Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[qemu/ar7.git] / tests / rtc-test.c
blobc7af34f6b1b2c124925174e5a8e6a9244d98c139
1 /*
2 * QTest testcase for the MC146818 real-time clock
4 * Copyright IBM, Corp. 2012
6 * Authors:
7 * Anthony Liguori <aliguori@us.ibm.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
16 #include "libqtest-single.h"
17 #include "qemu/timer.h"
18 #include "hw/rtc/mc146818rtc.h"
19 #include "hw/rtc/mc146818rtc_regs.h"
21 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
23 static uint8_t base = 0x70;
25 static int bcd2dec(int value)
27 return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
30 static uint8_t cmos_read(uint8_t reg)
32 outb(base + 0, reg);
33 return inb(base + 1);
36 static void cmos_write(uint8_t reg, uint8_t val)
38 outb(base + 0, reg);
39 outb(base + 1, val);
42 static int tm_cmp(struct tm *lhs, struct tm *rhs)
44 time_t a, b;
45 struct tm d1, d2;
47 memcpy(&d1, lhs, sizeof(d1));
48 memcpy(&d2, rhs, sizeof(d2));
50 a = mktime(&d1);
51 b = mktime(&d2);
53 if (a < b) {
54 return -1;
55 } else if (a > b) {
56 return 1;
59 return 0;
62 #if 0
63 static void print_tm(struct tm *tm)
65 printf("%04d-%02d-%02d %02d:%02d:%02d\n",
66 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
67 tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
69 #endif
71 static void cmos_get_date_time(struct tm *date)
73 int base_year = 2000, hour_offset;
74 int sec, min, hour, mday, mon, year;
75 time_t ts;
76 struct tm dummy;
78 sec = cmos_read(RTC_SECONDS);
79 min = cmos_read(RTC_MINUTES);
80 hour = cmos_read(RTC_HOURS);
81 mday = cmos_read(RTC_DAY_OF_MONTH);
82 mon = cmos_read(RTC_MONTH);
83 year = cmos_read(RTC_YEAR);
85 if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
86 sec = bcd2dec(sec);
87 min = bcd2dec(min);
88 hour = bcd2dec(hour);
89 mday = bcd2dec(mday);
90 mon = bcd2dec(mon);
91 year = bcd2dec(year);
92 hour_offset = 80;
93 } else {
94 hour_offset = 0x80;
97 if ((cmos_read(0x0B) & REG_B_24H) == 0) {
98 if (hour >= hour_offset) {
99 hour -= hour_offset;
100 hour += 12;
104 ts = time(NULL);
105 localtime_r(&ts, &dummy);
107 date->tm_isdst = dummy.tm_isdst;
108 date->tm_sec = sec;
109 date->tm_min = min;
110 date->tm_hour = hour;
111 date->tm_mday = mday;
112 date->tm_mon = mon - 1;
113 date->tm_year = base_year + year - 1900;
114 #ifndef __sun__
115 date->tm_gmtoff = 0;
116 #endif
118 ts = mktime(date);
121 static void check_time(int wiggle)
123 struct tm start, date[4], end;
124 struct tm *datep;
125 time_t ts;
128 * This check assumes a few things. First, we cannot guarantee that we get
129 * a consistent reading from the wall clock because we may hit an edge of
130 * the clock while reading. To work around this, we read four clock readings
131 * such that at least two of them should match. We need to assume that one
132 * reading is corrupt so we need four readings to ensure that we have at
133 * least two consecutive identical readings
135 * It's also possible that we'll cross an edge reading the host clock so
136 * simply check to make sure that the clock reading is within the period of
137 * when we expect it to be.
140 ts = time(NULL);
141 gmtime_r(&ts, &start);
143 cmos_get_date_time(&date[0]);
144 cmos_get_date_time(&date[1]);
145 cmos_get_date_time(&date[2]);
146 cmos_get_date_time(&date[3]);
148 ts = time(NULL);
149 gmtime_r(&ts, &end);
151 if (tm_cmp(&date[0], &date[1]) == 0) {
152 datep = &date[0];
153 } else if (tm_cmp(&date[1], &date[2]) == 0) {
154 datep = &date[1];
155 } else if (tm_cmp(&date[2], &date[3]) == 0) {
156 datep = &date[2];
157 } else {
158 g_assert_not_reached();
161 if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
162 long t, s;
164 start.tm_isdst = datep->tm_isdst;
166 t = (long)mktime(datep);
167 s = (long)mktime(&start);
168 if (t < s) {
169 g_test_message("RTC is %ld second(s) behind wall-clock", (s - t));
170 } else {
171 g_test_message("RTC is %ld second(s) ahead of wall-clock", (t - s));
174 g_assert_cmpint(ABS(t - s), <=, wiggle);
178 static int wiggle = 2;
180 static void set_year_20xx(void)
182 /* Set BCD mode */
183 cmos_write(RTC_REG_B, REG_B_24H);
184 cmos_write(RTC_REG_A, 0x76);
185 cmos_write(RTC_YEAR, 0x11);
186 cmos_write(RTC_CENTURY, 0x20);
187 cmos_write(RTC_MONTH, 0x02);
188 cmos_write(RTC_DAY_OF_MONTH, 0x02);
189 cmos_write(RTC_HOURS, 0x02);
190 cmos_write(RTC_MINUTES, 0x04);
191 cmos_write(RTC_SECONDS, 0x58);
192 cmos_write(RTC_REG_A, 0x26);
194 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
195 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
196 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
197 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
198 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
199 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
200 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
202 if (sizeof(time_t) == 4) {
203 return;
206 /* Set a date in 2080 to ensure there is no year-2038 overflow. */
207 cmos_write(RTC_REG_A, 0x76);
208 cmos_write(RTC_YEAR, 0x80);
209 cmos_write(RTC_REG_A, 0x26);
211 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
212 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
213 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
214 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
215 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
216 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
217 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
219 cmos_write(RTC_REG_A, 0x76);
220 cmos_write(RTC_YEAR, 0x11);
221 cmos_write(RTC_REG_A, 0x26);
223 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
224 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
225 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
226 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
227 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
228 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
229 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
232 static void set_year_1980(void)
234 /* Set BCD mode */
235 cmos_write(RTC_REG_B, REG_B_24H);
236 cmos_write(RTC_REG_A, 0x76);
237 cmos_write(RTC_YEAR, 0x80);
238 cmos_write(RTC_CENTURY, 0x19);
239 cmos_write(RTC_MONTH, 0x02);
240 cmos_write(RTC_DAY_OF_MONTH, 0x02);
241 cmos_write(RTC_HOURS, 0x02);
242 cmos_write(RTC_MINUTES, 0x04);
243 cmos_write(RTC_SECONDS, 0x58);
244 cmos_write(RTC_REG_A, 0x26);
246 g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
247 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
248 g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
249 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
250 g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
251 g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
252 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
255 static void bcd_check_time(void)
257 /* Set BCD mode */
258 cmos_write(RTC_REG_B, REG_B_24H);
259 check_time(wiggle);
262 static void dec_check_time(void)
264 /* Set DEC mode */
265 cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
266 check_time(wiggle);
269 static void alarm_time(void)
271 struct tm now;
272 time_t ts;
273 int i;
275 ts = time(NULL);
276 gmtime_r(&ts, &now);
278 /* set DEC mode */
279 cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
281 g_assert(!get_irq(RTC_ISA_IRQ));
282 cmos_read(RTC_REG_C);
284 now.tm_sec = (now.tm_sec + 2) % 60;
285 cmos_write(RTC_SECONDS_ALARM, now.tm_sec);
286 cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
287 cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
288 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
290 for (i = 0; i < 2 + wiggle; i++) {
291 if (get_irq(RTC_ISA_IRQ)) {
292 break;
295 clock_step(1000000000);
298 g_assert(get_irq(RTC_ISA_IRQ));
299 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
300 g_assert(cmos_read(RTC_REG_C) == 0);
303 static void set_time_regs(int h, int m, int s)
305 cmos_write(RTC_HOURS, h);
306 cmos_write(RTC_MINUTES, m);
307 cmos_write(RTC_SECONDS, s);
310 static void set_time(int mode, int h, int m, int s)
312 cmos_write(RTC_REG_B, mode);
313 cmos_write(RTC_REG_A, 0x76);
314 set_time_regs(h, m, s);
315 cmos_write(RTC_REG_A, 0x26);
318 static void set_datetime_bcd(int h, int min, int s, int d, int m, int y)
320 cmos_write(RTC_HOURS, h);
321 cmos_write(RTC_MINUTES, min);
322 cmos_write(RTC_SECONDS, s);
323 cmos_write(RTC_YEAR, y & 0xFF);
324 cmos_write(RTC_CENTURY, y >> 8);
325 cmos_write(RTC_MONTH, m);
326 cmos_write(RTC_DAY_OF_MONTH, d);
329 static void set_datetime_dec(int h, int min, int s, int d, int m, int y)
331 cmos_write(RTC_HOURS, h);
332 cmos_write(RTC_MINUTES, min);
333 cmos_write(RTC_SECONDS, s);
334 cmos_write(RTC_YEAR, y % 100);
335 cmos_write(RTC_CENTURY, y / 100);
336 cmos_write(RTC_MONTH, m);
337 cmos_write(RTC_DAY_OF_MONTH, d);
340 static void set_datetime(int mode, int h, int min, int s, int d, int m, int y)
342 cmos_write(RTC_REG_B, mode);
344 cmos_write(RTC_REG_A, 0x76);
345 if (mode & REG_B_DM) {
346 set_datetime_dec(h, min, s, d, m, y);
347 } else {
348 set_datetime_bcd(h, min, s, d, m, y);
350 cmos_write(RTC_REG_A, 0x26);
353 #define assert_time(h, m, s) \
354 do { \
355 g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
356 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
357 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
358 } while(0)
360 #define assert_datetime_bcd(h, min, s, d, m, y) \
361 do { \
362 g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
363 g_assert_cmpint(cmos_read(RTC_MINUTES), ==, min); \
364 g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
365 g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, d); \
366 g_assert_cmpint(cmos_read(RTC_MONTH), ==, m); \
367 g_assert_cmpint(cmos_read(RTC_YEAR), ==, (y & 0xFF)); \
368 g_assert_cmpint(cmos_read(RTC_CENTURY), ==, (y >> 8)); \
369 } while(0)
371 static void basic_12h_bcd(void)
373 /* set BCD 12 hour mode */
374 set_time(0, 0x81, 0x59, 0x00);
375 clock_step(1000000000LL);
376 assert_time(0x81, 0x59, 0x01);
377 clock_step(59000000000LL);
378 assert_time(0x82, 0x00, 0x00);
380 /* test BCD wraparound */
381 set_time(0, 0x09, 0x59, 0x59);
382 clock_step(60000000000LL);
383 assert_time(0x10, 0x00, 0x59);
385 /* 12 AM -> 1 AM */
386 set_time(0, 0x12, 0x59, 0x59);
387 clock_step(1000000000LL);
388 assert_time(0x01, 0x00, 0x00);
390 /* 12 PM -> 1 PM */
391 set_time(0, 0x92, 0x59, 0x59);
392 clock_step(1000000000LL);
393 assert_time(0x81, 0x00, 0x00);
395 /* 11 AM -> 12 PM */
396 set_time(0, 0x11, 0x59, 0x59);
397 clock_step(1000000000LL);
398 assert_time(0x92, 0x00, 0x00);
399 /* TODO: test day wraparound */
401 /* 11 PM -> 12 AM */
402 set_time(0, 0x91, 0x59, 0x59);
403 clock_step(1000000000LL);
404 assert_time(0x12, 0x00, 0x00);
405 /* TODO: test day wraparound */
408 static void basic_12h_dec(void)
410 /* set decimal 12 hour mode */
411 set_time(REG_B_DM, 0x81, 59, 0);
412 clock_step(1000000000LL);
413 assert_time(0x81, 59, 1);
414 clock_step(59000000000LL);
415 assert_time(0x82, 0, 0);
417 /* 12 PM -> 1 PM */
418 set_time(REG_B_DM, 0x8c, 59, 59);
419 clock_step(1000000000LL);
420 assert_time(0x81, 0, 0);
422 /* 12 AM -> 1 AM */
423 set_time(REG_B_DM, 0x0c, 59, 59);
424 clock_step(1000000000LL);
425 assert_time(0x01, 0, 0);
427 /* 11 AM -> 12 PM */
428 set_time(REG_B_DM, 0x0b, 59, 59);
429 clock_step(1000000000LL);
430 assert_time(0x8c, 0, 0);
432 /* 11 PM -> 12 AM */
433 set_time(REG_B_DM, 0x8b, 59, 59);
434 clock_step(1000000000LL);
435 assert_time(0x0c, 0, 0);
436 /* TODO: test day wraparound */
439 static void basic_24h_bcd(void)
441 /* set BCD 24 hour mode */
442 set_time(REG_B_24H, 0x09, 0x59, 0x00);
443 clock_step(1000000000LL);
444 assert_time(0x09, 0x59, 0x01);
445 clock_step(59000000000LL);
446 assert_time(0x10, 0x00, 0x00);
448 /* test BCD wraparound */
449 set_time(REG_B_24H, 0x09, 0x59, 0x00);
450 clock_step(60000000000LL);
451 assert_time(0x10, 0x00, 0x00);
453 /* TODO: test day wraparound */
454 set_time(REG_B_24H, 0x23, 0x59, 0x00);
455 clock_step(60000000000LL);
456 assert_time(0x00, 0x00, 0x00);
459 static void basic_24h_dec(void)
461 /* set decimal 24 hour mode */
462 set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
463 clock_step(1000000000LL);
464 assert_time(9, 59, 1);
465 clock_step(59000000000LL);
466 assert_time(10, 0, 0);
468 /* test BCD wraparound */
469 set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
470 clock_step(60000000000LL);
471 assert_time(10, 0, 0);
473 /* TODO: test day wraparound */
474 set_time(REG_B_24H | REG_B_DM, 23, 59, 0);
475 clock_step(60000000000LL);
476 assert_time(0, 0, 0);
479 static void am_pm_alarm(void)
481 cmos_write(RTC_MINUTES_ALARM, 0xC0);
482 cmos_write(RTC_SECONDS_ALARM, 0xC0);
484 /* set BCD 12 hour mode */
485 cmos_write(RTC_REG_B, 0);
487 /* Set time and alarm hour. */
488 cmos_write(RTC_REG_A, 0x76);
489 cmos_write(RTC_HOURS_ALARM, 0x82);
490 cmos_write(RTC_HOURS, 0x81);
491 cmos_write(RTC_MINUTES, 0x59);
492 cmos_write(RTC_SECONDS, 0x00);
493 cmos_read(RTC_REG_C);
494 cmos_write(RTC_REG_A, 0x26);
496 /* Check that alarm triggers when AM/PM is set. */
497 clock_step(60000000000LL);
498 g_assert(cmos_read(RTC_HOURS) == 0x82);
499 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
502 * Each of the following two tests takes over 60 seconds due to the time
503 * needed to report the PIT interrupts. Unfortunately, our PIT device
504 * model keeps counting even when GATE=0, so we cannot simply disable
505 * it in main().
507 if (g_test_quick()) {
508 return;
511 /* set DEC 12 hour mode */
512 cmos_write(RTC_REG_B, REG_B_DM);
514 /* Set time and alarm hour. */
515 cmos_write(RTC_REG_A, 0x76);
516 cmos_write(RTC_HOURS_ALARM, 0x82);
517 cmos_write(RTC_HOURS, 3);
518 cmos_write(RTC_MINUTES, 0);
519 cmos_write(RTC_SECONDS, 0);
520 cmos_read(RTC_REG_C);
521 cmos_write(RTC_REG_A, 0x26);
523 /* Check that alarm triggers. */
524 clock_step(3600 * 11 * 1000000000LL);
525 g_assert(cmos_read(RTC_HOURS) == 0x82);
526 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
528 /* Same as above, with inverted HOURS and HOURS_ALARM. */
529 cmos_write(RTC_REG_A, 0x76);
530 cmos_write(RTC_HOURS_ALARM, 2);
531 cmos_write(RTC_HOURS, 3);
532 cmos_write(RTC_MINUTES, 0);
533 cmos_write(RTC_SECONDS, 0);
534 cmos_read(RTC_REG_C);
535 cmos_write(RTC_REG_A, 0x26);
537 /* Check that alarm does not trigger if hours differ only by AM/PM. */
538 clock_step(3600 * 11 * 1000000000LL);
539 g_assert(cmos_read(RTC_HOURS) == 0x82);
540 g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0);
543 /* success if no crash or abort */
544 static void fuzz_registers(void)
546 unsigned int i;
548 for (i = 0; i < 1000; i++) {
549 uint8_t reg, val;
551 reg = (uint8_t)g_test_rand_int_range(0, 16);
552 val = (uint8_t)g_test_rand_int_range(0, 256);
554 cmos_write(reg, val);
555 cmos_read(reg);
559 static void register_b_set_flag(void)
561 if (cmos_read(RTC_REG_A) & REG_A_UIP) {
562 clock_step(UIP_HOLD_LENGTH + NANOSECONDS_PER_SECOND / 5);
564 g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
566 /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
567 cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET);
569 set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
571 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
573 /* Since SET flag is still enabled, time does not advance. */
574 clock_step(1000000000LL);
575 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
577 /* Disable SET flag in Register B */
578 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
580 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
582 /* Since SET flag is disabled, the clock now advances. */
583 clock_step(1000000000LL);
584 assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
587 static void divider_reset(void)
589 /* Enable binary-coded decimal (BCD) mode in Register B*/
590 cmos_write(RTC_REG_B, REG_B_24H);
592 /* Enter divider reset */
593 cmos_write(RTC_REG_A, 0x76);
594 set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
596 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
598 /* Since divider reset flag is still enabled, these are equality checks. */
599 clock_step(1000000000LL);
600 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
602 /* The first update ends 500 ms after divider reset */
603 cmos_write(RTC_REG_A, 0x26);
604 clock_step(500000000LL - UIP_HOLD_LENGTH - 1);
605 g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
606 assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
608 clock_step(1);
609 g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
610 clock_step(UIP_HOLD_LENGTH);
611 g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
613 assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
616 static void uip_stuck(void)
618 set_datetime(REG_B_24H, 0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
620 /* The first update ends 500 ms after divider reset */
621 (void)cmos_read(RTC_REG_C);
622 clock_step(500000000LL);
623 g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
624 assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
626 /* UF is now set. */
627 cmos_write(RTC_HOURS_ALARM, 0x02);
628 cmos_write(RTC_MINUTES_ALARM, 0xC0);
629 cmos_write(RTC_SECONDS_ALARM, 0xC0);
631 /* Because the alarm will fire soon, reading register A will latch UIP. */
632 clock_step(1000000000LL - UIP_HOLD_LENGTH / 2);
633 g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
635 /* Move the alarm far away. This must not cause UIP to remain stuck! */
636 cmos_write(RTC_HOURS_ALARM, 0x03);
637 clock_step(UIP_HOLD_LENGTH);
638 g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
641 #define RTC_PERIOD_CODE1 13 /* 8 Hz */
642 #define RTC_PERIOD_CODE2 15 /* 2 Hz */
644 #define RTC_PERIOD_TEST_NR 50
646 static uint64_t wait_periodic_interrupt(uint64_t real_time)
648 while (!get_irq(RTC_ISA_IRQ)) {
649 real_time = clock_step_next();
652 g_assert((cmos_read(RTC_REG_C) & REG_C_PF) != 0);
653 return real_time;
656 static void periodic_timer(void)
658 int i;
659 uint64_t period_clocks, period_time, start_time, real_time;
661 /* disable all interrupts. */
662 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) &
663 ~(REG_B_PIE | REG_B_AIE | REG_B_UIE));
664 cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
665 /* enable periodic interrupt after properly configure the period. */
666 cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_PIE);
668 start_time = real_time = clock_step_next();
670 for (i = 0; i < RTC_PERIOD_TEST_NR; i++) {
671 cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
672 real_time = wait_periodic_interrupt(real_time);
673 cmos_write(RTC_REG_A, RTC_PERIOD_CODE2);
674 real_time = wait_periodic_interrupt(real_time);
677 period_clocks = periodic_period_to_clock(RTC_PERIOD_CODE1) +
678 periodic_period_to_clock(RTC_PERIOD_CODE2);
679 period_clocks *= RTC_PERIOD_TEST_NR;
680 period_time = periodic_clock_to_ns(period_clocks);
682 real_time -= start_time;
683 g_assert_cmpint(ABS((int64_t)(real_time - period_time)), <=,
684 NANOSECONDS_PER_SECOND * 0.5);
687 int main(int argc, char **argv)
689 QTestState *s = NULL;
690 int ret;
692 g_test_init(&argc, &argv, NULL);
694 s = qtest_start("-rtc clock=vm");
695 qtest_irq_intercept_in(s, "ioapic");
697 qtest_add_func("/rtc/check-time/bcd", bcd_check_time);
698 qtest_add_func("/rtc/check-time/dec", dec_check_time);
699 qtest_add_func("/rtc/alarm/interrupt", alarm_time);
700 qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm);
701 qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec);
702 qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd);
703 qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec);
704 qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd);
705 qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
706 qtest_add_func("/rtc/set-year/1980", set_year_1980);
707 qtest_add_func("/rtc/update/register_b_set_flag", register_b_set_flag);
708 qtest_add_func("/rtc/update/divider-reset", divider_reset);
709 qtest_add_func("/rtc/update/uip-stuck", uip_stuck);
710 qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers);
711 qtest_add_func("/rtc/periodic/interrupt", periodic_timer);
713 ret = g_test_run();
715 if (s) {
716 qtest_quit(s);
719 return ret;