hw/ds1338: Fix mishandling of register pointer
[qemu/ar7.git] / hw / nand.c
blob01f3adaee11d18444ff46512aa19430f600503f4
1 /*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11 * from ST Microelectronics.
13 * This code is licensed under the GNU GPL v2.
15 * Contributions after 2012-01-13 are licensed under the terms of the
16 * GNU GPL, version 2 or (at your option) any later version.
19 #ifndef NAND_IO
21 # include "hw.h"
22 # include "flash.h"
23 # include "blockdev.h"
24 # include "sysbus.h"
25 #include "qemu-error.h"
27 # define NAND_CMD_READ0 0x00
28 # define NAND_CMD_READ1 0x01
29 # define NAND_CMD_READ2 0x50
30 # define NAND_CMD_LPREAD2 0x30
31 # define NAND_CMD_NOSERIALREAD2 0x35
32 # define NAND_CMD_RANDOMREAD1 0x05
33 # define NAND_CMD_RANDOMREAD2 0xe0
34 # define NAND_CMD_READID 0x90
35 # define NAND_CMD_RESET 0xff
36 # define NAND_CMD_PAGEPROGRAM1 0x80
37 # define NAND_CMD_PAGEPROGRAM2 0x10
38 # define NAND_CMD_CACHEPROGRAM2 0x15
39 # define NAND_CMD_BLOCKERASE1 0x60
40 # define NAND_CMD_BLOCKERASE2 0xd0
41 # define NAND_CMD_READSTATUS 0x70
42 # define NAND_CMD_COPYBACKPRG1 0x85
44 # define NAND_IOSTATUS_ERROR (1 << 0)
45 # define NAND_IOSTATUS_PLANE0 (1 << 1)
46 # define NAND_IOSTATUS_PLANE1 (1 << 2)
47 # define NAND_IOSTATUS_PLANE2 (1 << 3)
48 # define NAND_IOSTATUS_PLANE3 (1 << 4)
49 # define NAND_IOSTATUS_BUSY (1 << 6)
50 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
52 # define MAX_PAGE 0x800
53 # define MAX_OOB 0x40
55 typedef struct NANDFlashState NANDFlashState;
56 struct NANDFlashState {
57 SysBusDevice busdev;
58 uint8_t manf_id, chip_id;
59 uint8_t buswidth; /* in BYTES */
60 int size, pages;
61 int page_shift, oob_shift, erase_shift, addr_shift;
62 uint8_t *storage;
63 BlockDriverState *bdrv;
64 int mem_oob;
66 uint8_t cle, ale, ce, wp, gnd;
68 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
69 uint8_t *ioaddr;
70 int iolen;
72 uint32_t cmd;
73 uint64_t addr;
74 int addrlen;
75 int status;
76 int offset;
78 void (*blk_write)(NANDFlashState *s);
79 void (*blk_erase)(NANDFlashState *s);
80 void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
82 uint32_t ioaddr_vmstate;
85 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
87 /* Like memcpy() but we logical-AND the data into the destination */
88 int i;
89 for (i = 0; i < n; i++) {
90 dest[i] &= src[i];
94 # define NAND_NO_AUTOINCR 0x00000001
95 # define NAND_BUSWIDTH_16 0x00000002
96 # define NAND_NO_PADDING 0x00000004
97 # define NAND_CACHEPRG 0x00000008
98 # define NAND_COPYBACK 0x00000010
99 # define NAND_IS_AND 0x00000020
100 # define NAND_4PAGE_ARRAY 0x00000040
101 # define NAND_NO_READRDY 0x00000100
102 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
104 # define NAND_IO
106 # define PAGE(addr) ((addr) >> ADDR_SHIFT)
107 # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
108 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
109 # define OOB_SHIFT (PAGE_SHIFT - 5)
110 # define OOB_SIZE (1 << OOB_SHIFT)
111 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
112 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
114 # define PAGE_SIZE 256
115 # define PAGE_SHIFT 8
116 # define PAGE_SECTORS 1
117 # define ADDR_SHIFT 8
118 # include "nand.c"
119 # define PAGE_SIZE 512
120 # define PAGE_SHIFT 9
121 # define PAGE_SECTORS 1
122 # define ADDR_SHIFT 8
123 # include "nand.c"
124 # define PAGE_SIZE 2048
125 # define PAGE_SHIFT 11
126 # define PAGE_SECTORS 4
127 # define ADDR_SHIFT 16
128 # include "nand.c"
130 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
131 static const struct {
132 int size;
133 int width;
134 int page_shift;
135 int erase_shift;
136 uint32_t options;
137 } nand_flash_ids[0x100] = {
138 [0 ... 0xff] = { 0 },
140 [0x6e] = { 1, 8, 8, 4, 0 },
141 [0x64] = { 2, 8, 8, 4, 0 },
142 [0x6b] = { 4, 8, 9, 4, 0 },
143 [0xe8] = { 1, 8, 8, 4, 0 },
144 [0xec] = { 1, 8, 8, 4, 0 },
145 [0xea] = { 2, 8, 8, 4, 0 },
146 [0xd5] = { 4, 8, 9, 4, 0 },
147 [0xe3] = { 4, 8, 9, 4, 0 },
148 [0xe5] = { 4, 8, 9, 4, 0 },
149 [0xd6] = { 8, 8, 9, 4, 0 },
151 [0x39] = { 8, 8, 9, 4, 0 },
152 [0xe6] = { 8, 8, 9, 4, 0 },
153 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
154 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
156 [0x33] = { 16, 8, 9, 5, 0 },
157 [0x73] = { 16, 8, 9, 5, 0 },
158 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
159 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
161 [0x35] = { 32, 8, 9, 5, 0 },
162 [0x75] = { 32, 8, 9, 5, 0 },
163 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
164 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
166 [0x36] = { 64, 8, 9, 5, 0 },
167 [0x76] = { 64, 8, 9, 5, 0 },
168 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
169 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
171 [0x78] = { 128, 8, 9, 5, 0 },
172 [0x39] = { 128, 8, 9, 5, 0 },
173 [0x79] = { 128, 8, 9, 5, 0 },
174 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
175 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
176 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
177 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
179 [0x71] = { 256, 8, 9, 5, 0 },
182 * These are the new chips with large page size. The pagesize and the
183 * erasesize is determined from the extended id bytes
185 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
186 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
188 /* 512 Megabit */
189 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
190 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
191 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
192 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
194 /* 1 Gigabit */
195 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
196 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
197 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
198 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
200 /* 2 Gigabit */
201 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
202 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
203 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
204 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
206 /* 4 Gigabit */
207 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
208 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
209 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
210 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
212 /* 8 Gigabit */
213 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
214 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
215 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
216 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
218 /* 16 Gigabit */
219 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
220 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
221 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
222 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
225 static void nand_reset(DeviceState *dev)
227 NANDFlashState *s = FROM_SYSBUS(NANDFlashState, sysbus_from_qdev(dev));
228 s->cmd = NAND_CMD_READ0;
229 s->addr = 0;
230 s->addrlen = 0;
231 s->iolen = 0;
232 s->offset = 0;
233 s->status &= NAND_IOSTATUS_UNPROTCT;
236 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
238 s->ioaddr[s->iolen++] = value;
239 for (value = s->buswidth; --value;) {
240 s->ioaddr[s->iolen++] = 0;
244 static void nand_command(NANDFlashState *s)
246 unsigned int offset;
247 switch (s->cmd) {
248 case NAND_CMD_READ0:
249 s->iolen = 0;
250 break;
252 case NAND_CMD_READID:
253 s->ioaddr = s->io;
254 s->iolen = 0;
255 nand_pushio_byte(s, s->manf_id);
256 nand_pushio_byte(s, s->chip_id);
257 nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
258 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
259 /* Page Size, Block Size, Spare Size; bit 6 indicates
260 * 8 vs 16 bit width NAND.
262 nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
263 } else {
264 nand_pushio_byte(s, 0xc0); /* Multi-plane */
266 break;
268 case NAND_CMD_RANDOMREAD2:
269 case NAND_CMD_NOSERIALREAD2:
270 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
271 break;
272 offset = s->addr & ((1 << s->addr_shift) - 1);
273 s->blk_load(s, s->addr, offset);
274 if (s->gnd)
275 s->iolen = (1 << s->page_shift) - offset;
276 else
277 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
278 break;
280 case NAND_CMD_RESET:
281 nand_reset(&s->busdev.qdev);
282 break;
284 case NAND_CMD_PAGEPROGRAM1:
285 s->ioaddr = s->io;
286 s->iolen = 0;
287 break;
289 case NAND_CMD_PAGEPROGRAM2:
290 if (s->wp) {
291 s->blk_write(s);
293 break;
295 case NAND_CMD_BLOCKERASE1:
296 break;
298 case NAND_CMD_BLOCKERASE2:
299 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
300 s->addr <<= 16;
301 else
302 s->addr <<= 8;
304 if (s->wp) {
305 s->blk_erase(s);
307 break;
309 case NAND_CMD_READSTATUS:
310 s->ioaddr = s->io;
311 s->iolen = 0;
312 nand_pushio_byte(s, s->status);
313 break;
315 default:
316 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
320 static void nand_pre_save(void *opaque)
322 NANDFlashState *s = opaque;
324 s->ioaddr_vmstate = s->ioaddr - s->io;
327 static int nand_post_load(void *opaque, int version_id)
329 NANDFlashState *s = opaque;
331 if (s->ioaddr_vmstate > sizeof(s->io)) {
332 return -EINVAL;
334 s->ioaddr = s->io + s->ioaddr_vmstate;
336 return 0;
339 static const VMStateDescription vmstate_nand = {
340 .name = "nand",
341 .version_id = 1,
342 .minimum_version_id = 1,
343 .minimum_version_id_old = 1,
344 .pre_save = nand_pre_save,
345 .post_load = nand_post_load,
346 .fields = (VMStateField[]) {
347 VMSTATE_UINT8(cle, NANDFlashState),
348 VMSTATE_UINT8(ale, NANDFlashState),
349 VMSTATE_UINT8(ce, NANDFlashState),
350 VMSTATE_UINT8(wp, NANDFlashState),
351 VMSTATE_UINT8(gnd, NANDFlashState),
352 VMSTATE_BUFFER(io, NANDFlashState),
353 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
354 VMSTATE_INT32(iolen, NANDFlashState),
355 VMSTATE_UINT32(cmd, NANDFlashState),
356 VMSTATE_UINT64(addr, NANDFlashState),
357 VMSTATE_INT32(addrlen, NANDFlashState),
358 VMSTATE_INT32(status, NANDFlashState),
359 VMSTATE_INT32(offset, NANDFlashState),
360 /* XXX: do we want to save s->storage too? */
361 VMSTATE_END_OF_LIST()
365 static int nand_device_init(SysBusDevice *dev)
367 int pagesize;
368 NANDFlashState *s = FROM_SYSBUS(NANDFlashState, dev);
370 s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
371 s->size = nand_flash_ids[s->chip_id].size << 20;
372 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
373 s->page_shift = 11;
374 s->erase_shift = 6;
375 } else {
376 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
377 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
380 switch (1 << s->page_shift) {
381 case 256:
382 nand_init_256(s);
383 break;
384 case 512:
385 nand_init_512(s);
386 break;
387 case 2048:
388 nand_init_2048(s);
389 break;
390 default:
391 error_report("Unsupported NAND block size");
392 return -1;
395 pagesize = 1 << s->oob_shift;
396 s->mem_oob = 1;
397 if (s->bdrv) {
398 if (bdrv_is_read_only(s->bdrv)) {
399 error_report("Can't use a read-only drive");
400 return -1;
402 if (bdrv_getlength(s->bdrv) >=
403 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
404 pagesize = 0;
405 s->mem_oob = 0;
407 } else {
408 pagesize += 1 << s->page_shift;
410 if (pagesize) {
411 s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
412 0xff, s->pages * pagesize);
414 /* Give s->ioaddr a sane value in case we save state before it is used. */
415 s->ioaddr = s->io;
417 return 0;
420 static Property nand_properties[] = {
421 DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
422 DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
423 DEFINE_PROP_DRIVE("drive", NANDFlashState, bdrv),
424 DEFINE_PROP_END_OF_LIST(),
427 static void nand_class_init(ObjectClass *klass, void *data)
429 DeviceClass *dc = DEVICE_CLASS(klass);
430 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
432 k->init = nand_device_init;
433 dc->reset = nand_reset;
434 dc->vmsd = &vmstate_nand;
435 dc->props = nand_properties;
438 static TypeInfo nand_info = {
439 .name = "nand",
440 .parent = TYPE_SYS_BUS_DEVICE,
441 .instance_size = sizeof(NANDFlashState),
442 .class_init = nand_class_init,
445 static void nand_register_types(void)
447 type_register_static(&nand_info);
451 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
452 * outputs are R/B and eight I/O pins.
454 * CE, WP and R/B are active low.
456 void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
457 uint8_t ce, uint8_t wp, uint8_t gnd)
459 NANDFlashState *s = (NANDFlashState *) dev;
460 s->cle = cle;
461 s->ale = ale;
462 s->ce = ce;
463 s->wp = wp;
464 s->gnd = gnd;
465 if (wp)
466 s->status |= NAND_IOSTATUS_UNPROTCT;
467 else
468 s->status &= ~NAND_IOSTATUS_UNPROTCT;
471 void nand_getpins(DeviceState *dev, int *rb)
473 *rb = 1;
476 void nand_setio(DeviceState *dev, uint32_t value)
478 int i;
479 NANDFlashState *s = (NANDFlashState *) dev;
480 if (!s->ce && s->cle) {
481 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
482 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
483 return;
484 if (value == NAND_CMD_RANDOMREAD1) {
485 s->addr &= ~((1 << s->addr_shift) - 1);
486 s->addrlen = 0;
487 return;
490 if (value == NAND_CMD_READ0)
491 s->offset = 0;
492 else if (value == NAND_CMD_READ1) {
493 s->offset = 0x100;
494 value = NAND_CMD_READ0;
496 else if (value == NAND_CMD_READ2) {
497 s->offset = 1 << s->page_shift;
498 value = NAND_CMD_READ0;
501 s->cmd = value;
503 if (s->cmd == NAND_CMD_READSTATUS ||
504 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
505 s->cmd == NAND_CMD_BLOCKERASE1 ||
506 s->cmd == NAND_CMD_BLOCKERASE2 ||
507 s->cmd == NAND_CMD_NOSERIALREAD2 ||
508 s->cmd == NAND_CMD_RANDOMREAD2 ||
509 s->cmd == NAND_CMD_RESET)
510 nand_command(s);
512 if (s->cmd != NAND_CMD_RANDOMREAD2) {
513 s->addrlen = 0;
517 if (s->ale) {
518 unsigned int shift = s->addrlen * 8;
519 unsigned int mask = ~(0xff << shift);
520 unsigned int v = value << shift;
522 s->addr = (s->addr & mask) | v;
523 s->addrlen ++;
525 switch (s->addrlen) {
526 case 1:
527 if (s->cmd == NAND_CMD_READID) {
528 nand_command(s);
530 break;
531 case 2: /* fix cache address as a byte address */
532 s->addr <<= (s->buswidth - 1);
533 break;
534 case 3:
535 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
536 (s->cmd == NAND_CMD_READ0 ||
537 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
538 nand_command(s);
540 break;
541 case 4:
542 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
543 nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
544 (s->cmd == NAND_CMD_READ0 ||
545 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
546 nand_command(s);
548 break;
549 case 5:
550 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
551 nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
552 (s->cmd == NAND_CMD_READ0 ||
553 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
554 nand_command(s);
556 break;
557 default:
558 break;
562 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
563 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
564 for (i = s->buswidth; i--; value >>= 8) {
565 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
568 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
569 if ((s->addr & ((1 << s->addr_shift) - 1)) <
570 (1 << s->page_shift) + (1 << s->oob_shift)) {
571 for (i = s->buswidth; i--; s->addr++, value >>= 8) {
572 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
573 (uint8_t) (value & 0xff);
579 uint32_t nand_getio(DeviceState *dev)
581 int offset;
582 uint32_t x = 0;
583 NANDFlashState *s = (NANDFlashState *) dev;
585 /* Allow sequential reading */
586 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
587 offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
588 s->offset = 0;
590 s->blk_load(s, s->addr, offset);
591 if (s->gnd)
592 s->iolen = (1 << s->page_shift) - offset;
593 else
594 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
597 if (s->ce || s->iolen <= 0)
598 return 0;
600 for (offset = s->buswidth; offset--;) {
601 x |= s->ioaddr[offset] << (offset << 3);
603 /* after receiving READ STATUS command all subsequent reads will
604 * return the status register value until another command is issued
606 if (s->cmd != NAND_CMD_READSTATUS) {
607 s->addr += s->buswidth;
608 s->ioaddr += s->buswidth;
609 s->iolen -= s->buswidth;
611 return x;
614 uint32_t nand_getbuswidth(DeviceState *dev)
616 NANDFlashState *s = (NANDFlashState *) dev;
617 return s->buswidth << 3;
620 DeviceState *nand_init(BlockDriverState *bdrv, int manf_id, int chip_id)
622 DeviceState *dev;
624 if (nand_flash_ids[chip_id].size == 0) {
625 hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
627 dev = qdev_create(NULL, "nand");
628 qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
629 qdev_prop_set_uint8(dev, "chip_id", chip_id);
630 if (bdrv) {
631 qdev_prop_set_drive_nofail(dev, "drive", bdrv);
634 qdev_init_nofail(dev);
635 return dev;
638 type_init(nand_register_types)
640 #else
642 /* Program a single page */
643 static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
645 uint64_t off, page, sector, soff;
646 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
647 if (PAGE(s->addr) >= s->pages)
648 return;
650 if (!s->bdrv) {
651 mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
652 s->offset, s->io, s->iolen);
653 } else if (s->mem_oob) {
654 sector = SECTOR(s->addr);
655 off = (s->addr & PAGE_MASK) + s->offset;
656 soff = SECTOR_OFFSET(s->addr);
657 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) < 0) {
658 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
659 return;
662 mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
663 if (off + s->iolen > PAGE_SIZE) {
664 page = PAGE(s->addr);
665 mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
666 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
669 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) < 0) {
670 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
672 } else {
673 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
674 sector = off >> 9;
675 soff = off & 0x1ff;
676 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) < 0) {
677 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
678 return;
681 mem_and(iobuf + soff, s->io, s->iolen);
683 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) < 0) {
684 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
687 s->offset = 0;
690 /* Erase a single block */
691 static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
693 uint64_t i, page, addr;
694 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
695 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
697 if (PAGE(addr) >= s->pages)
698 return;
700 if (!s->bdrv) {
701 memset(s->storage + PAGE_START(addr),
702 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
703 } else if (s->mem_oob) {
704 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
705 0xff, OOB_SIZE << s->erase_shift);
706 i = SECTOR(addr);
707 page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
708 for (; i < page; i ++)
709 if (bdrv_write(s->bdrv, i, iobuf, 1) < 0) {
710 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
712 } else {
713 addr = PAGE_START(addr);
714 page = addr >> 9;
715 if (bdrv_read(s->bdrv, page, iobuf, 1) < 0) {
716 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
718 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
719 if (bdrv_write(s->bdrv, page, iobuf, 1) < 0) {
720 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
723 memset(iobuf, 0xff, 0x200);
724 i = (addr & ~0x1ff) + 0x200;
725 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
726 i < addr; i += 0x200)
727 if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) < 0) {
728 printf("%s: write error in sector %" PRIu64 "\n",
729 __func__, i >> 9);
732 page = i >> 9;
733 if (bdrv_read(s->bdrv, page, iobuf, 1) < 0) {
734 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
736 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
737 if (bdrv_write(s->bdrv, page, iobuf, 1) < 0) {
738 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
743 static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
744 uint64_t addr, int offset)
746 if (PAGE(addr) >= s->pages)
747 return;
749 if (s->bdrv) {
750 if (s->mem_oob) {
751 if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) < 0) {
752 printf("%s: read error in sector %" PRIu64 "\n",
753 __func__, SECTOR(addr));
755 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
756 s->storage + (PAGE(s->addr) << OOB_SHIFT),
757 OOB_SIZE);
758 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
759 } else {
760 if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
761 s->io, (PAGE_SECTORS + 2)) < 0) {
762 printf("%s: read error in sector %" PRIu64 "\n",
763 __func__, PAGE_START(addr) >> 9);
765 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
767 } else {
768 memcpy(s->io, s->storage + PAGE_START(s->addr) +
769 offset, PAGE_SIZE + OOB_SIZE - offset);
770 s->ioaddr = s->io;
774 static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
776 s->oob_shift = PAGE_SHIFT - 5;
777 s->pages = s->size >> PAGE_SHIFT;
778 s->addr_shift = ADDR_SHIFT;
780 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
781 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
782 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
785 # undef PAGE_SIZE
786 # undef PAGE_SHIFT
787 # undef PAGE_SECTORS
788 # undef ADDR_SHIFT
789 #endif /* NAND_IO */