linux-user: Support f_flags in statfs64 when available.
[qemu/ar7.git] / accel / kvm / kvm-all.c
blob9ef5daf4c5766e1495f69856d822a3adf8f2bac4
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "sysemu/sev.h"
43 #include "qapi/visitor.h"
44 #include "qapi/qapi-types-common.h"
45 #include "qapi/qapi-visit-common.h"
46 #include "sysemu/reset.h"
47 #include "qemu/guest-random.h"
48 #include "sysemu/hw_accel.h"
49 #include "kvm-cpus.h"
51 #include "hw/boards.h"
53 /* This check must be after config-host.h is included */
54 #ifdef CONFIG_EVENTFD
55 #include <sys/eventfd.h>
56 #endif
58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
59 * need to use the real host PAGE_SIZE, as that's what KVM will use.
61 #define PAGE_SIZE qemu_real_host_page_size
63 //#define DEBUG_KVM
65 #ifdef DEBUG_KVM
66 #define DPRINTF(fmt, ...) \
67 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
68 #else
69 #define DPRINTF(fmt, ...) \
70 do { } while (0)
71 #endif
73 #define KVM_MSI_HASHTAB_SIZE 256
75 struct KVMParkedVcpu {
76 unsigned long vcpu_id;
77 int kvm_fd;
78 QLIST_ENTRY(KVMParkedVcpu) node;
81 struct KVMState
83 AccelState parent_obj;
85 int nr_slots;
86 int fd;
87 int vmfd;
88 int coalesced_mmio;
89 int coalesced_pio;
90 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
91 bool coalesced_flush_in_progress;
92 int vcpu_events;
93 int robust_singlestep;
94 int debugregs;
95 #ifdef KVM_CAP_SET_GUEST_DEBUG
96 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
97 #endif
98 int max_nested_state_len;
99 int many_ioeventfds;
100 int intx_set_mask;
101 int kvm_shadow_mem;
102 bool kernel_irqchip_allowed;
103 bool kernel_irqchip_required;
104 OnOffAuto kernel_irqchip_split;
105 bool sync_mmu;
106 uint64_t manual_dirty_log_protect;
107 /* The man page (and posix) say ioctl numbers are signed int, but
108 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
109 * unsigned, and treating them as signed here can break things */
110 unsigned irq_set_ioctl;
111 unsigned int sigmask_len;
112 GHashTable *gsimap;
113 #ifdef KVM_CAP_IRQ_ROUTING
114 struct kvm_irq_routing *irq_routes;
115 int nr_allocated_irq_routes;
116 unsigned long *used_gsi_bitmap;
117 unsigned int gsi_count;
118 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
119 #endif
120 KVMMemoryListener memory_listener;
121 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
123 /* memory encryption */
124 void *memcrypt_handle;
125 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
127 /* For "info mtree -f" to tell if an MR is registered in KVM */
128 int nr_as;
129 struct KVMAs {
130 KVMMemoryListener *ml;
131 AddressSpace *as;
132 } *as;
135 KVMState *kvm_state;
136 bool kvm_kernel_irqchip;
137 bool kvm_split_irqchip;
138 bool kvm_async_interrupts_allowed;
139 bool kvm_halt_in_kernel_allowed;
140 bool kvm_eventfds_allowed;
141 bool kvm_irqfds_allowed;
142 bool kvm_resamplefds_allowed;
143 bool kvm_msi_via_irqfd_allowed;
144 bool kvm_gsi_routing_allowed;
145 bool kvm_gsi_direct_mapping;
146 bool kvm_allowed;
147 bool kvm_readonly_mem_allowed;
148 bool kvm_vm_attributes_allowed;
149 bool kvm_direct_msi_allowed;
150 bool kvm_ioeventfd_any_length_allowed;
151 bool kvm_msi_use_devid;
152 static bool kvm_immediate_exit;
153 static hwaddr kvm_max_slot_size = ~0;
155 static const KVMCapabilityInfo kvm_required_capabilites[] = {
156 KVM_CAP_INFO(USER_MEMORY),
157 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
158 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
159 KVM_CAP_LAST_INFO
162 static NotifierList kvm_irqchip_change_notifiers =
163 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
165 struct KVMResampleFd {
166 int gsi;
167 EventNotifier *resample_event;
168 QLIST_ENTRY(KVMResampleFd) node;
170 typedef struct KVMResampleFd KVMResampleFd;
173 * Only used with split irqchip where we need to do the resample fd
174 * kick for the kernel from userspace.
176 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
177 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
179 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
180 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
182 static inline void kvm_resample_fd_remove(int gsi)
184 KVMResampleFd *rfd;
186 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
187 if (rfd->gsi == gsi) {
188 QLIST_REMOVE(rfd, node);
189 g_free(rfd);
190 break;
195 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
197 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
199 rfd->gsi = gsi;
200 rfd->resample_event = event;
202 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
205 void kvm_resample_fd_notify(int gsi)
207 KVMResampleFd *rfd;
209 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
210 if (rfd->gsi == gsi) {
211 event_notifier_set(rfd->resample_event);
212 trace_kvm_resample_fd_notify(gsi);
213 return;
218 int kvm_get_max_memslots(void)
220 KVMState *s = KVM_STATE(current_accel());
222 return s->nr_slots;
225 bool kvm_memcrypt_enabled(void)
227 if (kvm_state && kvm_state->memcrypt_handle) {
228 return true;
231 return false;
234 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
236 if (kvm_state->memcrypt_handle &&
237 kvm_state->memcrypt_encrypt_data) {
238 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
239 ptr, len);
242 return 1;
245 /* Called with KVMMemoryListener.slots_lock held */
246 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
248 KVMState *s = kvm_state;
249 int i;
251 for (i = 0; i < s->nr_slots; i++) {
252 if (kml->slots[i].memory_size == 0) {
253 return &kml->slots[i];
257 return NULL;
260 bool kvm_has_free_slot(MachineState *ms)
262 KVMState *s = KVM_STATE(ms->accelerator);
263 bool result;
264 KVMMemoryListener *kml = &s->memory_listener;
266 kvm_slots_lock(kml);
267 result = !!kvm_get_free_slot(kml);
268 kvm_slots_unlock(kml);
270 return result;
273 /* Called with KVMMemoryListener.slots_lock held */
274 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
276 KVMSlot *slot = kvm_get_free_slot(kml);
278 if (slot) {
279 return slot;
282 fprintf(stderr, "%s: no free slot available\n", __func__);
283 abort();
286 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
287 hwaddr start_addr,
288 hwaddr size)
290 KVMState *s = kvm_state;
291 int i;
293 for (i = 0; i < s->nr_slots; i++) {
294 KVMSlot *mem = &kml->slots[i];
296 if (start_addr == mem->start_addr && size == mem->memory_size) {
297 return mem;
301 return NULL;
305 * Calculate and align the start address and the size of the section.
306 * Return the size. If the size is 0, the aligned section is empty.
308 static hwaddr kvm_align_section(MemoryRegionSection *section,
309 hwaddr *start)
311 hwaddr size = int128_get64(section->size);
312 hwaddr delta, aligned;
314 /* kvm works in page size chunks, but the function may be called
315 with sub-page size and unaligned start address. Pad the start
316 address to next and truncate size to previous page boundary. */
317 aligned = ROUND_UP(section->offset_within_address_space,
318 qemu_real_host_page_size);
319 delta = aligned - section->offset_within_address_space;
320 *start = aligned;
321 if (delta > size) {
322 return 0;
325 return (size - delta) & qemu_real_host_page_mask;
328 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
329 hwaddr *phys_addr)
331 KVMMemoryListener *kml = &s->memory_listener;
332 int i, ret = 0;
334 kvm_slots_lock(kml);
335 for (i = 0; i < s->nr_slots; i++) {
336 KVMSlot *mem = &kml->slots[i];
338 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
339 *phys_addr = mem->start_addr + (ram - mem->ram);
340 ret = 1;
341 break;
344 kvm_slots_unlock(kml);
346 return ret;
349 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
351 KVMState *s = kvm_state;
352 struct kvm_userspace_memory_region mem;
353 int ret;
355 mem.slot = slot->slot | (kml->as_id << 16);
356 mem.guest_phys_addr = slot->start_addr;
357 mem.userspace_addr = (unsigned long)slot->ram;
358 mem.flags = slot->flags;
360 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
361 /* Set the slot size to 0 before setting the slot to the desired
362 * value. This is needed based on KVM commit 75d61fbc. */
363 mem.memory_size = 0;
364 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
365 if (ret < 0) {
366 goto err;
369 mem.memory_size = slot->memory_size;
370 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
371 slot->old_flags = mem.flags;
372 err:
373 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
374 mem.memory_size, mem.userspace_addr, ret);
375 if (ret < 0) {
376 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
377 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
378 __func__, mem.slot, slot->start_addr,
379 (uint64_t)mem.memory_size, strerror(errno));
381 return ret;
384 static int do_kvm_destroy_vcpu(CPUState *cpu)
386 KVMState *s = kvm_state;
387 long mmap_size;
388 struct KVMParkedVcpu *vcpu = NULL;
389 int ret = 0;
391 DPRINTF("kvm_destroy_vcpu\n");
393 ret = kvm_arch_destroy_vcpu(cpu);
394 if (ret < 0) {
395 goto err;
398 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
399 if (mmap_size < 0) {
400 ret = mmap_size;
401 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
402 goto err;
405 ret = munmap(cpu->kvm_run, mmap_size);
406 if (ret < 0) {
407 goto err;
410 vcpu = g_malloc0(sizeof(*vcpu));
411 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
412 vcpu->kvm_fd = cpu->kvm_fd;
413 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
414 err:
415 return ret;
418 void kvm_destroy_vcpu(CPUState *cpu)
420 if (do_kvm_destroy_vcpu(cpu) < 0) {
421 error_report("kvm_destroy_vcpu failed");
422 exit(EXIT_FAILURE);
426 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
428 struct KVMParkedVcpu *cpu;
430 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
431 if (cpu->vcpu_id == vcpu_id) {
432 int kvm_fd;
434 QLIST_REMOVE(cpu, node);
435 kvm_fd = cpu->kvm_fd;
436 g_free(cpu);
437 return kvm_fd;
441 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
444 int kvm_init_vcpu(CPUState *cpu, Error **errp)
446 KVMState *s = kvm_state;
447 long mmap_size;
448 int ret;
450 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
452 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
453 if (ret < 0) {
454 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
455 kvm_arch_vcpu_id(cpu));
456 goto err;
459 cpu->kvm_fd = ret;
460 cpu->kvm_state = s;
461 cpu->vcpu_dirty = true;
463 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
464 if (mmap_size < 0) {
465 ret = mmap_size;
466 error_setg_errno(errp, -mmap_size,
467 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
468 goto err;
471 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
472 cpu->kvm_fd, 0);
473 if (cpu->kvm_run == MAP_FAILED) {
474 ret = -errno;
475 error_setg_errno(errp, ret,
476 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
477 kvm_arch_vcpu_id(cpu));
478 goto err;
481 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
482 s->coalesced_mmio_ring =
483 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
486 ret = kvm_arch_init_vcpu(cpu);
487 if (ret < 0) {
488 error_setg_errno(errp, -ret,
489 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
490 kvm_arch_vcpu_id(cpu));
492 err:
493 return ret;
497 * dirty pages logging control
500 static int kvm_mem_flags(MemoryRegion *mr)
502 bool readonly = mr->readonly || memory_region_is_romd(mr);
503 int flags = 0;
505 if (memory_region_get_dirty_log_mask(mr) != 0) {
506 flags |= KVM_MEM_LOG_DIRTY_PAGES;
508 if (readonly && kvm_readonly_mem_allowed) {
509 flags |= KVM_MEM_READONLY;
511 return flags;
514 /* Called with KVMMemoryListener.slots_lock held */
515 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
516 MemoryRegion *mr)
518 mem->flags = kvm_mem_flags(mr);
520 /* If nothing changed effectively, no need to issue ioctl */
521 if (mem->flags == mem->old_flags) {
522 return 0;
525 return kvm_set_user_memory_region(kml, mem, false);
528 static int kvm_section_update_flags(KVMMemoryListener *kml,
529 MemoryRegionSection *section)
531 hwaddr start_addr, size, slot_size;
532 KVMSlot *mem;
533 int ret = 0;
535 size = kvm_align_section(section, &start_addr);
536 if (!size) {
537 return 0;
540 kvm_slots_lock(kml);
542 while (size && !ret) {
543 slot_size = MIN(kvm_max_slot_size, size);
544 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
545 if (!mem) {
546 /* We don't have a slot if we want to trap every access. */
547 goto out;
550 ret = kvm_slot_update_flags(kml, mem, section->mr);
551 start_addr += slot_size;
552 size -= slot_size;
555 out:
556 kvm_slots_unlock(kml);
557 return ret;
560 static void kvm_log_start(MemoryListener *listener,
561 MemoryRegionSection *section,
562 int old, int new)
564 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
565 int r;
567 if (old != 0) {
568 return;
571 r = kvm_section_update_flags(kml, section);
572 if (r < 0) {
573 abort();
577 static void kvm_log_stop(MemoryListener *listener,
578 MemoryRegionSection *section,
579 int old, int new)
581 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
582 int r;
584 if (new != 0) {
585 return;
588 r = kvm_section_update_flags(kml, section);
589 if (r < 0) {
590 abort();
594 /* get kvm's dirty pages bitmap and update qemu's */
595 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
596 unsigned long *bitmap)
598 ram_addr_t start = section->offset_within_region +
599 memory_region_get_ram_addr(section->mr);
600 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
602 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
603 return 0;
606 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
608 /* Allocate the dirty bitmap for a slot */
609 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
612 * XXX bad kernel interface alert
613 * For dirty bitmap, kernel allocates array of size aligned to
614 * bits-per-long. But for case when the kernel is 64bits and
615 * the userspace is 32bits, userspace can't align to the same
616 * bits-per-long, since sizeof(long) is different between kernel
617 * and user space. This way, userspace will provide buffer which
618 * may be 4 bytes less than the kernel will use, resulting in
619 * userspace memory corruption (which is not detectable by valgrind
620 * too, in most cases).
621 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
622 * a hope that sizeof(long) won't become >8 any time soon.
624 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
625 /*HOST_LONG_BITS*/ 64) / 8;
626 mem->dirty_bmap = g_malloc0(bitmap_size);
630 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
632 * This function will first try to fetch dirty bitmap from the kernel,
633 * and then updates qemu's dirty bitmap.
635 * NOTE: caller must be with kml->slots_lock held.
637 * @kml: the KVM memory listener object
638 * @section: the memory section to sync the dirty bitmap with
640 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
641 MemoryRegionSection *section)
643 KVMState *s = kvm_state;
644 struct kvm_dirty_log d = {};
645 KVMSlot *mem;
646 hwaddr start_addr, size;
647 hwaddr slot_size, slot_offset = 0;
648 int ret = 0;
650 size = kvm_align_section(section, &start_addr);
651 while (size) {
652 MemoryRegionSection subsection = *section;
654 slot_size = MIN(kvm_max_slot_size, size);
655 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
656 if (!mem) {
657 /* We don't have a slot if we want to trap every access. */
658 goto out;
661 if (!mem->dirty_bmap) {
662 /* Allocate on the first log_sync, once and for all */
663 kvm_memslot_init_dirty_bitmap(mem);
666 d.dirty_bitmap = mem->dirty_bmap;
667 d.slot = mem->slot | (kml->as_id << 16);
668 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
669 DPRINTF("ioctl failed %d\n", errno);
670 ret = -1;
671 goto out;
674 subsection.offset_within_region += slot_offset;
675 subsection.size = int128_make64(slot_size);
676 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
678 slot_offset += slot_size;
679 start_addr += slot_size;
680 size -= slot_size;
682 out:
683 return ret;
686 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
687 #define KVM_CLEAR_LOG_SHIFT 6
688 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
689 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
691 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
692 uint64_t size)
694 KVMState *s = kvm_state;
695 uint64_t end, bmap_start, start_delta, bmap_npages;
696 struct kvm_clear_dirty_log d;
697 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
698 int ret;
701 * We need to extend either the start or the size or both to
702 * satisfy the KVM interface requirement. Firstly, do the start
703 * page alignment on 64 host pages
705 bmap_start = start & KVM_CLEAR_LOG_MASK;
706 start_delta = start - bmap_start;
707 bmap_start /= psize;
710 * The kernel interface has restriction on the size too, that either:
712 * (1) the size is 64 host pages aligned (just like the start), or
713 * (2) the size fills up until the end of the KVM memslot.
715 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
716 << KVM_CLEAR_LOG_SHIFT;
717 end = mem->memory_size / psize;
718 if (bmap_npages > end - bmap_start) {
719 bmap_npages = end - bmap_start;
721 start_delta /= psize;
724 * Prepare the bitmap to clear dirty bits. Here we must guarantee
725 * that we won't clear any unknown dirty bits otherwise we might
726 * accidentally clear some set bits which are not yet synced from
727 * the kernel into QEMU's bitmap, then we'll lose track of the
728 * guest modifications upon those pages (which can directly lead
729 * to guest data loss or panic after migration).
731 * Layout of the KVMSlot.dirty_bmap:
733 * |<-------- bmap_npages -----------..>|
734 * [1]
735 * start_delta size
736 * |----------------|-------------|------------------|------------|
737 * ^ ^ ^ ^
738 * | | | |
739 * start bmap_start (start) end
740 * of memslot of memslot
742 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
745 assert(bmap_start % BITS_PER_LONG == 0);
746 /* We should never do log_clear before log_sync */
747 assert(mem->dirty_bmap);
748 if (start_delta) {
749 /* Slow path - we need to manipulate a temp bitmap */
750 bmap_clear = bitmap_new(bmap_npages);
751 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
752 bmap_start, start_delta + size / psize);
754 * We need to fill the holes at start because that was not
755 * specified by the caller and we extended the bitmap only for
756 * 64 pages alignment
758 bitmap_clear(bmap_clear, 0, start_delta);
759 d.dirty_bitmap = bmap_clear;
760 } else {
761 /* Fast path - start address aligns well with BITS_PER_LONG */
762 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
765 d.first_page = bmap_start;
766 /* It should never overflow. If it happens, say something */
767 assert(bmap_npages <= UINT32_MAX);
768 d.num_pages = bmap_npages;
769 d.slot = mem->slot | (as_id << 16);
771 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) {
772 ret = -errno;
773 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
774 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
775 __func__, d.slot, (uint64_t)d.first_page,
776 (uint32_t)d.num_pages, ret);
777 } else {
778 ret = 0;
779 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
783 * After we have updated the remote dirty bitmap, we update the
784 * cached bitmap as well for the memslot, then if another user
785 * clears the same region we know we shouldn't clear it again on
786 * the remote otherwise it's data loss as well.
788 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
789 size / psize);
790 /* This handles the NULL case well */
791 g_free(bmap_clear);
792 return ret;
797 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
799 * NOTE: this will be a no-op if we haven't enabled manual dirty log
800 * protection in the host kernel because in that case this operation
801 * will be done within log_sync().
803 * @kml: the kvm memory listener
804 * @section: the memory range to clear dirty bitmap
806 static int kvm_physical_log_clear(KVMMemoryListener *kml,
807 MemoryRegionSection *section)
809 KVMState *s = kvm_state;
810 uint64_t start, size, offset, count;
811 KVMSlot *mem;
812 int ret = 0, i;
814 if (!s->manual_dirty_log_protect) {
815 /* No need to do explicit clear */
816 return ret;
819 start = section->offset_within_address_space;
820 size = int128_get64(section->size);
822 if (!size) {
823 /* Nothing more we can do... */
824 return ret;
827 kvm_slots_lock(kml);
829 for (i = 0; i < s->nr_slots; i++) {
830 mem = &kml->slots[i];
831 /* Discard slots that are empty or do not overlap the section */
832 if (!mem->memory_size ||
833 mem->start_addr > start + size - 1 ||
834 start > mem->start_addr + mem->memory_size - 1) {
835 continue;
838 if (start >= mem->start_addr) {
839 /* The slot starts before section or is aligned to it. */
840 offset = start - mem->start_addr;
841 count = MIN(mem->memory_size - offset, size);
842 } else {
843 /* The slot starts after section. */
844 offset = 0;
845 count = MIN(mem->memory_size, size - (mem->start_addr - start));
847 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
848 if (ret < 0) {
849 break;
853 kvm_slots_unlock(kml);
855 return ret;
858 static void kvm_coalesce_mmio_region(MemoryListener *listener,
859 MemoryRegionSection *secion,
860 hwaddr start, hwaddr size)
862 KVMState *s = kvm_state;
864 if (s->coalesced_mmio) {
865 struct kvm_coalesced_mmio_zone zone;
867 zone.addr = start;
868 zone.size = size;
869 zone.pad = 0;
871 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
875 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
876 MemoryRegionSection *secion,
877 hwaddr start, hwaddr size)
879 KVMState *s = kvm_state;
881 if (s->coalesced_mmio) {
882 struct kvm_coalesced_mmio_zone zone;
884 zone.addr = start;
885 zone.size = size;
886 zone.pad = 0;
888 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
892 static void kvm_coalesce_pio_add(MemoryListener *listener,
893 MemoryRegionSection *section,
894 hwaddr start, hwaddr size)
896 KVMState *s = kvm_state;
898 if (s->coalesced_pio) {
899 struct kvm_coalesced_mmio_zone zone;
901 zone.addr = start;
902 zone.size = size;
903 zone.pio = 1;
905 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
909 static void kvm_coalesce_pio_del(MemoryListener *listener,
910 MemoryRegionSection *section,
911 hwaddr start, hwaddr size)
913 KVMState *s = kvm_state;
915 if (s->coalesced_pio) {
916 struct kvm_coalesced_mmio_zone zone;
918 zone.addr = start;
919 zone.size = size;
920 zone.pio = 1;
922 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
926 static MemoryListener kvm_coalesced_pio_listener = {
927 .coalesced_io_add = kvm_coalesce_pio_add,
928 .coalesced_io_del = kvm_coalesce_pio_del,
931 int kvm_check_extension(KVMState *s, unsigned int extension)
933 int ret;
935 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
936 if (ret < 0) {
937 ret = 0;
940 return ret;
943 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
945 int ret;
947 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
948 if (ret < 0) {
949 /* VM wide version not implemented, use global one instead */
950 ret = kvm_check_extension(s, extension);
953 return ret;
956 typedef struct HWPoisonPage {
957 ram_addr_t ram_addr;
958 QLIST_ENTRY(HWPoisonPage) list;
959 } HWPoisonPage;
961 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
962 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
964 static void kvm_unpoison_all(void *param)
966 HWPoisonPage *page, *next_page;
968 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
969 QLIST_REMOVE(page, list);
970 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
971 g_free(page);
975 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
977 HWPoisonPage *page;
979 QLIST_FOREACH(page, &hwpoison_page_list, list) {
980 if (page->ram_addr == ram_addr) {
981 return;
984 page = g_new(HWPoisonPage, 1);
985 page->ram_addr = ram_addr;
986 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
989 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
991 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
992 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
993 * endianness, but the memory core hands them in target endianness.
994 * For example, PPC is always treated as big-endian even if running
995 * on KVM and on PPC64LE. Correct here.
997 switch (size) {
998 case 2:
999 val = bswap16(val);
1000 break;
1001 case 4:
1002 val = bswap32(val);
1003 break;
1005 #endif
1006 return val;
1009 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1010 bool assign, uint32_t size, bool datamatch)
1012 int ret;
1013 struct kvm_ioeventfd iofd = {
1014 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1015 .addr = addr,
1016 .len = size,
1017 .flags = 0,
1018 .fd = fd,
1021 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1022 datamatch);
1023 if (!kvm_enabled()) {
1024 return -ENOSYS;
1027 if (datamatch) {
1028 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1030 if (!assign) {
1031 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1034 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1036 if (ret < 0) {
1037 return -errno;
1040 return 0;
1043 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1044 bool assign, uint32_t size, bool datamatch)
1046 struct kvm_ioeventfd kick = {
1047 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1048 .addr = addr,
1049 .flags = KVM_IOEVENTFD_FLAG_PIO,
1050 .len = size,
1051 .fd = fd,
1053 int r;
1054 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1055 if (!kvm_enabled()) {
1056 return -ENOSYS;
1058 if (datamatch) {
1059 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1061 if (!assign) {
1062 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1064 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1065 if (r < 0) {
1066 return r;
1068 return 0;
1072 static int kvm_check_many_ioeventfds(void)
1074 /* Userspace can use ioeventfd for io notification. This requires a host
1075 * that supports eventfd(2) and an I/O thread; since eventfd does not
1076 * support SIGIO it cannot interrupt the vcpu.
1078 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1079 * can avoid creating too many ioeventfds.
1081 #if defined(CONFIG_EVENTFD)
1082 int ioeventfds[7];
1083 int i, ret = 0;
1084 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1085 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1086 if (ioeventfds[i] < 0) {
1087 break;
1089 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1090 if (ret < 0) {
1091 close(ioeventfds[i]);
1092 break;
1096 /* Decide whether many devices are supported or not */
1097 ret = i == ARRAY_SIZE(ioeventfds);
1099 while (i-- > 0) {
1100 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1101 close(ioeventfds[i]);
1103 return ret;
1104 #else
1105 return 0;
1106 #endif
1109 static const KVMCapabilityInfo *
1110 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1112 while (list->name) {
1113 if (!kvm_check_extension(s, list->value)) {
1114 return list;
1116 list++;
1118 return NULL;
1121 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1123 g_assert(
1124 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1126 kvm_max_slot_size = max_slot_size;
1129 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1130 MemoryRegionSection *section, bool add)
1132 KVMSlot *mem;
1133 int err;
1134 MemoryRegion *mr = section->mr;
1135 bool writeable = !mr->readonly && !mr->rom_device;
1136 hwaddr start_addr, size, slot_size;
1137 void *ram;
1139 if (!memory_region_is_ram(mr)) {
1140 if (writeable || !kvm_readonly_mem_allowed) {
1141 return;
1142 } else if (!mr->romd_mode) {
1143 /* If the memory device is not in romd_mode, then we actually want
1144 * to remove the kvm memory slot so all accesses will trap. */
1145 add = false;
1149 size = kvm_align_section(section, &start_addr);
1150 if (!size) {
1151 return;
1154 /* use aligned delta to align the ram address */
1155 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1156 (start_addr - section->offset_within_address_space);
1158 kvm_slots_lock(kml);
1160 if (!add) {
1161 do {
1162 slot_size = MIN(kvm_max_slot_size, size);
1163 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1164 if (!mem) {
1165 goto out;
1167 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1168 kvm_physical_sync_dirty_bitmap(kml, section);
1171 /* unregister the slot */
1172 g_free(mem->dirty_bmap);
1173 mem->dirty_bmap = NULL;
1174 mem->memory_size = 0;
1175 mem->flags = 0;
1176 err = kvm_set_user_memory_region(kml, mem, false);
1177 if (err) {
1178 fprintf(stderr, "%s: error unregistering slot: %s\n",
1179 __func__, strerror(-err));
1180 abort();
1182 start_addr += slot_size;
1183 size -= slot_size;
1184 } while (size);
1185 goto out;
1188 /* register the new slot */
1189 do {
1190 slot_size = MIN(kvm_max_slot_size, size);
1191 mem = kvm_alloc_slot(kml);
1192 mem->memory_size = slot_size;
1193 mem->start_addr = start_addr;
1194 mem->ram = ram;
1195 mem->flags = kvm_mem_flags(mr);
1197 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1199 * Reallocate the bmap; it means it doesn't disappear in
1200 * middle of a migrate.
1202 kvm_memslot_init_dirty_bitmap(mem);
1204 err = kvm_set_user_memory_region(kml, mem, true);
1205 if (err) {
1206 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1207 strerror(-err));
1208 abort();
1210 start_addr += slot_size;
1211 ram += slot_size;
1212 size -= slot_size;
1213 } while (size);
1215 out:
1216 kvm_slots_unlock(kml);
1219 static void kvm_region_add(MemoryListener *listener,
1220 MemoryRegionSection *section)
1222 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1224 memory_region_ref(section->mr);
1225 kvm_set_phys_mem(kml, section, true);
1228 static void kvm_region_del(MemoryListener *listener,
1229 MemoryRegionSection *section)
1231 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1233 kvm_set_phys_mem(kml, section, false);
1234 memory_region_unref(section->mr);
1237 static void kvm_log_sync(MemoryListener *listener,
1238 MemoryRegionSection *section)
1240 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1241 int r;
1243 kvm_slots_lock(kml);
1244 r = kvm_physical_sync_dirty_bitmap(kml, section);
1245 kvm_slots_unlock(kml);
1246 if (r < 0) {
1247 abort();
1251 static void kvm_log_clear(MemoryListener *listener,
1252 MemoryRegionSection *section)
1254 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1255 int r;
1257 r = kvm_physical_log_clear(kml, section);
1258 if (r < 0) {
1259 error_report_once("%s: kvm log clear failed: mr=%s "
1260 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1261 section->mr->name, section->offset_within_region,
1262 int128_get64(section->size));
1263 abort();
1267 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1268 MemoryRegionSection *section,
1269 bool match_data, uint64_t data,
1270 EventNotifier *e)
1272 int fd = event_notifier_get_fd(e);
1273 int r;
1275 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1276 data, true, int128_get64(section->size),
1277 match_data);
1278 if (r < 0) {
1279 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1280 __func__, strerror(-r), -r);
1281 abort();
1285 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1286 MemoryRegionSection *section,
1287 bool match_data, uint64_t data,
1288 EventNotifier *e)
1290 int fd = event_notifier_get_fd(e);
1291 int r;
1293 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1294 data, false, int128_get64(section->size),
1295 match_data);
1296 if (r < 0) {
1297 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1298 __func__, strerror(-r), -r);
1299 abort();
1303 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1304 MemoryRegionSection *section,
1305 bool match_data, uint64_t data,
1306 EventNotifier *e)
1308 int fd = event_notifier_get_fd(e);
1309 int r;
1311 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1312 data, true, int128_get64(section->size),
1313 match_data);
1314 if (r < 0) {
1315 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1316 __func__, strerror(-r), -r);
1317 abort();
1321 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1322 MemoryRegionSection *section,
1323 bool match_data, uint64_t data,
1324 EventNotifier *e)
1327 int fd = event_notifier_get_fd(e);
1328 int r;
1330 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1331 data, false, int128_get64(section->size),
1332 match_data);
1333 if (r < 0) {
1334 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1335 __func__, strerror(-r), -r);
1336 abort();
1340 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1341 AddressSpace *as, int as_id)
1343 int i;
1345 qemu_mutex_init(&kml->slots_lock);
1346 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1347 kml->as_id = as_id;
1349 for (i = 0; i < s->nr_slots; i++) {
1350 kml->slots[i].slot = i;
1353 kml->listener.region_add = kvm_region_add;
1354 kml->listener.region_del = kvm_region_del;
1355 kml->listener.log_start = kvm_log_start;
1356 kml->listener.log_stop = kvm_log_stop;
1357 kml->listener.log_sync = kvm_log_sync;
1358 kml->listener.log_clear = kvm_log_clear;
1359 kml->listener.priority = 10;
1361 memory_listener_register(&kml->listener, as);
1363 for (i = 0; i < s->nr_as; ++i) {
1364 if (!s->as[i].as) {
1365 s->as[i].as = as;
1366 s->as[i].ml = kml;
1367 break;
1372 static MemoryListener kvm_io_listener = {
1373 .eventfd_add = kvm_io_ioeventfd_add,
1374 .eventfd_del = kvm_io_ioeventfd_del,
1375 .priority = 10,
1378 int kvm_set_irq(KVMState *s, int irq, int level)
1380 struct kvm_irq_level event;
1381 int ret;
1383 assert(kvm_async_interrupts_enabled());
1385 event.level = level;
1386 event.irq = irq;
1387 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1388 if (ret < 0) {
1389 perror("kvm_set_irq");
1390 abort();
1393 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1396 #ifdef KVM_CAP_IRQ_ROUTING
1397 typedef struct KVMMSIRoute {
1398 struct kvm_irq_routing_entry kroute;
1399 QTAILQ_ENTRY(KVMMSIRoute) entry;
1400 } KVMMSIRoute;
1402 static void set_gsi(KVMState *s, unsigned int gsi)
1404 set_bit(gsi, s->used_gsi_bitmap);
1407 static void clear_gsi(KVMState *s, unsigned int gsi)
1409 clear_bit(gsi, s->used_gsi_bitmap);
1412 void kvm_init_irq_routing(KVMState *s)
1414 int gsi_count, i;
1416 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1417 if (gsi_count > 0) {
1418 /* Round up so we can search ints using ffs */
1419 s->used_gsi_bitmap = bitmap_new(gsi_count);
1420 s->gsi_count = gsi_count;
1423 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1424 s->nr_allocated_irq_routes = 0;
1426 if (!kvm_direct_msi_allowed) {
1427 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1428 QTAILQ_INIT(&s->msi_hashtab[i]);
1432 kvm_arch_init_irq_routing(s);
1435 void kvm_irqchip_commit_routes(KVMState *s)
1437 int ret;
1439 if (kvm_gsi_direct_mapping()) {
1440 return;
1443 if (!kvm_gsi_routing_enabled()) {
1444 return;
1447 s->irq_routes->flags = 0;
1448 trace_kvm_irqchip_commit_routes();
1449 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1450 assert(ret == 0);
1453 static void kvm_add_routing_entry(KVMState *s,
1454 struct kvm_irq_routing_entry *entry)
1456 struct kvm_irq_routing_entry *new;
1457 int n, size;
1459 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1460 n = s->nr_allocated_irq_routes * 2;
1461 if (n < 64) {
1462 n = 64;
1464 size = sizeof(struct kvm_irq_routing);
1465 size += n * sizeof(*new);
1466 s->irq_routes = g_realloc(s->irq_routes, size);
1467 s->nr_allocated_irq_routes = n;
1469 n = s->irq_routes->nr++;
1470 new = &s->irq_routes->entries[n];
1472 *new = *entry;
1474 set_gsi(s, entry->gsi);
1477 static int kvm_update_routing_entry(KVMState *s,
1478 struct kvm_irq_routing_entry *new_entry)
1480 struct kvm_irq_routing_entry *entry;
1481 int n;
1483 for (n = 0; n < s->irq_routes->nr; n++) {
1484 entry = &s->irq_routes->entries[n];
1485 if (entry->gsi != new_entry->gsi) {
1486 continue;
1489 if(!memcmp(entry, new_entry, sizeof *entry)) {
1490 return 0;
1493 *entry = *new_entry;
1495 return 0;
1498 return -ESRCH;
1501 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1503 struct kvm_irq_routing_entry e = {};
1505 assert(pin < s->gsi_count);
1507 e.gsi = irq;
1508 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1509 e.flags = 0;
1510 e.u.irqchip.irqchip = irqchip;
1511 e.u.irqchip.pin = pin;
1512 kvm_add_routing_entry(s, &e);
1515 void kvm_irqchip_release_virq(KVMState *s, int virq)
1517 struct kvm_irq_routing_entry *e;
1518 int i;
1520 if (kvm_gsi_direct_mapping()) {
1521 return;
1524 for (i = 0; i < s->irq_routes->nr; i++) {
1525 e = &s->irq_routes->entries[i];
1526 if (e->gsi == virq) {
1527 s->irq_routes->nr--;
1528 *e = s->irq_routes->entries[s->irq_routes->nr];
1531 clear_gsi(s, virq);
1532 kvm_arch_release_virq_post(virq);
1533 trace_kvm_irqchip_release_virq(virq);
1536 void kvm_irqchip_add_change_notifier(Notifier *n)
1538 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1541 void kvm_irqchip_remove_change_notifier(Notifier *n)
1543 notifier_remove(n);
1546 void kvm_irqchip_change_notify(void)
1548 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1551 static unsigned int kvm_hash_msi(uint32_t data)
1553 /* This is optimized for IA32 MSI layout. However, no other arch shall
1554 * repeat the mistake of not providing a direct MSI injection API. */
1555 return data & 0xff;
1558 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1560 KVMMSIRoute *route, *next;
1561 unsigned int hash;
1563 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1564 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1565 kvm_irqchip_release_virq(s, route->kroute.gsi);
1566 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1567 g_free(route);
1572 static int kvm_irqchip_get_virq(KVMState *s)
1574 int next_virq;
1577 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1578 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1579 * number can succeed even though a new route entry cannot be added.
1580 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1582 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1583 kvm_flush_dynamic_msi_routes(s);
1586 /* Return the lowest unused GSI in the bitmap */
1587 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1588 if (next_virq >= s->gsi_count) {
1589 return -ENOSPC;
1590 } else {
1591 return next_virq;
1595 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1597 unsigned int hash = kvm_hash_msi(msg.data);
1598 KVMMSIRoute *route;
1600 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1601 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1602 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1603 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1604 return route;
1607 return NULL;
1610 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1612 struct kvm_msi msi;
1613 KVMMSIRoute *route;
1615 if (kvm_direct_msi_allowed) {
1616 msi.address_lo = (uint32_t)msg.address;
1617 msi.address_hi = msg.address >> 32;
1618 msi.data = le32_to_cpu(msg.data);
1619 msi.flags = 0;
1620 memset(msi.pad, 0, sizeof(msi.pad));
1622 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1625 route = kvm_lookup_msi_route(s, msg);
1626 if (!route) {
1627 int virq;
1629 virq = kvm_irqchip_get_virq(s);
1630 if (virq < 0) {
1631 return virq;
1634 route = g_malloc0(sizeof(KVMMSIRoute));
1635 route->kroute.gsi = virq;
1636 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1637 route->kroute.flags = 0;
1638 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1639 route->kroute.u.msi.address_hi = msg.address >> 32;
1640 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1642 kvm_add_routing_entry(s, &route->kroute);
1643 kvm_irqchip_commit_routes(s);
1645 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1646 entry);
1649 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1651 return kvm_set_irq(s, route->kroute.gsi, 1);
1654 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1656 struct kvm_irq_routing_entry kroute = {};
1657 int virq;
1658 MSIMessage msg = {0, 0};
1660 if (pci_available && dev) {
1661 msg = pci_get_msi_message(dev, vector);
1664 if (kvm_gsi_direct_mapping()) {
1665 return kvm_arch_msi_data_to_gsi(msg.data);
1668 if (!kvm_gsi_routing_enabled()) {
1669 return -ENOSYS;
1672 virq = kvm_irqchip_get_virq(s);
1673 if (virq < 0) {
1674 return virq;
1677 kroute.gsi = virq;
1678 kroute.type = KVM_IRQ_ROUTING_MSI;
1679 kroute.flags = 0;
1680 kroute.u.msi.address_lo = (uint32_t)msg.address;
1681 kroute.u.msi.address_hi = msg.address >> 32;
1682 kroute.u.msi.data = le32_to_cpu(msg.data);
1683 if (pci_available && kvm_msi_devid_required()) {
1684 kroute.flags = KVM_MSI_VALID_DEVID;
1685 kroute.u.msi.devid = pci_requester_id(dev);
1687 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1688 kvm_irqchip_release_virq(s, virq);
1689 return -EINVAL;
1692 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1693 vector, virq);
1695 kvm_add_routing_entry(s, &kroute);
1696 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1697 kvm_irqchip_commit_routes(s);
1699 return virq;
1702 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1703 PCIDevice *dev)
1705 struct kvm_irq_routing_entry kroute = {};
1707 if (kvm_gsi_direct_mapping()) {
1708 return 0;
1711 if (!kvm_irqchip_in_kernel()) {
1712 return -ENOSYS;
1715 kroute.gsi = virq;
1716 kroute.type = KVM_IRQ_ROUTING_MSI;
1717 kroute.flags = 0;
1718 kroute.u.msi.address_lo = (uint32_t)msg.address;
1719 kroute.u.msi.address_hi = msg.address >> 32;
1720 kroute.u.msi.data = le32_to_cpu(msg.data);
1721 if (pci_available && kvm_msi_devid_required()) {
1722 kroute.flags = KVM_MSI_VALID_DEVID;
1723 kroute.u.msi.devid = pci_requester_id(dev);
1725 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1726 return -EINVAL;
1729 trace_kvm_irqchip_update_msi_route(virq);
1731 return kvm_update_routing_entry(s, &kroute);
1734 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1735 EventNotifier *resample, int virq,
1736 bool assign)
1738 int fd = event_notifier_get_fd(event);
1739 int rfd = resample ? event_notifier_get_fd(resample) : -1;
1741 struct kvm_irqfd irqfd = {
1742 .fd = fd,
1743 .gsi = virq,
1744 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1747 if (rfd != -1) {
1748 assert(assign);
1749 if (kvm_irqchip_is_split()) {
1751 * When the slow irqchip (e.g. IOAPIC) is in the
1752 * userspace, KVM kernel resamplefd will not work because
1753 * the EOI of the interrupt will be delivered to userspace
1754 * instead, so the KVM kernel resamplefd kick will be
1755 * skipped. The userspace here mimics what the kernel
1756 * provides with resamplefd, remember the resamplefd and
1757 * kick it when we receive EOI of this IRQ.
1759 * This is hackery because IOAPIC is mostly bypassed
1760 * (except EOI broadcasts) when irqfd is used. However
1761 * this can bring much performance back for split irqchip
1762 * with INTx IRQs (for VFIO, this gives 93% perf of the
1763 * full fast path, which is 46% perf boost comparing to
1764 * the INTx slow path).
1766 kvm_resample_fd_insert(virq, resample);
1767 } else {
1768 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1769 irqfd.resamplefd = rfd;
1771 } else if (!assign) {
1772 if (kvm_irqchip_is_split()) {
1773 kvm_resample_fd_remove(virq);
1777 if (!kvm_irqfds_enabled()) {
1778 return -ENOSYS;
1781 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1784 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1786 struct kvm_irq_routing_entry kroute = {};
1787 int virq;
1789 if (!kvm_gsi_routing_enabled()) {
1790 return -ENOSYS;
1793 virq = kvm_irqchip_get_virq(s);
1794 if (virq < 0) {
1795 return virq;
1798 kroute.gsi = virq;
1799 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1800 kroute.flags = 0;
1801 kroute.u.adapter.summary_addr = adapter->summary_addr;
1802 kroute.u.adapter.ind_addr = adapter->ind_addr;
1803 kroute.u.adapter.summary_offset = adapter->summary_offset;
1804 kroute.u.adapter.ind_offset = adapter->ind_offset;
1805 kroute.u.adapter.adapter_id = adapter->adapter_id;
1807 kvm_add_routing_entry(s, &kroute);
1809 return virq;
1812 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1814 struct kvm_irq_routing_entry kroute = {};
1815 int virq;
1817 if (!kvm_gsi_routing_enabled()) {
1818 return -ENOSYS;
1820 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1821 return -ENOSYS;
1823 virq = kvm_irqchip_get_virq(s);
1824 if (virq < 0) {
1825 return virq;
1828 kroute.gsi = virq;
1829 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1830 kroute.flags = 0;
1831 kroute.u.hv_sint.vcpu = vcpu;
1832 kroute.u.hv_sint.sint = sint;
1834 kvm_add_routing_entry(s, &kroute);
1835 kvm_irqchip_commit_routes(s);
1837 return virq;
1840 #else /* !KVM_CAP_IRQ_ROUTING */
1842 void kvm_init_irq_routing(KVMState *s)
1846 void kvm_irqchip_release_virq(KVMState *s, int virq)
1850 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1852 abort();
1855 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1857 return -ENOSYS;
1860 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1862 return -ENOSYS;
1865 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1867 return -ENOSYS;
1870 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1871 EventNotifier *resample, int virq,
1872 bool assign)
1874 abort();
1877 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1879 return -ENOSYS;
1881 #endif /* !KVM_CAP_IRQ_ROUTING */
1883 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1884 EventNotifier *rn, int virq)
1886 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
1889 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1890 int virq)
1892 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
1895 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1896 EventNotifier *rn, qemu_irq irq)
1898 gpointer key, gsi;
1899 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1901 if (!found) {
1902 return -ENXIO;
1904 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1907 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1908 qemu_irq irq)
1910 gpointer key, gsi;
1911 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1913 if (!found) {
1914 return -ENXIO;
1916 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1919 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1921 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1924 static void kvm_irqchip_create(KVMState *s)
1926 int ret;
1928 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
1929 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1931 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1932 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1933 if (ret < 0) {
1934 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1935 exit(1);
1937 } else {
1938 return;
1941 /* First probe and see if there's a arch-specific hook to create the
1942 * in-kernel irqchip for us */
1943 ret = kvm_arch_irqchip_create(s);
1944 if (ret == 0) {
1945 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
1946 perror("Split IRQ chip mode not supported.");
1947 exit(1);
1948 } else {
1949 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1952 if (ret < 0) {
1953 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1954 exit(1);
1957 kvm_kernel_irqchip = true;
1958 /* If we have an in-kernel IRQ chip then we must have asynchronous
1959 * interrupt delivery (though the reverse is not necessarily true)
1961 kvm_async_interrupts_allowed = true;
1962 kvm_halt_in_kernel_allowed = true;
1964 kvm_init_irq_routing(s);
1966 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1969 /* Find number of supported CPUs using the recommended
1970 * procedure from the kernel API documentation to cope with
1971 * older kernels that may be missing capabilities.
1973 static int kvm_recommended_vcpus(KVMState *s)
1975 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1976 return (ret) ? ret : 4;
1979 static int kvm_max_vcpus(KVMState *s)
1981 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1982 return (ret) ? ret : kvm_recommended_vcpus(s);
1985 static int kvm_max_vcpu_id(KVMState *s)
1987 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1988 return (ret) ? ret : kvm_max_vcpus(s);
1991 bool kvm_vcpu_id_is_valid(int vcpu_id)
1993 KVMState *s = KVM_STATE(current_accel());
1994 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1997 static int kvm_init(MachineState *ms)
1999 MachineClass *mc = MACHINE_GET_CLASS(ms);
2000 static const char upgrade_note[] =
2001 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2002 "(see http://sourceforge.net/projects/kvm).\n";
2003 struct {
2004 const char *name;
2005 int num;
2006 } num_cpus[] = {
2007 { "SMP", ms->smp.cpus },
2008 { "hotpluggable", ms->smp.max_cpus },
2009 { NULL, }
2010 }, *nc = num_cpus;
2011 int soft_vcpus_limit, hard_vcpus_limit;
2012 KVMState *s;
2013 const KVMCapabilityInfo *missing_cap;
2014 int ret;
2015 int type = 0;
2016 const char *kvm_type;
2017 uint64_t dirty_log_manual_caps;
2019 s = KVM_STATE(ms->accelerator);
2022 * On systems where the kernel can support different base page
2023 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2024 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2025 * page size for the system though.
2027 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2029 s->sigmask_len = 8;
2031 #ifdef KVM_CAP_SET_GUEST_DEBUG
2032 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2033 #endif
2034 QLIST_INIT(&s->kvm_parked_vcpus);
2035 s->vmfd = -1;
2036 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2037 if (s->fd == -1) {
2038 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2039 ret = -errno;
2040 goto err;
2043 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2044 if (ret < KVM_API_VERSION) {
2045 if (ret >= 0) {
2046 ret = -EINVAL;
2048 fprintf(stderr, "kvm version too old\n");
2049 goto err;
2052 if (ret > KVM_API_VERSION) {
2053 ret = -EINVAL;
2054 fprintf(stderr, "kvm version not supported\n");
2055 goto err;
2058 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2059 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2061 /* If unspecified, use the default value */
2062 if (!s->nr_slots) {
2063 s->nr_slots = 32;
2066 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2067 if (s->nr_as <= 1) {
2068 s->nr_as = 1;
2070 s->as = g_new0(struct KVMAs, s->nr_as);
2072 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
2073 if (mc->kvm_type) {
2074 type = mc->kvm_type(ms, kvm_type);
2075 } else if (kvm_type) {
2076 ret = -EINVAL;
2077 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
2078 goto err;
2081 do {
2082 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2083 } while (ret == -EINTR);
2085 if (ret < 0) {
2086 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2087 strerror(-ret));
2089 #ifdef TARGET_S390X
2090 if (ret == -EINVAL) {
2091 fprintf(stderr,
2092 "Host kernel setup problem detected. Please verify:\n");
2093 fprintf(stderr, "- for kernels supporting the switch_amode or"
2094 " user_mode parameters, whether\n");
2095 fprintf(stderr,
2096 " user space is running in primary address space\n");
2097 fprintf(stderr,
2098 "- for kernels supporting the vm.allocate_pgste sysctl, "
2099 "whether it is enabled\n");
2101 #endif
2102 goto err;
2105 s->vmfd = ret;
2107 /* check the vcpu limits */
2108 soft_vcpus_limit = kvm_recommended_vcpus(s);
2109 hard_vcpus_limit = kvm_max_vcpus(s);
2111 while (nc->name) {
2112 if (nc->num > soft_vcpus_limit) {
2113 warn_report("Number of %s cpus requested (%d) exceeds "
2114 "the recommended cpus supported by KVM (%d)",
2115 nc->name, nc->num, soft_vcpus_limit);
2117 if (nc->num > hard_vcpus_limit) {
2118 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2119 "the maximum cpus supported by KVM (%d)\n",
2120 nc->name, nc->num, hard_vcpus_limit);
2121 exit(1);
2124 nc++;
2127 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2128 if (!missing_cap) {
2129 missing_cap =
2130 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2132 if (missing_cap) {
2133 ret = -EINVAL;
2134 fprintf(stderr, "kvm does not support %s\n%s",
2135 missing_cap->name, upgrade_note);
2136 goto err;
2139 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2140 s->coalesced_pio = s->coalesced_mmio &&
2141 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2143 dirty_log_manual_caps =
2144 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2145 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2146 KVM_DIRTY_LOG_INITIALLY_SET);
2147 s->manual_dirty_log_protect = dirty_log_manual_caps;
2148 if (dirty_log_manual_caps) {
2149 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2150 dirty_log_manual_caps);
2151 if (ret) {
2152 warn_report("Trying to enable capability %"PRIu64" of "
2153 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2154 "Falling back to the legacy mode. ",
2155 dirty_log_manual_caps);
2156 s->manual_dirty_log_protect = 0;
2160 #ifdef KVM_CAP_VCPU_EVENTS
2161 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2162 #endif
2164 s->robust_singlestep =
2165 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2167 #ifdef KVM_CAP_DEBUGREGS
2168 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2169 #endif
2171 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2173 #ifdef KVM_CAP_IRQ_ROUTING
2174 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2175 #endif
2177 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2179 s->irq_set_ioctl = KVM_IRQ_LINE;
2180 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2181 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2184 kvm_readonly_mem_allowed =
2185 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2187 kvm_eventfds_allowed =
2188 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2190 kvm_irqfds_allowed =
2191 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2193 kvm_resamplefds_allowed =
2194 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2196 kvm_vm_attributes_allowed =
2197 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2199 kvm_ioeventfd_any_length_allowed =
2200 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2202 kvm_state = s;
2205 * if memory encryption object is specified then initialize the memory
2206 * encryption context.
2208 if (ms->memory_encryption) {
2209 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
2210 if (!kvm_state->memcrypt_handle) {
2211 ret = -1;
2212 goto err;
2215 kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
2218 ret = kvm_arch_init(ms, s);
2219 if (ret < 0) {
2220 goto err;
2223 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2224 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2227 qemu_register_reset(kvm_unpoison_all, NULL);
2229 if (s->kernel_irqchip_allowed) {
2230 kvm_irqchip_create(s);
2233 if (kvm_eventfds_allowed) {
2234 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2235 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2237 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2238 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2240 kvm_memory_listener_register(s, &s->memory_listener,
2241 &address_space_memory, 0);
2242 memory_listener_register(&kvm_io_listener,
2243 &address_space_io);
2244 memory_listener_register(&kvm_coalesced_pio_listener,
2245 &address_space_io);
2247 s->many_ioeventfds = kvm_check_many_ioeventfds();
2249 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2250 if (!s->sync_mmu) {
2251 ret = ram_block_discard_disable(true);
2252 assert(!ret);
2255 cpus_register_accel(&kvm_cpus);
2256 return 0;
2258 err:
2259 assert(ret < 0);
2260 if (s->vmfd >= 0) {
2261 close(s->vmfd);
2263 if (s->fd != -1) {
2264 close(s->fd);
2266 g_free(s->memory_listener.slots);
2268 return ret;
2271 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2273 s->sigmask_len = sigmask_len;
2276 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2277 int size, uint32_t count)
2279 int i;
2280 uint8_t *ptr = data;
2282 for (i = 0; i < count; i++) {
2283 address_space_rw(&address_space_io, port, attrs,
2284 ptr, size,
2285 direction == KVM_EXIT_IO_OUT);
2286 ptr += size;
2290 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2292 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2293 run->internal.suberror);
2295 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2296 int i;
2298 for (i = 0; i < run->internal.ndata; ++i) {
2299 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2300 i, (uint64_t)run->internal.data[i]);
2303 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2304 fprintf(stderr, "emulation failure\n");
2305 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2306 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2307 return EXCP_INTERRUPT;
2310 /* FIXME: Should trigger a qmp message to let management know
2311 * something went wrong.
2313 return -1;
2316 void kvm_flush_coalesced_mmio_buffer(void)
2318 KVMState *s = kvm_state;
2320 if (s->coalesced_flush_in_progress) {
2321 return;
2324 s->coalesced_flush_in_progress = true;
2326 if (s->coalesced_mmio_ring) {
2327 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2328 while (ring->first != ring->last) {
2329 struct kvm_coalesced_mmio *ent;
2331 ent = &ring->coalesced_mmio[ring->first];
2333 if (ent->pio == 1) {
2334 address_space_write(&address_space_io, ent->phys_addr,
2335 MEMTXATTRS_UNSPECIFIED, ent->data,
2336 ent->len);
2337 } else {
2338 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2340 smp_wmb();
2341 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2345 s->coalesced_flush_in_progress = false;
2348 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2350 if (!cpu->vcpu_dirty) {
2351 kvm_arch_get_registers(cpu);
2352 cpu->vcpu_dirty = true;
2356 void kvm_cpu_synchronize_state(CPUState *cpu)
2358 if (!cpu->vcpu_dirty) {
2359 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2363 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2365 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2366 cpu->vcpu_dirty = false;
2369 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2371 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2374 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2376 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2377 cpu->vcpu_dirty = false;
2380 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2382 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2385 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2387 cpu->vcpu_dirty = true;
2390 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2392 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2395 #ifdef KVM_HAVE_MCE_INJECTION
2396 static __thread void *pending_sigbus_addr;
2397 static __thread int pending_sigbus_code;
2398 static __thread bool have_sigbus_pending;
2399 #endif
2401 static void kvm_cpu_kick(CPUState *cpu)
2403 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2406 static void kvm_cpu_kick_self(void)
2408 if (kvm_immediate_exit) {
2409 kvm_cpu_kick(current_cpu);
2410 } else {
2411 qemu_cpu_kick_self();
2415 static void kvm_eat_signals(CPUState *cpu)
2417 struct timespec ts = { 0, 0 };
2418 siginfo_t siginfo;
2419 sigset_t waitset;
2420 sigset_t chkset;
2421 int r;
2423 if (kvm_immediate_exit) {
2424 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2425 /* Write kvm_run->immediate_exit before the cpu->exit_request
2426 * write in kvm_cpu_exec.
2428 smp_wmb();
2429 return;
2432 sigemptyset(&waitset);
2433 sigaddset(&waitset, SIG_IPI);
2435 do {
2436 r = sigtimedwait(&waitset, &siginfo, &ts);
2437 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2438 perror("sigtimedwait");
2439 exit(1);
2442 r = sigpending(&chkset);
2443 if (r == -1) {
2444 perror("sigpending");
2445 exit(1);
2447 } while (sigismember(&chkset, SIG_IPI));
2450 int kvm_cpu_exec(CPUState *cpu)
2452 struct kvm_run *run = cpu->kvm_run;
2453 int ret, run_ret;
2455 DPRINTF("kvm_cpu_exec()\n");
2457 if (kvm_arch_process_async_events(cpu)) {
2458 qatomic_set(&cpu->exit_request, 0);
2459 return EXCP_HLT;
2462 qemu_mutex_unlock_iothread();
2463 cpu_exec_start(cpu);
2465 do {
2466 MemTxAttrs attrs;
2468 if (cpu->vcpu_dirty) {
2469 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2470 cpu->vcpu_dirty = false;
2473 kvm_arch_pre_run(cpu, run);
2474 if (qatomic_read(&cpu->exit_request)) {
2475 DPRINTF("interrupt exit requested\n");
2477 * KVM requires us to reenter the kernel after IO exits to complete
2478 * instruction emulation. This self-signal will ensure that we
2479 * leave ASAP again.
2481 kvm_cpu_kick_self();
2484 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2485 * Matching barrier in kvm_eat_signals.
2487 smp_rmb();
2489 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2491 attrs = kvm_arch_post_run(cpu, run);
2493 #ifdef KVM_HAVE_MCE_INJECTION
2494 if (unlikely(have_sigbus_pending)) {
2495 qemu_mutex_lock_iothread();
2496 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2497 pending_sigbus_addr);
2498 have_sigbus_pending = false;
2499 qemu_mutex_unlock_iothread();
2501 #endif
2503 if (run_ret < 0) {
2504 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2505 DPRINTF("io window exit\n");
2506 kvm_eat_signals(cpu);
2507 ret = EXCP_INTERRUPT;
2508 break;
2510 fprintf(stderr, "error: kvm run failed %s\n",
2511 strerror(-run_ret));
2512 #ifdef TARGET_PPC
2513 if (run_ret == -EBUSY) {
2514 fprintf(stderr,
2515 "This is probably because your SMT is enabled.\n"
2516 "VCPU can only run on primary threads with all "
2517 "secondary threads offline.\n");
2519 #endif
2520 ret = -1;
2521 break;
2524 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2525 switch (run->exit_reason) {
2526 case KVM_EXIT_IO:
2527 DPRINTF("handle_io\n");
2528 /* Called outside BQL */
2529 kvm_handle_io(run->io.port, attrs,
2530 (uint8_t *)run + run->io.data_offset,
2531 run->io.direction,
2532 run->io.size,
2533 run->io.count);
2534 ret = 0;
2535 break;
2536 case KVM_EXIT_MMIO:
2537 DPRINTF("handle_mmio\n");
2538 /* Called outside BQL */
2539 address_space_rw(&address_space_memory,
2540 run->mmio.phys_addr, attrs,
2541 run->mmio.data,
2542 run->mmio.len,
2543 run->mmio.is_write);
2544 ret = 0;
2545 break;
2546 case KVM_EXIT_IRQ_WINDOW_OPEN:
2547 DPRINTF("irq_window_open\n");
2548 ret = EXCP_INTERRUPT;
2549 break;
2550 case KVM_EXIT_SHUTDOWN:
2551 DPRINTF("shutdown\n");
2552 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2553 ret = EXCP_INTERRUPT;
2554 break;
2555 case KVM_EXIT_UNKNOWN:
2556 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2557 (uint64_t)run->hw.hardware_exit_reason);
2558 ret = -1;
2559 break;
2560 case KVM_EXIT_INTERNAL_ERROR:
2561 ret = kvm_handle_internal_error(cpu, run);
2562 break;
2563 case KVM_EXIT_SYSTEM_EVENT:
2564 switch (run->system_event.type) {
2565 case KVM_SYSTEM_EVENT_SHUTDOWN:
2566 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2567 ret = EXCP_INTERRUPT;
2568 break;
2569 case KVM_SYSTEM_EVENT_RESET:
2570 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2571 ret = EXCP_INTERRUPT;
2572 break;
2573 case KVM_SYSTEM_EVENT_CRASH:
2574 kvm_cpu_synchronize_state(cpu);
2575 qemu_mutex_lock_iothread();
2576 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2577 qemu_mutex_unlock_iothread();
2578 ret = 0;
2579 break;
2580 default:
2581 DPRINTF("kvm_arch_handle_exit\n");
2582 ret = kvm_arch_handle_exit(cpu, run);
2583 break;
2585 break;
2586 default:
2587 DPRINTF("kvm_arch_handle_exit\n");
2588 ret = kvm_arch_handle_exit(cpu, run);
2589 break;
2591 } while (ret == 0);
2593 cpu_exec_end(cpu);
2594 qemu_mutex_lock_iothread();
2596 if (ret < 0) {
2597 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2598 vm_stop(RUN_STATE_INTERNAL_ERROR);
2601 qatomic_set(&cpu->exit_request, 0);
2602 return ret;
2605 int kvm_ioctl(KVMState *s, int type, ...)
2607 int ret;
2608 void *arg;
2609 va_list ap;
2611 va_start(ap, type);
2612 arg = va_arg(ap, void *);
2613 va_end(ap);
2615 trace_kvm_ioctl(type, arg);
2616 ret = ioctl(s->fd, type, arg);
2617 if (ret == -1) {
2618 ret = -errno;
2620 return ret;
2623 int kvm_vm_ioctl(KVMState *s, int type, ...)
2625 int ret;
2626 void *arg;
2627 va_list ap;
2629 va_start(ap, type);
2630 arg = va_arg(ap, void *);
2631 va_end(ap);
2633 trace_kvm_vm_ioctl(type, arg);
2634 ret = ioctl(s->vmfd, type, arg);
2635 if (ret == -1) {
2636 ret = -errno;
2638 return ret;
2641 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2643 int ret;
2644 void *arg;
2645 va_list ap;
2647 va_start(ap, type);
2648 arg = va_arg(ap, void *);
2649 va_end(ap);
2651 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2652 ret = ioctl(cpu->kvm_fd, type, arg);
2653 if (ret == -1) {
2654 ret = -errno;
2656 return ret;
2659 int kvm_device_ioctl(int fd, int type, ...)
2661 int ret;
2662 void *arg;
2663 va_list ap;
2665 va_start(ap, type);
2666 arg = va_arg(ap, void *);
2667 va_end(ap);
2669 trace_kvm_device_ioctl(fd, type, arg);
2670 ret = ioctl(fd, type, arg);
2671 if (ret == -1) {
2672 ret = -errno;
2674 return ret;
2677 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2679 int ret;
2680 struct kvm_device_attr attribute = {
2681 .group = group,
2682 .attr = attr,
2685 if (!kvm_vm_attributes_allowed) {
2686 return 0;
2689 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2690 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2691 return ret ? 0 : 1;
2694 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2696 struct kvm_device_attr attribute = {
2697 .group = group,
2698 .attr = attr,
2699 .flags = 0,
2702 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2705 int kvm_device_access(int fd, int group, uint64_t attr,
2706 void *val, bool write, Error **errp)
2708 struct kvm_device_attr kvmattr;
2709 int err;
2711 kvmattr.flags = 0;
2712 kvmattr.group = group;
2713 kvmattr.attr = attr;
2714 kvmattr.addr = (uintptr_t)val;
2716 err = kvm_device_ioctl(fd,
2717 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2718 &kvmattr);
2719 if (err < 0) {
2720 error_setg_errno(errp, -err,
2721 "KVM_%s_DEVICE_ATTR failed: Group %d "
2722 "attr 0x%016" PRIx64,
2723 write ? "SET" : "GET", group, attr);
2725 return err;
2728 bool kvm_has_sync_mmu(void)
2730 return kvm_state->sync_mmu;
2733 int kvm_has_vcpu_events(void)
2735 return kvm_state->vcpu_events;
2738 int kvm_has_robust_singlestep(void)
2740 return kvm_state->robust_singlestep;
2743 int kvm_has_debugregs(void)
2745 return kvm_state->debugregs;
2748 int kvm_max_nested_state_length(void)
2750 return kvm_state->max_nested_state_len;
2753 int kvm_has_many_ioeventfds(void)
2755 if (!kvm_enabled()) {
2756 return 0;
2758 return kvm_state->many_ioeventfds;
2761 int kvm_has_gsi_routing(void)
2763 #ifdef KVM_CAP_IRQ_ROUTING
2764 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2765 #else
2766 return false;
2767 #endif
2770 int kvm_has_intx_set_mask(void)
2772 return kvm_state->intx_set_mask;
2775 bool kvm_arm_supports_user_irq(void)
2777 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2780 #ifdef KVM_CAP_SET_GUEST_DEBUG
2781 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2782 target_ulong pc)
2784 struct kvm_sw_breakpoint *bp;
2786 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2787 if (bp->pc == pc) {
2788 return bp;
2791 return NULL;
2794 int kvm_sw_breakpoints_active(CPUState *cpu)
2796 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2799 struct kvm_set_guest_debug_data {
2800 struct kvm_guest_debug dbg;
2801 int err;
2804 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2806 struct kvm_set_guest_debug_data *dbg_data =
2807 (struct kvm_set_guest_debug_data *) data.host_ptr;
2809 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2810 &dbg_data->dbg);
2813 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2815 struct kvm_set_guest_debug_data data;
2817 data.dbg.control = reinject_trap;
2819 if (cpu->singlestep_enabled) {
2820 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2822 kvm_arch_update_guest_debug(cpu, &data.dbg);
2824 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2825 RUN_ON_CPU_HOST_PTR(&data));
2826 return data.err;
2829 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2830 target_ulong len, int type)
2832 struct kvm_sw_breakpoint *bp;
2833 int err;
2835 if (type == GDB_BREAKPOINT_SW) {
2836 bp = kvm_find_sw_breakpoint(cpu, addr);
2837 if (bp) {
2838 bp->use_count++;
2839 return 0;
2842 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2843 bp->pc = addr;
2844 bp->use_count = 1;
2845 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2846 if (err) {
2847 g_free(bp);
2848 return err;
2851 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2852 } else {
2853 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2854 if (err) {
2855 return err;
2859 CPU_FOREACH(cpu) {
2860 err = kvm_update_guest_debug(cpu, 0);
2861 if (err) {
2862 return err;
2865 return 0;
2868 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2869 target_ulong len, int type)
2871 struct kvm_sw_breakpoint *bp;
2872 int err;
2874 if (type == GDB_BREAKPOINT_SW) {
2875 bp = kvm_find_sw_breakpoint(cpu, addr);
2876 if (!bp) {
2877 return -ENOENT;
2880 if (bp->use_count > 1) {
2881 bp->use_count--;
2882 return 0;
2885 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2886 if (err) {
2887 return err;
2890 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2891 g_free(bp);
2892 } else {
2893 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2894 if (err) {
2895 return err;
2899 CPU_FOREACH(cpu) {
2900 err = kvm_update_guest_debug(cpu, 0);
2901 if (err) {
2902 return err;
2905 return 0;
2908 void kvm_remove_all_breakpoints(CPUState *cpu)
2910 struct kvm_sw_breakpoint *bp, *next;
2911 KVMState *s = cpu->kvm_state;
2912 CPUState *tmpcpu;
2914 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2915 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2916 /* Try harder to find a CPU that currently sees the breakpoint. */
2917 CPU_FOREACH(tmpcpu) {
2918 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2919 break;
2923 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2924 g_free(bp);
2926 kvm_arch_remove_all_hw_breakpoints();
2928 CPU_FOREACH(cpu) {
2929 kvm_update_guest_debug(cpu, 0);
2933 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2935 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2937 return -EINVAL;
2940 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2941 target_ulong len, int type)
2943 return -EINVAL;
2946 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2947 target_ulong len, int type)
2949 return -EINVAL;
2952 void kvm_remove_all_breakpoints(CPUState *cpu)
2955 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2957 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2959 KVMState *s = kvm_state;
2960 struct kvm_signal_mask *sigmask;
2961 int r;
2963 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2965 sigmask->len = s->sigmask_len;
2966 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2967 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2968 g_free(sigmask);
2970 return r;
2973 static void kvm_ipi_signal(int sig)
2975 if (current_cpu) {
2976 assert(kvm_immediate_exit);
2977 kvm_cpu_kick(current_cpu);
2981 void kvm_init_cpu_signals(CPUState *cpu)
2983 int r;
2984 sigset_t set;
2985 struct sigaction sigact;
2987 memset(&sigact, 0, sizeof(sigact));
2988 sigact.sa_handler = kvm_ipi_signal;
2989 sigaction(SIG_IPI, &sigact, NULL);
2991 pthread_sigmask(SIG_BLOCK, NULL, &set);
2992 #if defined KVM_HAVE_MCE_INJECTION
2993 sigdelset(&set, SIGBUS);
2994 pthread_sigmask(SIG_SETMASK, &set, NULL);
2995 #endif
2996 sigdelset(&set, SIG_IPI);
2997 if (kvm_immediate_exit) {
2998 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2999 } else {
3000 r = kvm_set_signal_mask(cpu, &set);
3002 if (r) {
3003 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3004 exit(1);
3008 /* Called asynchronously in VCPU thread. */
3009 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3011 #ifdef KVM_HAVE_MCE_INJECTION
3012 if (have_sigbus_pending) {
3013 return 1;
3015 have_sigbus_pending = true;
3016 pending_sigbus_addr = addr;
3017 pending_sigbus_code = code;
3018 qatomic_set(&cpu->exit_request, 1);
3019 return 0;
3020 #else
3021 return 1;
3022 #endif
3025 /* Called synchronously (via signalfd) in main thread. */
3026 int kvm_on_sigbus(int code, void *addr)
3028 #ifdef KVM_HAVE_MCE_INJECTION
3029 /* Action required MCE kills the process if SIGBUS is blocked. Because
3030 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3031 * we can only get action optional here.
3033 assert(code != BUS_MCEERR_AR);
3034 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3035 return 0;
3036 #else
3037 return 1;
3038 #endif
3041 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3043 int ret;
3044 struct kvm_create_device create_dev;
3046 create_dev.type = type;
3047 create_dev.fd = -1;
3048 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3050 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3051 return -ENOTSUP;
3054 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3055 if (ret) {
3056 return ret;
3059 return test ? 0 : create_dev.fd;
3062 bool kvm_device_supported(int vmfd, uint64_t type)
3064 struct kvm_create_device create_dev = {
3065 .type = type,
3066 .fd = -1,
3067 .flags = KVM_CREATE_DEVICE_TEST,
3070 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3071 return false;
3074 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3077 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3079 struct kvm_one_reg reg;
3080 int r;
3082 reg.id = id;
3083 reg.addr = (uintptr_t) source;
3084 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3085 if (r) {
3086 trace_kvm_failed_reg_set(id, strerror(-r));
3088 return r;
3091 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3093 struct kvm_one_reg reg;
3094 int r;
3096 reg.id = id;
3097 reg.addr = (uintptr_t) target;
3098 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3099 if (r) {
3100 trace_kvm_failed_reg_get(id, strerror(-r));
3102 return r;
3105 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3106 hwaddr start_addr, hwaddr size)
3108 KVMState *kvm = KVM_STATE(ms->accelerator);
3109 int i;
3111 for (i = 0; i < kvm->nr_as; ++i) {
3112 if (kvm->as[i].as == as && kvm->as[i].ml) {
3113 size = MIN(kvm_max_slot_size, size);
3114 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3115 start_addr, size);
3119 return false;
3122 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3123 const char *name, void *opaque,
3124 Error **errp)
3126 KVMState *s = KVM_STATE(obj);
3127 int64_t value = s->kvm_shadow_mem;
3129 visit_type_int(v, name, &value, errp);
3132 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3133 const char *name, void *opaque,
3134 Error **errp)
3136 KVMState *s = KVM_STATE(obj);
3137 int64_t value;
3139 if (!visit_type_int(v, name, &value, errp)) {
3140 return;
3143 s->kvm_shadow_mem = value;
3146 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3147 const char *name, void *opaque,
3148 Error **errp)
3150 KVMState *s = KVM_STATE(obj);
3151 OnOffSplit mode;
3153 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3154 return;
3156 switch (mode) {
3157 case ON_OFF_SPLIT_ON:
3158 s->kernel_irqchip_allowed = true;
3159 s->kernel_irqchip_required = true;
3160 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3161 break;
3162 case ON_OFF_SPLIT_OFF:
3163 s->kernel_irqchip_allowed = false;
3164 s->kernel_irqchip_required = false;
3165 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3166 break;
3167 case ON_OFF_SPLIT_SPLIT:
3168 s->kernel_irqchip_allowed = true;
3169 s->kernel_irqchip_required = true;
3170 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3171 break;
3172 default:
3173 /* The value was checked in visit_type_OnOffSplit() above. If
3174 * we get here, then something is wrong in QEMU.
3176 abort();
3180 bool kvm_kernel_irqchip_allowed(void)
3182 return kvm_state->kernel_irqchip_allowed;
3185 bool kvm_kernel_irqchip_required(void)
3187 return kvm_state->kernel_irqchip_required;
3190 bool kvm_kernel_irqchip_split(void)
3192 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3195 static void kvm_accel_instance_init(Object *obj)
3197 KVMState *s = KVM_STATE(obj);
3199 s->kvm_shadow_mem = -1;
3200 s->kernel_irqchip_allowed = true;
3201 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3204 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3206 AccelClass *ac = ACCEL_CLASS(oc);
3207 ac->name = "KVM";
3208 ac->init_machine = kvm_init;
3209 ac->has_memory = kvm_accel_has_memory;
3210 ac->allowed = &kvm_allowed;
3212 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3213 NULL, kvm_set_kernel_irqchip,
3214 NULL, NULL);
3215 object_class_property_set_description(oc, "kernel-irqchip",
3216 "Configure KVM in-kernel irqchip");
3218 object_class_property_add(oc, "kvm-shadow-mem", "int",
3219 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3220 NULL, NULL);
3221 object_class_property_set_description(oc, "kvm-shadow-mem",
3222 "KVM shadow MMU size");
3225 static const TypeInfo kvm_accel_type = {
3226 .name = TYPE_KVM_ACCEL,
3227 .parent = TYPE_ACCEL,
3228 .instance_init = kvm_accel_instance_init,
3229 .class_init = kvm_accel_class_init,
3230 .instance_size = sizeof(KVMState),
3233 static void kvm_type_init(void)
3235 type_register_static(&kvm_accel_type);
3238 type_init(kvm_type_init);