2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
4 * Copyright (C) 2007-2008 Qumranet Technologies
5 * Copyright (C) 2012 Jan Kiszka, Siemens AG
7 * This work is licensed under the terms of the GNU GPL version 2, or
8 * (at your option) any later version. See the COPYING file in the
12 #include "qemu/osdep.h"
13 #include "qemu/module.h"
15 #include "sysemu/sysemu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/hw_accel.h"
18 #include "sysemu/kvm.h"
19 #include "sysemu/runstate.h"
20 #include "hw/i386/apic_internal.h"
21 #include "hw/sysbus.h"
22 #include "hw/boards.h"
23 #include "migration/vmstate.h"
26 #define VAPIC_IO_PORT 0x7e
28 #define VAPIC_CPU_SHIFT 7
30 #define ROM_BLOCK_SIZE 512
31 #define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
33 typedef enum VAPICMode
{
39 typedef struct VAPICHandlers
{
43 uint32_t get_tpr_stack
;
44 } QEMU_PACKED VAPICHandlers
;
46 typedef struct GuestROMState
{
54 uint32_t real_tpr_addr
;
57 } QEMU_PACKED GuestROMState
;
59 typedef struct VAPICROMState
{
64 uint32_t rom_state_paddr
;
65 uint32_t rom_state_vaddr
;
67 uint32_t real_tpr_addr
;
68 GuestROMState rom_state
;
70 bool rom_mapped_writable
;
71 VMChangeStateEntry
*vmsentry
;
74 #define TYPE_VAPIC "kvmvapic"
75 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
77 #define TPR_INSTR_ABS_MODRM 0x1
78 #define TPR_INSTR_MATCH_MODRM_REG 0x2
80 typedef struct TPRInstruction
{
89 /* must be sorted by length, shortest first */
90 static const TPRInstruction tpr_instr
[] = {
91 { /* mov abs to eax */
93 .access
= TPR_ACCESS_READ
,
97 { /* mov eax to abs */
99 .access
= TPR_ACCESS_WRITE
,
103 { /* mov r32 to r/m32 */
105 .flags
= TPR_INSTR_ABS_MODRM
,
106 .access
= TPR_ACCESS_WRITE
,
110 { /* mov r/m32 to r32 */
112 .flags
= TPR_INSTR_ABS_MODRM
,
113 .access
= TPR_ACCESS_READ
,
120 .flags
= TPR_INSTR_ABS_MODRM
| TPR_INSTR_MATCH_MODRM_REG
,
121 .access
= TPR_ACCESS_READ
,
125 { /* mov imm32, r/m32 (c7/0) */
128 .flags
= TPR_INSTR_ABS_MODRM
| TPR_INSTR_MATCH_MODRM_REG
,
129 .access
= TPR_ACCESS_WRITE
,
135 static void read_guest_rom_state(VAPICROMState
*s
)
137 cpu_physical_memory_read(s
->rom_state_paddr
, &s
->rom_state
,
138 sizeof(GuestROMState
));
141 static void write_guest_rom_state(VAPICROMState
*s
)
143 cpu_physical_memory_write(s
->rom_state_paddr
, &s
->rom_state
,
144 sizeof(GuestROMState
));
147 static void update_guest_rom_state(VAPICROMState
*s
)
149 read_guest_rom_state(s
);
151 s
->rom_state
.real_tpr_addr
= cpu_to_le32(s
->real_tpr_addr
);
152 s
->rom_state
.vcpu_shift
= cpu_to_le32(VAPIC_CPU_SHIFT
);
154 write_guest_rom_state(s
);
157 static int find_real_tpr_addr(VAPICROMState
*s
, CPUX86State
*env
)
159 CPUState
*cs
= env_cpu(env
);
163 if (s
->state
== VAPIC_ACTIVE
) {
167 * If there is no prior TPR access instruction we could analyze (which is
168 * the case after resume from hibernation), we need to scan the possible
169 * virtual address space for the APIC mapping.
171 for (addr
= 0xfffff000; addr
>= 0x80000000; addr
-= TARGET_PAGE_SIZE
) {
172 paddr
= cpu_get_phys_page_debug(cs
, addr
);
173 if (paddr
!= APIC_DEFAULT_ADDRESS
) {
176 s
->real_tpr_addr
= addr
+ 0x80;
177 update_guest_rom_state(s
);
183 static uint8_t modrm_reg(uint8_t modrm
)
185 return (modrm
>> 3) & 7;
188 static bool is_abs_modrm(uint8_t modrm
)
190 return (modrm
& 0xc7) == 0x05;
193 static bool opcode_matches(uint8_t *opcode
, const TPRInstruction
*instr
)
195 return opcode
[0] == instr
->opcode
&&
196 (!(instr
->flags
& TPR_INSTR_ABS_MODRM
) || is_abs_modrm(opcode
[1])) &&
197 (!(instr
->flags
& TPR_INSTR_MATCH_MODRM_REG
) ||
198 modrm_reg(opcode
[1]) == instr
->modrm_reg
);
201 static int evaluate_tpr_instruction(VAPICROMState
*s
, X86CPU
*cpu
,
202 target_ulong
*pip
, TPRAccess access
)
204 CPUState
*cs
= CPU(cpu
);
205 const TPRInstruction
*instr
;
206 target_ulong ip
= *pip
;
208 uint32_t real_tpr_addr
;
211 if ((ip
& 0xf0000000ULL
) != 0x80000000ULL
&&
212 (ip
& 0xf0000000ULL
) != 0xe0000000ULL
) {
217 * Early Windows 2003 SMP initialization contains a
221 * instruction that is patched by TPR optimization. The problem is that
222 * RSP, used by the patched instruction, is zero, so the guest gets a
223 * double fault and dies.
225 if (cpu
->env
.regs
[R_ESP
] == 0) {
229 if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
231 * KVM without kernel-based TPR access reporting will pass an IP that
232 * points after the accessing instruction. So we need to look backward
233 * to find the reason.
235 for (i
= 0; i
< ARRAY_SIZE(tpr_instr
); i
++) {
236 instr
= &tpr_instr
[i
];
237 if (instr
->access
!= access
) {
240 if (cpu_memory_rw_debug(cs
, ip
- instr
->length
, opcode
,
241 sizeof(opcode
), 0) < 0) {
244 if (opcode_matches(opcode
, instr
)) {
251 if (cpu_memory_rw_debug(cs
, ip
, opcode
, sizeof(opcode
), 0) < 0) {
254 for (i
= 0; i
< ARRAY_SIZE(tpr_instr
); i
++) {
255 instr
= &tpr_instr
[i
];
256 if (opcode_matches(opcode
, instr
)) {
265 * Grab the virtual TPR address from the instruction
266 * and update the cached values.
268 if (cpu_memory_rw_debug(cs
, ip
+ instr
->addr_offset
,
269 (void *)&real_tpr_addr
,
270 sizeof(real_tpr_addr
), 0) < 0) {
273 real_tpr_addr
= le32_to_cpu(real_tpr_addr
);
274 if ((real_tpr_addr
& 0xfff) != 0x80) {
277 s
->real_tpr_addr
= real_tpr_addr
;
278 update_guest_rom_state(s
);
284 static int update_rom_mapping(VAPICROMState
*s
, CPUX86State
*env
, target_ulong ip
)
286 CPUState
*cs
= env_cpu(env
);
288 uint32_t rom_state_vaddr
;
289 uint32_t pos
, patch
, offset
;
291 /* nothing to do if already activated */
292 if (s
->state
== VAPIC_ACTIVE
) {
296 /* bail out if ROM init code was not executed (missing ROM?) */
297 if (s
->state
== VAPIC_INACTIVE
) {
301 /* find out virtual address of the ROM */
302 rom_state_vaddr
= s
->rom_state_paddr
+ (ip
& 0xf0000000);
303 paddr
= cpu_get_phys_page_debug(cs
, rom_state_vaddr
);
307 paddr
+= rom_state_vaddr
& ~TARGET_PAGE_MASK
;
308 if (paddr
!= s
->rom_state_paddr
) {
311 read_guest_rom_state(s
);
312 if (memcmp(s
->rom_state
.signature
, "kvm aPiC", 8) != 0) {
315 s
->rom_state_vaddr
= rom_state_vaddr
;
317 /* fixup addresses in ROM if needed */
318 if (rom_state_vaddr
== le32_to_cpu(s
->rom_state
.vaddr
)) {
321 for (pos
= le32_to_cpu(s
->rom_state
.fixup_start
);
322 pos
< le32_to_cpu(s
->rom_state
.fixup_end
);
324 cpu_physical_memory_read(paddr
+ pos
- s
->rom_state
.vaddr
,
325 &offset
, sizeof(offset
));
326 offset
= le32_to_cpu(offset
);
327 cpu_physical_memory_read(paddr
+ offset
, &patch
, sizeof(patch
));
328 patch
= le32_to_cpu(patch
);
329 patch
+= rom_state_vaddr
- le32_to_cpu(s
->rom_state
.vaddr
);
330 patch
= cpu_to_le32(patch
);
331 cpu_physical_memory_write(paddr
+ offset
, &patch
, sizeof(patch
));
333 read_guest_rom_state(s
);
334 s
->vapic_paddr
= paddr
+ le32_to_cpu(s
->rom_state
.vapic_vaddr
) -
335 le32_to_cpu(s
->rom_state
.vaddr
);
341 * Tries to read the unique processor number from the Kernel Processor Control
342 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
343 * cannot be accessed or is considered invalid. This also ensures that we are
344 * not patching the wrong guest.
346 static int get_kpcr_number(X86CPU
*cpu
)
348 CPUX86State
*env
= &cpu
->env
;
356 if (cpu_memory_rw_debug(CPU(cpu
), env
->segs
[R_FS
].base
,
357 (void *)&kpcr
, sizeof(kpcr
), 0) < 0 ||
358 kpcr
.self
!= env
->segs
[R_FS
].base
) {
364 static int vapic_enable(VAPICROMState
*s
, X86CPU
*cpu
)
366 int cpu_number
= get_kpcr_number(cpu
);
368 static const uint8_t enabled
= 1;
370 if (cpu_number
< 0) {
373 vapic_paddr
= s
->vapic_paddr
+
374 (((hwaddr
)cpu_number
) << VAPIC_CPU_SHIFT
);
375 cpu_physical_memory_write(vapic_paddr
+ offsetof(VAPICState
, enabled
),
376 &enabled
, sizeof(enabled
));
377 apic_enable_vapic(cpu
->apic_state
, vapic_paddr
);
379 s
->state
= VAPIC_ACTIVE
;
384 static void patch_byte(X86CPU
*cpu
, target_ulong addr
, uint8_t byte
)
386 cpu_memory_rw_debug(CPU(cpu
), addr
, &byte
, 1, 1);
389 static void patch_call(X86CPU
*cpu
, target_ulong ip
, uint32_t target
)
393 offset
= cpu_to_le32(target
- ip
- 5);
394 patch_byte(cpu
, ip
, 0xe8); /* call near */
395 cpu_memory_rw_debug(CPU(cpu
), ip
+ 1, (void *)&offset
, sizeof(offset
), 1);
398 typedef struct PatchInfo
{
399 VAPICHandlers
*handler
;
403 static void do_patch_instruction(CPUState
*cs
, run_on_cpu_data data
)
405 X86CPU
*x86_cpu
= X86_CPU(cs
);
406 PatchInfo
*info
= (PatchInfo
*) data
.host_ptr
;
407 VAPICHandlers
*handlers
= info
->handler
;
408 target_ulong ip
= info
->ip
;
412 cpu_memory_rw_debug(cs
, ip
, opcode
, sizeof(opcode
), 0);
415 case 0x89: /* mov r32 to r/m32 */
416 patch_byte(x86_cpu
, ip
, 0x50 + modrm_reg(opcode
[1])); /* push reg */
417 patch_call(x86_cpu
, ip
+ 1, handlers
->set_tpr
);
419 case 0x8b: /* mov r/m32 to r32 */
420 patch_byte(x86_cpu
, ip
, 0x90);
421 patch_call(x86_cpu
, ip
+ 1, handlers
->get_tpr
[modrm_reg(opcode
[1])]);
423 case 0xa1: /* mov abs to eax */
424 patch_call(x86_cpu
, ip
, handlers
->get_tpr
[0]);
426 case 0xa3: /* mov eax to abs */
427 patch_call(x86_cpu
, ip
, handlers
->set_tpr_eax
);
429 case 0xc7: /* mov imm32, r/m32 (c7/0) */
430 patch_byte(x86_cpu
, ip
, 0x68); /* push imm32 */
431 cpu_memory_rw_debug(cs
, ip
+ 6, (void *)&imm32
, sizeof(imm32
), 0);
432 cpu_memory_rw_debug(cs
, ip
+ 1, (void *)&imm32
, sizeof(imm32
), 1);
433 patch_call(x86_cpu
, ip
+ 5, handlers
->set_tpr
);
435 case 0xff: /* push r/m32 */
436 patch_byte(x86_cpu
, ip
, 0x50); /* push eax */
437 patch_call(x86_cpu
, ip
+ 1, handlers
->get_tpr_stack
);
446 static void patch_instruction(VAPICROMState
*s
, X86CPU
*cpu
, target_ulong ip
)
448 MachineState
*ms
= MACHINE(qdev_get_machine());
449 CPUState
*cs
= CPU(cpu
);
450 VAPICHandlers
*handlers
;
453 if (ms
->smp
.cpus
== 1) {
454 handlers
= &s
->rom_state
.up
;
456 handlers
= &s
->rom_state
.mp
;
459 info
= g_new(PatchInfo
, 1);
460 info
->handler
= handlers
;
463 async_safe_run_on_cpu(cs
, do_patch_instruction
, RUN_ON_CPU_HOST_PTR(info
));
466 void vapic_report_tpr_access(DeviceState
*dev
, CPUState
*cs
, target_ulong ip
,
469 VAPICROMState
*s
= VAPIC(dev
);
470 X86CPU
*cpu
= X86_CPU(cs
);
471 CPUX86State
*env
= &cpu
->env
;
473 cpu_synchronize_state(cs
);
475 if (evaluate_tpr_instruction(s
, cpu
, &ip
, access
) < 0) {
476 if (s
->state
== VAPIC_ACTIVE
) {
477 vapic_enable(s
, cpu
);
481 if (update_rom_mapping(s
, env
, ip
) < 0) {
484 if (vapic_enable(s
, cpu
) < 0) {
487 patch_instruction(s
, cpu
, ip
);
490 typedef struct VAPICEnableTPRReporting
{
493 } VAPICEnableTPRReporting
;
495 static void vapic_do_enable_tpr_reporting(CPUState
*cpu
, run_on_cpu_data data
)
497 VAPICEnableTPRReporting
*info
= data
.host_ptr
;
498 apic_enable_tpr_access_reporting(info
->apic
, info
->enable
);
501 static void vapic_enable_tpr_reporting(bool enable
)
503 VAPICEnableTPRReporting info
= {
511 info
.apic
= cpu
->apic_state
;
512 run_on_cpu(cs
, vapic_do_enable_tpr_reporting
, RUN_ON_CPU_HOST_PTR(&info
));
516 static void vapic_reset(DeviceState
*dev
)
518 VAPICROMState
*s
= VAPIC(dev
);
520 s
->state
= VAPIC_INACTIVE
;
521 s
->rom_state_paddr
= 0;
522 vapic_enable_tpr_reporting(false);
526 * Set the IRQ polling hypercalls to the supported variant:
527 * - vmcall if using KVM in-kernel irqchip
528 * - 32-bit VAPIC port write otherwise
530 static int patch_hypercalls(VAPICROMState
*s
)
532 hwaddr rom_paddr
= s
->rom_state_paddr
& ROM_BLOCK_MASK
;
533 static const uint8_t vmcall_pattern
[] = { /* vmcall */
534 0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
536 static const uint8_t outl_pattern
[] = { /* nop; outl %eax,0x7e */
537 0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
539 uint8_t alternates
[2];
540 const uint8_t *pattern
;
541 const uint8_t *patch
;
545 rom
= g_malloc(s
->rom_size
);
546 cpu_physical_memory_read(rom_paddr
, rom
, s
->rom_size
);
548 for (pos
= 0; pos
< s
->rom_size
- sizeof(vmcall_pattern
); pos
++) {
549 if (kvm_irqchip_in_kernel()) {
550 pattern
= outl_pattern
;
551 alternates
[0] = outl_pattern
[7];
552 alternates
[1] = outl_pattern
[7];
553 patch
= &vmcall_pattern
[5];
555 pattern
= vmcall_pattern
;
556 alternates
[0] = vmcall_pattern
[7];
557 alternates
[1] = 0xd9; /* AMD's VMMCALL */
558 patch
= &outl_pattern
[5];
560 if (memcmp(rom
+ pos
, pattern
, 7) == 0 &&
561 (rom
[pos
+ 7] == alternates
[0] || rom
[pos
+ 7] == alternates
[1])) {
562 cpu_physical_memory_write(rom_paddr
+ pos
+ 5, patch
, 3);
564 * Don't flush the tb here. Under ordinary conditions, the patched
565 * calls are miles away from the current IP. Under malicious
566 * conditions, the guest could trick us to crash.
576 * For TCG mode or the time KVM honors read-only memory regions, we need to
577 * enable write access to the option ROM so that variables can be updated by
580 static int vapic_map_rom_writable(VAPICROMState
*s
)
582 hwaddr rom_paddr
= s
->rom_state_paddr
& ROM_BLOCK_MASK
;
583 MemoryRegionSection section
;
588 as
= sysbus_address_space(&s
->busdev
);
590 if (s
->rom_mapped_writable
) {
591 memory_region_del_subregion(as
, &s
->rom
);
592 object_unparent(OBJECT(&s
->rom
));
595 /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
596 section
= memory_region_find(as
, 0, 1);
598 /* read ROM size from RAM region */
599 if (rom_paddr
+ 2 >= memory_region_size(section
.mr
)) {
602 ram
= memory_region_get_ram_ptr(section
.mr
);
603 rom_size
= ram
[rom_paddr
+ 2] * ROM_BLOCK_SIZE
;
607 s
->rom_size
= rom_size
;
609 /* We need to round to avoid creating subpages
610 * from which we cannot run code. */
611 rom_size
+= rom_paddr
& ~TARGET_PAGE_MASK
;
612 rom_paddr
&= TARGET_PAGE_MASK
;
613 rom_size
= TARGET_PAGE_ALIGN(rom_size
);
615 memory_region_init_alias(&s
->rom
, OBJECT(s
), "kvmvapic-rom", section
.mr
,
616 rom_paddr
, rom_size
);
617 memory_region_add_subregion_overlap(as
, rom_paddr
, &s
->rom
, 1000);
618 s
->rom_mapped_writable
= true;
619 memory_region_unref(section
.mr
);
624 static int vapic_prepare(VAPICROMState
*s
)
626 if (vapic_map_rom_writable(s
) < 0) {
630 if (patch_hypercalls(s
) < 0) {
634 vapic_enable_tpr_reporting(true);
639 static void vapic_write(void *opaque
, hwaddr addr
, uint64_t data
,
642 VAPICROMState
*s
= opaque
;
651 cpu_synchronize_state(current_cpu
);
652 cpu
= X86_CPU(current_cpu
);
656 * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
657 * o 16-bit write access:
658 * Reports the option ROM initialization to the hypervisor. Written
659 * value is the offset of the state structure in the ROM.
660 * o 8-bit write access:
661 * Reactivates the VAPIC after a guest hibernation, i.e. after the
662 * option ROM content has been re-initialized by a guest power cycle.
663 * o 32-bit write access:
664 * Poll for pending IRQs, considering the current VAPIC state.
668 if (s
->state
== VAPIC_INACTIVE
) {
669 rom_paddr
= (env
->segs
[R_CS
].base
+ env
->eip
) & ROM_BLOCK_MASK
;
670 s
->rom_state_paddr
= rom_paddr
+ data
;
672 s
->state
= VAPIC_STANDBY
;
674 if (vapic_prepare(s
) < 0) {
675 s
->state
= VAPIC_INACTIVE
;
676 s
->rom_state_paddr
= 0;
683 * Disable triggering instruction in ROM by writing a NOP.
685 * We cannot do this in TCG mode as the reported IP is not
689 patch_byte(cpu
, env
->eip
- 2, 0x66);
690 patch_byte(cpu
, env
->eip
- 1, 0x90);
694 if (s
->state
== VAPIC_ACTIVE
) {
697 if (update_rom_mapping(s
, env
, env
->eip
) < 0) {
700 if (find_real_tpr_addr(s
, env
) < 0) {
703 vapic_enable(s
, cpu
);
707 if (!kvm_irqchip_in_kernel()) {
708 apic_poll_irq(cpu
->apic_state
);
714 static uint64_t vapic_read(void *opaque
, hwaddr addr
, unsigned size
)
719 static const MemoryRegionOps vapic_ops
= {
720 .write
= vapic_write
,
722 .endianness
= DEVICE_NATIVE_ENDIAN
,
725 static void vapic_realize(DeviceState
*dev
, Error
**errp
)
727 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
728 VAPICROMState
*s
= VAPIC(dev
);
730 memory_region_init_io(&s
->io
, OBJECT(s
), &vapic_ops
, s
, "kvmvapic", 2);
731 sysbus_add_io(sbd
, VAPIC_IO_PORT
, &s
->io
);
732 sysbus_init_ioports(sbd
, VAPIC_IO_PORT
, 2);
734 option_rom
[nb_option_roms
].name
= "kvmvapic.bin";
735 option_rom
[nb_option_roms
].bootindex
= -1;
739 static void do_vapic_enable(CPUState
*cs
, run_on_cpu_data data
)
741 VAPICROMState
*s
= data
.host_ptr
;
742 X86CPU
*cpu
= X86_CPU(cs
);
744 static const uint8_t enabled
= 1;
745 cpu_physical_memory_write(s
->vapic_paddr
+ offsetof(VAPICState
, enabled
),
746 &enabled
, sizeof(enabled
));
747 apic_enable_vapic(cpu
->apic_state
, s
->vapic_paddr
);
748 s
->state
= VAPIC_ACTIVE
;
751 static void kvmvapic_vm_state_change(void *opaque
, int running
,
754 MachineState
*ms
= MACHINE(qdev_get_machine());
755 VAPICROMState
*s
= opaque
;
762 if (s
->state
== VAPIC_ACTIVE
) {
763 if (ms
->smp
.cpus
== 1) {
764 run_on_cpu(first_cpu
, do_vapic_enable
, RUN_ON_CPU_HOST_PTR(s
));
766 zero
= g_malloc0(s
->rom_state
.vapic_size
);
767 cpu_physical_memory_write(s
->vapic_paddr
, zero
,
768 s
->rom_state
.vapic_size
);
773 qemu_del_vm_change_state_handler(s
->vmsentry
);
777 static int vapic_post_load(void *opaque
, int version_id
)
779 VAPICROMState
*s
= opaque
;
782 * The old implementation of qemu-kvm did not provide the state
783 * VAPIC_STANDBY. Reconstruct it.
785 if (s
->state
== VAPIC_INACTIVE
&& s
->rom_state_paddr
!= 0) {
786 s
->state
= VAPIC_STANDBY
;
789 if (s
->state
!= VAPIC_INACTIVE
) {
790 if (vapic_prepare(s
) < 0) {
797 qemu_add_vm_change_state_handler(kvmvapic_vm_state_change
, s
);
802 static const VMStateDescription vmstate_handlers
= {
803 .name
= "kvmvapic-handlers",
805 .minimum_version_id
= 1,
806 .fields
= (VMStateField
[]) {
807 VMSTATE_UINT32(set_tpr
, VAPICHandlers
),
808 VMSTATE_UINT32(set_tpr_eax
, VAPICHandlers
),
809 VMSTATE_UINT32_ARRAY(get_tpr
, VAPICHandlers
, 8),
810 VMSTATE_UINT32(get_tpr_stack
, VAPICHandlers
),
811 VMSTATE_END_OF_LIST()
815 static const VMStateDescription vmstate_guest_rom
= {
816 .name
= "kvmvapic-guest-rom",
818 .minimum_version_id
= 1,
819 .fields
= (VMStateField
[]) {
820 VMSTATE_UNUSED(8), /* signature */
821 VMSTATE_UINT32(vaddr
, GuestROMState
),
822 VMSTATE_UINT32(fixup_start
, GuestROMState
),
823 VMSTATE_UINT32(fixup_end
, GuestROMState
),
824 VMSTATE_UINT32(vapic_vaddr
, GuestROMState
),
825 VMSTATE_UINT32(vapic_size
, GuestROMState
),
826 VMSTATE_UINT32(vcpu_shift
, GuestROMState
),
827 VMSTATE_UINT32(real_tpr_addr
, GuestROMState
),
828 VMSTATE_STRUCT(up
, GuestROMState
, 0, vmstate_handlers
, VAPICHandlers
),
829 VMSTATE_STRUCT(mp
, GuestROMState
, 0, vmstate_handlers
, VAPICHandlers
),
830 VMSTATE_END_OF_LIST()
834 static const VMStateDescription vmstate_vapic
= {
835 .name
= "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
837 .minimum_version_id
= 1,
838 .post_load
= vapic_post_load
,
839 .fields
= (VMStateField
[]) {
840 VMSTATE_STRUCT(rom_state
, VAPICROMState
, 0, vmstate_guest_rom
,
842 VMSTATE_UINT32(state
, VAPICROMState
),
843 VMSTATE_UINT32(real_tpr_addr
, VAPICROMState
),
844 VMSTATE_UINT32(rom_state_vaddr
, VAPICROMState
),
845 VMSTATE_UINT32(vapic_paddr
, VAPICROMState
),
846 VMSTATE_UINT32(rom_state_paddr
, VAPICROMState
),
847 VMSTATE_END_OF_LIST()
851 static void vapic_class_init(ObjectClass
*klass
, void *data
)
853 DeviceClass
*dc
= DEVICE_CLASS(klass
);
855 dc
->reset
= vapic_reset
;
856 dc
->vmsd
= &vmstate_vapic
;
857 dc
->realize
= vapic_realize
;
860 static const TypeInfo vapic_type
= {
862 .parent
= TYPE_SYS_BUS_DEVICE
,
863 .instance_size
= sizeof(VAPICROMState
),
864 .class_init
= vapic_class_init
,
867 static void vapic_register(void)
869 type_register_static(&vapic_type
);
872 type_init(vapic_register
);