de-ch es fo fr-ca hu ja mk no pt-br sv
527 da en-gb et fr fr-ch is lt nl pl ru th
528 de en-us fi fr-be hr it lv nl-be pt sl tr
530 The default is ``en-us``.
534 HXCOMM Deprecated by -audiodev
535 DEF("audio
-help
", 0, QEMU_OPTION_audio_help,
536 "-audio
-help show
-audiodev equivalent of the currently specified audio settings
\n",
540 Will show the -audiodev equivalent of the currently specified
541 (deprecated) environment variables.
544 DEF("audiodev
", HAS_ARG, QEMU_OPTION_audiodev,
545 "-audiodev
[driver
=]driver
,id
=id
[,prop
[=value
][,...]]\n"
546 " specifies the audio backend to use
\n"
547 " id
= identifier of the backend
\n"
548 " timer
-period
= timer period
in microseconds
\n"
549 " in|out
.mixing
-engine
= use mixing engine to mix streams inside QEMU
\n"
550 " in|out
.fixed
-settings
= use fixed settings
for host audio
\n"
551 " in|out
.frequency
= frequency to use with fixed settings
\n"
552 " in|out
.channels
= number of channels to use with fixed settings
\n"
553 " in|out
.format
= sample format to use with fixed settings
\n"
554 " valid values
: s8
, s16
, s32
, u8
, u16
, u32
, f32
\n"
555 " in|out
.voices
= number of voices to use
\n"
556 " in|out
.buffer
-length
= length of buffer
in microseconds
\n"
557 "-audiodev none
,id
=id
,[,prop
[=value
][,...]]\n"
558 " dummy driver that discards all output
\n"
559 #ifdef CONFIG_AUDIO_ALSA
560 "-audiodev alsa
,id
=id
[,prop
[=value
][,...]]\n"
561 " in|out
.dev
= name of the audio device to use
\n"
562 " in|out
.period
-length
= length of period
in microseconds
\n"
563 " in|out
.try-poll
= attempt to use poll mode
\n"
564 " threshold
= threshold (in microseconds
) when playback starts
\n"
566 #ifdef CONFIG_AUDIO_COREAUDIO
567 "-audiodev coreaudio
,id
=id
[,prop
[=value
][,...]]\n"
568 " in|out
.buffer
-count
= number of buffers
\n"
570 #ifdef CONFIG_AUDIO_DSOUND
571 "-audiodev dsound
,id
=id
[,prop
[=value
][,...]]\n"
572 " latency
= add extra latency to playback
in microseconds
\n"
574 #ifdef CONFIG_AUDIO_OSS
575 "-audiodev oss
,id
=id
[,prop
[=value
][,...]]\n"
576 " in|out
.dev
= path of the audio device to use
\n"
577 " in|out
.buffer
-count
= number of buffers
\n"
578 " in|out
.try-poll
= attempt to use poll mode
\n"
579 " try-mmap
= try using memory mapped access
\n"
580 " exclusive
= open device
in exclusive mode
\n"
581 " dsp
-policy
= set timing
policy (0..10), -1 to use fragment mode
\n"
583 #ifdef CONFIG_AUDIO_PA
584 "-audiodev pa
,id
=id
[,prop
[=value
][,...]]\n"
585 " server
= PulseAudio server address
\n"
586 " in|out
.name
= source
/sink device name
\n"
587 " in|out
.latency
= desired latency
in microseconds
\n"
589 #ifdef CONFIG_AUDIO_SDL
590 "-audiodev sdl
,id
=id
[,prop
[=value
][,...]]\n"
593 "-audiodev spice
,id
=id
[,prop
[=value
][,...]]\n"
595 "-audiodev wav
,id
=id
[,prop
[=value
][,...]]\n"
596 " path
= path of wav file to record
\n",
599 ``-audiodev [driver=]driver,id=id[,prop[=value][,...]]``
600 Adds a new audio backend driver identified by id. There are global
601 and driver specific properties. Some values can be set differently
602 for input and output, they're marked with ``in|out.``. You can set
603 the input's property with ``in.prop`` and the output's property with
604 ``out.prop``. For example:
608 -audiodev alsa,id=example,in.frequency=44110,out.frequency=8000
609 -audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified
611 NOTE: parameter validation is known to be incomplete, in many cases
612 specifying an invalid option causes QEMU to print an error message
613 and continue emulation without sound.
615 Valid global options are:
618 Identifies the audio backend.
620 ``timer-period=period``
621 Sets the timer period used by the audio subsystem in
622 microseconds. Default is 10000 (10 ms).
624 ``in|out.mixing-engine=on|off``
625 Use QEMU's mixing engine to mix all streams inside QEMU and
626 convert audio formats when not supported by the backend. When
627 off, fixed-settings must be off too. Note that disabling this
628 option means that the selected backend must support multiple
629 streams and the audio formats used by the virtual cards,
630 otherwise you'll get no sound. It's not recommended to disable
631 this option unless you want to use 5.1 or 7.1 audio, as mixing
632 engine only supports mono and stereo audio. Default is on.
634 ``in|out.fixed-settings=on|off``
635 Use fixed settings for host audio. When off, it will change
636 based on how the guest opens the sound card. In this case you
637 must not specify frequency, channels or format. Default is on.
639 ``in|out.frequency=frequency``
640 Specify the frequency to use when using fixed-settings. Default
643 ``in|out.channels=channels``
644 Specify the number of channels to use when using fixed-settings.
645 Default is 2 (stereo).
647 ``in|out.format=format``
648 Specify the sample format to use when using fixed-settings.
649 Valid values are: ``s8``, ``s16``, ``s32``, ``u8``, ``u16``,
650 ``u32``, ``f32``. Default is ``s16``.
652 ``in|out.voices=voices``
653 Specify the number of voices to use. Default is 1.
655 ``in|out.buffer-length=usecs``
656 Sets the size of the buffer in microseconds.
658 ``-audiodev none,id=id[,prop[=value][,...]]``
659 Creates a dummy backend that discards all outputs. This backend has
660 no backend specific properties.
662 ``-audiodev alsa,id=id[,prop[=value][,...]]``
663 Creates backend using the ALSA. This backend is only available on
666 ALSA specific options are:
668 ``in|out.dev=device``
669 Specify the ALSA device to use for input and/or output. Default
672 ``in|out.period-length=usecs``
673 Sets the period length in microseconds.
675 ``in|out.try-poll=on|off``
676 Attempt to use poll mode with the device. Default is on.
678 ``threshold=threshold``
679 Threshold (in microseconds) when playback starts. Default is 0.
681 ``-audiodev coreaudio,id=id[,prop[=value][,...]]``
682 Creates a backend using Apple's Core Audio. This backend is only
683 available on Mac OS and only supports playback.
685 Core Audio specific options are:
687 ``in|out.buffer-count=count``
688 Sets the count of the buffers.
690 ``-audiodev dsound,id=id[,prop[=value][,...]]``
691 Creates a backend using Microsoft's DirectSound. This backend is
692 only available on Windows and only supports playback.
694 DirectSound specific options are:
697 Add extra usecs microseconds latency to playback. Default is
700 ``-audiodev oss,id=id[,prop[=value][,...]]``
701 Creates a backend using OSS. This backend is available on most
704 OSS specific options are:
706 ``in|out.dev=device``
707 Specify the file name of the OSS device to use. Default is
710 ``in|out.buffer-count=count``
711 Sets the count of the buffers.
713 ``in|out.try-poll=on|of``
714 Attempt to use poll mode with the device. Default is on.
717 Try using memory mapped device access. Default is off.
720 Open the device in exclusive mode (vmix won't work in this
721 case). Default is off.
723 ``dsp-policy=policy``
724 Sets the timing policy (between 0 and 10, where smaller number
725 means smaller latency but higher CPU usage). Use -1 to use
726 buffer sizes specified by ``buffer`` and ``buffer-count``. This
727 option is ignored if you do not have OSS 4. Default is 5.
729 ``-audiodev pa,id=id[,prop[=value][,...]]``
730 Creates a backend using PulseAudio. This backend is available on
733 PulseAudio specific options are:
736 Sets the PulseAudio server to connect to.
739 Use the specified source/sink for recording/playback.
741 ``in|out.latency=usecs``
742 Desired latency in microseconds. The PulseAudio server will try
743 to honor this value but actual latencies may be lower or higher.
745 ``-audiodev sdl,id=id[,prop[=value][,...]]``
746 Creates a backend using SDL. This backend is available on most
747 systems, but you should use your platform's native backend if
748 possible. This backend has no backend specific properties.
750 ``-audiodev spice,id=id[,prop[=value][,...]]``
751 Creates a backend that sends audio through SPICE. This backend
752 requires ``-spice`` and automatically selected in that case, so
753 usually you can ignore this option. This backend has no backend
756 ``-audiodev wav,id=id[,prop[=value][,...]]``
757 Creates a backend that writes audio to a WAV file.
759 Backend specific options are:
762 Write recorded audio into the specified file. Default is
766 DEF("soundhw
", HAS_ARG, QEMU_OPTION_soundhw,
767 "-soundhw c1
,... enable audio support
\n"
768 " and only specified sound
cards (comma separated list
)\n"
769 " use
'-soundhw help' to get the list of supported cards
\n"
770 " use
'-soundhw all' to enable all of them
\n", QEMU_ARCH_ALL)
772 ``-soundhw card1[,card2,...] or -soundhw all``
773 Enable audio and selected sound hardware. Use 'help' to print all
774 available sound hardware. For example:
778 |qemu_system_x86| -soundhw sb16,adlib disk.img
779 |qemu_system_x86| -soundhw es1370 disk.img
780 |qemu_system_x86| -soundhw ac97 disk.img
781 |qemu_system_x86| -soundhw hda disk.img
782 |qemu_system_x86| -soundhw all disk.img
783 |qemu_system_x86| -soundhw help
785 Note that Linux's i810\_audio OSS kernel (for AC97) module might
786 require manually specifying clocking.
790 modprobe i810_audio clocking=48000
793 DEF("device
", HAS_ARG, QEMU_OPTION_device,
794 "-device driver
[,prop
[=value
][,...]]\n"
795 " add
device (based on driver
)\n"
796 " prop
=value
,... sets driver properties
\n"
797 " use
'-device help' to print all possible drivers
\n"
798 " use
'-device driver,help' to print all possible properties
\n",
801 ``-device driver[,prop[=value][,...]]``
802 Add device driver. prop=value sets driver properties. Valid
803 properties depend on the driver. To get help on possible drivers and
804 properties, use ``-device help`` and ``-device driver,help``.
808 ``-device ipmi-bmc-sim,id=id[,slave_addr=val][,sdrfile=file][,furareasize=val][,furdatafile=file][,guid=uuid]``
809 Add an IPMI BMC. This is a simulation of a hardware management
810 interface processor that normally sits on a system. It provides a
811 watchdog and the ability to reset and power control the system. You
812 need to connect this to an IPMI interface to make it useful
814 The IPMI slave address to use for the BMC. The default is 0x20. This
815 address is the BMC's address on the I2C network of management
816 controllers. If you don't know what this means, it is safe to ignore
820 The BMC id for interfaces to use this device.
823 Define slave address to use for the BMC. The default is 0x20.
826 file containing raw Sensor Data Records (SDR) data. The default
830 size of a Field Replaceable Unit (FRU) area. The default is
834 file containing raw Field Replaceable Unit (FRU) inventory data.
838 value for the GUID for the BMC, in standard UUID format. If this
839 is set, get "Get GUID
" command to the BMC will return it.
840 Otherwise "Get GUID
" will return an error.
842 ``-device ipmi-bmc-extern,id=id,chardev=id[,slave_addr=val]``
843 Add a connection to an external IPMI BMC simulator. Instead of
844 locally emulating the BMC like the above item, instead connect to an
845 external entity that provides the IPMI services.
847 A connection is made to an external BMC simulator. If you do this,
848 it is strongly recommended that you use the "reconnect
=" chardev
849 option to reconnect to the simulator if the connection is lost. Note
850 that if this is not used carefully, it can be a security issue, as
851 the interface has the ability to send resets, NMIs, and power off
852 the VM. It's best if QEMU makes a connection to an external
853 simulator running on a secure port on localhost, so neither the
854 simulator nor QEMU is exposed to any outside network.
856 See the "lanserv
/README
.vm
" file in the OpenIPMI library for more
857 details on the external interface.
859 ``-device isa-ipmi-kcs,bmc=id[,ioport=val][,irq=val]``
860 Add a KCS IPMI interafce on the ISA bus. This also adds a
861 corresponding ACPI and SMBIOS entries, if appropriate.
864 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern
868 Define the I/O address of the interface. The default is 0xca0
872 Define the interrupt to use. The default is 5. To disable
873 interrupts, set this to 0.
875 ``-device isa-ipmi-bt,bmc=id[,ioport=val][,irq=val]``
876 Like the KCS interface, but defines a BT interface. The default port
877 is 0xe4 and the default interrupt is 5.
880 DEF("name
", HAS_ARG, QEMU_OPTION_name,
881 "-name string1
[,process
=string2
][,debug
-threads
=on|off
]\n"
882 " set the name of the guest
\n"
883 " string1 sets the window title and string2 the process name
\n"
884 " When debug
-threads is enabled
, individual threads are given a separate name
\n"
885 " NOTE
: The thread names are
for debugging and not a stable API
.\n",
889 Sets the name of the guest. This name will be displayed in the SDL
890 window caption. The name will also be used for the VNC server. Also
891 optionally set the top visible process name in Linux. Naming of
892 individual threads can also be enabled on Linux to aid debugging.
895 DEF("uuid
", HAS_ARG, QEMU_OPTION_uuid,
896 "-uuid
%08x
-%04x
-%04x
-%04x
-%012x
\n"
897 " specify machine UUID
\n", QEMU_ARCH_ALL)
905 DEFHEADING(Block device options:)
907 DEF("fda
", HAS_ARG, QEMU_OPTION_fda,
908 "-fda
/-fdb file use
'file' as floppy disk
0/1 image
\n", QEMU_ARCH_ALL)
909 DEF("fdb
", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
914 Use file as floppy disk 0/1 image (see
915 :ref:`disk_005fimages`).
918 DEF("hda
", HAS_ARG, QEMU_OPTION_hda,
919 "-hda
/-hdb file use
'file' as IDE hard disk
0/1 image
\n", QEMU_ARCH_ALL)
920 DEF("hdb
", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
921 DEF("hdc
", HAS_ARG, QEMU_OPTION_hdc,
922 "-hdc
/-hdd file use
'file' as IDE hard disk
2/3 image
\n", QEMU_ARCH_ALL)
923 DEF("hdd
", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
932 Use file as hard disk 0, 1, 2 or 3 image (see
933 :ref:`disk_005fimages`).
936 DEF("cdrom
", HAS_ARG, QEMU_OPTION_cdrom,
937 "-cdrom file use
'file' as IDE cdrom
image (cdrom is ide1 master
)\n",
941 Use file as CD-ROM image (you cannot use ``-hdc`` and ``-cdrom`` at
942 the same time). You can use the host CD-ROM by using ``/dev/cdrom``
946 DEF("blockdev
", HAS_ARG, QEMU_OPTION_blockdev,
947 "-blockdev
[driver
=]driver
[,node
-name
=N
][,discard
=ignore|unmap
]\n"
948 " [,cache
.direct
=on|off
][,cache
.no
-flush
=on|off
]\n"
949 " [,read
-only
=on|off
][,auto
-read
-only
=on|off
]\n"
950 " [,force
-share
=on|off
][,detect
-zeroes
=on|off|unmap
]\n"
951 " [,driver specific parameters
...]\n"
952 " configure a block backend
\n", QEMU_ARCH_ALL)
954 ``-blockdev option[,option[,option[,...]]]``
955 Define a new block driver node. Some of the options apply to all
956 block drivers, other options are only accepted for a specific block
957 driver. See below for a list of generic options and options for the
958 most common block drivers.
960 Options that expect a reference to another node (e.g. ``file``) can
961 be given in two ways. Either you specify the node name of an already
962 existing node (file=node-name), or you define a new node inline,
963 adding options for the referenced node after a dot
964 (file.filename=path,file.aio=native).
966 A block driver node created with ``-blockdev`` can be used for a
967 guest device by specifying its node name for the ``drive`` property
968 in a ``-device`` argument that defines a block device.
970 ``Valid options for any block driver node:``
972 Specifies the block driver to use for the given node.
975 This defines the name of the block driver node by which it
976 will be referenced later. The name must be unique, i.e. it
977 must not match the name of a different block driver node, or
978 (if you use ``-drive`` as well) the ID of a drive.
980 If no node name is specified, it is automatically generated.
981 The generated node name is not intended to be predictable
982 and changes between QEMU invocations. For the top level, an
983 explicit node name must be specified.
986 Open the node read-only. Guest write attempts will fail.
988 Note that some block drivers support only read-only access,
989 either generally or in certain configurations. In this case,
990 the default value ``read-only=off`` does not work and the
991 option must be specified explicitly.
994 If ``auto-read-only=on`` is set, QEMU may fall back to
995 read-only usage even when ``read-only=off`` is requested, or
996 even switch between modes as needed, e.g. depending on
997 whether the image file is writable or whether a writing user
998 is attached to the node.
1001 Override the image locking system of QEMU by forcing the
1002 node to utilize weaker shared access for permissions where
1003 it would normally request exclusive access. When there is
1004 the potential for multiple instances to have the same file
1005 open (whether this invocation of QEMU is the first or the
1006 second instance), both instances must permit shared access
1007 for the second instance to succeed at opening the file.
1009 Enabling ``force-share=on`` requires ``read-only=on``.
1012 The host page cache can be avoided with ``cache.direct=on``.
1013 This will attempt to do disk IO directly to the guest's
1014 memory. QEMU may still perform an internal copy of the data.
1017 In case you don't care about data integrity over host
1018 failures, you can use ``cache.no-flush=on``. This option
1019 tells QEMU that it never needs to write any data to the disk
1020 but can instead keep things in cache. If anything goes
1021 wrong, like your host losing power, the disk storage getting
1022 disconnected accidentally, etc. your image will most
1023 probably be rendered unusable.
1026 discard is one of "ignore
" (or "off
") or "unmap
" (or "on
")
1027 and controls whether ``discard`` (also known as ``trim`` or
1028 ``unmap``) requests are ignored or passed to the filesystem.
1029 Some machine types may not support discard requests.
1031 ``detect-zeroes=detect-zeroes``
1032 detect-zeroes is "off
", "on
" or "unmap
" and enables the
1033 automatic conversion of plain zero writes by the OS to
1034 driver specific optimized zero write commands. You may even
1035 choose "unmap
" if discard is set to "unmap
" to allow a zero
1036 write to be converted to an ``unmap`` operation.
1038 ``Driver-specific options for file``
1039 This is the protocol-level block driver for accessing regular
1043 The path to the image file in the local filesystem
1046 Specifies the AIO backend (threads/native, default: threads)
1049 Specifies whether the image file is protected with Linux OFD
1050 / POSIX locks. The default is to use the Linux Open File
1051 Descriptor API if available, otherwise no lock is applied.
1052 (auto/on/off, default: auto)
1058 -blockdev driver=file,node-name=disk,filename=disk.img
1060 ``Driver-specific options for raw``
1061 This is the image format block driver for raw images. It is
1062 usually stacked on top of a protocol level block driver such as
1066 Reference to or definition of the data source block driver
1067 node (e.g. a ``file`` driver node)
1073 -blockdev driver=file,node-name=disk_file,filename=disk.img
1074 -blockdev driver=raw,node-name=disk,file=disk_file
1080 -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img
1082 ``Driver-specific options for qcow2``
1083 This is the image format block driver for qcow2 images. It is
1084 usually stacked on top of a protocol level block driver such as
1088 Reference to or definition of the data source block driver
1089 node (e.g. a ``file`` driver node)
1092 Reference to or definition of the backing file block device
1093 (default is taken from the image file). It is allowed to
1094 pass ``null`` here in order to disable the default backing
1098 Whether to enable the lazy refcounts feature (on/off;
1099 default is taken from the image file)
1102 The maximum total size of the L2 table and refcount block
1103 caches in bytes (default: the sum of l2-cache-size and
1104 refcount-cache-size)
1107 The maximum size of the L2 table cache in bytes (default: if
1108 cache-size is not specified - 32M on Linux platforms, and 8M
1109 on non-Linux platforms; otherwise, as large as possible
1110 within the cache-size, while permitting the requested or the
1111 minimal refcount cache size)
1113 ``refcount-cache-size``
1114 The maximum size of the refcount block cache in bytes
1115 (default: 4 times the cluster size; or if cache-size is
1116 specified, the part of it which is not used for the L2
1119 ``cache-clean-interval``
1120 Clean unused entries in the L2 and refcount caches. The
1121 interval is in seconds. The default value is 600 on
1122 supporting platforms, and 0 on other platforms. Setting it
1123 to 0 disables this feature.
1125 ``pass-discard-request``
1126 Whether discard requests to the qcow2 device should be
1127 forwarded to the data source (on/off; default: on if
1128 discard=unmap is specified, off otherwise)
1130 ``pass-discard-snapshot``
1131 Whether discard requests for the data source should be
1132 issued when a snapshot operation (e.g. deleting a snapshot)
1133 frees clusters in the qcow2 file (on/off; default: on)
1135 ``pass-discard-other``
1136 Whether discard requests for the data source should be
1137 issued on other occasions where a cluster gets freed
1138 (on/off; default: off)
1141 Which overlap checks to perform for writes to the image
1142 (none/constant/cached/all; default: cached). For details or
1143 finer granularity control refer to the QAPI documentation of
1150 -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
1151 -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
1157 -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2
1159 ``Driver-specific options for other drivers``
1160 Please refer to the QAPI documentation of the ``blockdev-add``
1164 DEF("drive
", HAS_ARG, QEMU_OPTION_drive,
1165 "-drive
[file
=file
][,if=type
][,bus
=n
][,unit
=m
][,media
=d
][,index
=i
]\n"
1166 " [,cache
=writethrough|writeback|none|directsync|unsafe
][,format
=f
]\n"
1167 " [,snapshot
=on|off
][,rerror
=ignore|stop|report
]\n"
1168 " [,werror
=ignore|stop|report|enospc
][,id
=name
][,aio
=threads|native
]\n"
1169 " [,readonly
=on|off
][,copy
-on
-read
=on|off
]\n"
1170 " [,discard
=ignore|unmap
][,detect
-zeroes
=on|off|unmap
]\n"
1171 " [[,bps
=b
]|
[[,bps_rd
=r
][,bps_wr
=w
]]]\n"
1172 " [[,iops
=i
]|
[[,iops_rd
=r
][,iops_wr
=w
]]]\n"
1173 " [[,bps_max
=bm
]|
[[,bps_rd_max
=rm
][,bps_wr_max
=wm
]]]\n"
1174 " [[,iops_max
=im
]|
[[,iops_rd_max
=irm
][,iops_wr_max
=iwm
]]]\n"
1175 " [[,iops_size
=is
]]\n"
1177 " use
'file' as a drive image
\n", QEMU_ARCH_ALL)
1179 ``-drive option[,option[,option[,...]]]``
1180 Define a new drive. This includes creating a block driver node (the
1181 backend) as well as a guest device, and is mostly a shortcut for
1182 defining the corresponding ``-blockdev`` and ``-device`` options.
1184 ``-drive`` accepts all options that are accepted by ``-blockdev``.
1185 In addition, it knows the following options:
1188 This option defines which disk image (see
1189 :ref:`disk_005fimages`) to use with this drive. If
1190 the filename contains comma, you must double it (for instance,
1191 "file
=my
,,file
" to use file "my
,file
").
1193 Special files such as iSCSI devices can be specified using
1194 protocol specific URLs. See the section for "Device URL Syntax
"
1195 for more information.
1198 This option defines on which type on interface the drive is
1199 connected. Available types are: ide, scsi, sd, mtd, floppy,
1200 pflash, virtio, none.
1202 ``bus=bus,unit=unit``
1203 These options define where is connected the drive by defining
1204 the bus number and the unit id.
1207 This option defines where is connected the drive by using an
1208 index in the list of available connectors of a given interface
1212 This option defines the type of the media: disk or cdrom.
1214 ``snapshot=snapshot``
1215 snapshot is "on
" or "off
" and controls snapshot mode for the
1216 given drive (see ``-snapshot``).
1219 cache is "none
", "writeback
", "unsafe
", "directsync
" or
1220 "writethrough
" and controls how the host cache is used to access
1221 block data. This is a shortcut that sets the ``cache.direct``
1222 and ``cache.no-flush`` options (as in ``-blockdev``), and
1223 additionally ``cache.writeback``, which provides a default for
1224 the ``write-cache`` option of block guest devices (as in
1225 ``-device``). The modes correspond to the following settings:
1227 ============= =============== ============ ==============
1228 \ cache.writeback cache.direct cache.no-flush
1229 ============= =============== ============ ==============
1230 writeback on off off
1232 writethrough off off off
1233 directsync off on off
1235 ============= =============== ============ ==============
1237 The default mode is ``cache=writeback``.
1240 aio is "threads
", or "native
" and selects between pthread based
1241 disk I/O and native Linux AIO.
1244 Specify which disk format will be used rather than detecting the
1245 format. Can be used to specify format=raw to avoid interpreting
1246 an untrusted format header.
1248 ``werror=action,rerror=action``
1249 Specify which action to take on write and read errors. Valid
1250 actions are: "ignore
" (ignore the error and try to continue),
1251 "stop
" (pause QEMU), "report
" (report the error to the guest),
1252 "enospc
" (pause QEMU only if the host disk is full; report the
1253 error to the guest otherwise). The default setting is
1254 ``werror=enospc`` and ``rerror=report``.
1256 ``copy-on-read=copy-on-read``
1257 copy-on-read is "on
" or "off
" and enables whether to copy read
1258 backing file sectors into the image file.
1260 ``bps=b,bps_rd=r,bps_wr=w``
1261 Specify bandwidth throttling limits in bytes per second, either
1262 for all request types or for reads or writes only. Small values
1263 can lead to timeouts or hangs inside the guest. A safe minimum
1264 for disks is 2 MB/s.
1266 ``bps_max=bm,bps_rd_max=rm,bps_wr_max=wm``
1267 Specify bursts in bytes per second, either for all request types
1268 or for reads or writes only. Bursts allow the guest I/O to spike
1269 above the limit temporarily.
1271 ``iops=i,iops_rd=r,iops_wr=w``
1272 Specify request rate limits in requests per second, either for
1273 all request types or for reads or writes only.
1275 ``iops_max=bm,iops_rd_max=rm,iops_wr_max=wm``
1276 Specify bursts in requests per second, either for all request
1277 types or for reads or writes only. Bursts allow the guest I/O to
1278 spike above the limit temporarily.
1281 Let every is bytes of a request count as a new request for iops
1282 throttling purposes. Use this option to prevent guests from
1283 circumventing iops limits by sending fewer but larger requests.
1286 Join a throttling quota group with given name g. All drives that
1287 are members of the same group are accounted for together. Use
1288 this option to prevent guests from circumventing throttling
1289 limits by using many small disks instead of a single larger
1292 By default, the ``cache.writeback=on`` mode is used. It will report
1293 data writes as completed as soon as the data is present in the host
1294 page cache. This is safe as long as your guest OS makes sure to
1295 correctly flush disk caches where needed. If your guest OS does not
1296 handle volatile disk write caches correctly and your host crashes or
1297 loses power, then the guest may experience data corruption.
1299 For such guests, you should consider using ``cache.writeback=off``.
1300 This means that the host page cache will be used to read and write
1301 data, but write notification will be sent to the guest only after
1302 QEMU has made sure to flush each write to the disk. Be aware that
1303 this has a major impact on performance.
1305 When using the ``-snapshot`` option, unsafe caching is always used.
1307 Copy-on-read avoids accessing the same backing file sectors
1308 repeatedly and is useful when the backing file is over a slow
1309 network. By default copy-on-read is off.
1311 Instead of ``-cdrom`` you can use:
1315 |qemu_system| -drive file=file,index=2,media=cdrom
1317 Instead of ``-hda``, ``-hdb``, ``-hdc``, ``-hdd``, you can use:
1321 |qemu_system| -drive file=file,index=0,media=disk
1322 |qemu_system| -drive file=file,index=1,media=disk
1323 |qemu_system| -drive file=file,index=2,media=disk
1324 |qemu_system| -drive file=file,index=3,media=disk
1326 You can open an image using pre-opened file descriptors from an fd
1332 -add-fd fd=3,set=2,opaque="rdwr
:/path
/to
/file
" \
1333 -add-fd fd=4,set=2,opaque="rdonly
:/path
/to
/file
" \
1334 -drive file=/dev/fdset/2,index=0,media=disk
1336 You can connect a CDROM to the slave of ide0:
1340 |qemu_system_x86| -drive file=file,if=ide,index=1,media=cdrom
1342 If you don't specify the "file
=" argument, you define an empty
1347 |qemu_system_x86| -drive if=ide,index=1,media=cdrom
1349 Instead of ``-fda``, ``-fdb``, you can use:
1353 |qemu_system_x86| -drive file=file,index=0,if=floppy
1354 |qemu_system_x86| -drive file=file,index=1,if=floppy
1356 By default, interface is "ide
" and index is automatically
1361 |qemu_system_x86| -drive file=a -drive file=b"
1363 is interpreted like
:
1367 |qemu_system_x86|
-hda a
-hdb b
1370 DEF("mtdblock", HAS_ARG
, QEMU_OPTION_mtdblock
,
1371 "-mtdblock file use 'file' as on-board Flash memory image\n",
1375 Use file as on
-board Flash memory image
.
1378 DEF("sd", HAS_ARG
, QEMU_OPTION_sd
,
1379 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL
)
1382 Use file as SecureDigital card image
.
1385 DEF("pflash", HAS_ARG
, QEMU_OPTION_pflash
,
1386 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL
)
1389 Use file as a parallel flash image
.
1392 DEF("snapshot", 0, QEMU_OPTION_snapshot
,
1393 "-snapshot write to temporary files instead of disk image files\n",
1397 Write to temporary files instead of disk image files
. In
this case,
1398 the raw disk image you use is not written back
. You can however
1399 force the write back by pressing C
-a
s (see
1400 :ref
:`disk_005fimages`
).
1403 DEF("fsdev", HAS_ARG
, QEMU_OPTION_fsdev
,
1404 "-fsdev local,id=id,path=path,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1405 " [,writeout=immediate][,readonly][,fmode=fmode][,dmode=dmode]\n"
1406 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1407 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1408 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1409 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1410 " [[,throttling.iops-size=is]]\n"
1411 "-fsdev proxy,id=id,socket=socket[,writeout=immediate][,readonly]\n"
1412 "-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=immediate][,readonly]\n"
1413 "-fsdev synth,id=id\n",
1417 ``
-fsdev local
,id
=id
,path
=path
,security_model
=security_model
[,writeout
=writeout
][,readonly
][,fmode
=fmode
][,dmode
=dmode
] [,throttling
.option
=value
[,throttling
.option
=value
[,...]]]``
1419 ``
-fsdev proxy
,id
=id
,socket
=socket
[,writeout
=writeout
][,readonly
]``
1421 ``
-fsdev proxy
,id
=id
,sock_fd
=sock_fd
[,writeout
=writeout
][,readonly
]``
1423 ``
-fsdev synth
,id
=id
[,readonly
]``
1424 Define a
new file system device
. Valid options are
:
1427 Accesses to the filesystem are done by QEMU
.
1430 Accesses to the filesystem are done by virtfs
-proxy
-helper(1).
1433 Synthetic filesystem
, only used by QTests
.
1436 Specifies identifier
for this device
.
1439 Specifies the export path
for the file system device
. Files
1440 under
this path will be available to the
9p client on the guest
.
1442 ``security_model
=security_model``
1443 Specifies the security model to be used
for this export path
.
1444 Supported security models are
"passthrough", "mapped-xattr",
1445 "mapped-file" and
"none". In
"passthrough" security model
, files
1446 are stored
using the same credentials as they are created on the
1447 guest
. This requires QEMU to run as root
. In
"mapped-xattr"
1448 security model
, some of the file attributes like uid
, gid
, mode
1449 bits and link target are stored as file attributes
. For
1450 "mapped-file" these attributes are stored
in the hidden
1451 .virtfs\_metadata directory
. Directories exported by
this
1452 security model cannot interact with other unix tools
. "none"
1453 security model is same as passthrough except the sever won
't
1454 report failures if it fails to set file attributes like
1455 ownership. Security model is mandatory only for local fsdriver.
1456 Other fsdrivers (like proxy) don't take security model as a
1459 ``writeout
=writeout``
1460 This is an optional argument
. The only supported value is
1461 "immediate". This means that host page cache will be used to
1462 read and write data but write notification will be sent to the
1463 guest only when the data has been reported as written by the
1467 Enables exporting
9p share as a readonly mount
for guests
. By
1468 default read
-write access is given
.
1471 Enables proxy filesystem driver to use passed socket file
for
1472 communicating with virtfs
-proxy
-helper(1).
1475 Enables proxy filesystem driver to use passed socket descriptor
1476 for communicating with virtfs
-proxy
-helper(1). Usually a helper
1477 like libvirt will create socketpair and pass one of the fds as
1481 Specifies the
default mode
for newly created files on the host
.
1482 Works only with security models
"mapped-xattr" and
1486 Specifies the
default mode
for newly created directories on the
1487 host
. Works only with security models
"mapped-xattr" and
1490 ``throttling
.bps
-total
=b
,throttling
.bps
-read
=r
,throttling
.bps
-write
=w``
1491 Specify bandwidth throttling limits
in bytes per second
, either
1492 for all request types or
for reads or writes only
.
1494 ``throttling
.bps
-total
-max
=bm
,bps
-read
-max
=rm
,bps
-write
-max
=wm``
1495 Specify bursts
in bytes per second
, either
for all request types
1496 or
for reads or writes only
. Bursts allow the guest I
/O to spike
1497 above the limit temporarily
.
1499 ``throttling
.iops
-total
=i
,throttling
.iops
-read
=r
, throttling
.iops
-write
=w``
1500 Specify request rate limits
in requests per second
, either
for
1501 all request types or
for reads or writes only
.
1503 ``throttling
.iops
-total
-max
=im
,throttling
.iops
-read
-max
=irm
, throttling
.iops
-write
-max
=iwm``
1504 Specify bursts
in requests per second
, either
for all request
1505 types or
for reads or writes only
. Bursts allow the guest I
/O to
1506 spike above the limit temporarily
.
1508 ``throttling
.iops
-size
=is``
1509 Let every is bytes of a request count as a
new request
for iops
1510 throttling purposes
.
1512 -fsdev option is used along with
-device driver
"virtio-9p-...".
1514 ``
-device virtio
-9p
-type
,fsdev
=id
,mount_tag
=mount_tag``
1515 Options
for virtio
-9p
-... driver are
:
1518 Specifies the variant to be used
. Supported values are
"pci",
1519 "ccw" or
"device", depending on the machine type
.
1522 Specifies the id value specified along with
-fsdev option
.
1524 ``mount_tag
=mount_tag``
1525 Specifies the tag name to be used by the guest to mount
this
1529 DEF("virtfs", HAS_ARG
, QEMU_OPTION_virtfs
,
1530 "-virtfs local,path=path,mount_tag=tag,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1531 " [,id=id][,writeout=immediate][,readonly][,fmode=fmode][,dmode=dmode][,multidevs=remap|forbid|warn]\n"
1532 "-virtfs proxy,mount_tag=tag,socket=socket[,id=id][,writeout=immediate][,readonly]\n"
1533 "-virtfs proxy,mount_tag=tag,sock_fd=sock_fd[,id=id][,writeout=immediate][,readonly]\n"
1534 "-virtfs synth,mount_tag=tag[,id=id][,readonly]\n",
1538 ``
-virtfs local
,path
=path
,mount_tag
=mount_tag
,security_model
=security_model
[,writeout
=writeout
][,readonly
] [,fmode
=fmode
][,dmode
=dmode
][,multidevs
=multidevs
]``
1540 ``
-virtfs proxy
,socket
=socket
,mount_tag
=mount_tag
[,writeout
=writeout
][,readonly
]``
1542 ``
-virtfs proxy
,sock_fd
=sock_fd
,mount_tag
=mount_tag
[,writeout
=writeout
][,readonly
]``
1544 ``
-virtfs synth
,mount_tag
=mount_tag``
1545 Define a
new virtual filesystem device and expose it to the guest
using
1546 a virtio
-9p
-device (a
.k
.a
. 9pfs
), which essentially means that a certain
1547 directory on host is made directly accessible by guest as a pass
-through
1548 file system by
using the
9P network protocol
for communication between
1549 host and guests
, if desired even accessible
, shared by several guests
1552 Note that ``
-virtfs`` is actually just a convenience shortcut
for its
1553 generalized form ``
-fsdev
-device virtio
-9p
-pci``
.
1555 The general form of pass
-through file system options are
:
1558 Accesses to the filesystem are done by QEMU
.
1561 Accesses to the filesystem are done by virtfs
-proxy
-helper(1).
1564 Synthetic filesystem
, only used by QTests
.
1567 Specifies identifier
for the filesystem device
1570 Specifies the export path
for the file system device
. Files
1571 under
this path will be available to the
9p client on the guest
.
1573 ``security_model
=security_model``
1574 Specifies the security model to be used
for this export path
.
1575 Supported security models are
"passthrough", "mapped-xattr",
1576 "mapped-file" and
"none". In
"passthrough" security model
, files
1577 are stored
using the same credentials as they are created on the
1578 guest
. This requires QEMU to run as root
. In
"mapped-xattr"
1579 security model
, some of the file attributes like uid
, gid
, mode
1580 bits and link target are stored as file attributes
. For
1581 "mapped-file" these attributes are stored
in the hidden
1582 .virtfs\_metadata directory
. Directories exported by
this
1583 security model cannot interact with other unix tools
. "none"
1584 security model is same as passthrough except the sever won
't
1585 report failures if it fails to set file attributes like
1586 ownership. Security model is mandatory only for local fsdriver.
1587 Other fsdrivers (like proxy) don't take security model as a
1590 ``writeout
=writeout``
1591 This is an optional argument
. The only supported value is
1592 "immediate". This means that host page cache will be used to
1593 read and write data but write notification will be sent to the
1594 guest only when the data has been reported as written by the
1598 Enables exporting
9p share as a readonly mount
for guests
. By
1599 default read
-write access is given
.
1602 Enables proxy filesystem driver to use passed socket file
for
1603 communicating with virtfs
-proxy
-helper(1). Usually a helper like
1604 libvirt will create socketpair and pass one of the fds as
1608 Enables proxy filesystem driver to use passed
'sock\_fd' as the
1609 socket descriptor
for interfacing with virtfs
-proxy
-helper(1).
1612 Specifies the
default mode
for newly created files on the host
.
1613 Works only with security models
"mapped-xattr" and
1617 Specifies the
default mode
for newly created directories on the
1618 host
. Works only with security models
"mapped-xattr" and
1621 ``mount_tag
=mount_tag``
1622 Specifies the tag name to be used by the guest to mount
this
1625 ``multidevs
=multidevs``
1626 Specifies how to deal with multiple devices being shared with a
1627 9p export
. Supported behaviours are either
"remap", "forbid" or
1628 "warn". The latter is the
default behaviour on which virtfs
9p
1629 expects only one device to be shared with the same export
, and
1630 if more than one device is shared and accessed via the same
9p
1631 export then only a warning message is
logged (once
) by qemu on
1632 host side
. In order to avoid file ID collisions on guest you
1633 should either create a separate virtfs export
for each device to
1634 be shared with
guests (recommended way
) or you might use
"remap"
1635 instead which allows you to share multiple devices with only one
1636 export instead
, which is achieved by remapping the original
1637 inode numbers from host to guest
in a way that would prevent
1638 such collisions
. Remapping inodes
in such use cases is required
1639 because the original device IDs from host are
never passed and
1640 exposed on guest
. Instead all files of an export shared with
1641 virtfs always share the same device id on guest
. So two files
1642 with identical inode numbers but from actually different devices
1643 on host would otherwise cause a file ID collision and hence
1644 potential misbehaviours on guest
. "forbid" on the other hand
1645 assumes like
"warn" that only one device is shared by the same
1646 export
, however it will not only log a warning message but also
1647 deny access to additional devices on guest
. Note though that
1648 "forbid" does currently not block all possible file access
1649 operations (e
.g
. readdir() would still
return entries from other
1653 DEF("iscsi", HAS_ARG
, QEMU_OPTION_iscsi
,
1654 "-iscsi [user=user][,password=password]\n"
1655 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
1656 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
1657 " [,timeout=timeout]\n"
1658 " iSCSI session parameters\n", QEMU_ARCH_ALL
)
1662 Configure iSCSI session parameters
.
1667 DEFHEADING(USB options
:)
1669 DEF("usb", 0, QEMU_OPTION_usb
,
1670 "-usb enable on-board USB host controller (if not enabled by default)\n",
1674 Enable USB emulation on machine types with an on
-board USB host
1675 controller (if not enabled by
default). Note that on
-board USB host
1676 controllers may not support USB
3.0. In
this case
1677 ``
-device qemu
-xhci`` can be used instead on machines with PCI
.
1680 DEF("usbdevice", HAS_ARG
, QEMU_OPTION_usbdevice
,
1681 "-usbdevice name add the host or guest USB device 'name'\n",
1684 ``
-usbdevice devname``
1685 Add the USB device devname
. Note that
this option is deprecated
,
1686 please use ``
-device usb
-...`` instead
. See
1687 :ref
:`usb_005fdevices`
.
1690 Virtual Mouse
. This will
override the PS
/2 mouse emulation when
1694 Pointer device that uses absolute
coordinates (like a
1695 touchscreen
). This means QEMU is able to report the mouse
1696 position without having to grab the mouse
. Also overrides the
1697 PS
/2 mouse emulation when activated
.
1700 Braille device
. This will use BrlAPI to display the braille
1701 output on a real or fake device
.
1706 DEFHEADING(Display options
:)
1708 DEF("display", HAS_ARG
, QEMU_OPTION_display
,
1709 #
if defined(CONFIG_SPICE
)
1710 "-display spice-app[,gl=on|off]\n"
1712 #
if defined(CONFIG_SDL
)
1713 "-display sdl[,alt_grab=on|off][,ctrl_grab=on|off]\n"
1714 " [,window_close=on|off][,gl=on|core|es|off]\n"
1716 #
if defined(CONFIG_GTK
)
1717 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1719 #
if defined(CONFIG_VNC
)
1720 "-display vnc=<display>[,<optargs>]\n"
1722 #
if defined(CONFIG_CURSES
)
1723 "-display curses[,charset=<encoding>]\n"
1725 #
if defined(CONFIG_OPENGL
)
1726 "-display egl-headless[,rendernode=<file>]\n"
1729 " select display backend type\n"
1730 " The default display is equivalent to\n "
1731 #
if defined(CONFIG_GTK
)
1732 "\"-display gtk\"\n"
1733 #elif
defined(CONFIG_SDL
)
1734 "\"-display sdl\"\n"
1735 #elif
defined(CONFIG_COCOA
)
1736 "\"-display cocoa\"\n"
1737 #elif
defined(CONFIG_VNC
)
1738 "\"-vnc localhost:0,to=99,id=default\"\n"
1740 "\"-display none\"\n"
1745 Select type of display to use
. This option is a replacement
for the
1746 old style
-sdl
/-curses
/... options
. Use ``
-display help`` to list
1747 the available display types
. Valid values
for type are
1750 Display video output via
SDL (usually
in a separate graphics
1751 window
; see the SDL documentation
for other possibilities
).
1754 Display video output via curses
. For graphics device models
1755 which support a text mode
, QEMU can display
this output
using a
1756 curses
/ncurses
interface. Nothing is displayed when the graphics
1757 device is
in graphical mode or
if the graphics device does not
1758 support a text mode
. Generally only the VGA device models
1759 support text mode
. The font charset used by the guest can be
1760 specified with the ``charset`` option
, for example
1761 ``charset
=CP850``
for IBM CP850 encoding
. The
default is
1765 Do not display video output
. The guest will still see an
1766 emulated graphics card
, but its output will not be displayed to
1767 the QEMU user
. This option differs from the
-nographic option
in
1768 that it only affects what is done with video output
; -nographic
1769 also changes the destination of the serial and parallel port
1773 Display video output
in a GTK window
. This
interface provides
1774 drop
-down menus and other UI elements to configure and control
1775 the VM during runtime
.
1778 Start a VNC server on display
<arg
>
1781 Offload all OpenGL operations to a local DRI device
. For any
1782 graphical display
, this display needs to be paired with either
1783 VNC or SPICE displays
.
1786 Start QEMU as a Spice server and launch the
default Spice client
1787 application
. The Spice server will redirect the serial consoles
1788 and QEMU monitors
. (Since
4.0)
1791 DEF("nographic", 0, QEMU_OPTION_nographic
,
1792 "-nographic disable graphical output and redirect serial I/Os to console\n",
1796 Normally
, if QEMU is compiled with graphical window support
, it
1797 displays output such as guest graphics
, guest console
, and the QEMU
1798 monitor
in a window
. With
this option
, you can totally disable
1799 graphical output so that QEMU is a simple command line application
.
1800 The emulated serial port is redirected on the console and muxed with
1801 the
monitor (unless redirected elsewhere explicitly
). Therefore
, you
1802 can still use QEMU to debug a Linux kernel with a serial console
.
1803 Use C
-a h
for help on switching between the console and monitor
.
1806 DEF("curses", 0, QEMU_OPTION_curses
,
1807 "-curses shorthand for -display curses\n",
1811 Normally
, if QEMU is compiled with graphical window support
, it
1812 displays output such as guest graphics
, guest console
, and the QEMU
1813 monitor
in a window
. With
this option
, QEMU can display the VGA
1814 output when
in text mode
using a curses
/ncurses
interface. Nothing
1815 is displayed
in graphical mode
.
1818 DEF("alt-grab", 0, QEMU_OPTION_alt_grab
,
1819 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1823 Use Ctrl
-Alt
-Shift to grab
mouse (instead of Ctrl
-Alt
). Note that
1824 this also affects the special
keys (for fullscreen
, monitor
-mode
1828 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab
,
1829 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1833 Use Right
-Ctrl to grab
mouse (instead of Ctrl
-Alt
). Note that
this
1834 also affects the special
keys (for fullscreen
, monitor
-mode
1838 DEF("no-quit", 0, QEMU_OPTION_no_quit
,
1839 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL
)
1842 Disable SDL window close capability
.
1845 DEF("sdl", 0, QEMU_OPTION_sdl
,
1846 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL
)
1852 DEF("spice", HAS_ARG
, QEMU_OPTION_spice
,
1853 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1854 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1855 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1856 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1857 " [,tls-ciphers=<list>]\n"
1858 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1859 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1860 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1861 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1862 " [,jpeg-wan-compression=[auto|never|always]]\n"
1863 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1864 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1865 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1866 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1867 " [,gl=[on|off]][,rendernode=<file>]\n"
1869 " at least one of {port, tls-port} is mandatory\n",
1872 ``
-spice option
[,option
[,...]]``
1873 Enable the spice remote desktop protocol
. Valid options are
1876 Set the TCP port spice is listening on
for plaintext channels
.
1879 Set the IP address spice is listening on
. Default is any
1882 ``ipv4``
; \ ``ipv6``
; \ ``unix``
1883 Force
using the specified IP version
.
1885 ``password
=<secret
>``
1886 Set the password you need to authenticate
.
1889 Require that the client use SASL to authenticate with the spice
.
1890 The exact choice of authentication method used is controlled
1891 from the system
/ user
's SASL configuration file for the 'qemu
'
1892 service. This is typically found in /etc/sasl2/qemu.conf. If
1893 running QEMU as an unprivileged user, an environment variable
1894 SASL\_CONF\_PATH can be used to make it search alternate
1895 locations for the service config. While some SASL auth methods
1896 can also provide data encryption (eg GSSAPI), it is recommended
1897 that SASL always be combined with the 'tls
' and 'x509
' settings
1898 to enable use of SSL and server certificates. This ensures a
1899 data encryption preventing compromise of authentication
1902 ``disable-ticketing``
1903 Allow client connects without authentication.
1905 ``disable-copy-paste``
1906 Disable copy paste between the client and the guest.
1908 ``disable-agent-file-xfer``
1909 Disable spice-vdagent based file-xfer between the client and the
1913 Set the TCP port spice is listening on for encrypted channels.
1916 Set the x509 file directory. Expects same filenames as -vnc
1919 ``x509-key-file=<file>``; \ ``x509-key-password=<file>``; \ ``x509-cert-file=<file>``; \ ``x509-cacert-file=<file>``; \ ``x509-dh-key-file=<file>``
1920 The x509 file names can also be configured individually.
1922 ``tls-ciphers=<list>``
1923 Specify which ciphers to use.
1925 ``tls-channel=[main|display|cursor|inputs|record|playback]``; \ ``plaintext-channel=[main|display|cursor|inputs|record|playback]``
1926 Force specific channel to be used with or without TLS
1927 encryption. The options can be specified multiple times to
1928 configure multiple channels. The special name "default" can be
1929 used to set the default mode. For channels which are not
1930 explicitly forced into one mode the spice client is allowed to
1931 pick tls/plaintext as he pleases.
1933 ``image-compression=[auto_glz|auto_lz|quic|glz|lz|off]``
1934 Configure image compression (lossless). Default is auto\_glz.
1936 ``jpeg-wan-compression=[auto|never|always]``; \ ``zlib-glz-wan-compression=[auto|never|always]``
1937 Configure wan image compression (lossy for slow links). Default
1940 ``streaming-video=[off|all|filter]``
1941 Configure video stream detection. Default is off.
1943 ``agent-mouse=[on|off]``
1944 Enable/disable passing mouse events via vdagent. Default is on.
1946 ``playback-compression=[on|off]``
1947 Enable/disable audio stream compression (using celt 0.5.1).
1950 ``seamless-migration=[on|off]``
1951 Enable/disable spice seamless migration. Default is off.
1954 Enable/disable OpenGL context. Default is off.
1956 ``rendernode=<file>``
1957 DRM render node for OpenGL rendering. If not specified, it will
1958 pick the first available. (Since 2.9)
1961 DEF("portrait", 0, QEMU_OPTION_portrait,
1962 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1966 Rotate graphical output 90 deg left (only PXA LCD).
1969 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1970 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1974 Rotate graphical output some deg left (only PXA LCD).
1977 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1978 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1979 " select video card type\n", QEMU_ARCH_ALL)
1982 Select type of VGA card to emulate. Valid values for type are
1985 Cirrus Logic GD5446 Video card. All Windows versions starting
1986 from Windows 95 should recognize and use this graphic card. For
1987 optimal performances, use 16 bit color depth in the guest and
1988 the host OS. (This card was the default before QEMU 2.2)
1991 Standard VGA card with Bochs VBE extensions. If your guest OS
1992 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if
1993 you want to use high resolution modes (>= 1280x1024x16) then you
1994 should use this option. (This card is the default since QEMU
1998 VMWare SVGA-II compatible adapter. Use it if you have
1999 sufficiently recent XFree86/XOrg server or Windows guest with a
2000 driver for this card.
2003 QXL paravirtual graphic card. It is VGA compatible (including
2004 VESA 2.0 VBE support). Works best with qxl guest drivers
2005 installed though. Recommended choice when using the spice
2009 (sun4m only) Sun TCX framebuffer. This is the default
2010 framebuffer for sun4m machines and offers both 8-bit and 24-bit
2011 colour depths at a fixed resolution of 1024x768.
2014 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit
2015 framebuffer for sun4m machines available in both 1024x768
2016 (OpenBIOS) and 1152x900 (OBP) resolutions aimed at people
2017 wishing to run older Solaris versions.
2026 DEF("full-screen", 0, QEMU_OPTION_full_screen,
2027 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
2030 Start in full screen.
2033 DEF("g", HAS_ARG, QEMU_OPTION_g ,
2034 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
2035 QEMU_ARCH_PPC | QEMU_ARCH_SPARC | QEMU_ARCH_M68K)
2037 ``-g`` *width*\ ``x``\ *height*\ ``[x``\ *depth*\ ``]``
2038 Set the initial graphical resolution and depth (PPC, SPARC only).
2040 For PPC the default is 800x600x32.
2042 For SPARC with the TCX graphics device, the default is 1024x768x8
2043 with the option of 1024x768x24. For cgthree, the default is
2044 1024x768x8 with the option of 1152x900x8 for people who wish to use
2048 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
2049 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
2051 ``-vnc display[,option[,option[,...]]]``
2052 Normally, if QEMU is compiled with graphical window support, it
2053 displays output such as guest graphics, guest console, and the QEMU
2054 monitor in a window. With this option, you can have QEMU listen on
2055 VNC display display and redirect the VGA display over the VNC
2056 session. It is very useful to enable the usb tablet device when
2057 using this option (option ``-device usb-tablet``). When using the
2058 VNC display, you must use the ``-k`` parameter to set the keyboard
2059 layout if you are not using en-us. Valid syntax for the display is
2062 With this option, QEMU will try next available VNC displays,
2063 until the number L, if the origianlly defined "-vnc display" is
2064 not available, e.g. port 5900+display is already used by another
2065 application. By default, to=0.
2068 TCP connections will only be allowed from host on display d. By
2069 convention the TCP port is 5900+d. Optionally, host can be
2070 omitted in which case the server will accept connections from
2074 Connections will be allowed over UNIX domain sockets where path
2075 is the location of a unix socket to listen for connections on.
2078 VNC is initialized but not started. The monitor ``change``
2079 command can be used to later start the VNC server.
2081 Following the display value there may be one or more option flags
2082 separated by commas. Valid options are
2085 Connect to a listening VNC client via a "reverse" connection.
2086 The client is specified by the display. For reverse network
2087 connections (host:d,``reverse``), the d argument is a TCP port
2088 number, not a display number.
2091 Opens an additional TCP listening port dedicated to VNC
2092 Websocket connections. If a bare websocket option is given, the
2093 Websocket port is 5700+display. An alternative port can be
2094 specified with the syntax ``websocket``\ =port.
2096 If host is specified connections will only be allowed from this
2097 host. It is possible to control the websocket listen address
2098 independently, using the syntax ``websocket``\ =host:port.
2100 If no TLS credentials are provided, the websocket connection
2101 runs in unencrypted mode. If TLS credentials are provided, the
2102 websocket connection requires encrypted client connections.
2105 Require that password based authentication is used for client
2108 The password must be set separately using the ``set_password``
2109 command in the :ref:`pcsys_005fmonitor`. The
2110 syntax to change your password is:
2111 ``set_password <protocol> <password>`` where <protocol> could be
2112 either "vnc" or "spice".
2114 If you would like to change <protocol> password expiration, you
2115 should use ``expire_password <protocol> <expiration-time>``
2116 where expiration time could be one of the following options:
2117 now, never, +seconds or UNIX time of expiration, e.g. +60 to
2118 make password expire in 60 seconds, or 1335196800 to make
2119 password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for
2120 this date and time).
2122 You can also use keywords "now" or "never" for the expiration
2123 time to allow <protocol> password to expire immediately or never
2127 Provides the ID of a set of TLS credentials to use to secure the
2128 VNC server. They will apply to both the normal VNC server socket
2129 and the websocket socket (if enabled). Setting TLS credentials
2130 will cause the VNC server socket to enable the VeNCrypt auth
2131 mechanism. The credentials should have been previously created
2132 using the ``-object tls-creds`` argument.
2135 Provides the ID of the QAuthZ authorization object against which
2136 the client's x509 distinguished name will validated
. This object
2137 is only resolved at time of use
, so can be deleted and recreated
2138 on the fly
while the VNC server is active
. If missing
, it will
2139 default to denying access
.
2142 Require that the client use SASL to authenticate with the VNC
2143 server
. The exact choice of authentication method used is
2144 controlled from the system
/ user
's SASL configuration file for
2145 the 'qemu
' service. This is typically found in
2146 /etc/sasl2/qemu.conf. If running QEMU as an unprivileged user,
2147 an environment variable SASL\_CONF\_PATH can be used to make it
2148 search alternate locations for the service config. While some
2149 SASL auth methods can also provide data encryption (eg GSSAPI),
2150 it is recommended that SASL always be combined with the 'tls
'
2151 and 'x509
' settings to enable use of SSL and server
2152 certificates. This ensures a data encryption preventing
2153 compromise of authentication credentials. See the
2154 :ref:`vnc_005fsecurity` section for details on
2155 using SASL authentication.
2158 Provides the ID of the QAuthZ authorization object against which
2159 the client's SASL username will validated
. This object is only
2160 resolved at time of use
, so can be deleted and recreated on the
2161 fly
while the VNC server is active
. If missing
, it will
default
2165 Legacy method
for enabling authorization of clients against the
2166 x509 distinguished name and SASL username
. It results
in the
2167 creation of two ``authz
-list`` objects with IDs of
2168 ``vnc
.username`` and ``vnc
.x509dname``
. The rules
for these
2169 objects must be configured with the HMP ACL commands
.
2171 This option is deprecated and should no longer be used
. The
new
2172 ``sasl
-authz`` and ``tls
-authz`` options are a replacement
.
2175 Enable lossy compression
methods (gradient
, JPEG
, ...). If
this
2176 option is set
, VNC client may receive lossy framebuffer updates
2177 depending on its encoding settings
. Enabling
this option can
2178 save a lot of bandwidth at the expense of quality
.
2181 Disable adaptive encodings
. Adaptive encodings are enabled by
2182 default. An adaptive encoding will
try to detect frequently
2183 updated screen regions
, and send updates
in these regions
using
2184 a lossy
encoding (like JPEG
). This can be really helpful to save
2185 bandwidth when playing videos
. Disabling adaptive encodings
2186 restores the original
static behavior of encodings like Tight
.
2188 ``share
=[allow
-exclusive|force
-shared|ignore
]``
2189 Set display sharing policy
. 'allow-exclusive' allows clients to
2190 ask
for exclusive access
. As suggested by the rfb spec
this is
2191 implemented by dropping other connections
. Connecting multiple
2192 clients
in parallel requires all clients asking
for a shared
2193 session (vncviewer
: -shared
switch). This is the
default.
2194 'force-shared' disables exclusive client access
. Useful
for
2195 shared desktop sessions
, where you don
't want someone forgetting
2196 specify -shared disconnect everybody else. 'ignore
' completely
2197 ignores the shared flag and allows everybody connect
2198 unconditionally. Doesn't conform to the rfb spec but is
2199 traditional QEMU behavior
.
2202 Set keyboard delay
, for key down and key up events
, in
2203 milliseconds
. Default is
10. Keyboards are low
-bandwidth
2204 devices
, so
this slowdown can help the device and guest to keep
2205 up and not lose events
in case events are arriving
in bulk
.
2206 Possible causes
for the latter are flaky network connections
, or
2207 scripts
for automated testing
.
2209 ``audiodev
=audiodev``
2210 Use the specified audiodev when the VNC client requests audio
2211 transmission
. When not
using an
-audiodev argument
, this option
2212 must be omitted
, otherwise is must be present and specify a
2216 ARCHHEADING(, QEMU_ARCH_I386
)
2218 ARCHHEADING(i386 target only
:, QEMU_ARCH_I386
)
2220 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack
,
2221 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
2225 Use it when installing Windows
2000 to avoid a disk full bug
. After
2226 Windows
2000 is installed
, you no longer need
this option (this
2227 option slows down the IDE transfers
).
2230 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk
,
2231 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
2235 Disable boot signature checking
for floppy disks
in BIOS
. May be
2236 needed to boot from old floppy disks
.
2239 DEF("no-acpi", 0, QEMU_OPTION_no_acpi
,
2240 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM
)
2243 Disable
ACPI (Advanced Configuration and Power Interface
) support
.
2244 Use it
if your guest OS complains about ACPI
problems (PC target
2248 DEF("no-hpet", 0, QEMU_OPTION_no_hpet
,
2249 "-no-hpet disable HPET\n", QEMU_ARCH_I386
)
2252 Disable HPET support
.
2255 DEF("acpitable", HAS_ARG
, QEMU_OPTION_acpitable
,
2256 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
2257 " ACPI table description\n", QEMU_ARCH_I386
)
2259 ``
-acpitable
[sig
=str
][,rev
=n
][,oem_id
=str
][,oem_table_id
=str
][,oem_rev
=n
] [,asl_compiler_id
=str
][,asl_compiler_rev
=n
][,data
=file1
[:file2
]...]``
2260 Add ACPI table with specified header fields and context from
2261 specified files
. For file
=, take whole ACPI table from the specified
2262 files
, including all ACPI
headers (possible overridden by other
2263 options
). For data
=, only data portion of the table is used
, all
2264 header information is specified
in the command line
. If a SLIC table
2265 is supplied to QEMU
, then the SLIC
's oem\_id and oem\_table\_id
2266 fields will override the same in the RSDT and the FADT (a.k.a.
2267 FACP), in order to ensure the field matches required by the
2268 Microsoft SLIC spec and the ACPI spec.
2271 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
2272 "-smbios file=binary\n"
2273 " load SMBIOS entry from binary file\n"
2274 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
2276 " specify SMBIOS type 0 fields\n"
2277 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2278 " [,uuid=uuid][,sku=str][,family=str]\n"
2279 " specify SMBIOS type 1 fields\n"
2280 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2281 " [,asset=str][,location=str]\n"
2282 " specify SMBIOS type 2 fields\n"
2283 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
2285 " specify SMBIOS type 3 fields\n"
2286 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
2287 " [,asset=str][,part=str]\n"
2288 " specify SMBIOS type 4 fields\n"
2289 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
2290 " [,asset=str][,part=str][,speed=%d]\n"
2291 " specify SMBIOS type 17 fields\n",
2292 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2294 ``-smbios file=binary``
2295 Load SMBIOS entry from binary file.
2297 ``-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d][,uefi=on|off]``
2298 Specify SMBIOS type 0 fields
2300 ``-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str][,uuid=uuid][,sku=str][,family=str]``
2301 Specify SMBIOS type 1 fields
2303 ``-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str][,asset=str][,location=str]``
2304 Specify SMBIOS type 2 fields
2306 ``-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str][,sku=str]``
2307 Specify SMBIOS type 3 fields
2309 ``-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str][,asset=str][,part=str]``
2310 Specify SMBIOS type 4 fields
2312 ``-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str][,asset=str][,part=str][,speed=%d]``
2313 Specify SMBIOS type 17 fields
2318 DEFHEADING(Network options:)
2320 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
2322 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
2323 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
2324 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
2325 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n"
2326 " [,tftp=dir][,tftp-server-name=name][,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
2328 "[,smb=dir[,smbserver=addr]]\n"
2330 " configure a user mode network backend with ID 'str
',\n"
2331 " its DHCP server and optional services\n"
2334 "-netdev tap,id=str,ifname=name\n"
2335 " configure a host TAP network backend with ID 'str
'\n"
2337 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
2338 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
2339 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
2341 " configure a host TAP network backend with ID 'str
'\n"
2342 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2343 " use network scripts 'file
' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
2344 " to configure it and 'dfile
' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
2345 " to deconfigure it\n"
2346 " use '[down
]script
=no
' to disable script execution\n"
2347 " use network helper 'helper
' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
2349 " use 'fd
=h
' to connect to an already opened TAP interface\n"
2350 " use 'fds
=x
:y
:...:z
' to connect to already opened multiqueue capable TAP interfaces\n"
2351 " use 'sndbuf
=nbytes
' to limit the size of the send buffer (the\n"
2352 " default is disabled 'sndbuf
=0' to enable flow control set 'sndbuf
=1048576')\n"
2353 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
2354 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
2355 " use vhost=on to enable experimental in kernel accelerator\n"
2356 " (only has effect for virtio guests which use MSIX)\n"
2357 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
2358 " use 'vhostfd
=h
' to connect to an already opened vhost net device\n"
2359 " use 'vhostfds
=x
:y
:...:z to connect to multiple already opened vhost net devices
\n"
2360 " use
'queues=n' to specify the number of queues to be created
for multiqueue TAP
\n"
2361 " use
'poll-us=n' to speciy the maximum number of microseconds that could be
\n"
2362 " spent on busy polling
for vhost net
\n"
2363 "-netdev bridge
,id
=str
[,br
=bridge
][,helper
=helper
]\n"
2364 " configure a host TAP network backend with ID
'str' that is
\n"
2365 " connected to a
bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2366 " using the program
'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
2369 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
2370 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
2371 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
2372 " [,rxcookie=rxcookie][,offset=offset]\n"
2373 " configure a network backend with ID 'str
' connected to\n"
2374 " an Ethernet over L2TPv3 pseudowire.\n"
2375 " Linux kernel 3.3+ as well as most routers can talk\n"
2376 " L2TPv3. This transport allows connecting a VM to a VM,\n"
2377 " VM to a router and even VM to Host. It is a nearly-universal\n"
2378 " standard (RFC3931). Note - this implementation uses static\n"
2379 " pre-configured tunnels (same as the Linux kernel).\n"
2380 " use 'src
=' to specify source address\n"
2381 " use 'dst
=' to specify destination address\n"
2382 " use 'udp
=on
' to specify udp encapsulation\n"
2383 " use 'srcport
=' to specify source udp port\n"
2384 " use 'dstport
=' to specify destination udp port\n"
2385 " use 'ipv6
=on
' to force v6\n"
2386 " L2TPv3 uses cookies to prevent misconfiguration as\n"
2387 " well as a weak security measure\n"
2388 " use 'rxcookie
=0x012345678' to specify a rxcookie\n"
2389 " use 'txcookie
=0x012345678' to specify a txcookie\n"
2390 " use 'cookie64
=on
' to set cookie size to 64 bit, otherwise 32\n"
2391 " use 'counter
=off
' to force a 'cut
-down
' L2TPv3 with no counter\n"
2392 " use 'pincounter
=on
' to work around broken counter handling in peer\n"
2393 " use 'offset
=X
' to add an extra offset between header and data\n"
2395 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
2396 " configure a network backend to connect to another network\n"
2397 " using a socket connection\n"
2398 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
2399 " configure a network backend to connect to a multicast maddr and port\n"
2400 " use 'localaddr
=addr
' to specify the host address to send packets from\n"
2401 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
2402 " configure a network backend to connect to another network\n"
2403 " using an UDP tunnel\n"
2405 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
2406 " configure a network backend to connect to port 'n
' of a vde switch\n"
2407 " running on host and listening for incoming connections on 'socketpath
'.\n"
2408 " Use group 'groupname
' and mode 'octalmode
' to change default\n"
2409 " ownership and permissions for communication port.\n"
2411 #ifdef CONFIG_NETMAP
2412 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
2413 " attach to the existing netmap-enabled network interface 'name
', or to a\n"
2414 " VALE port (created on the fly) called 'name
' ('nmname
' is name of the \n"
2415 " netmap device, defaults to '/dev
/netmap
')\n"
2418 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
2419 " configure a vhost-user network, backed by a chardev 'dev
'\n"
2421 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n"
2422 " configure a hub port on the hub with ID 'n
'\n", QEMU_ARCH_ALL)
2423 DEF("nic", HAS_ARG, QEMU_OPTION_nic,
2434 #ifdef CONFIG_NETMAP
2440 "socket][,option][,...][mac=macaddr]\n"
2441 " initialize an on-board / default host NIC (using MAC address\n"
2442 " macaddr) and connect it to the given host network backend\n"
2443 "-nic none use it alone to have zero network devices (the default is to\n"
2444 " provided a 'user
' network connection)\n",
2446 DEF("net", HAS_ARG, QEMU_OPTION_net,
2447 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
2448 " configure or create an on-board (or machine default) NIC and\n"
2449 " connect it to hub 0 (please use -nic unless you need a hub)\n"
2459 #ifdef CONFIG_NETMAP
2462 "socket][,option][,option][,...]\n"
2463 " old way to initialize a host network interface\n"
2464 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
2466 ``-nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]``
2467 This option is a shortcut for configuring both the on-board
2468 (default) guest NIC hardware and the host network backend in one go.
2469 The host backend options are the same as with the corresponding
2470 ``-netdev`` options below. The guest NIC model can be set with
2471 ``model=modelname``. Use ``model=help`` to list the available device
2472 types. The hardware MAC address can be set with ``mac=macaddr``.
2474 The following two example do exactly the same, to show how ``-nic``
2475 can be used to shorten the command line length:
2479 |qemu_system| -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
2480 |qemu_system| -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
2483 Indicate that no network devices should be configured. It is used to
2484 override the default configuration (default NIC with "user" host
2485 network backend) which is activated if no other networking options
2488 ``-netdev user,id=id[,option][,option][,...]``
2489 Configure user mode host network backend which requires no
2490 administrator privilege to run. Valid options are:
2493 Assign symbolic name for use in monitor commands.
2495 ``ipv4=on|off and ipv6=on|off``
2496 Specify that either IPv4 or IPv6 must be enabled. If neither is
2497 specified both protocols are enabled.
2500 Set IP network address the guest will see. Optionally specify
2501 the netmask, either in the form a.b.c.d or as number of valid
2502 top-most bits. Default is 10.0.2.0/24.
2505 Specify the guest-visible address of the host. Default is the
2506 2nd IP in the guest network, i.e. x.x.x.2.
2508 ``ipv6-net=addr[/int]``
2509 Set IPv6 network address the guest will see (default is
2510 fec0::/64). The network prefix is given in the usual hexadecimal
2511 IPv6 address notation. The prefix size is optional, and is given
2512 as the number of valid top-most bits (default is 64).
2515 Specify the guest-visible IPv6 address of the host. Default is
2516 the 2nd IPv6 in the guest network, i.e. xxxx::2.
2519 If this option is enabled, the guest will be isolated, i.e. it
2520 will not be able to contact the host and no guest IP packets
2521 will be routed over the host to the outside. This option does
2522 not affect any explicitly set forwarding rules.
2525 Specifies the client hostname reported by the built-in DHCP
2529 Specify the first of the 16 IPs the built-in DHCP server can
2530 assign. Default is the 15th to 31st IP in the guest network,
2531 i.e. x.x.x.15 to x.x.x.31.
2534 Specify the guest-visible address of the virtual nameserver. The
2535 address must be different from the host address. Default is the
2536 3rd IP in the guest network, i.e. x.x.x.3.
2539 Specify the guest-visible address of the IPv6 virtual
2540 nameserver. The address must be different from the host address.
2541 Default is the 3rd IP in the guest network, i.e. xxxx::3.
2543 ``dnssearch=domain``
2544 Provides an entry for the domain-search list sent by the
2545 built-in DHCP server. More than one domain suffix can be
2546 transmitted by specifying this option multiple times. If
2547 supported, this will cause the guest to automatically try to
2548 append the given domain suffix(es) in case a domain name can not
2555 |qemu_system| -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
2557 ``domainname=domain``
2558 Specifies the client domain name reported by the built-in DHCP
2562 When using the user mode network stack, activate a built-in TFTP
2563 server. The files in dir will be exposed as the root of a TFTP
2564 server. The TFTP client on the guest must be configured in
2565 binary mode (use the command ``bin`` of the Unix TFTP client).
2567 ``tftp-server-name=name``
2568 In BOOTP reply, broadcast name as the "TFTP server name"
2569 (RFC2132 option 66). This can be used to advise the guest to
2570 load boot files or configurations from a different server than
2574 When using the user mode network stack, broadcast file as the
2575 BOOTP filename. In conjunction with ``tftp``, this can be used
2576 to network boot a guest from a local directory.
2578 Example (using pxelinux):
2582 |qemu_system| -hda linux.img -boot n -device e1000,netdev=n1 \
2583 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2585 ``smb=dir[,smbserver=addr]``
2586 When using the user mode network stack, activate a built-in SMB
2587 server so that Windows OSes can access to the host files in
2588 ``dir`` transparently. The IP address of the SMB server can be
2589 set to addr. By default the 4th IP in the guest network is used,
2592 In the guest Windows OS, the line:
2598 must be added in the file ``C:\WINDOWS\LMHOSTS`` (for windows
2599 9x/Me) or ``C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS`` (Windows
2602 Then ``dir`` can be accessed in ``\\smbserver\qemu``.
2604 Note that a SAMBA server must be installed on the host OS.
2606 ``hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport``
2607 Redirect incoming TCP or UDP connections to the host port
2608 hostport to the guest IP address guestaddr on guest port
2609 guestport. If guestaddr is not specified, its value is x.x.x.15
2610 (default first address given by the built-in DHCP server). By
2611 specifying hostaddr, the rule can be bound to a specific host
2612 interface. If no connection type is set, TCP is used. This
2613 option can be given multiple times.
2615 For example, to redirect host X11 connection from screen 1 to
2616 guest screen 0, use the following:
2621 |qemu_system| -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
2622 # this host xterm should open in the guest X11 server
2625 To redirect telnet connections from host port 5555 to telnet
2626 port on the guest, use the following:
2631 |qemu_system| -nic user,hostfwd=tcp::5555-:23
2632 telnet localhost 5555
2634 Then when you use on the host ``telnet localhost 5555``, you
2635 connect to the guest telnet server.
2637 ``guestfwd=[tcp]:server:port-dev``; \ ``guestfwd=[tcp]:server:port-cmd:command``
2638 Forward guest TCP connections to the IP address server on port
2639 port to the character device dev or to a program executed by
2640 cmd:command which gets spawned for each connection. This option
2641 can be given multiple times.
2643 You can either use a chardev directly and have that one used
2644 throughout QEMU's lifetime
, like
in the following example
:
2648 # open
10.10.1.1:4321 on bootup
, connect
10.0.2.100:1234 to it whenever
2649 # the guest accesses it
2650 |qemu_system|
-nic user
,guestfwd
=tcp
:10.0.2.100:1234-tcp
:10.10.1.1:4321
2652 Or you can execute a command on every TCP connection established
2653 by the guest
, so that QEMU behaves similar to an inetd process
2654 for that virtual server
:
2658 # call
"netcat 10.10.1.1 4321" on every TCP connection to
10.0.2.100:1234
2659 # and connect the TCP stream to its stdin
/stdout
2660 |qemu_system|
-nic
'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2662 ``
-netdev tap
,id
=id
[,fd
=h
][,ifname
=name
][,script
=file
][,downscript
=dfile
][,br
=bridge
][,helper
=helper
]``
2663 Configure a host TAP network backend with ID id
.
2665 Use the network script file to configure it and the network script
2666 dfile to deconfigure it
. If name is not provided
, the OS
2667 automatically provides one
. The
default network configure script is
2668 ``
/etc
/qemu
-ifup`` and the
default network deconfigure script is
2669 ``
/etc
/qemu
-ifdown``
. Use ``script
=no`` or ``downscript
=no`` to
2670 disable script execution
.
2672 If running QEMU as an unprivileged user
, use the network helper
2673 helper to configure the TAP
interface and attach it to the bridge
.
2674 The
default network helper executable is
2675 ``
/path
/to
/qemu
-bridge
-helper`` and the
default bridge device is
2678 ``fd``\
=h can be used to specify the handle of an already opened
2685 #launch a QEMU instance with the
default network script
2686 |qemu_system| linux
.img
-nic tap
2690 #launch a QEMU instance with two NICs
, each one connected
2692 |qemu_system| linux
.img \
2693 -netdev tap
,id
=nd0
,ifname
=tap0
-device e1000
,netdev
=nd0 \
2694 -netdev tap
,id
=nd1
,ifname
=tap1
-device rtl8139
,netdev
=nd1
2698 #launch a QEMU instance with the
default network helper to
2699 #connect a TAP device to bridge br0
2700 |qemu_system| linux
.img
-device virtio
-net
-pci
,netdev
=n1 \
2701 -netdev tap
,id
=n1
,"helper=/path/to/qemu-bridge-helper"
2703 ``
-netdev bridge
,id
=id
[,br
=bridge
][,helper
=helper
]``
2704 Connect a host TAP network
interface to a host bridge device
.
2706 Use the network helper helper to configure the TAP
interface and
2707 attach it to the bridge
. The
default network helper executable is
2708 ``
/path
/to
/qemu
-bridge
-helper`` and the
default bridge device is
2715 #launch a QEMU instance with the
default network helper to
2716 #connect a TAP device to bridge br0
2717 |qemu_system| linux
.img
-netdev bridge
,id
=n1
-device virtio
-net
,netdev
=n1
2721 #launch a QEMU instance with the
default network helper to
2722 #connect a TAP device to bridge qemubr0
2723 |qemu_system| linux
.img
-netdev bridge
,br
=qemubr0
,id
=n1
-device virtio
-net
,netdev
=n1
2725 ``
-netdev socket
,id
=id
[,fd
=h
][,listen
=[host
]:port
][,connect
=host
:port
]``
2726 This host network backend can be used to connect the guest
's network
2727 to another QEMU virtual machine using a TCP socket connection. If
2728 ``listen`` is specified, QEMU waits for incoming connections on port
2729 (host is optional). ``connect`` is used to connect to another QEMU
2730 instance using the ``listen`` option. ``fd``\ =h specifies an
2731 already opened TCP socket.
2737 # launch a first QEMU instance
2738 |qemu_system| linux.img \
2739 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2740 -netdev socket,id=n1,listen=:1234
2741 # connect the network of this instance to the network of the first instance
2742 |qemu_system| linux.img \
2743 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \
2744 -netdev socket,id=n2,connect=127.0.0.1:1234
2746 ``-netdev socket,id=id[,fd=h][,mcast=maddr:port[,localaddr=addr]]``
2747 Configure a socket host network backend to share the guest's network
2748 traffic with another QEMU virtual machines
using a UDP multicast
2749 socket
, effectively making a bus
for every QEMU with same multicast
2750 address maddr and port
. NOTES
:
2752 1. Several QEMU can be running on different hosts and share same bus
2753 (assuming correct multicast setup
for these hosts
).
2755 2. mcast support is compatible with User Mode
Linux (argument
2756 ``ethN
=mcast``
), see http
://user-mode-linux.sf.net.
2758 3. Use ``fd
=h`` to specify an already opened UDP multicast socket
.
2764 # launch one QEMU instance
2765 |qemu_system| linux
.img \
2766 -device e1000
,netdev
=n1
,mac
=52:54:00:12:34:56 \
2767 -netdev socket
,id
=n1
,mcast
=230.0.0.1:1234
2768 # launch another QEMU instance on same
"bus"
2769 |qemu_system| linux
.img \
2770 -device e1000
,netdev
=n2
,mac
=52:54:00:12:34:57 \
2771 -netdev socket
,id
=n2
,mcast
=230.0.0.1:1234
2772 # launch yet another QEMU instance on same
"bus"
2773 |qemu_system| linux
.img \
2774 -device e1000
,netdev
=n3
,mac
=52:54:00:12:34:58 \
2775 -netdev socket
,id
=n3
,mcast
=230.0.0.1:1234
2777 Example (User Mode Linux compat
.):
2781 # launch QEMU
instance (note mcast address selected is UML
's default)
2782 |qemu_system| linux.img \
2783 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \
2784 -netdev socket,id=n1,mcast=239.192.168.1:1102
2786 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2788 Example (send packets from host's
1.2.3.4):
2792 |qemu_system| linux
.img \
2793 -device e1000
,netdev
=n1
,mac
=52:54:00:12:34:56 \
2794 -netdev socket
,id
=n1
,mcast
=239.192.168.1:1102,localaddr
=1.2.3.4
2796 ``
-netdev l2tpv3
,id
=id
,src
=srcaddr
,dst
=dstaddr
[,srcport
=srcport
][,dstport
=dstport
],txsession
=txsession
[,rxsession
=rxsession
][,ipv6
][,udp
][,cookie64
][,counter
][,pincounter
][,txcookie
=txcookie
][,rxcookie
=rxcookie
][,offset
=offset
]``
2797 Configure a L2TPv3 pseudowire host network backend
. L2TPv3 (RFC3931
)
2798 is a popular protocol to transport
Ethernet (and other Layer
2) data
2799 frames between two systems
. It is present
in routers
, firewalls and
2800 the Linux
kernel (from version
3.3 onwards
).
2802 This transport allows a VM to communicate to another VM
, router or
2806 source
address (mandatory
)
2809 destination
address (mandatory
)
2812 select udp
encapsulation (default is ip
).
2818 destination udp port
.
2821 force v6
, otherwise defaults to v4
.
2823 ``rxcookie
=rxcookie``
; \ ``txcookie
=txcookie``
2824 Cookies are a weak form of security
in the l2tpv3 specification
.
2825 Their
function is mostly to prevent misconfiguration
. By
default
2829 Set cookie size to
64 bit instead of the
default 32
2832 Force a
'cut-down' L2TPv3 with no counter as
in
2833 draft
-mkonstan
-l2tpext
-keyed
-ipv6
-tunnel
-00
2836 Work around broken counter handling
in peer
. This may also help
2837 on networks which have packet reorder
.
2840 Add an extra offset between header and data
2842 For example
, to attach a VM running on host
4.3.2.1 via L2TPv3 to
2843 the bridge br
-lan on the remote Linux host
1.2.3.4:
2847 # Setup tunnel on linux host
using raw ip as encapsulation
2849 ip l2tp add tunnel remote
4.3.2.1 local
1.2.3.4 tunnel_id
1 peer_tunnel_id
1 \
2850 encap udp udp_sport
16384 udp_dport
16384
2851 ip l2tp add session tunnel_id
1 name vmtunnel0 session_id \
2852 0xFFFFFFFF peer_session_id
0xFFFFFFFF
2853 ifconfig vmtunnel0 mtu
1500
2854 ifconfig vmtunnel0 up
2855 brctl addif br
-lan vmtunnel0
2859 # launch QEMU instance
- if your network has reorder or is very lossy add
,pincounter
2861 |qemu_system| linux
.img
-device e1000
,netdev
=n1 \
2862 -netdev l2tpv3
,id
=n1
,src
=4.2.3.1,dst
=1.2.3.4,udp
,srcport
=16384,dstport
=16384,rxsession
=0xffffffff,txsession
=0xffffffff,counter
2864 ``
-netdev vde
,id
=id
[,sock
=socketpath
][,port
=n
][,group
=groupname
][,mode
=octalmode
]``
2865 Configure VDE backend to connect to PORT n of a vde
switch running
2866 on host and listening
for incoming connections on socketpath
. Use
2867 GROUP groupname and MODE octalmode to change
default ownership and
2868 permissions
for communication port
. This option is only available
if
2869 QEMU has been compiled with vde support enabled
.
2876 vde_switch
-F
-sock
/tmp
/myswitch
2877 # launch QEMU instance
2878 |qemu_system| linux
.img
-nic vde
,sock
=/tmp
/myswitch
2880 ``
-netdev vhost
-user
,chardev
=id
[,vhostforce
=on|off
][,queues
=n
]``
2881 Establish a vhost
-user netdev
, backed by a chardev id
. The chardev
2882 should be a unix domain socket backed one
. The vhost
-user uses a
2883 specifically defined protocol to pass vhost ioctl replacement
2884 messages to an application on the other end of the socket
. On
2885 non
-MSIX guests
, the feature can be forced with vhostforce
. Use
2886 'queues=n' to specify the number of queues to be created
for
2887 multiqueue vhost
-user
.
2893 qemu
-m
512 -object memory
-backend
-file
,id
=mem
,size
=512M
,mem
-path
=/hugetlbfs
,share
=on \
2894 -numa node
,memdev
=mem \
2895 -chardev socket
,id
=chr0
,path
=/path
/to
/socket \
2896 -netdev type
=vhost
-user
,id
=net0
,chardev
=chr0 \
2897 -device virtio
-net
-pci
,netdev
=net0
2899 ``
-netdev hubport
,id
=id
,hubid
=hubid
[,netdev
=nd
]``
2900 Create a hub port on the emulated hub with ID hubid
.
2902 The hubport netdev lets you connect a NIC to a QEMU emulated hub
2903 instead of a single netdev
. Alternatively
, you can also connect the
2904 hubport to another netdev with ID nd by
using the ``netdev
=nd``
2907 ``
-net nic
[,netdev
=nd
][,macaddr
=mac
][,model
=type
] [,name
=name
][,addr
=addr
][,vectors
=v
]``
2908 Legacy option to configure or create an on
-board (or machine
2909 default) Network Interface
Card(NIC
) and connect it either to the
2910 emulated hub with ID
0 (i
.e
. the
default hub
), or to the netdev nd
.
2911 If model is omitted
, then the
default NIC model associated with the
2912 machine type is used
. Note that the
default NIC model may change
in
2913 future QEMU releases
, so it is highly recommended to always specify
2914 a model
. Optionally
, the MAC address can be changed to mac
, the
2915 device address set to
addr (PCI cards only
), and a name can be
2916 assigned
for use
in monitor commands
. Optionally
, for PCI cards
, you
2917 can specify the number v of MSI
-X vectors that the card should have
;
2918 this option currently only affects virtio cards
; set v
= 0 to
2919 disable MSI
-X
. If no ``
-net`` option is specified
, a single NIC is
2920 created
. QEMU can emulate several different models of network card
.
2921 Use ``
-net nic
,model
=help``
for a list of available devices
for your
2924 ``
-net user|tap|bridge|socket|l2tpv3|vde
[,...][,name
=name
]``
2925 Configure a host network
backend (with the options corresponding to
2926 the same ``
-netdev`` option
) and connect it to the emulated hub
0
2927 (the
default hub
). Use name to specify the name of the hub port
.
2932 DEFHEADING(Character device options
:)
2934 DEF("chardev", HAS_ARG
, QEMU_OPTION_chardev
,
2936 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2937 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2938 " [,server][,nowait][,telnet][,websocket][,reconnect=seconds][,mux=on|off]\n"
2939 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID][,tls-authz=ID] (tcp)\n"
2940 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,websocket][,reconnect=seconds]\n"
2941 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2942 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2943 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2944 " [,logfile=PATH][,logappend=on|off]\n"
2945 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2946 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2947 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2948 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2949 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2950 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2952 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2953 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2955 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2956 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2958 #ifdef CONFIG_BRLAPI
2959 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2961 #
if defined(__linux__
) ||
defined(__sun__
) ||
defined(__FreeBSD__
) \
2962 ||
defined(__NetBSD__
) ||
defined(__OpenBSD__
) ||
defined(__DragonFly__
)
2963 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2964 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2966 #
if defined(__linux__
) ||
defined(__FreeBSD__
) ||
defined(__DragonFly__
)
2967 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2968 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2970 #
if defined(CONFIG_SPICE
)
2971 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2972 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2978 The general form of a character device option is
:
2980 ``
-chardev backend
,id
=id
[,mux
=on|off
][,options
]``
2981 Backend is one of
: ``
null``
, ``socket``
, ``udp``
, ``msmouse``
,
2982 ``vc``
, ``ringbuf``
, ``file``
, ``pipe``
, ``console``
, ``serial``
,
2983 ``pty``
, ``stdio``
, ``braille``
, ``tty``
, ``parallel``
, ``parport``
,
2984 ``spicevmc``
, ``spiceport``
. The specific backend will determine the
2987 Use ``
-chardev help`` to print all available chardev backend types
.
2989 All devices must have an id
, which can be any string up to
127
2990 characters long
. It is used to uniquely identify
this device
in
2991 other command line directives
.
2993 A character device may be used
in multiplexing mode by multiple
2994 front
-ends
. Specify ``mux
=on`` to enable
this mode
. A multiplexer is
2995 a
"1:N" device
, and
here the
"1" end is your specified chardev
2996 backend
, and the
"N" end is the various parts of QEMU that can talk
2997 to a chardev
. If you create a chardev with ``id
=myid`` and
2998 ``mux
=on``
, QEMU will create a multiplexer with your specified ID
,
2999 and you can then configure multiple front ends to use that chardev
3000 ID
for their input
/output
. Up to four different front ends can be
3001 connected to a single multiplexed chardev
. (Without multiplexing
3002 enabled
, a chardev can only be used by a single front end
.) For
3003 instance you could use
this to allow a single stdio chardev to be
3004 used by two serial ports and the QEMU monitor
:
3008 -chardev stdio
,mux
=on
,id
=char0 \
3009 -mon chardev
=char0
,mode
=readline \
3010 -serial chardev
:char0 \
3011 -serial chardev
:char0
3013 You can have more than one multiplexer
in a system configuration
;
3014 for instance you could have a TCP port multiplexed between UART
0
3015 and UART
1, and stdio multiplexed between the QEMU monitor and a
3020 -chardev stdio
,mux
=on
,id
=char0 \
3021 -mon chardev
=char0
,mode
=readline \
3022 -parallel chardev
:char0 \
3023 -chardev tcp
,...,mux
=on
,id
=char1 \
3024 -serial chardev
:char1 \
3025 -serial chardev
:char1
3027 When you
're using a multiplexed character device, some escape
3028 sequences are interpreted in the input. See :ref:`mux_005fkeys`.
3030 Note that some other command line options may implicitly create
3031 multiplexed character backends; for instance ``-serial mon:stdio``
3032 creates a multiplexed stdio backend connected to the serial port and
3033 the QEMU monitor, and ``-nographic`` also multiplexes the console
3034 and the monitor to stdio.
3036 There is currently no support for multiplexing in the other
3037 direction (where a single QEMU front end takes input and output from
3040 Every backend supports the ``logfile`` option, which supplies the
3041 path to a file to record all data transmitted via the backend. The
3042 ``logappend`` option controls whether the log file will be truncated
3043 or appended to when opened.
3045 The available backends are:
3047 ``-chardev null,id=id``
3048 A void device. This device will not emit any data, and will drop any
3049 data it receives. The null backend does not take any options.
3051 ``-chardev socket,id=id[,TCP options or unix options][,server][,nowait][,telnet][,websocket][,reconnect=seconds][,tls-creds=id][,tls-authz=id]``
3052 Create a two-way stream socket, which can be either a TCP or a unix
3053 socket. A unix socket will be created if ``path`` is specified.
3054 Behaviour is undefined if TCP options are specified for a unix
3057 ``server`` specifies that the socket shall be a listening socket.
3059 ``nowait`` specifies that QEMU should not block waiting for a client
3060 to connect to a listening socket.
3062 ``telnet`` specifies that traffic on the socket should interpret
3063 telnet escape sequences.
3065 ``websocket`` specifies that the socket uses WebSocket protocol for
3068 ``reconnect`` sets the timeout for reconnecting on non-server
3069 sockets when the remote end goes away. qemu will delay this many
3070 seconds and then attempt to reconnect. Zero disables reconnecting,
3073 ``tls-creds`` requests enablement of the TLS protocol for
3074 encryption, and specifies the id of the TLS credentials to use for
3075 the handshake. The credentials must be previously created with the
3076 ``-object tls-creds`` argument.
3078 ``tls-auth`` provides the ID of the QAuthZ authorization object
3079 against which the client's x509 distinguished name will be
3080 validated
. This object is only resolved at time of use
, so can be
3081 deleted and recreated on the fly
while the chardev server is active
.
3082 If missing
, it will
default to denying access
.
3084 TCP and unix socket options are given below
:
3086 ``TCP options
: port
=port
[,host
=host
][,to
=to
][,ipv4
][,ipv6
][,nodelay
]``
3087 ``host``
for a listening socket specifies the local address to
3088 be bound
. For a connecting socket species the remote host to
3089 connect to
. ``host`` is optional
for listening sockets
. If not
3090 specified it defaults to ``
0.0.0.0``
.
3092 ``port``
for a listening socket specifies the local port to be
3093 bound
. For a connecting socket specifies the port on the remote
3094 host to connect to
. ``port`` can be given as either a port
3095 number or a service name
. ``port`` is required
.
3097 ``to`` is only relevant to listening sockets
. If it is
3098 specified
, and ``port`` cannot be bound
, QEMU will attempt to
3099 bind to subsequent ports up to and including ``to`` until it
3100 succeeds
. ``to`` must be specified as a port number
.
3102 ``ipv4`` and ``ipv6`` specify that either IPv4 or IPv6 must be
3103 used
. If neither is specified the socket may use either
3106 ``nodelay`` disables the Nagle algorithm
.
3108 ``unix options
: path
=path``
3109 ``path`` specifies the local path of the unix socket
. ``path``
3112 ``
-chardev udp
,id
=id
[,host
=host
],port
=port
[,localaddr
=localaddr
][,localport
=localport
][,ipv4
][,ipv6
]``
3113 Sends all traffic from the guest to a remote host over UDP
.
3115 ``host`` specifies the remote host to connect to
. If not specified
3116 it defaults to ``localhost``
.
3118 ``port`` specifies the port on the remote host to connect to
.
3119 ``port`` is required
.
3121 ``localaddr`` specifies the local address to bind to
. If not
3122 specified it defaults to ``
0.0.0.0``
.
3124 ``localport`` specifies the local port to bind to
. If not specified
3125 any available local port will be used
.
3127 ``ipv4`` and ``ipv6`` specify that either IPv4 or IPv6 must be used
.
3128 If neither is specified the device may use either protocol
.
3130 ``
-chardev msmouse
,id
=id``
3131 Forward QEMU
's emulated msmouse events to the guest. ``msmouse``
3132 does not take any options.
3134 ``-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]``
3135 Connect to a QEMU text console. ``vc`` may optionally be given a
3138 ``width`` and ``height`` specify the width and height respectively
3139 of the console, in pixels.
3141 ``cols`` and ``rows`` specify that the console be sized to fit a
3142 text console with the given dimensions.
3144 ``-chardev ringbuf,id=id[,size=size]``
3145 Create a ring buffer with fixed size ``size``. size must be a power
3146 of two and defaults to ``64K``.
3148 ``-chardev file,id=id,path=path``
3149 Log all traffic received from the guest to a file.
3151 ``path`` specifies the path of the file to be opened. This file will
3152 be created if it does not already exist, and overwritten if it does.
3153 ``path`` is required.
3155 ``-chardev pipe,id=id,path=path``
3156 Create a two-way connection to the guest. The behaviour differs
3157 slightly between Windows hosts and other hosts:
3159 On Windows, a single duplex pipe will be created at
3162 On other hosts, 2 pipes will be created called ``path.in`` and
3163 ``path.out``. Data written to ``path.in`` will be received by the
3164 guest. Data written by the guest can be read from ``path.out``. QEMU
3165 will not create these fifos, and requires them to be present.
3167 ``path`` forms part of the pipe path as described above. ``path`` is
3170 ``-chardev console,id=id``
3171 Send traffic from the guest to QEMU's standard output
. ``console``
3172 does not take any options
.
3174 ``console`` is only available on Windows hosts
.
3176 ``
-chardev serial
,id
=id
,path
=path``
3177 Send traffic from the guest to a serial device on the host
.
3179 On Unix hosts serial will actually accept any tty device
, not only
3182 ``path`` specifies the name of the serial device to open
.
3184 ``
-chardev pty
,id
=id``
3185 Create a
new pseudo
-terminal on the host and connect to it
. ``pty``
3186 does not take any options
.
3188 ``pty`` is not available on Windows hosts
.
3190 ``
-chardev stdio
,id
=id
[,signal
=on|off
]``
3191 Connect to standard input and standard output of the QEMU process
.
3193 ``signal`` controls
if signals are enabled on the terminal
, that
3194 includes exiting QEMU with the key sequence Control
-c
. This option
3195 is enabled by
default, use ``signal
=off`` to disable it
.
3197 ``
-chardev braille
,id
=id``
3198 Connect to a local BrlAPI server
. ``braille`` does not take any
3201 ``
-chardev tty
,id
=id
,path
=path``
3202 ``tty`` is only available on Linux
, Sun
, FreeBSD
, NetBSD
, OpenBSD
3203 and DragonFlyBSD hosts
. It is an alias
for ``serial``
.
3205 ``path`` specifies the path to the tty
. ``path`` is required
.
3207 ``
-chardev parallel
,id
=id
,path
=path``
3209 ``
-chardev parport
,id
=id
,path
=path``
3210 ``parallel`` is only available on Linux
, FreeBSD and DragonFlyBSD
3213 Connect to a local parallel port
.
3215 ``path`` specifies the path to the parallel port device
. ``path`` is
3218 ``
-chardev spicevmc
,id
=id
,debug
=debug
,name
=name``
3219 ``spicevmc`` is only available when spice support is built
in.
3221 ``debug`` debug level
for spicevmc
3223 ``name`` name of spice channel to connect to
3225 Connect to a spice virtual machine channel
, such as vdiport
.
3227 ``
-chardev spiceport
,id
=id
,debug
=debug
,name
=name``
3228 ``spiceport`` is only available when spice support is built
in.
3230 ``debug`` debug level
for spicevmc
3232 ``name`` name of spice port to connect to
3234 Connect to a spice port
, allowing a Spice client to handle the
3235 traffic identified by a
name (preferably a fqdn
).
3241 DEFHEADING(TPM device options
:)
3243 DEF("tpmdev", HAS_ARG
, QEMU_OPTION_tpmdev
, \
3244 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
3245 " use path to provide path to a character device; default is /dev/tpm0\n"
3246 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
3247 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
3248 "-tpmdev emulator,id=id,chardev=dev\n"
3249 " configure the TPM device using chardev backend\n",
3252 The general form of a TPM device option is
:
3254 ``
-tpmdev backend
,id
=id
[,options
]``
3255 The specific backend type will determine the applicable options
. The
3256 ``
-tpmdev`` option creates the TPM backend and requires a
3257 ``
-device`` option that specifies the TPM frontend
interface model
.
3259 Use ``
-tpmdev help`` to print all available TPM backend types
.
3261 The available backends are
:
3263 ``
-tpmdev passthrough
,id
=id
,path
=path
,cancel
-path
=cancel
-path``
3264 (Linux
-host only
) Enable access to the host
's TPM using the
3267 ``path`` specifies the path to the host's TPM device
, i
.e
., on a
3268 Linux host
this would be ``
/dev
/tpm0``
. ``path`` is optional and by
3269 default ``
/dev
/tpm0`` is used
.
3271 ``cancel
-path`` specifies the path to the host TPM device
's sysfs
3272 entry allowing for cancellation of an ongoing TPM command.
3273 ``cancel-path`` is optional and by default QEMU will search for the
3276 Some notes about using the host's TPM with the passthrough driver
:
3278 The TPM device accessed by the passthrough driver must not be used
3279 by any other application on the host
.
3281 Since the host
's firmware (BIOS/UEFI) has already initialized the
3282 TPM, the VM's
firmware (BIOS
/UEFI
) will not be able to initialize
3283 the TPM again and may therefore not show a TPM
-specific menu that
3284 would otherwise allow the user to configure the TPM
, e
.g
., allow the
3285 user to enable
/disable or activate
/deactivate the TPM
. Further
, if
3286 TPM ownership is released from within a VM then the host
's TPM will
3287 get disabled and deactivated. To enable and activate the TPM again
3288 afterwards, the host has to be rebooted and the user is required to
3289 enter the firmware's menu to enable and activate the TPM
. If the TPM
3290 is left disabled and
/or deactivated most TPM commands will fail
.
3292 To create a passthrough TPM use the following two options
:
3296 -tpmdev passthrough
,id
=tpm0
-device tpm
-tis
,tpmdev
=tpm0
3298 Note that the ``
-tpmdev`` id is ``tpm0`` and is referenced by
3299 ``tpmdev
=tpm0``
in the device option
.
3301 ``
-tpmdev emulator
,id
=id
,chardev
=dev``
3302 (Linux
-host only
) Enable access to a TPM emulator
using Unix domain
3303 socket based chardev backend
.
3305 ``chardev`` specifies the unique ID of a character device backend
3306 that provides connection to the software TPM server
.
3308 To create a TPM emulator backend device with chardev socket backend
:
3312 -chardev socket
,id
=chrtpm
,path
=/tmp
/swtpm
-sock
-tpmdev emulator
,id
=tpm0
,chardev
=chrtpm
-device tpm
-tis
,tpmdev
=tpm0
3319 DEFHEADING(Linux
/Multiboot boot specific
:)
3321 When
using these options
, you can use a given Linux or Multiboot kernel
3322 without installing it
in the disk image
. It can be useful
for easier
3323 testing of various kernels
.
3328 DEF("kernel", HAS_ARG
, QEMU_OPTION_kernel
, \
3329 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL
)
3332 Use bzImage as kernel image
. The kernel can be either a Linux kernel
3333 or
in multiboot format
.
3336 DEF("append", HAS_ARG
, QEMU_OPTION_append
, \
3337 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL
)
3340 Use cmdline as kernel command line
3343 DEF("initrd", HAS_ARG
, QEMU_OPTION_initrd
, \
3344 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL
)
3347 Use file as initial ram disk
.
3349 ``
-initrd
"file1 arg=foo,file2"``
3350 This syntax is only available with multiboot
.
3352 Use file1 and file2 as modules and pass arg
=foo as parameter to the
3356 DEF("dtb", HAS_ARG
, QEMU_OPTION_dtb
, \
3357 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL
)
3360 Use file as a device tree
binary (dtb
) image and pass it to the
3366 DEFHEADING(Debug
/Expert options
:)
3368 DEF("fw_cfg", HAS_ARG
, QEMU_OPTION_fwcfg
,
3369 "-fw_cfg [name=]<name>,file=<file>\n"
3370 " add named fw_cfg entry with contents from file\n"
3371 "-fw_cfg [name=]<name>,string=<str>\n"
3372 " add named fw_cfg entry with contents from string\n",
3375 ``
-fw_cfg
[name
=]name
,file
=file``
3376 Add named fw\_cfg entry with contents from file file
.
3378 ``
-fw_cfg
[name
=]name
,string
=str``
3379 Add named fw\_cfg entry with contents from string str
.
3381 The terminating NUL character of the contents of str will not be
3382 included as part of the fw\_cfg item data
. To insert contents with
3383 embedded NUL characters
, you have to use the file parameter
.
3385 The fw\_cfg entries are passed by QEMU through to the guest
.
3391 -fw_cfg name
=opt
/com
.mycompany
/blob
,file
=./my_blob
.bin
3393 creates an fw\_cfg entry named opt
/com
.mycompany
/blob with contents
3394 from
./my\_blob
.bin
.
3397 DEF("serial", HAS_ARG
, QEMU_OPTION_serial
, \
3398 "-serial dev redirect the serial port to char device 'dev'\n",
3402 Redirect the virtual serial port to host character device dev
. The
3403 default device is ``vc``
in graphical mode and ``stdio``
in non
3406 This option can be used several times to simulate up to
4 serial
3409 Use ``
-serial none`` to disable all serial ports
.
3411 Available character devices are
:
3414 Virtual console
. Optionally
, a width and height can be given
in
3421 It is also possible to specify width or height
in characters
:
3428 [Linux only
] Pseudo
TTY (a
new PTY is automatically allocated
)
3431 No device is allocated
.
3437 Use a named character device defined with the ``
-chardev``
3441 [Linux only
] Use host tty
, e
.g
. ``
/dev
/ttyS0``
. The host serial
3442 port parameters are set according to the emulated ones
.
3445 [Linux only
, parallel port only
] Use host parallel port N
.
3446 Currently SPP and EPP parallel port features can be used
.
3449 Write output to filename
. No character can be read
.
3452 [Unix only
] standard input
/output
3458 [Windows only
] Use host serial port n
3460 ``udp
:[remote_host
]:remote_port
[@
[src_ip
]:src_port
]``
3461 This
implements UDP Net Console
. When remote\_host or src\_ip
3462 are not specified they
default to ``
0.0.0.0``
. When not
using a
3463 specified src\_port a random port is automatically chosen
.
3465 If you just want a simple readonly console you can use
3466 ``netcat`` or ``nc``
, by starting QEMU with
:
3467 ``
-serial udp
::4555`` and nc as
: ``nc
-u
-l
-p
4555``
. Any time
3468 QEMU writes something to that port it will appear
in the
3471 If you plan to send characters back via netconsole or you want
3472 to stop and start QEMU a lot of times
, you should have QEMU use
3473 the same source port each time by
using something like ``
-serial
3474 udp
::4555@
:4556`` to QEMU
. Another approach is to use a patched
3475 version of netcat which can listen to a TCP port and send and
3476 receive characters via udp
. If you have a patched version of
3477 netcat which activates telnet remote echo and single char
3478 transfer
, then you can use the following options to set up a
3479 netcat redirector to allow telnet on port
5555 to access the
3483 -serial udp
::4555@
:4556
3486 -u
-P
4555 -L
0.0.0.0:4556 -t
-p
5555 -I
-T
3491 ``tcp
:[host
]:port
[,server
][,nowait
][,nodelay
][,reconnect
=seconds
]``
3492 The TCP Net Console has two modes of operation
. It can send the
3493 serial I
/O to a location or wait
for a connection from a
3494 location
. By
default the TCP Net Console is sent to host at the
3495 port
. If you use the server option QEMU will wait
for a client
3496 socket application to connect to the port before continuing
,
3497 unless the ``nowait`` option was specified
. The ``nodelay``
3498 option disables the Nagle buffering algorithm
. The ``reconnect``
3499 option only applies
if noserver is set
, if the connection goes
3500 down it will attempt to reconnect at the given interval
. If host
3501 is omitted
, 0.0.0.0 is assumed
. Only one TCP connection at a
3502 time is accepted
. You can use ``telnet`` to connect to the
3503 corresponding character device
.
3505 ``Example to send tcp console to
192.168.0.2 port
4444``
3506 -serial tcp
:192.168.0.2:4444
3508 ``Example to listen and wait on port
4444 for connection``
3509 -serial tcp
::4444,server
3511 ``Example to not wait and listen on ip
192.168.0.100 port
4444``
3512 -serial tcp
:192.168.0.100:4444,server
,nowait
3514 ``telnet
:host
:port
[,server
][,nowait
][,nodelay
]``
3515 The telnet protocol is used instead of raw tcp sockets
. The
3516 options work the same as
if you had specified ``
-serial tcp``
.
3517 The difference is that the port acts like a telnet server or
3518 client
using telnet option negotiation
. This will also allow you
3519 to send the MAGIC\_SYSRQ sequence
if you use a telnet that
3520 supports sending the
break sequence
. Typically
in unix telnet
3521 you
do it with Control
-] and then type
"send break" followed by
3522 pressing the enter key
.
3524 ``websocket
:host
:port
,server
[,nowait
][,nodelay
]``
3525 The WebSocket protocol is used instead of raw tcp socket
. The
3526 port acts as a WebSocket server
. Client mode is not supported
.
3528 ``unix
:path
[,server
][,nowait
][,reconnect
=seconds
]``
3529 A unix domain socket is used instead of a tcp socket
. The option
3530 works the same as
if you had specified ``
-serial tcp`` except
3531 the unix domain socket path is used
for connections
.
3534 This is a special option to allow the monitor to be multiplexed
3535 onto another serial port
. The monitor is accessed with key
3536 sequence of Control
-a and then pressing c
. dev\_string should be
3537 any one of the serial devices specified above
. An example to
3538 multiplex the monitor onto a telnet server listening on port
3541 ``
-serial mon
:telnet
::4444,server
,nowait``
3543 When the monitor is multiplexed to stdio
in this way
, Ctrl
+C
3544 will not terminate QEMU any more but will be passed to the guest
3548 Braille device
. This will use BrlAPI to display the braille
3549 output on a real or fake device
.
3552 Three button serial mouse
. Configure the guest to use Microsoft
3556 DEF("parallel", HAS_ARG
, QEMU_OPTION_parallel
, \
3557 "-parallel dev redirect the parallel port to char device 'dev'\n",
3561 Redirect the virtual parallel port to host device
dev (same devices
3562 as the serial port
). On Linux hosts
, ``
/dev
/parportN`` can be used
3563 to use hardware devices connected on the corresponding host parallel
3566 This option can be used several times to simulate up to
3 parallel
3569 Use ``
-parallel none`` to disable all parallel ports
.
3572 DEF("monitor", HAS_ARG
, QEMU_OPTION_monitor
, \
3573 "-monitor dev redirect the monitor to char device 'dev'\n",
3577 Redirect the monitor to host device
dev (same devices as the serial
3578 port
). The
default device is ``vc``
in graphical mode and ``stdio``
3579 in non graphical mode
. Use ``
-monitor none`` to disable the
default
3582 DEF("qmp", HAS_ARG
, QEMU_OPTION_qmp
, \
3583 "-qmp dev like -monitor but opens in 'control' mode\n",
3587 Like
-monitor but opens
in 'control' mode
.
3589 DEF("qmp-pretty", HAS_ARG
, QEMU_OPTION_qmp_pretty
, \
3590 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3594 Like
-qmp but uses pretty JSON formatting
.
3597 DEF("mon", HAS_ARG
, QEMU_OPTION_mon
, \
3598 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL
)
3600 ``
-mon
[chardev
=]name
[,mode
=readline|control
][,pretty
[=on|off
]]``
3601 Setup monitor on chardev name
. ``pretty`` turns on JSON pretty
3602 printing easing human reading and debugging
.
3605 DEF("debugcon", HAS_ARG
, QEMU_OPTION_debugcon
, \
3606 "-debugcon dev redirect the debug console to char device 'dev'\n",
3610 Redirect the debug console to host device
dev (same devices as the
3611 serial port
). The debug console is an I
/O port which is typically
3612 port
0xe9; writing to that I
/O port sends output to
this device
. The
3613 default device is ``vc``
in graphical mode and ``stdio``
in non
3617 DEF("pidfile", HAS_ARG
, QEMU_OPTION_pidfile
, \
3618 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL
)
3621 Store the QEMU process PID
in file
. It is useful
if you launch QEMU
3625 DEF("singlestep", 0, QEMU_OPTION_singlestep
, \
3626 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL
)
3629 Run the emulation
in single step mode
.
3632 DEF("preconfig", 0, QEMU_OPTION_preconfig
, \
3633 "--preconfig pause QEMU before machine is initialized (experimental)\n",
3637 Pause QEMU
for interactive configuration before the machine is
3638 created
, which allows querying and configuring properties that will
3639 affect machine initialization
. Use QMP command
'x-exit-preconfig' to
3640 exit the preconfig state and move to the next
state (i
.e
. run guest
3641 if -S isn
't used or pause the second time if -S is used). This
3642 option is experimental.
3645 DEF("S", 0, QEMU_OPTION_S, \
3646 "-S freeze CPU at startup (use 'c
' to start execution)\n",
3650 Do not start CPU at startup (you must type 'c
' in the monitor).
3653 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3654 "-realtime [mlock=on|off]\n"
3655 " run qemu with realtime features\n"
3656 " mlock=on|off controls mlock support (default: on)\n",
3659 ``-realtime mlock=on|off``
3660 Run qemu with realtime features. mlocking qemu and guest memory can
3661 be enabled via ``mlock=on`` (enabled by default).
3664 DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit,
3665 "-overcommit [mem-lock=on|off][cpu-pm=on|off]\n"
3666 " run qemu with overcommit hints\n"
3667 " mem-lock=on|off controls memory lock support (default: off)\n"
3668 " cpu-pm=on|off controls cpu power management (default: off)\n",
3671 ``-overcommit mem-lock=on|off``
3673 ``-overcommit cpu-pm=on|off``
3674 Run qemu with hints about host resource overcommit. The default is
3675 to assume that host overcommits all resources.
3677 Locking qemu and guest memory can be enabled via ``mem-lock=on``
3678 (disabled by default). This works when host memory is not
3679 overcommitted and reduces the worst-case latency for guest. This is
3680 equivalent to ``realtime``.
3682 Guest ability to manage power state of host cpus (increasing latency
3683 for other processes on the same host cpu, but decreasing latency for
3684 guest) can be enabled via ``cpu-pm=on`` (disabled by default). This
3685 works best when host CPU is not overcommitted. When used, host
3686 estimates of CPU cycle and power utilization will be incorrect, not
3687 taking into account guest idle time.
3690 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3691 "-gdb dev accept gdb connection on 'dev
'. (QEMU defaults to starting\n"
3692 " the guest without waiting for gdb to connect; use -S too\n"
3693 " if you want it to not start execution.)\n",
3697 Accept a gdb connection on device dev (see
3698 :ref:`gdb_005fusage`). Note that this option does not pause QEMU
3699 execution -- if you want QEMU to not start the guest until you
3700 connect with gdb and issue a ``continue`` command, you will need to
3701 also pass the ``-S`` option to QEMU.
3703 The most usual configuration is to listen on a local TCP socket::
3707 but you can specify other backends; UDP, pseudo TTY, or even stdio
3708 are all reasonable use cases. For example, a stdio connection
3709 allows you to start QEMU from within gdb and establish the
3710 connection via a pipe:
3714 (gdb) target remote | exec |qemu_system| -gdb stdio ...
3717 DEF("s", 0, QEMU_OPTION_s, \
3718 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3722 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3723 (see :ref:`gdb_005fusage`).
3726 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3727 "-d item1,... enable logging of specified items (use '-d help
' for a list of log items)\n",
3731 Enable logging of specified items. Use '-d help
' for a list of log
3735 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3736 "-D logfile output log to logfile (default stderr)\n",
3740 Output log in logfile instead of to stderr
3743 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3744 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3747 ``-dfilter range1[,...]``
3748 Filter debug output to that relevant to a range of target addresses.
3749 The filter spec can be either start+size, start-size or start..end
3750 where start end and size are the addresses and sizes required. For
3755 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3757 Will dump output for any code in the 0x1000 sized block starting at
3758 0x8000 and the 0x200 sized block starting at 0xffffffc000080000 and
3759 another 0x1000 sized block starting at 0xffffffc00005f000.
3762 DEF("seed", HAS_ARG, QEMU_OPTION_seed, \
3763 "-seed number seed the pseudo-random number generator\n",
3767 Force the guest to use a deterministic pseudo-random number
3768 generator, seeded with number. This does not affect crypto routines
3772 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3773 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3777 Set the directory for the BIOS, VGA BIOS and keymaps.
3779 To list all the data directories, use ``-L help``.
3782 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3783 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3786 Set the filename for the BIOS.
3789 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3790 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3793 Enable KVM full virtualization support. This option is only
3794 available if KVM support is enabled when compiling.
3797 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3798 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3799 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3800 "-xen-attach attach to existing xen domain\n"
3801 " libxl will use this when starting QEMU\n",
3803 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
3804 "-xen-domid-restrict restrict set of available xen operations\n"
3805 " to specified domain id. (Does not affect\n"
3806 " xenpv machine type).\n",
3810 Specify xen guest domain id (XEN only).
3813 Attach to existing xen domain. libxl will use this when starting
3814 QEMU (XEN only). Restrict set of available xen operations to
3815 specified domain id (XEN only).
3818 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3819 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3822 Exit instead of rebooting.
3825 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3826 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3829 Don't exit QEMU on guest shutdown
, but instead only stop the
3830 emulation
. This allows
for instance switching to monitor to commit
3831 changes to the disk image
.
3834 DEF("loadvm", HAS_ARG
, QEMU_OPTION_loadvm
, \
3835 "-loadvm [tag|id]\n" \
3836 " start right away with a saved state (loadvm in monitor)\n",
3840 Start right away with a saved
state (``loadvm``
in monitor
)
3844 DEF("daemonize", 0, QEMU_OPTION_daemonize
, \
3845 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL
)
3849 Daemonize the QEMU process after initialization
. QEMU will not
3850 detach from standard IO until it is ready to receive connections on
3851 any of its devices
. This option is a useful way
for external
3852 programs to launch QEMU without having to cope with initialization
3856 DEF("option-rom", HAS_ARG
, QEMU_OPTION_option_rom
, \
3857 "-option-rom rom load a file, rom, into the option ROM space\n",
3860 ``
-option
-rom file``
3861 Load the contents of file as an option ROM
. This option is useful to
3862 load things like EtherBoot
.
3865 DEF("rtc", HAS_ARG
, QEMU_OPTION_rtc
, \
3866 "-rtc [base=utc|localtime|<datetime>][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3867 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3871 ``
-rtc
[base
=utc|localtime|datetime
][,clock
=host|rt|vm
][,driftfix
=none|slew
]``
3872 Specify ``base`` as ``utc`` or ``localtime`` to let the RTC start at
3873 the current UTC or local time
, respectively
. ``localtime`` is
3874 required
for correct date
in MS
-DOS or Windows
. To start at a
3875 specific point
in time
, provide datetime
in the format
3876 ``
2006-06-17T16
:01:21`` or ``
2006-06-17``
. The
default base is UTC
.
3878 By
default the RTC is driven by the host system time
. This allows
3879 using of the RTC as accurate reference clock inside the guest
,
3880 specifically
if the host time is smoothly following an accurate
3881 external reference clock
, e
.g
. via NTP
. If you want to isolate the
3882 guest time from the host
, you can set ``clock`` to ``rt`` instead
,
3883 which provides a host monotonic clock
if host support it
. To even
3884 prevent the RTC from progressing during suspension
, you can set
3885 ``clock`` to ``vm``
(virtual clock
). '\ ``clock=vm``\ ' is
3886 recommended especially
in icount mode
in order to preserve
3887 determinism
; however
, note that
in icount mode the speed of the
3888 virtual clock is variable and can
in general differ from the host
3891 Enable ``driftfix``
(i386 targets only
) if you experience time drift
3892 problems
, specifically with Windows
' ACPI HAL. This option will try
3893 to figure out how many timer interrupts were not processed by the
3894 Windows guest and will re-inject them.
3897 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3898 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3899 " enable virtual instruction counter with 2^N clock ticks per\n" \
3900 " instruction, enable aligning the host and virtual clocks\n" \
3901 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3903 ``-icount [shift=N|auto][,rr=record|replay,rrfile=filename,rrsnapshot=snapshot]``
3904 Enable virtual instruction counter. The virtual cpu will execute one
3905 instruction every 2^N ns of virtual time. If ``auto`` is specified
3906 then the virtual cpu speed will be automatically adjusted to keep
3907 virtual time within a few seconds of real time.
3909 When the virtual cpu is sleeping, the virtual time will advance at
3910 default speed unless ``sleep=on|off`` is specified. With
3911 ``sleep=on|off``, the virtual time will jump to the next timer
3912 deadline instantly whenever the virtual cpu goes to sleep mode and
3913 will not advance if no timer is enabled. This behavior give
3914 deterministic execution times from the guest point of view.
3916 Note that while this option can give deterministic behavior, it does
3917 not provide cycle accurate emulation. Modern CPUs contain
3918 superscalar out of order cores with complex cache hierarchies. The
3919 number of instructions executed often has little or no correlation
3920 with actual performance.
3922 ``align=on`` will activate the delay algorithm which will try to
3923 synchronise the host clock and the virtual clock. The goal is to
3924 have a guest running at the real frequency imposed by the shift
3925 option. Whenever the guest clock is behind the host clock and if
3926 ``align=on`` is specified then we print a message to the user to
3927 inform about the delay. Currently this option does not work when
3928 ``shift`` is ``auto``. Note: The sync algorithm will work for those
3929 shift values for which the guest clock runs ahead of the host clock.
3930 Typically this happens when the shift value is high (how high
3931 depends on the host machine).
3933 When ``rr`` option is specified deterministic record/replay is
3934 enabled. Replay log is written into filename file in record mode and
3935 read from this file in replay mode.
3937 Option rrsnapshot is used to create new vm snapshot named snapshot
3938 at the start of execution recording. In replay mode this option is
3939 used to load the initial VM state.
3942 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3943 "-watchdog model\n" \
3944 " enable virtual hardware watchdog [default=none]\n",
3948 Create a virtual hardware watchdog device. Once enabled (by a guest
3949 action), the watchdog must be periodically polled by an agent inside
3950 the guest or else the guest will be restarted. Choose a model for
3951 which your guest has drivers.
3953 The model is the model of hardware watchdog to emulate. Use
3954 ``-watchdog help`` to list available hardware models. Only one
3955 watchdog can be enabled for a guest.
3957 The following models may be available:
3960 iBASE 700 is a very simple ISA watchdog with a single timer.
3963 Intel 6300ESB I/O controller hub is a much more featureful
3964 PCI-based dual-timer watchdog.
3967 A virtual watchdog for s390x backed by the diagnose 288
3968 hypercall (currently KVM only).
3971 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3972 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \
3973 " action when watchdog fires [default=reset]\n",
3976 ``-watchdog-action action``
3977 The action controls what QEMU will do when the watchdog timer
3978 expires. The default is ``reset`` (forcefully reset the guest).
3979 Other possible actions are: ``shutdown`` (attempt to gracefully
3980 shutdown the guest), ``poweroff`` (forcefully poweroff the guest),
3981 ``inject-nmi`` (inject a NMI into the guest), ``pause`` (pause the
3982 guest), ``debug`` (print a debug message and continue), or ``none``
3985 Note that the ``shutdown`` action requires that the guest responds
3986 to ACPI signals, which it may not be able to do in the sort of
3987 situations where the watchdog would have expired, and thus
3988 ``-watchdog-action shutdown`` is not recommended for production use.
3992 ``-watchdog i6300esb -watchdog-action pause``; \ ``-watchdog ib700``
3996 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3997 "-echr chr set terminal escape character instead of ctrl-a\n",
4000 ``-echr numeric_ascii_value``
4001 Change the escape character used for switching to the monitor when
4002 using monitor and serial sharing. The default is ``0x01`` when using
4003 the ``-nographic`` option. ``0x01`` is equal to pressing
4004 ``Control-a``. You can select a different character from the ascii
4005 control keys where 1 through 26 map to Control-a through Control-z.
4006 For instance you could use the either of the following to change the
4007 escape character to Control-t.
4009 ``-echr 0x14``; \ ``-echr 20``
4013 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
4014 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
4020 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
4021 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
4024 Set TCG translation block cache size. Deprecated, use
4025 '\ ``
-accel tcg
,tb
-size
=n``\
' instead.
4028 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
4029 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
4030 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
4031 "-incoming unix:socketpath\n" \
4032 " prepare for incoming migration, listen on\n" \
4033 " specified protocol and socket address\n" \
4034 "-incoming fd:fd\n" \
4035 "-incoming exec:cmdline\n" \
4036 " accept incoming migration on given file descriptor\n" \
4037 " or from given external command\n" \
4038 "-incoming defer\n" \
4039 " wait for the URI to be specified via migrate_incoming\n",
4042 ``-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]``
4044 ``-incoming rdma:host:port[,ipv4][,ipv6]``
4045 Prepare for incoming migration, listen on a given tcp port.
4047 ``-incoming unix:socketpath``
4048 Prepare for incoming migration, listen on a given unix socket.
4051 Accept incoming migration from a given filedescriptor.
4053 ``-incoming exec:cmdline``
4054 Accept incoming migration as an output from specified external
4058 Wait for the URI to be specified via migrate\_incoming. The monitor
4059 can be used to change settings (such as migration parameters) prior
4060 to issuing the migrate\_incoming to allow the migration to begin.
4063 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
4064 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
4066 ``-only-migratable``
4067 Only allow migratable devices. Devices will not be allowed to enter
4068 an unmigratable state.
4071 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
4072 "-nodefaults don't create
default devices
\n", QEMU_ARCH_ALL)
4075 Don't create default devices. Normally, QEMU sets the default
4076 devices like serial port, parallel port, virtual console, monitor
4077 device, VGA adapter, floppy and CD-ROM drive and others. The
4078 ``-nodefaults`` option will disable all those default devices.
4082 DEF("chroot
", HAS_ARG, QEMU_OPTION_chroot, \
4083 "-chroot dir chroot to dir just before starting the VM
\n",
4088 Immediately before starting guest execution, chroot to the specified
4089 directory. Especially useful in combination with -runas.
4093 DEF("runas
", HAS_ARG, QEMU_OPTION_runas, \
4094 "-runas user change to user id user just before starting the VM
\n" \
4095 " user can be numeric uid
:gid instead
\n",
4100 Immediately before starting guest execution, drop root privileges,
4101 switching to the specified user.
4104 DEF("prom
-env
", HAS_ARG, QEMU_OPTION_prom_env,
4105 "-prom
-env variable
=value
\n"
4106 " set OpenBIOS nvram variables
\n",
4107 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
4109 ``-prom-env variable=value``
4110 Set OpenBIOS nvram variable to given value (PPC, SPARC only).
4114 qemu-system-sparc -prom-env 'auto-boot?=false' \
4115 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
4119 qemu-system-ppc -prom-env 'auto-boot?=false' \
4120 -prom-env 'boot-device=hd:2,\yaboot' \
4121 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
4123 DEF("semihosting
", 0, QEMU_OPTION_semihosting,
4124 "-semihosting semihosting mode
\n",
4125 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4126 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2)
4129 Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios II only).
4131 Note that this allows guest direct access to the host filesystem, so
4132 should only be used with a trusted guest OS.
4134 See the -semihosting-config option documentation for further
4135 information about the facilities this enables.
4137 DEF("semihosting
-config
", HAS_ARG, QEMU_OPTION_semihosting_config,
4138 "-semihosting
-config
[enable
=on|off
][,target
=native|gdb|auto
][,chardev
=id
][,arg
=str
[,...]]\n" \
4139 " semihosting configuration
\n",
4140 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
4141 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2)
4143 ``-semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]``
4144 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios II
4147 Note that this allows guest direct access to the host filesystem, so
4148 should only be used with a trusted guest OS.
4150 On Arm this implements the standard semihosting API, version 2.0.
4152 On M68K this implements the "ColdFire GDB
" interface used by
4155 Xtensa semihosting provides basic file IO calls, such as
4156 open/read/write/seek/select. Tensilica baremetal libc for ISS and
4157 linux platform "sim
" use this interface.
4159 ``target=native|gdb|auto``
4160 Defines where the semihosting calls will be addressed, to QEMU
4161 (``native``) or to GDB (``gdb``). The default is ``auto``, which
4162 means ``gdb`` during debug sessions and ``native`` otherwise.
4165 Send the output to a chardev backend output for native or auto
4166 output when not in gdb
4168 ``arg=str1,arg=str2,...``
4169 Allows the user to pass input arguments, and can be used
4170 multiple times to build up a list. The old-style
4171 ``-kernel``/``-append`` method of passing a command line is
4172 still supported for backward compatibility. If both the
4173 ``--semihosting-config arg`` and the ``-kernel``/``-append`` are
4174 specified, the former is passed to semihosting as it always
4177 DEF("old
-param
", 0, QEMU_OPTION_old_param,
4178 "-old
-param old param mode
\n", QEMU_ARCH_ARM)
4181 Old param mode (ARM only).
4184 DEF("sandbox
", HAS_ARG, QEMU_OPTION_sandbox, \
4185 "-sandbox on
[,obsolete
=allow|deny
][,elevateprivileges
=allow|deny|children
]\n" \
4186 " [,spawn
=allow|deny
][,resourcecontrol
=allow|deny
]\n" \
4187 " Enable seccomp mode
2 system call
filter (default 'off').\n" \
4188 " use
'obsolete' to allow obsolete system calls that are provided
\n" \
4189 " by the kernel
, but typically no longer used by modern
\n" \
4190 " C library implementations
.\n" \
4191 " use
'elevateprivileges' to allow or deny QEMU process to elevate
\n" \
4192 " its privileges by blacklisting all set
*uid|gid system calls
.\n" \
4193 " The value
'children' will deny set
*uid|gid system calls
for\n" \
4194 " main QEMU process but will allow forks and execves to run unprivileged
\n" \
4195 " use
'spawn' to avoid QEMU to spawn
new threads or processes by
\n" \
4196 " blacklisting
*fork and execve
\n" \
4197 " use
'resourcecontrol' to disable process affinity and schedular priority
\n",
4200 ``-sandbox arg[,obsolete=string][,elevateprivileges=string][,spawn=string][,resourcecontrol=string]``
4201 Enable Seccomp mode 2 system call filter. 'on' will enable syscall
4202 filtering and 'off' will disable it. The default is 'off'.
4205 Enable Obsolete system calls
4207 ``elevateprivileges=string``
4208 Disable set\*uid\|gid system calls
4211 Disable \*fork and execve
4213 ``resourcecontrol=string``
4214 Disable process affinity and schedular priority
4217 DEF("readconfig
", HAS_ARG, QEMU_OPTION_readconfig,
4218 "-readconfig
<file
>\n", QEMU_ARCH_ALL)
4220 ``-readconfig file``
4221 Read device configuration from file. This approach is useful when
4222 you want to spawn QEMU process with many command line options but
4223 you don't want to exceed the command line character limit.
4225 DEF("writeconfig
", HAS_ARG, QEMU_OPTION_writeconfig,
4226 "-writeconfig
<file
>\n"
4227 " read
/write config file
\n", QEMU_ARCH_ALL)
4229 ``-writeconfig file``
4230 Write device configuration to file. The file can be either filename
4231 to save command line and device configuration into file or dash
4232 ``-``) character to print the output to stdout. This can be later
4233 used as input file for ``-readconfig`` option.
4236 DEF("no
-user
-config
", 0, QEMU_OPTION_nouserconfig,
4238 " do not load
default user
-provided config files at startup
\n",
4242 The ``-no-user-config`` option makes QEMU not load any of the
4243 user-provided config files on sysconfdir.
4246 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
4247 "-trace [[enable
=]<pattern
>][,events
=<file
>][,file
=<file
>]\n"
4248 " specify tracing options
\n",
4251 ``-trace [[enable=]pattern][,events=file][,file=file]``
4252 .. include:: ../qemu-option-trace.rst.inc
4255 DEF("plugin
", HAS_ARG, QEMU_OPTION_plugin,
4256 "-plugin
[file
=]<file
>[,arg
=<string
>]\n"
4260 ``-plugin file=file[,arg=string]``
4264 Load the given plugin from a shared library file.
4267 Argument string passed to the plugin. (Can be given multiple
4272 DEF("qtest
", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
4273 DEF("qtest
-log
", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
4276 DEF("enable
-fips
", 0, QEMU_OPTION_enablefips,
4277 "-enable
-fips enable FIPS
140-2 compliance
\n",
4282 Enable FIPS 140-2 compliance mode.
4285 HXCOMM Deprecated by -accel tcg
4286 DEF("no
-kvm
", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
4288 DEF("msg
", HAS_ARG, QEMU_OPTION_msg,
4289 "-msg timestamp
[=on|off
]\n"
4290 " control error message format
\n"
4291 " timestamp
=on enables
timestamps (default: off
)\n",
4294 ``-msg timestamp[=on|off]``
4295 Control error message format.
4297 ``timestamp=on|off``
4298 Prefix messages with a timestamp. Default is off.
4301 DEF("dump
-vmstate
", HAS_ARG, QEMU_OPTION_dump_vmstate,
4302 "-dump
-vmstate
<file
>\n"
4303 " Output vmstate information
in JSON format to file
.\n"
4304 " Use the scripts
/vmstate
-static-checker
.py file to
\n"
4305 " check
for possible regressions
in migration code
\n"
4306 " by comparing two such vmstate dumps
.\n",
4309 ``-dump-vmstate file``
4310 Dump json-encoded vmstate information for current machine type to
4314 DEF("enable
-sync
-profile
", 0, QEMU_OPTION_enable_sync_profile,
4315 "-enable
-sync
-profile
\n"
4316 " enable synchronization profiling
\n",
4319 ``-enable-sync-profile``
4320 Enable synchronization profiling.
4325 DEFHEADING(Generic object creation:)
4327 DEF("object
", HAS_ARG, QEMU_OPTION_object,
4328 "-object TYPENAME
[,PROP1
=VALUE1
,...]\n"
4329 " create a
new object of type TYPENAME setting properties
\n"
4330 " in the order they are specified
. Note that the
'id'\n"
4331 " property must be set
. These objects are placed
in the
\n"
4332 " '/objects' path
.\n",
4335 ``-object typename[,prop1=value1,...]``
4336 Create a new object of type typename setting properties in the order
4337 they are specified. Note that the 'id' property must be set. These
4338 objects are placed in the '/objects' path.
4340 ``-object memory-backend-file,id=id,size=size,mem-path=dir,share=on|off,discard-data=on|off,merge=on|off,dump=on|off,prealloc=on|off,host-nodes=host-nodes,policy=default|preferred|bind|interleave,align=align``
4341 Creates a memory file backend object, which can be used to back
4342 the guest RAM with huge pages.
4344 The ``id`` parameter is a unique ID that will be used to
4345 reference this memory region when configuring the ``-numa``
4348 The ``size`` option provides the size of the memory region, and
4349 accepts common suffixes, eg ``500M``.
4351 The ``mem-path`` provides the path to either a shared memory or
4352 huge page filesystem mount.
4354 The ``share`` boolean option determines whether the memory
4355 region is marked as private to QEMU, or shared. The latter
4356 allows a co-operating external process to access the QEMU memory
4359 The ``share`` is also required for pvrdma devices due to
4360 limitations in the RDMA API provided by Linux.
4362 Setting share=on might affect the ability to configure NUMA
4363 bindings for the memory backend under some circumstances, see
4364 Documentation/vm/numa\_memory\_policy.txt on the Linux kernel
4365 source tree for additional details.
4367 Setting the ``discard-data`` boolean option to on indicates that
4368 file contents can be destroyed when QEMU exits, to avoid
4369 unnecessarily flushing data to the backing file. Note that
4370 ``discard-data`` is only an optimization, and QEMU might not
4371 discard file contents if it aborts unexpectedly or is terminated
4374 The ``merge`` boolean option enables memory merge, also known as
4375 MADV\_MERGEABLE, so that Kernel Samepage Merging will consider
4376 the pages for memory deduplication.
4378 Setting the ``dump`` boolean option to off excludes the memory
4379 from core dumps. This feature is also known as MADV\_DONTDUMP.
4381 The ``prealloc`` boolean option enables memory preallocation.
4383 The ``host-nodes`` option binds the memory range to a list of
4386 The ``policy`` option sets the NUMA policy to one of the
4393 prefer the given host node list for allocation
4396 restrict memory allocation to the given host node list
4399 interleave memory allocations across the given host node
4402 The ``align`` option specifies the base address alignment when
4403 QEMU mmap(2) ``mem-path``, and accepts common suffixes, eg
4404 ``2M``. Some backend store specified by ``mem-path`` requires an
4405 alignment different than the default one used by QEMU, eg the
4406 device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In
4407 such cases, users can specify the required alignment via this
4410 The ``pmem`` option specifies whether the backing file specified
4411 by ``mem-path`` is in host persistent memory that can be
4412 accessed using the SNIA NVM programming model (e.g. Intel
4413 NVDIMM). If ``pmem`` is set to 'on', QEMU will take necessary
4414 operations to guarantee the persistence of its own writes to
4415 ``mem-path`` (e.g. in vNVDIMM label emulation and live
4416 migration). Also, we will map the backend-file with MAP\_SYNC
4417 flag, which ensures the file metadata is in sync for
4418 ``mem-path`` in case of host crash or a power failure. MAP\_SYNC
4419 requires support from both the host kernel (since Linux kernel
4420 4.15) and the filesystem of ``mem-path`` mounted with DAX
4423 ``-object memory-backend-ram,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host-nodes=host-nodes,policy=default|preferred|bind|interleave``
4424 Creates a memory backend object, which can be used to back the
4425 guest RAM. Memory backend objects offer more control than the
4426 ``-m`` option that is traditionally used to define guest RAM.
4427 Please refer to ``memory-backend-file`` for a description of the
4430 ``-object memory-backend-memfd,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host-nodes=host-nodes,policy=default|preferred|bind|interleave,seal=on|off,hugetlb=on|off,hugetlbsize=size``
4431 Creates an anonymous memory file backend object, which allows
4432 QEMU to share the memory with an external process (e.g. when
4433 using vhost-user). The memory is allocated with memfd and
4434 optional sealing. (Linux only)
4436 The ``seal`` option creates a sealed-file, that will block
4437 further resizing the memory ('on' by default).
4439 The ``hugetlb`` option specify the file to be created resides in
4440 the hugetlbfs filesystem (since Linux 4.14). Used in conjunction
4441 with the ``hugetlb`` option, the ``hugetlbsize`` option specify
4442 the hugetlb page size on systems that support multiple hugetlb
4443 page sizes (it must be a power of 2 value supported by the
4446 In some versions of Linux, the ``hugetlb`` option is
4447 incompatible with the ``seal`` option (requires at least Linux
4450 Please refer to ``memory-backend-file`` for a description of the
4453 The ``share`` boolean option is on by default with memfd.
4455 ``-object rng-builtin,id=id``
4456 Creates a random number generator backend which obtains entropy
4457 from QEMU builtin functions. The ``id`` parameter is a unique ID
4458 that will be used to reference this entropy backend from the
4459 ``virtio-rng`` device. By default, the ``virtio-rng`` device
4460 uses this RNG backend.
4462 ``-object rng-random,id=id,filename=/dev/random``
4463 Creates a random number generator backend which obtains entropy
4464 from a device on the host. The ``id`` parameter is a unique ID
4465 that will be used to reference this entropy backend from the
4466 ``virtio-rng`` device. The ``filename`` parameter specifies
4467 which file to obtain entropy from and if omitted defaults to
4470 ``-object rng-egd,id=id,chardev=chardevid``
4471 Creates a random number generator backend which obtains entropy
4472 from an external daemon running on the host. The ``id``
4473 parameter is a unique ID that will be used to reference this
4474 entropy backend from the ``virtio-rng`` device. The ``chardev``
4475 parameter is the unique ID of a character device backend that
4476 provides the connection to the RNG daemon.
4478 ``-object tls-creds-anon,id=id,endpoint=endpoint,dir=/path/to/cred/dir,verify-peer=on|off``
4479 Creates a TLS anonymous credentials object, which can be used to
4480 provide TLS support on network backends. The ``id`` parameter is
4481 a unique ID which network backends will use to access the
4482 credentials. The ``endpoint`` is either ``server`` or ``client``
4483 depending on whether the QEMU network backend that uses the
4484 credentials will be acting as a client or as a server. If
4485 ``verify-peer`` is enabled (the default) then once the handshake
4486 is completed, the peer credentials will be verified, though this
4487 is a no-op for anonymous credentials.
4489 The dir parameter tells QEMU where to find the credential files.
4490 For server endpoints, this directory may contain a file
4491 dh-params.pem providing diffie-hellman parameters to use for the
4492 TLS server. If the file is missing, QEMU will generate a set of
4493 DH parameters at startup. This is a computationally expensive
4494 operation that consumes random pool entropy, so it is
4495 recommended that a persistent set of parameters be generated
4498 ``-object tls-creds-psk,id=id,endpoint=endpoint,dir=/path/to/keys/dir[,username=username]``
4499 Creates a TLS Pre-Shared Keys (PSK) credentials object, which
4500 can be used to provide TLS support on network backends. The
4501 ``id`` parameter is a unique ID which network backends will use
4502 to access the credentials. The ``endpoint`` is either ``server``
4503 or ``client`` depending on whether the QEMU network backend that
4504 uses the credentials will be acting as a client or as a server.
4505 For clients only, ``username`` is the username which will be
4506 sent to the server. If omitted it defaults to "qemu
".
4508 The dir parameter tells QEMU where to find the keys file. It is
4509 called "dir
/keys
.psk
" and contains "username
:key
" pairs. This
4510 file can most easily be created using the GnuTLS ``psktool``
4513 For server endpoints, dir may also contain a file dh-params.pem
4514 providing diffie-hellman parameters to use for the TLS server.
4515 If the file is missing, QEMU will generate a set of DH
4516 parameters at startup. This is a computationally expensive
4517 operation that consumes random pool entropy, so it is
4518 recommended that a persistent set of parameters be generated up
4521 ``-object tls-creds-x509,id=id,endpoint=endpoint,dir=/path/to/cred/dir,priority=priority,verify-peer=on|off,passwordid=id``
4522 Creates a TLS anonymous credentials object, which can be used to
4523 provide TLS support on network backends. The ``id`` parameter is
4524 a unique ID which network backends will use to access the
4525 credentials. The ``endpoint`` is either ``server`` or ``client``
4526 depending on whether the QEMU network backend that uses the
4527 credentials will be acting as a client or as a server. If
4528 ``verify-peer`` is enabled (the default) then once the handshake
4529 is completed, the peer credentials will be verified. With x509
4530 certificates, this implies that the clients must be provided
4531 with valid client certificates too.
4533 The dir parameter tells QEMU where to find the credential files.
4534 For server endpoints, this directory may contain a file
4535 dh-params.pem providing diffie-hellman parameters to use for the
4536 TLS server. If the file is missing, QEMU will generate a set of
4537 DH parameters at startup. This is a computationally expensive
4538 operation that consumes random pool entropy, so it is
4539 recommended that a persistent set of parameters be generated
4542 For x509 certificate credentials the directory will contain
4543 further files providing the x509 certificates. The certificates
4544 must be stored in PEM format, in filenames ca-cert.pem,
4545 ca-crl.pem (optional), server-cert.pem (only servers),
4546 server-key.pem (only servers), client-cert.pem (only clients),
4547 and client-key.pem (only clients).
4549 For the server-key.pem and client-key.pem files which contain
4550 sensitive private keys, it is possible to use an encrypted
4551 version by providing the passwordid parameter. This provides the
4552 ID of a previously created ``secret`` object containing the
4553 password for decryption.
4555 The priority parameter allows to override the global default
4556 priority used by gnutls. This can be useful if the system
4557 administrator needs to use a weaker set of crypto priorities for
4558 QEMU without potentially forcing the weakness onto all
4559 applications. Or conversely if one wants wants a stronger
4560 default for QEMU than for all other applications, they can do
4561 this through this parameter. Its format is a gnutls priority
4562 string as described at
4563 https://gnutls.org/manual/html_node/Priority-Strings.html.
4565 ``-object filter-buffer,id=id,netdev=netdevid,interval=t[,queue=all|rx|tx][,status=on|off][,position=head|tail|id=<id>][,insert=behind|before]``
4566 Interval t can't be 0, this filter batches the packet delivery:
4567 all packets arriving in a given interval on netdev netdevid are
4568 delayed until the end of the interval. Interval is in
4569 microseconds. ``status`` is optional that indicate whether the
4570 netfilter is on (enabled) or off (disabled), the default status
4571 for netfilter will be 'on'.
4573 queue all\|rx\|tx is an option that can be applied to any
4576 ``all``: the filter is attached both to the receive and the
4577 transmit queue of the netdev (default).
4579 ``rx``: the filter is attached to the receive queue of the
4580 netdev, where it will receive packets sent to the netdev.
4582 ``tx``: the filter is attached to the transmit queue of the
4583 netdev, where it will receive packets sent by the netdev.
4585 position head\|tail\|id=<id> is an option to specify where the
4586 filter should be inserted in the filter list. It can be applied
4589 ``head``: the filter is inserted at the head of the filter list,
4590 before any existing filters.
4592 ``tail``: the filter is inserted at the tail of the filter list,
4593 behind any existing filters (default).
4595 ``id=<id>``: the filter is inserted before or behind the filter
4596 specified by <id>, see the insert option below.
4598 insert behind\|before is an option to specify where to insert
4599 the new filter relative to the one specified with
4600 position=id=<id>. It can be applied to any netfilter.
4602 ``before``: insert before the specified filter.
4604 ``behind``: insert behind the specified filter (default).
4606 ``-object filter-mirror,id=id,netdev=netdevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support][,position=head|tail|id=<id>][,insert=behind|before]``
4607 filter-mirror on netdev netdevid,mirror net packet to
4608 chardevchardevid, if it has the vnet\_hdr\_support flag,
4609 filter-mirror will mirror packet with vnet\_hdr\_len.
4611 ``-object filter-redirector,id=id,netdev=netdevid,indev=chardevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support][,position=head|tail|id=<id>][,insert=behind|before]``
4612 filter-redirector on netdev netdevid,redirect filter's net
4613 packet to chardev chardevid,and redirect indev's packet to
4614 filter.if it has the vnet\_hdr\_support flag, filter-redirector
4615 will redirect packet with vnet\_hdr\_len. Create a
4616 filter-redirector we need to differ outdev id from indev id, id
4617 can not be the same. we can just use indev or outdev, but at
4618 least one of indev or outdev need to be specified.
4620 ``-object filter-rewriter,id=id,netdev=netdevid,queue=all|rx|tx,[vnet_hdr_support][,position=head|tail|id=<id>][,insert=behind|before]``
4621 Filter-rewriter is a part of COLO project.It will rewrite tcp
4622 packet to secondary from primary to keep secondary tcp
4623 connection,and rewrite tcp packet to primary from secondary make
4624 tcp packet can be handled by client.if it has the
4625 vnet\_hdr\_support flag, we can parse packet with vnet header.
4627 usage: colo secondary: -object
4628 filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0 -object
4629 filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1 -object
4630 filter-rewriter,id=rew0,netdev=hn0,queue=all
4632 ``-object filter-dump,id=id,netdev=dev[,file=filename][,maxlen=len][,position=head|tail|id=<id>][,insert=behind|before]``
4633 Dump the network traffic on netdev dev to the file specified by
4634 filename. At most len bytes (64k by default) per packet are
4635 stored. The file format is libpcap, so it can be analyzed with
4636 tools such as tcpdump or Wireshark.
4638 ``-object colo-compare,id=id,primary_in=chardevid,secondary_in=chardevid,outdev=chardevid,iothread=id[,vnet_hdr_support][,notify_dev=id][,compare_timeout=@var{ms}][,expired_scan_cycle=@var{ms}``
4639 Colo-compare gets packet from primary\_inchardevid and
4640 secondary\_inchardevid, than compare primary packet with
4641 secondary packet. If the packets are same, we will output
4642 primary packet to outdevchardevid, else we will notify
4643 colo-frame do checkpoint and send primary packet to
4644 outdevchardevid. In order to improve efficiency, we need to put
4645 the task of comparison in another thread. If it has the
4646 vnet\_hdr\_support flag, colo compare will send/recv packet with
4647 vnet\_hdr\_len. Then compare\_timeout=@var{ms} determines the
4648 maximum delay colo-compare wait for the packet.
4649 The expired\_scan\_cycle=@var{ms} to set the period of scanning
4650 expired primary node network packets.
4651 If you want to use Xen COLO, will need the notify\_dev to
4652 notify Xen colo-frame to do checkpoint.
4654 we must use it with the help of filter-mirror and
4662 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4663 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4664 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4665 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4666 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4667 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4668 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4669 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4670 -object iothread,id=iothread1
4671 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4672 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4673 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4674 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,iothread=iothread1
4677 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4678 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4679 -chardev socket,id=red0,host=3.3.3.3,port=9003
4680 -chardev socket,id=red1,host=3.3.3.3,port=9004
4681 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4682 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4688 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4689 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4690 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4691 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4692 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4693 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4694 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4695 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4696 -chardev socket,id=notify_way,host=3.3.3.3,port=9009,server,nowait
4697 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4698 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4699 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4700 -object iothread,id=iothread1
4701 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,notify_dev=nofity_way,iothread=iothread1
4704 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4705 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4706 -chardev socket,id=red0,host=3.3.3.3,port=9003
4707 -chardev socket,id=red1,host=3.3.3.3,port=9004
4708 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4709 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4711 If you want to know the detail of above command line, you can
4712 read the colo-compare git log.
4714 ``-object cryptodev-backend-builtin,id=id[,queues=queues]``
4715 Creates a cryptodev backend which executes crypto opreation from
4716 the QEMU cipher APIS. The id parameter is a unique ID that will
4717 be used to reference this cryptodev backend from the
4718 ``virtio-crypto`` device. The queues parameter is optional,
4719 which specify the queue number of cryptodev backend, the default
4726 -object cryptodev-backend-builtin,id=cryptodev0 \
4727 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4730 ``-object cryptodev-vhost-user,id=id,chardev=chardevid[,queues=queues]``
4731 Creates a vhost-user cryptodev backend, backed by a chardev
4732 chardevid. The id parameter is a unique ID that will be used to
4733 reference this cryptodev backend from the ``virtio-crypto``
4734 device. The chardev should be a unix domain socket backed one.
4735 The vhost-user uses a specifically defined protocol to pass
4736 vhost ioctl replacement messages to an application on the other
4737 end of the socket. The queues parameter is optional, which
4738 specify the queue number of cryptodev backend for multiqueue
4739 vhost-user, the default of queues is 1.
4745 -chardev socket,id=chardev0,path=/path/to/socket \
4746 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \
4747 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4750 ``-object secret,id=id,data=string,format=raw|base64[,keyid=secretid,iv=string]``
4752 ``-object secret,id=id,file=filename,format=raw|base64[,keyid=secretid,iv=string]``
4753 Defines a secret to store a password, encryption key, or some
4754 other sensitive data. The sensitive data can either be passed
4755 directly via the data parameter, or indirectly via the file
4756 parameter. Using the data parameter is insecure unless the
4757 sensitive data is encrypted.
4759 The sensitive data can be provided in raw format (the default),
4760 or base64. When encoded as JSON, the raw format only supports
4761 valid UTF-8 characters, so base64 is recommended for sending
4762 binary data. QEMU will convert from which ever format is
4763 provided to the format it needs internally. eg, an RBD password
4764 can be provided in raw format, even though it will be base64
4765 encoded when passed onto the RBD sever.
4767 For added protection, it is possible to encrypt the data
4768 associated with a secret using the AES-256-CBC cipher. Use of
4769 encryption is indicated by providing the keyid and iv
4770 parameters. The keyid parameter provides the ID of a previously
4771 defined secret that contains the AES-256 decryption key. This
4772 key should be 32-bytes long and be base64 encoded. The iv
4773 parameter provides the random initialization vector used for
4774 encryption of this particular secret and should be a base64
4775 encrypted string of the 16-byte IV.
4777 The simplest (insecure) usage is to provide the secret inline
4781 # |qemu_system| -object secret,id=sec0,data=letmein,format=raw
4783 The simplest secure usage is to provide the secret via a file
4785 # printf "letmein
" > mypasswd.txt # QEMU\_SYSTEM\_MACRO -object
4786 secret,id=sec0,file=mypasswd.txt,format=raw
4788 For greater security, AES-256-CBC should be used. To illustrate
4789 usage, consider the openssl command line tool which can encrypt
4790 the data. Note that when encrypting, the plaintext must be
4791 padded to the cipher block size (32 bytes) using the standard
4792 PKCS#5/6 compatible padding algorithm.
4794 First a master key needs to be created in base64 encoding:
4798 # openssl rand -base64 32 > key.b64
4799 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X
"')
4801 Each secret to be encrypted needs to have a random
4802 initialization vector generated. These do not need to be kept
4807 # openssl rand -base64 16 > iv.b64
4808 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X
"')
4810 The secret to be defined can now be encrypted, in this case
4811 we're telling openssl to base64 encode the result, but it could
4812 be left as raw bytes if desired.
4816 # SECRET=$(printf "letmein
" |
4817 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4819 When launching QEMU, create a master secret pointing to
4820 ``key.b64`` and specify that to be used to decrypt the user
4821 password. Pass the contents of ``iv.b64`` to the second secret
4826 -object secret,id=secmaster0,format=base64,file=key.b64 \
4827 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4828 data=$SECRET,iv=$(<iv.b64)
4830 ``-object sev-guest,id=id,cbitpos=cbitpos,reduced-phys-bits=val,[sev-device=string,policy=policy,handle=handle,dh-cert-file=file,session-file=file]``
4831 Create a Secure Encrypted Virtualization (SEV) guest object,
4832 which can be used to provide the guest memory encryption support
4835 When memory encryption is enabled, one of the physical address
4836 bit (aka the C-bit) is utilized to mark if a memory page is
4837 protected. The ``cbitpos`` is used to provide the C-bit
4838 position. The C-bit position is Host family dependent hence user
4839 must provide this value. On EPYC, the value should be 47.
4841 When memory encryption is enabled, we loose certain bits in
4842 physical address space. The ``reduced-phys-bits`` is used to
4843 provide the number of bits we loose in physical address space.
4844 Similar to C-bit, the value is Host family dependent. On EPYC,
4845 the value should be 5.
4847 The ``sev-device`` provides the device file to use for
4848 communicating with the SEV firmware running inside AMD Secure
4849 Processor. The default device is '/dev/sev'. If hardware
4850 supports memory encryption then /dev/sev devices are created by
4853 The ``policy`` provides the guest policy to be enforced by the
4854 SEV firmware and restrict what configuration and operational
4855 commands can be performed on this guest by the hypervisor. The
4856 policy should be provided by the guest owner and is bound to the
4857 guest and cannot be changed throughout the lifetime of the
4858 guest. The default is 0.
4860 If guest ``policy`` allows sharing the key with another SEV
4861 guest then ``handle`` can be use to provide handle of the guest
4862 from which to share the key.
4864 The ``dh-cert-file`` and ``session-file`` provides the guest
4865 owner's Public Diffie-Hillman key defined in SEV spec. The PDH
4866 and session parameters are used for establishing a cryptographic
4867 session with the guest owner to negotiate keys used for
4868 attestation. The file must be encoded in base64.
4870 e.g to launch a SEV guest
4874 # |qemu_system_x86| \
4876 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \
4877 -machine ...,memory-encryption=sev0
4880 ``-object authz-simple,id=id,identity=string``
4881 Create an authorization object that will control access to
4884 The ``identity`` parameter is identifies the user and its format
4885 depends on the network service that authorization object is
4886 associated with. For authorizing based on TLS x509 certificates,
4887 the identity must be the x509 distinguished name. Note that care
4888 must be taken to escape any commas in the distinguished name.
4890 An example authorization object to validate a x509 distinguished
4891 name would look like:
4897 -object 'authz-simple,id=auth0,identity=CN=laptop.example.com,,O=Example Org,,L=London,,ST=London,,C=GB' \
4900 Note the use of quotes due to the x509 distinguished name
4901 containing whitespace, and escaping of ','.
4903 ``-object authz-listfile,id=id,filename=path,refresh=yes|no``
4904 Create an authorization object that will control access to
4907 The ``filename`` parameter is the fully qualified path to a file
4908 containing the access control list rules in JSON format.
4910 An example set of rules that match against SASL usernames might
4917 { "match
": "fred
", "policy
": "allow
", "format
": "exact
" },
4918 { "match
": "bob
", "policy
": "allow
", "format
": "exact
" },
4919 { "match
": "danb
", "policy
": "deny
", "format
": "glob
" },
4920 { "match
": "dan
*", "policy
": "allow
", "format
": "exact
" },
4925 When checking access the object will iterate over all the rules
4926 and the first rule to match will have its ``policy`` value
4927 returned as the result. If no rules match, then the default
4928 ``policy`` value is returned.
4930 The rules can either be an exact string match, or they can use
4931 the simple UNIX glob pattern matching to allow wildcards to be
4934 If ``refresh`` is set to true the file will be monitored and
4935 automatically reloaded whenever its content changes.
4937 As with the ``authz-simple`` object, the format of the identity
4938 strings being matched depends on the network service, but is
4939 usually a TLS x509 distinguished name, or a SASL username.
4941 An example authorization object to validate a SASL username
4948 -object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=yes
4951 ``-object authz-pam,id=id,service=string``
4952 Create an authorization object that will control access to
4955 The ``service`` parameter provides the name of a PAM service to
4956 use for authorization. It requires that a file
4957 ``/etc/pam.d/service`` exist to provide the configuration for
4958 the ``account`` subsystem.
4960 An example authorization object to validate a TLS x509
4961 distinguished name would look like:
4967 -object authz-pam,id=auth0,service=qemu-vnc
4970 There would then be a corresponding config file for PAM at
4971 ``/etc/pam.d/qemu-vnc`` that contains:
4975 account requisite pam_listfile.so item=user sense=allow \
4976 file=/etc/qemu/vnc.allow
4978 Finally the ``/etc/qemu/vnc.allow`` file would contain the list
4979 of x509 distingished names that are permitted access
4983 CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB
4985 ``-object iothread,id=id,poll-max-ns=poll-max-ns,poll-grow=poll-grow,poll-shrink=poll-shrink``
4986 Creates a dedicated event loop thread that devices can be
4987 assigned to. This is known as an IOThread. By default device
4988 emulation happens in vCPU threads or the main event loop thread.
4989 This can become a scalability bottleneck. IOThreads allow device
4990 emulation and I/O to run on other host CPUs.
4992 The ``id`` parameter is a unique ID that will be used to
4993 reference this IOThread from ``-device ...,iothread=id``.
4994 Multiple devices can be assigned to an IOThread. Note that not
4995 all devices support an ``iothread`` parameter.
4997 The ``query-iothreads`` QMP command lists IOThreads and reports
4998 their thread IDs so that the user can configure host CPU
5001 IOThreads use an adaptive polling algorithm to reduce event loop
5002 latency. Instead of entering a blocking system call to monitor
5003 file descriptors and then pay the cost of being woken up when an
5004 event occurs, the polling algorithm spins waiting for events for
5005 a short time. The algorithm's default parameters are suitable
5006 for many cases but can be adjusted based on knowledge of the
5007 workload and/or host device latency.
5009 The ``poll-max-ns`` parameter is the maximum number of
5010 nanoseconds to busy wait for events. Polling can be disabled by
5011 setting this value to 0.
5013 The ``poll-grow`` parameter is the multiplier used to increase
5014 the polling time when the algorithm detects it is missing events
5015 due to not polling long enough.
5017 The ``poll-shrink`` parameter is the divisor used to decrease
5018 the polling time when the algorithm detects it is spending too
5019 long polling without encountering events.
5021 The polling parameters can be modified at run-time using the
5022 ``qom-set`` command (where ``iothread1`` is the IOThread's
5027 (qemu) qom-set /objects/iothread1 poll-max-ns 100000
5031 HXCOMM This is the last statement. Insert new options before this line!