2 * High Precision Event Timer emulation
4 * Copyright (c) 2007 Alexander Graf
5 * Copyright (c) 2008 IBM Corporation
7 * Authors: Beth Kon <bkon@us.ibm.com>
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * *****************************************************************
24 * This driver attempts to emulate an HPET device in software.
28 #include "hw/i386/pc.h"
29 #include "ui/console.h"
30 #include "qemu/error-report.h"
31 #include "qemu/timer.h"
32 #include "hw/timer/hpet.h"
33 #include "hw/sysbus.h"
34 #include "hw/timer/mc146818rtc.h"
35 #include "hw/timer/i8254.h"
39 #define DPRINTF printf
44 #define HPET_MSI_SUPPORT 0
46 #define HPET(obj) OBJECT_CHECK(HPETState, (obj), TYPE_HPET)
49 typedef struct HPETTimer
{ /* timers */
50 uint8_t tn
; /*timer number*/
51 QEMUTimer
*qemu_timer
;
52 struct HPETState
*state
;
53 /* Memory-mapped, software visible timer registers */
54 uint64_t config
; /* configuration/cap */
55 uint64_t cmp
; /* comparator */
56 uint64_t fsb
; /* FSB route */
57 /* Hidden register state */
58 uint64_t period
; /* Last value written to comparator */
59 uint8_t wrap_flag
; /* timer pop will indicate wrap for one-shot 32-bit
60 * mode. Next pop will be actual timer expiration.
64 typedef struct HPETState
{
66 SysBusDevice parent_obj
;
71 qemu_irq irqs
[HPET_NUM_IRQ_ROUTES
];
73 uint8_t rtc_irq_level
;
77 HPETTimer timer
[HPET_MAX_TIMERS
];
79 /* Memory-mapped, software visible registers */
80 uint64_t capability
; /* capabilities */
81 uint64_t config
; /* configuration */
82 uint64_t isr
; /* interrupt status reg */
83 uint64_t hpet_counter
; /* main counter */
84 uint8_t hpet_id
; /* instance id */
87 static uint32_t hpet_in_legacy_mode(HPETState
*s
)
89 return s
->config
& HPET_CFG_LEGACY
;
92 static uint32_t timer_int_route(struct HPETTimer
*timer
)
94 return (timer
->config
& HPET_TN_INT_ROUTE_MASK
) >> HPET_TN_INT_ROUTE_SHIFT
;
97 static uint32_t timer_fsb_route(HPETTimer
*t
)
99 return t
->config
& HPET_TN_FSB_ENABLE
;
102 static uint32_t hpet_enabled(HPETState
*s
)
104 return s
->config
& HPET_CFG_ENABLE
;
107 static uint32_t timer_is_periodic(HPETTimer
*t
)
109 return t
->config
& HPET_TN_PERIODIC
;
112 static uint32_t timer_enabled(HPETTimer
*t
)
114 return t
->config
& HPET_TN_ENABLE
;
117 static uint32_t hpet_time_after(uint64_t a
, uint64_t b
)
119 return ((int32_t)(b
- a
) < 0);
122 static uint32_t hpet_time_after64(uint64_t a
, uint64_t b
)
124 return ((int64_t)(b
- a
) < 0);
127 static uint64_t ticks_to_ns(uint64_t value
)
129 return value
* HPET_CLK_PERIOD
;
132 static uint64_t ns_to_ticks(uint64_t value
)
134 return value
/ HPET_CLK_PERIOD
;
137 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old
, uint64_t mask
)
144 static int activating_bit(uint64_t old
, uint64_t new, uint64_t mask
)
146 return (!(old
& mask
) && (new & mask
));
149 static int deactivating_bit(uint64_t old
, uint64_t new, uint64_t mask
)
151 return ((old
& mask
) && !(new & mask
));
154 static uint64_t hpet_get_ticks(HPETState
*s
)
156 return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + s
->hpet_offset
);
160 * calculate diff between comparator value and current ticks
162 static inline uint64_t hpet_calculate_diff(HPETTimer
*t
, uint64_t current
)
165 if (t
->config
& HPET_TN_32BIT
) {
168 cmp
= (uint32_t)t
->cmp
;
169 diff
= cmp
- (uint32_t)current
;
170 diff
= (int32_t)diff
> 0 ? diff
: (uint32_t)1;
171 return (uint64_t)diff
;
176 diff
= cmp
- current
;
177 diff
= (int64_t)diff
> 0 ? diff
: (uint64_t)1;
182 static void update_irq(struct HPETTimer
*timer
, int set
)
188 if (timer
->tn
<= 1 && hpet_in_legacy_mode(timer
->state
)) {
189 /* if LegacyReplacementRoute bit is set, HPET specification requires
190 * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
191 * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
193 route
= (timer
->tn
== 0) ? 0 : RTC_ISA_IRQ
;
195 route
= timer_int_route(timer
);
198 mask
= 1 << timer
->tn
;
199 if (!set
|| !timer_enabled(timer
) || !hpet_enabled(timer
->state
)) {
201 if (!timer_fsb_route(timer
)) {
202 /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
203 if (route
>= ISA_NUM_IRQS
) {
204 qemu_irq_raise(s
->irqs
[route
]);
206 qemu_irq_lower(s
->irqs
[route
]);
209 } else if (timer_fsb_route(timer
)) {
210 address_space_stl_le(&address_space_memory
, timer
->fsb
>> 32,
211 timer
->fsb
& 0xffffffff, MEMTXATTRS_UNSPECIFIED
,
213 } else if (timer
->config
& HPET_TN_TYPE_LEVEL
) {
215 /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
216 if (route
>= ISA_NUM_IRQS
) {
217 qemu_irq_lower(s
->irqs
[route
]);
219 qemu_irq_raise(s
->irqs
[route
]);
223 qemu_irq_pulse(s
->irqs
[route
]);
227 static void hpet_pre_save(void *opaque
)
229 HPETState
*s
= opaque
;
231 /* save current counter value */
232 s
->hpet_counter
= hpet_get_ticks(s
);
235 static int hpet_pre_load(void *opaque
)
237 HPETState
*s
= opaque
;
239 /* version 1 only supports 3, later versions will load the actual value */
240 s
->num_timers
= HPET_MIN_TIMERS
;
244 static bool hpet_validate_num_timers(void *opaque
, int version_id
)
246 HPETState
*s
= opaque
;
248 if (s
->num_timers
< HPET_MIN_TIMERS
) {
250 } else if (s
->num_timers
> HPET_MAX_TIMERS
) {
256 static int hpet_post_load(void *opaque
, int version_id
)
258 HPETState
*s
= opaque
;
260 /* Recalculate the offset between the main counter and guest time */
261 s
->hpet_offset
= ticks_to_ns(s
->hpet_counter
) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
263 /* Push number of timers into capability returned via HPET_ID */
264 s
->capability
&= ~HPET_ID_NUM_TIM_MASK
;
265 s
->capability
|= (s
->num_timers
- 1) << HPET_ID_NUM_TIM_SHIFT
;
266 hpet_cfg
.hpet
[s
->hpet_id
].event_timer_block_id
= (uint32_t)s
->capability
;
268 /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
269 s
->flags
&= ~(1 << HPET_MSI_SUPPORT
);
270 if (s
->timer
[0].config
& HPET_TN_FSB_CAP
) {
271 s
->flags
|= 1 << HPET_MSI_SUPPORT
;
276 static bool hpet_rtc_irq_level_needed(void *opaque
)
278 HPETState
*s
= opaque
;
280 return s
->rtc_irq_level
!= 0;
283 static const VMStateDescription vmstate_hpet_rtc_irq_level
= {
284 .name
= "hpet/rtc_irq_level",
286 .minimum_version_id
= 1,
287 .needed
= hpet_rtc_irq_level_needed
,
288 .fields
= (VMStateField
[]) {
289 VMSTATE_UINT8(rtc_irq_level
, HPETState
),
290 VMSTATE_END_OF_LIST()
294 static const VMStateDescription vmstate_hpet_timer
= {
295 .name
= "hpet_timer",
297 .minimum_version_id
= 1,
298 .fields
= (VMStateField
[]) {
299 VMSTATE_UINT8(tn
, HPETTimer
),
300 VMSTATE_UINT64(config
, HPETTimer
),
301 VMSTATE_UINT64(cmp
, HPETTimer
),
302 VMSTATE_UINT64(fsb
, HPETTimer
),
303 VMSTATE_UINT64(period
, HPETTimer
),
304 VMSTATE_UINT8(wrap_flag
, HPETTimer
),
305 VMSTATE_TIMER_PTR(qemu_timer
, HPETTimer
),
306 VMSTATE_END_OF_LIST()
310 static const VMStateDescription vmstate_hpet
= {
313 .minimum_version_id
= 1,
314 .pre_save
= hpet_pre_save
,
315 .pre_load
= hpet_pre_load
,
316 .post_load
= hpet_post_load
,
317 .fields
= (VMStateField
[]) {
318 VMSTATE_UINT64(config
, HPETState
),
319 VMSTATE_UINT64(isr
, HPETState
),
320 VMSTATE_UINT64(hpet_counter
, HPETState
),
321 VMSTATE_UINT8_V(num_timers
, HPETState
, 2),
322 VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers
),
323 VMSTATE_STRUCT_VARRAY_UINT8(timer
, HPETState
, num_timers
, 0,
324 vmstate_hpet_timer
, HPETTimer
),
325 VMSTATE_END_OF_LIST()
327 .subsections
= (const VMStateDescription
*[]) {
328 &vmstate_hpet_rtc_irq_level
,
334 * timer expiration callback
336 static void hpet_timer(void *opaque
)
338 HPETTimer
*t
= opaque
;
341 uint64_t period
= t
->period
;
342 uint64_t cur_tick
= hpet_get_ticks(t
->state
);
344 if (timer_is_periodic(t
) && period
!= 0) {
345 if (t
->config
& HPET_TN_32BIT
) {
346 while (hpet_time_after(cur_tick
, t
->cmp
)) {
347 t
->cmp
= (uint32_t)(t
->cmp
+ t
->period
);
350 while (hpet_time_after64(cur_tick
, t
->cmp
)) {
354 diff
= hpet_calculate_diff(t
, cur_tick
);
355 timer_mod(t
->qemu_timer
,
356 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + (int64_t)ticks_to_ns(diff
));
357 } else if (t
->config
& HPET_TN_32BIT
&& !timer_is_periodic(t
)) {
359 diff
= hpet_calculate_diff(t
, cur_tick
);
360 timer_mod(t
->qemu_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
361 (int64_t)ticks_to_ns(diff
));
368 static void hpet_set_timer(HPETTimer
*t
)
371 uint32_t wrap_diff
; /* how many ticks until we wrap? */
372 uint64_t cur_tick
= hpet_get_ticks(t
->state
);
374 /* whenever new timer is being set up, make sure wrap_flag is 0 */
376 diff
= hpet_calculate_diff(t
, cur_tick
);
378 /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
379 * counter wraps in addition to an interrupt with comparator match.
381 if (t
->config
& HPET_TN_32BIT
&& !timer_is_periodic(t
)) {
382 wrap_diff
= 0xffffffff - (uint32_t)cur_tick
;
383 if (wrap_diff
< (uint32_t)diff
) {
388 timer_mod(t
->qemu_timer
,
389 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + (int64_t)ticks_to_ns(diff
));
392 static void hpet_del_timer(HPETTimer
*t
)
394 timer_del(t
->qemu_timer
);
399 static uint32_t hpet_ram_readb(void *opaque
, hwaddr addr
)
401 printf("qemu: hpet_read b at %" PRIx64
"\n", addr
);
405 static uint32_t hpet_ram_readw(void *opaque
, hwaddr addr
)
407 printf("qemu: hpet_read w at %" PRIx64
"\n", addr
);
412 static uint64_t hpet_ram_read(void *opaque
, hwaddr addr
,
415 HPETState
*s
= opaque
;
416 uint64_t cur_tick
, index
;
418 DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64
"\n", addr
);
420 /*address range of all TN regs*/
421 if (index
>= 0x100 && index
<= 0x3ff) {
422 uint8_t timer_id
= (addr
- 0x100) / 0x20;
423 HPETTimer
*timer
= &s
->timer
[timer_id
];
425 if (timer_id
> s
->num_timers
) {
426 DPRINTF("qemu: timer id out of range\n");
430 switch ((addr
- 0x100) % 0x20) {
432 return timer
->config
;
433 case HPET_TN_CFG
+ 4: // Interrupt capabilities
434 return timer
->config
>> 32;
435 case HPET_TN_CMP
: // comparator register
437 case HPET_TN_CMP
+ 4:
438 return timer
->cmp
>> 32;
441 case HPET_TN_ROUTE
+ 4:
442 return timer
->fsb
>> 32;
444 DPRINTF("qemu: invalid hpet_ram_readl\n");
450 return s
->capability
;
452 return s
->capability
>> 32;
456 DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
459 if (hpet_enabled(s
)) {
460 cur_tick
= hpet_get_ticks(s
);
462 cur_tick
= s
->hpet_counter
;
464 DPRINTF("qemu: reading counter = %" PRIx64
"\n", cur_tick
);
466 case HPET_COUNTER
+ 4:
467 if (hpet_enabled(s
)) {
468 cur_tick
= hpet_get_ticks(s
);
470 cur_tick
= s
->hpet_counter
;
472 DPRINTF("qemu: reading counter + 4 = %" PRIx64
"\n", cur_tick
);
473 return cur_tick
>> 32;
477 DPRINTF("qemu: invalid hpet_ram_readl\n");
484 static void hpet_ram_write(void *opaque
, hwaddr addr
,
485 uint64_t value
, unsigned size
)
488 HPETState
*s
= opaque
;
489 uint64_t old_val
, new_val
, val
, index
;
491 DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64
" = %#x\n", addr
, value
);
493 old_val
= hpet_ram_read(opaque
, addr
, 4);
496 /*address range of all TN regs*/
497 if (index
>= 0x100 && index
<= 0x3ff) {
498 uint8_t timer_id
= (addr
- 0x100) / 0x20;
499 HPETTimer
*timer
= &s
->timer
[timer_id
];
501 DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id
);
502 if (timer_id
> s
->num_timers
) {
503 DPRINTF("qemu: timer id out of range\n");
506 switch ((addr
- 0x100) % 0x20) {
508 DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
509 if (activating_bit(old_val
, new_val
, HPET_TN_FSB_ENABLE
)) {
510 update_irq(timer
, 0);
512 val
= hpet_fixup_reg(new_val
, old_val
, HPET_TN_CFG_WRITE_MASK
);
513 timer
->config
= (timer
->config
& 0xffffffff00000000ULL
) | val
;
514 if (new_val
& HPET_TN_32BIT
) {
515 timer
->cmp
= (uint32_t)timer
->cmp
;
516 timer
->period
= (uint32_t)timer
->period
;
518 if (activating_bit(old_val
, new_val
, HPET_TN_ENABLE
) &&
520 hpet_set_timer(timer
);
521 } else if (deactivating_bit(old_val
, new_val
, HPET_TN_ENABLE
)) {
522 hpet_del_timer(timer
);
525 case HPET_TN_CFG
+ 4: // Interrupt capabilities
526 DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
528 case HPET_TN_CMP
: // comparator register
529 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
530 if (timer
->config
& HPET_TN_32BIT
) {
531 new_val
= (uint32_t)new_val
;
533 if (!timer_is_periodic(timer
)
534 || (timer
->config
& HPET_TN_SETVAL
)) {
535 timer
->cmp
= (timer
->cmp
& 0xffffffff00000000ULL
) | new_val
;
537 if (timer_is_periodic(timer
)) {
539 * FIXME: Clamp period to reasonable min value?
540 * Clamp period to reasonable max value
542 new_val
&= (timer
->config
& HPET_TN_32BIT
? ~0u : ~0ull) >> 1;
544 (timer
->period
& 0xffffffff00000000ULL
) | new_val
;
546 timer
->config
&= ~HPET_TN_SETVAL
;
547 if (hpet_enabled(s
)) {
548 hpet_set_timer(timer
);
551 case HPET_TN_CMP
+ 4: // comparator register high order
552 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
553 if (!timer_is_periodic(timer
)
554 || (timer
->config
& HPET_TN_SETVAL
)) {
555 timer
->cmp
= (timer
->cmp
& 0xffffffffULL
) | new_val
<< 32;
558 * FIXME: Clamp period to reasonable min value?
559 * Clamp period to reasonable max value
561 new_val
&= (timer
->config
& HPET_TN_32BIT
? ~0u : ~0ull) >> 1;
563 (timer
->period
& 0xffffffffULL
) | new_val
<< 32;
565 timer
->config
&= ~HPET_TN_SETVAL
;
566 if (hpet_enabled(s
)) {
567 hpet_set_timer(timer
);
571 timer
->fsb
= (timer
->fsb
& 0xffffffff00000000ULL
) | new_val
;
573 case HPET_TN_ROUTE
+ 4:
574 timer
->fsb
= (new_val
<< 32) | (timer
->fsb
& 0xffffffff);
577 DPRINTF("qemu: invalid hpet_ram_writel\n");
586 val
= hpet_fixup_reg(new_val
, old_val
, HPET_CFG_WRITE_MASK
);
587 s
->config
= (s
->config
& 0xffffffff00000000ULL
) | val
;
588 if (activating_bit(old_val
, new_val
, HPET_CFG_ENABLE
)) {
589 /* Enable main counter and interrupt generation. */
591 ticks_to_ns(s
->hpet_counter
) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
592 for (i
= 0; i
< s
->num_timers
; i
++) {
593 if ((&s
->timer
[i
])->cmp
!= ~0ULL) {
594 hpet_set_timer(&s
->timer
[i
]);
597 } else if (deactivating_bit(old_val
, new_val
, HPET_CFG_ENABLE
)) {
598 /* Halt main counter and disable interrupt generation. */
599 s
->hpet_counter
= hpet_get_ticks(s
);
600 for (i
= 0; i
< s
->num_timers
; i
++) {
601 hpet_del_timer(&s
->timer
[i
]);
604 /* i8254 and RTC output pins are disabled
605 * when HPET is in legacy mode */
606 if (activating_bit(old_val
, new_val
, HPET_CFG_LEGACY
)) {
607 qemu_set_irq(s
->pit_enabled
, 0);
608 qemu_irq_lower(s
->irqs
[0]);
609 qemu_irq_lower(s
->irqs
[RTC_ISA_IRQ
]);
610 } else if (deactivating_bit(old_val
, new_val
, HPET_CFG_LEGACY
)) {
611 qemu_irq_lower(s
->irqs
[0]);
612 qemu_set_irq(s
->pit_enabled
, 1);
613 qemu_set_irq(s
->irqs
[RTC_ISA_IRQ
], s
->rtc_irq_level
);
617 DPRINTF("qemu: invalid HPET_CFG+4 write\n");
620 val
= new_val
& s
->isr
;
621 for (i
= 0; i
< s
->num_timers
; i
++) {
622 if (val
& (1 << i
)) {
623 update_irq(&s
->timer
[i
], 0);
628 if (hpet_enabled(s
)) {
629 DPRINTF("qemu: Writing counter while HPET enabled!\n");
632 (s
->hpet_counter
& 0xffffffff00000000ULL
) | value
;
633 DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64
"\n",
634 value
, s
->hpet_counter
);
636 case HPET_COUNTER
+ 4:
637 if (hpet_enabled(s
)) {
638 DPRINTF("qemu: Writing counter while HPET enabled!\n");
641 (s
->hpet_counter
& 0xffffffffULL
) | (((uint64_t)value
) << 32);
642 DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64
"\n",
643 value
, s
->hpet_counter
);
646 DPRINTF("qemu: invalid hpet_ram_writel\n");
652 static const MemoryRegionOps hpet_ram_ops
= {
653 .read
= hpet_ram_read
,
654 .write
= hpet_ram_write
,
656 .min_access_size
= 4,
657 .max_access_size
= 4,
659 .endianness
= DEVICE_NATIVE_ENDIAN
,
662 static void hpet_reset(DeviceState
*d
)
664 HPETState
*s
= HPET(d
);
665 SysBusDevice
*sbd
= SYS_BUS_DEVICE(d
);
668 for (i
= 0; i
< s
->num_timers
; i
++) {
669 HPETTimer
*timer
= &s
->timer
[i
];
671 hpet_del_timer(timer
);
673 timer
->config
= HPET_TN_PERIODIC_CAP
| HPET_TN_SIZE_CAP
;
674 if (s
->flags
& (1 << HPET_MSI_SUPPORT
)) {
675 timer
->config
|= HPET_TN_FSB_CAP
;
677 /* advertise availability of ioapic int */
678 timer
->config
|= (uint64_t)s
->intcap
<< 32;
679 timer
->period
= 0ULL;
680 timer
->wrap_flag
= 0;
683 qemu_set_irq(s
->pit_enabled
, 1);
684 s
->hpet_counter
= 0ULL;
685 s
->hpet_offset
= 0ULL;
687 hpet_cfg
.hpet
[s
->hpet_id
].event_timer_block_id
= (uint32_t)s
->capability
;
688 hpet_cfg
.hpet
[s
->hpet_id
].address
= sbd
->mmio
[0].addr
;
690 /* to document that the RTC lowers its output on reset as well */
691 s
->rtc_irq_level
= 0;
694 static void hpet_handle_legacy_irq(void *opaque
, int n
, int level
)
696 HPETState
*s
= HPET(opaque
);
698 if (n
== HPET_LEGACY_PIT_INT
) {
699 if (!hpet_in_legacy_mode(s
)) {
700 qemu_set_irq(s
->irqs
[0], level
);
703 s
->rtc_irq_level
= level
;
704 if (!hpet_in_legacy_mode(s
)) {
705 qemu_set_irq(s
->irqs
[RTC_ISA_IRQ
], level
);
710 static void hpet_init(Object
*obj
)
712 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
713 HPETState
*s
= HPET(obj
);
716 memory_region_init_io(&s
->iomem
, obj
, &hpet_ram_ops
, s
, "hpet", 0x400);
717 sysbus_init_mmio(sbd
, &s
->iomem
);
720 static void hpet_realize(DeviceState
*dev
, Error
**errp
)
722 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
723 HPETState
*s
= HPET(dev
);
728 error_printf("Hpet's intcap not initialized.\n");
730 if (hpet_cfg
.count
== UINT8_MAX
) {
735 if (hpet_cfg
.count
== 8) {
736 error_setg(errp
, "Only 8 instances of HPET is allowed");
740 s
->hpet_id
= hpet_cfg
.count
++;
742 for (i
= 0; i
< HPET_NUM_IRQ_ROUTES
; i
++) {
743 sysbus_init_irq(sbd
, &s
->irqs
[i
]);
746 if (s
->num_timers
< HPET_MIN_TIMERS
) {
747 s
->num_timers
= HPET_MIN_TIMERS
;
748 } else if (s
->num_timers
> HPET_MAX_TIMERS
) {
749 s
->num_timers
= HPET_MAX_TIMERS
;
751 for (i
= 0; i
< HPET_MAX_TIMERS
; i
++) {
752 timer
= &s
->timer
[i
];
753 timer
->qemu_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, hpet_timer
, timer
);
758 /* 64-bit main counter; LegacyReplacementRoute. */
759 s
->capability
= 0x8086a001ULL
;
760 s
->capability
|= (s
->num_timers
- 1) << HPET_ID_NUM_TIM_SHIFT
;
761 s
->capability
|= ((uint64_t)(HPET_CLK_PERIOD
* FS_PER_NS
) << 32);
763 qdev_init_gpio_in(dev
, hpet_handle_legacy_irq
, 2);
764 qdev_init_gpio_out(dev
, &s
->pit_enabled
, 1);
767 static Property hpet_device_properties
[] = {
768 DEFINE_PROP_UINT8("timers", HPETState
, num_timers
, HPET_MIN_TIMERS
),
769 DEFINE_PROP_BIT("msi", HPETState
, flags
, HPET_MSI_SUPPORT
, false),
770 DEFINE_PROP_UINT32(HPET_INTCAP
, HPETState
, intcap
, 0),
771 DEFINE_PROP_END_OF_LIST(),
774 static void hpet_device_class_init(ObjectClass
*klass
, void *data
)
776 DeviceClass
*dc
= DEVICE_CLASS(klass
);
778 dc
->realize
= hpet_realize
;
779 dc
->reset
= hpet_reset
;
780 dc
->vmsd
= &vmstate_hpet
;
781 dc
->props
= hpet_device_properties
;
784 static const TypeInfo hpet_device_info
= {
786 .parent
= TYPE_SYS_BUS_DEVICE
,
787 .instance_size
= sizeof(HPETState
),
788 .instance_init
= hpet_init
,
789 .class_init
= hpet_device_class_init
,
792 static void hpet_register_types(void)
794 type_register_static(&hpet_device_info
);
797 type_init(hpet_register_types
)