hvf: Simplify post reset/init/loadvm hooks
[qemu/ar7.git] / accel / hvf / hvf-accel-ops.c
blobd1691be9896e965367feef355eaa4f901b3d6660
1 /*
2 * Copyright 2008 IBM Corporation
3 * 2008 Red Hat, Inc.
4 * Copyright 2011 Intel Corporation
5 * Copyright 2016 Veertu, Inc.
6 * Copyright 2017 The Android Open Source Project
8 * QEMU Hypervisor.framework support
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of version 2 of the GNU General Public
12 * License as published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, see <http://www.gnu.org/licenses/>.
22 * This file contain code under public domain from the hvdos project:
23 * https://github.com/mist64/hvdos
25 * Parts Copyright (c) 2011 NetApp, Inc.
26 * All rights reserved.
28 * Redistribution and use in source and binary forms, with or without
29 * modification, are permitted provided that the following conditions
30 * are met:
31 * 1. Redistributions of source code must retain the above copyright
32 * notice, this list of conditions and the following disclaimer.
33 * 2. Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in the
35 * documentation and/or other materials provided with the distribution.
37 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47 * SUCH DAMAGE.
50 #include "qemu/osdep.h"
51 #include "qemu/error-report.h"
52 #include "qemu/main-loop.h"
53 #include "exec/address-spaces.h"
54 #include "exec/exec-all.h"
55 #include "sysemu/cpus.h"
56 #include "sysemu/hvf.h"
57 #include "sysemu/hvf_int.h"
58 #include "sysemu/runstate.h"
59 #include "qemu/guest-random.h"
61 HVFState *hvf_state;
63 /* Memory slots */
65 hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
67 hvf_slot *slot;
68 int x;
69 for (x = 0; x < hvf_state->num_slots; ++x) {
70 slot = &hvf_state->slots[x];
71 if (slot->size && start < (slot->start + slot->size) &&
72 (start + size) > slot->start) {
73 return slot;
76 return NULL;
79 struct mac_slot {
80 int present;
81 uint64_t size;
82 uint64_t gpa_start;
83 uint64_t gva;
86 struct mac_slot mac_slots[32];
88 static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
90 struct mac_slot *macslot;
91 hv_return_t ret;
93 macslot = &mac_slots[slot->slot_id];
95 if (macslot->present) {
96 if (macslot->size != slot->size) {
97 macslot->present = 0;
98 ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
99 assert_hvf_ok(ret);
103 if (!slot->size) {
104 return 0;
107 macslot->present = 1;
108 macslot->gpa_start = slot->start;
109 macslot->size = slot->size;
110 ret = hv_vm_map(slot->mem, slot->start, slot->size, flags);
111 assert_hvf_ok(ret);
112 return 0;
115 static void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
117 hvf_slot *mem;
118 MemoryRegion *area = section->mr;
119 bool writeable = !area->readonly && !area->rom_device;
120 hv_memory_flags_t flags;
122 if (!memory_region_is_ram(area)) {
123 if (writeable) {
124 return;
125 } else if (!memory_region_is_romd(area)) {
127 * If the memory device is not in romd_mode, then we actually want
128 * to remove the hvf memory slot so all accesses will trap.
130 add = false;
134 mem = hvf_find_overlap_slot(
135 section->offset_within_address_space,
136 int128_get64(section->size));
138 if (mem && add) {
139 if (mem->size == int128_get64(section->size) &&
140 mem->start == section->offset_within_address_space &&
141 mem->mem == (memory_region_get_ram_ptr(area) +
142 section->offset_within_region)) {
143 return; /* Same region was attempted to register, go away. */
147 /* Region needs to be reset. set the size to 0 and remap it. */
148 if (mem) {
149 mem->size = 0;
150 if (do_hvf_set_memory(mem, 0)) {
151 error_report("Failed to reset overlapping slot");
152 abort();
156 if (!add) {
157 return;
160 if (area->readonly ||
161 (!memory_region_is_ram(area) && memory_region_is_romd(area))) {
162 flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
163 } else {
164 flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
167 /* Now make a new slot. */
168 int x;
170 for (x = 0; x < hvf_state->num_slots; ++x) {
171 mem = &hvf_state->slots[x];
172 if (!mem->size) {
173 break;
177 if (x == hvf_state->num_slots) {
178 error_report("No free slots");
179 abort();
182 mem->size = int128_get64(section->size);
183 mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
184 mem->start = section->offset_within_address_space;
185 mem->region = area;
187 if (do_hvf_set_memory(mem, flags)) {
188 error_report("Error registering new memory slot");
189 abort();
193 static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
195 if (!cpu->vcpu_dirty) {
196 hvf_get_registers(cpu);
197 cpu->vcpu_dirty = true;
201 static void hvf_cpu_synchronize_state(CPUState *cpu)
203 if (!cpu->vcpu_dirty) {
204 run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
208 static void do_hvf_cpu_synchronize_set_dirty(CPUState *cpu,
209 run_on_cpu_data arg)
211 /* QEMU state is the reference, push it to HVF now and on next entry */
212 cpu->vcpu_dirty = true;
215 static void hvf_cpu_synchronize_post_reset(CPUState *cpu)
217 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
220 static void hvf_cpu_synchronize_post_init(CPUState *cpu)
222 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
225 static void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
227 run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
230 static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
232 hvf_slot *slot;
234 slot = hvf_find_overlap_slot(
235 section->offset_within_address_space,
236 int128_get64(section->size));
238 /* protect region against writes; begin tracking it */
239 if (on) {
240 slot->flags |= HVF_SLOT_LOG;
241 hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
242 HV_MEMORY_READ);
243 /* stop tracking region*/
244 } else {
245 slot->flags &= ~HVF_SLOT_LOG;
246 hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
247 HV_MEMORY_READ | HV_MEMORY_WRITE);
251 static void hvf_log_start(MemoryListener *listener,
252 MemoryRegionSection *section, int old, int new)
254 if (old != 0) {
255 return;
258 hvf_set_dirty_tracking(section, 1);
261 static void hvf_log_stop(MemoryListener *listener,
262 MemoryRegionSection *section, int old, int new)
264 if (new != 0) {
265 return;
268 hvf_set_dirty_tracking(section, 0);
271 static void hvf_log_sync(MemoryListener *listener,
272 MemoryRegionSection *section)
275 * sync of dirty pages is handled elsewhere; just make sure we keep
276 * tracking the region.
278 hvf_set_dirty_tracking(section, 1);
281 static void hvf_region_add(MemoryListener *listener,
282 MemoryRegionSection *section)
284 hvf_set_phys_mem(section, true);
287 static void hvf_region_del(MemoryListener *listener,
288 MemoryRegionSection *section)
290 hvf_set_phys_mem(section, false);
293 static MemoryListener hvf_memory_listener = {
294 .priority = 10,
295 .region_add = hvf_region_add,
296 .region_del = hvf_region_del,
297 .log_start = hvf_log_start,
298 .log_stop = hvf_log_stop,
299 .log_sync = hvf_log_sync,
302 static void dummy_signal(int sig)
306 bool hvf_allowed;
308 static int hvf_accel_init(MachineState *ms)
310 int x;
311 hv_return_t ret;
312 HVFState *s;
314 ret = hv_vm_create(HV_VM_DEFAULT);
315 assert_hvf_ok(ret);
317 s = g_new0(HVFState, 1);
319 s->num_slots = 32;
320 for (x = 0; x < s->num_slots; ++x) {
321 s->slots[x].size = 0;
322 s->slots[x].slot_id = x;
325 hvf_state = s;
326 memory_listener_register(&hvf_memory_listener, &address_space_memory);
327 return 0;
330 static void hvf_accel_class_init(ObjectClass *oc, void *data)
332 AccelClass *ac = ACCEL_CLASS(oc);
333 ac->name = "HVF";
334 ac->init_machine = hvf_accel_init;
335 ac->allowed = &hvf_allowed;
338 static const TypeInfo hvf_accel_type = {
339 .name = TYPE_HVF_ACCEL,
340 .parent = TYPE_ACCEL,
341 .class_init = hvf_accel_class_init,
344 static void hvf_type_init(void)
346 type_register_static(&hvf_accel_type);
349 type_init(hvf_type_init);
351 static void hvf_vcpu_destroy(CPUState *cpu)
353 hv_return_t ret = hv_vcpu_destroy(cpu->hvf->fd);
354 assert_hvf_ok(ret);
356 hvf_arch_vcpu_destroy(cpu);
357 g_free(cpu->hvf);
358 cpu->hvf = NULL;
361 static int hvf_init_vcpu(CPUState *cpu)
363 int r;
365 cpu->hvf = g_malloc0(sizeof(*cpu->hvf));
367 /* init cpu signals */
368 sigset_t set;
369 struct sigaction sigact;
371 memset(&sigact, 0, sizeof(sigact));
372 sigact.sa_handler = dummy_signal;
373 sigaction(SIG_IPI, &sigact, NULL);
375 pthread_sigmask(SIG_BLOCK, NULL, &set);
376 sigdelset(&set, SIG_IPI);
378 r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf->fd, HV_VCPU_DEFAULT);
379 cpu->vcpu_dirty = 1;
380 assert_hvf_ok(r);
382 return hvf_arch_init_vcpu(cpu);
386 * The HVF-specific vCPU thread function. This one should only run when the host
387 * CPU supports the VMX "unrestricted guest" feature.
389 static void *hvf_cpu_thread_fn(void *arg)
391 CPUState *cpu = arg;
393 int r;
395 assert(hvf_enabled());
397 rcu_register_thread();
399 qemu_mutex_lock_iothread();
400 qemu_thread_get_self(cpu->thread);
402 cpu->thread_id = qemu_get_thread_id();
403 cpu->can_do_io = 1;
404 current_cpu = cpu;
406 hvf_init_vcpu(cpu);
408 /* signal CPU creation */
409 cpu_thread_signal_created(cpu);
410 qemu_guest_random_seed_thread_part2(cpu->random_seed);
412 do {
413 if (cpu_can_run(cpu)) {
414 r = hvf_vcpu_exec(cpu);
415 if (r == EXCP_DEBUG) {
416 cpu_handle_guest_debug(cpu);
419 qemu_wait_io_event(cpu);
420 } while (!cpu->unplug || cpu_can_run(cpu));
422 hvf_vcpu_destroy(cpu);
423 cpu_thread_signal_destroyed(cpu);
424 qemu_mutex_unlock_iothread();
425 rcu_unregister_thread();
426 return NULL;
429 static void hvf_start_vcpu_thread(CPUState *cpu)
431 char thread_name[VCPU_THREAD_NAME_SIZE];
434 * HVF currently does not support TCG, and only runs in
435 * unrestricted-guest mode.
437 assert(hvf_enabled());
439 cpu->thread = g_malloc0(sizeof(QemuThread));
440 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
441 qemu_cond_init(cpu->halt_cond);
443 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
444 cpu->cpu_index);
445 qemu_thread_create(cpu->thread, thread_name, hvf_cpu_thread_fn,
446 cpu, QEMU_THREAD_JOINABLE);
449 static void hvf_accel_ops_class_init(ObjectClass *oc, void *data)
451 AccelOpsClass *ops = ACCEL_OPS_CLASS(oc);
453 ops->create_vcpu_thread = hvf_start_vcpu_thread;
455 ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset;
456 ops->synchronize_post_init = hvf_cpu_synchronize_post_init;
457 ops->synchronize_state = hvf_cpu_synchronize_state;
458 ops->synchronize_pre_loadvm = hvf_cpu_synchronize_pre_loadvm;
460 static const TypeInfo hvf_accel_ops_type = {
461 .name = ACCEL_OPS_NAME("hvf"),
463 .parent = TYPE_ACCEL_OPS,
464 .class_init = hvf_accel_ops_class_init,
465 .abstract = true,
467 static void hvf_accel_ops_register_types(void)
469 type_register_static(&hvf_accel_ops_type);
471 type_init(hvf_accel_ops_register_types);