spapr_cpu_core: migrate per-CPU data
[qemu/ar7.git] / hw / ppc / spapr.c
blob3174468fc54e7321de4c73a033080a7ee34f447b
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/ppc/xics.h"
58 #include "hw/pci/msi.h"
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
65 #include "exec/address-spaces.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
78 #include <libfdt.h>
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_XICP 0x00001111
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
108 assert(spapr->vsmt);
109 return
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
113 PowerPCCPU *cpu)
115 assert(spapr->vsmt);
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
119 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
120 const char *type_ics,
121 int nr_irqs, Error **errp)
123 Error *local_err = NULL;
124 Object *obj;
126 obj = object_new(type_ics);
127 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
128 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
129 &error_abort);
130 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
131 if (local_err) {
132 goto error;
134 object_property_set_bool(obj, true, "realized", &local_err);
135 if (local_err) {
136 goto error;
139 return ICS_SIMPLE(obj);
141 error:
142 error_propagate(errp, local_err);
143 return NULL;
146 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
148 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
149 * and newer QEMUs don't even have them. In both cases, we don't want
150 * to send anything on the wire.
152 return false;
155 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
156 .name = "icp/server",
157 .version_id = 1,
158 .minimum_version_id = 1,
159 .needed = pre_2_10_vmstate_dummy_icp_needed,
160 .fields = (VMStateField[]) {
161 VMSTATE_UNUSED(4), /* uint32_t xirr */
162 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
163 VMSTATE_UNUSED(1), /* uint8_t mfrr */
164 VMSTATE_END_OF_LIST()
168 static void pre_2_10_vmstate_register_dummy_icp(int i)
170 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
171 (void *)(uintptr_t) i);
174 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
176 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
177 (void *)(uintptr_t) i);
180 static int xics_max_server_number(sPAPRMachineState *spapr)
182 assert(spapr->vsmt);
183 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
186 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
188 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
189 Error *local_err = NULL;
191 if (kvm_enabled()) {
192 if (machine_kernel_irqchip_allowed(machine) &&
193 !xics_kvm_init(spapr, &local_err)) {
194 spapr->icp_type = TYPE_KVM_ICP;
195 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs,
196 &local_err);
198 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
199 error_prepend(&local_err,
200 "kernel_irqchip requested but unavailable: ");
201 goto error;
203 error_free(local_err);
204 local_err = NULL;
207 if (!spapr->ics) {
208 xics_spapr_init(spapr);
209 spapr->icp_type = TYPE_ICP;
210 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs,
211 &local_err);
214 error:
215 error_propagate(errp, local_err);
218 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
219 int smt_threads)
221 int i, ret = 0;
222 uint32_t servers_prop[smt_threads];
223 uint32_t gservers_prop[smt_threads * 2];
224 int index = spapr_get_vcpu_id(cpu);
226 if (cpu->compat_pvr) {
227 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
228 if (ret < 0) {
229 return ret;
233 /* Build interrupt servers and gservers properties */
234 for (i = 0; i < smt_threads; i++) {
235 servers_prop[i] = cpu_to_be32(index + i);
236 /* Hack, direct the group queues back to cpu 0 */
237 gservers_prop[i*2] = cpu_to_be32(index + i);
238 gservers_prop[i*2 + 1] = 0;
240 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
241 servers_prop, sizeof(servers_prop));
242 if (ret < 0) {
243 return ret;
245 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
246 gservers_prop, sizeof(gservers_prop));
248 return ret;
251 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
253 int index = spapr_get_vcpu_id(cpu);
254 uint32_t associativity[] = {cpu_to_be32(0x5),
255 cpu_to_be32(0x0),
256 cpu_to_be32(0x0),
257 cpu_to_be32(0x0),
258 cpu_to_be32(cpu->node_id),
259 cpu_to_be32(index)};
261 /* Advertise NUMA via ibm,associativity */
262 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
263 sizeof(associativity));
266 /* Populate the "ibm,pa-features" property */
267 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
268 PowerPCCPU *cpu,
269 void *fdt, int offset,
270 bool legacy_guest)
272 uint8_t pa_features_206[] = { 6, 0,
273 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
274 uint8_t pa_features_207[] = { 24, 0,
275 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
276 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
277 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
278 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
279 uint8_t pa_features_300[] = { 66, 0,
280 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
281 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
282 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
283 /* 6: DS207 */
284 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
285 /* 16: Vector */
286 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
287 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
288 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
289 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
290 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
291 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
292 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
293 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
294 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
295 /* 42: PM, 44: PC RA, 46: SC vec'd */
296 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
297 /* 48: SIMD, 50: QP BFP, 52: String */
298 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
299 /* 54: DecFP, 56: DecI, 58: SHA */
300 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
301 /* 60: NM atomic, 62: RNG */
302 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
304 uint8_t *pa_features = NULL;
305 size_t pa_size;
307 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
308 pa_features = pa_features_206;
309 pa_size = sizeof(pa_features_206);
311 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
312 pa_features = pa_features_207;
313 pa_size = sizeof(pa_features_207);
315 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
316 pa_features = pa_features_300;
317 pa_size = sizeof(pa_features_300);
319 if (!pa_features) {
320 return;
323 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
325 * Note: we keep CI large pages off by default because a 64K capable
326 * guest provisioned with large pages might otherwise try to map a qemu
327 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
328 * even if that qemu runs on a 4k host.
329 * We dd this bit back here if we are confident this is not an issue
331 pa_features[3] |= 0x20;
333 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
334 pa_features[24] |= 0x80; /* Transactional memory support */
336 if (legacy_guest && pa_size > 40) {
337 /* Workaround for broken kernels that attempt (guest) radix
338 * mode when they can't handle it, if they see the radix bit set
339 * in pa-features. So hide it from them. */
340 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
343 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
346 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
348 int ret = 0, offset, cpus_offset;
349 CPUState *cs;
350 char cpu_model[32];
351 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
353 CPU_FOREACH(cs) {
354 PowerPCCPU *cpu = POWERPC_CPU(cs);
355 DeviceClass *dc = DEVICE_GET_CLASS(cs);
356 int index = spapr_get_vcpu_id(cpu);
357 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
359 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
360 continue;
363 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
365 cpus_offset = fdt_path_offset(fdt, "/cpus");
366 if (cpus_offset < 0) {
367 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
368 if (cpus_offset < 0) {
369 return cpus_offset;
372 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
373 if (offset < 0) {
374 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
375 if (offset < 0) {
376 return offset;
380 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
381 pft_size_prop, sizeof(pft_size_prop));
382 if (ret < 0) {
383 return ret;
386 if (nb_numa_nodes > 1) {
387 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
388 if (ret < 0) {
389 return ret;
393 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
394 if (ret < 0) {
395 return ret;
398 spapr_populate_pa_features(spapr, cpu, fdt, offset,
399 spapr->cas_legacy_guest_workaround);
401 return ret;
404 static hwaddr spapr_node0_size(MachineState *machine)
406 if (nb_numa_nodes) {
407 int i;
408 for (i = 0; i < nb_numa_nodes; ++i) {
409 if (numa_info[i].node_mem) {
410 return MIN(pow2floor(numa_info[i].node_mem),
411 machine->ram_size);
415 return machine->ram_size;
418 static void add_str(GString *s, const gchar *s1)
420 g_string_append_len(s, s1, strlen(s1) + 1);
423 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
424 hwaddr size)
426 uint32_t associativity[] = {
427 cpu_to_be32(0x4), /* length */
428 cpu_to_be32(0x0), cpu_to_be32(0x0),
429 cpu_to_be32(0x0), cpu_to_be32(nodeid)
431 char mem_name[32];
432 uint64_t mem_reg_property[2];
433 int off;
435 mem_reg_property[0] = cpu_to_be64(start);
436 mem_reg_property[1] = cpu_to_be64(size);
438 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
439 off = fdt_add_subnode(fdt, 0, mem_name);
440 _FDT(off);
441 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
442 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
443 sizeof(mem_reg_property))));
444 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
445 sizeof(associativity))));
446 return off;
449 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
451 MachineState *machine = MACHINE(spapr);
452 hwaddr mem_start, node_size;
453 int i, nb_nodes = nb_numa_nodes;
454 NodeInfo *nodes = numa_info;
455 NodeInfo ramnode;
457 /* No NUMA nodes, assume there is just one node with whole RAM */
458 if (!nb_numa_nodes) {
459 nb_nodes = 1;
460 ramnode.node_mem = machine->ram_size;
461 nodes = &ramnode;
464 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
465 if (!nodes[i].node_mem) {
466 continue;
468 if (mem_start >= machine->ram_size) {
469 node_size = 0;
470 } else {
471 node_size = nodes[i].node_mem;
472 if (node_size > machine->ram_size - mem_start) {
473 node_size = machine->ram_size - mem_start;
476 if (!mem_start) {
477 /* spapr_machine_init() checks for rma_size <= node0_size
478 * already */
479 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
480 mem_start += spapr->rma_size;
481 node_size -= spapr->rma_size;
483 for ( ; node_size; ) {
484 hwaddr sizetmp = pow2floor(node_size);
486 /* mem_start != 0 here */
487 if (ctzl(mem_start) < ctzl(sizetmp)) {
488 sizetmp = 1ULL << ctzl(mem_start);
491 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
492 node_size -= sizetmp;
493 mem_start += sizetmp;
497 return 0;
500 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
501 sPAPRMachineState *spapr)
503 PowerPCCPU *cpu = POWERPC_CPU(cs);
504 CPUPPCState *env = &cpu->env;
505 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
506 int index = spapr_get_vcpu_id(cpu);
507 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
508 0xffffffff, 0xffffffff};
509 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
510 : SPAPR_TIMEBASE_FREQ;
511 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
512 uint32_t page_sizes_prop[64];
513 size_t page_sizes_prop_size;
514 uint32_t vcpus_per_socket = smp_threads * smp_cores;
515 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
516 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
517 sPAPRDRConnector *drc;
518 int drc_index;
519 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
520 int i;
522 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
523 if (drc) {
524 drc_index = spapr_drc_index(drc);
525 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
528 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
529 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
531 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
532 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
533 env->dcache_line_size)));
534 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
535 env->dcache_line_size)));
536 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
537 env->icache_line_size)));
538 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
539 env->icache_line_size)));
541 if (pcc->l1_dcache_size) {
542 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
543 pcc->l1_dcache_size)));
544 } else {
545 warn_report("Unknown L1 dcache size for cpu");
547 if (pcc->l1_icache_size) {
548 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
549 pcc->l1_icache_size)));
550 } else {
551 warn_report("Unknown L1 icache size for cpu");
554 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
555 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
556 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
557 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
558 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
559 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
561 if (env->spr_cb[SPR_PURR].oea_read) {
562 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
565 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
566 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
567 segs, sizeof(segs))));
570 /* Advertise VSX (vector extensions) if available
571 * 1 == VMX / Altivec available
572 * 2 == VSX available
574 * Only CPUs for which we create core types in spapr_cpu_core.c
575 * are possible, and all of those have VMX */
576 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
577 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
578 } else {
579 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
582 /* Advertise DFP (Decimal Floating Point) if available
583 * 0 / no property == no DFP
584 * 1 == DFP available */
585 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
586 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
589 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
590 sizeof(page_sizes_prop));
591 if (page_sizes_prop_size) {
592 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
593 page_sizes_prop, page_sizes_prop_size)));
596 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
598 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
599 cs->cpu_index / vcpus_per_socket)));
601 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
602 pft_size_prop, sizeof(pft_size_prop))));
604 if (nb_numa_nodes > 1) {
605 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
608 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
610 if (pcc->radix_page_info) {
611 for (i = 0; i < pcc->radix_page_info->count; i++) {
612 radix_AP_encodings[i] =
613 cpu_to_be32(pcc->radix_page_info->entries[i]);
615 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
616 radix_AP_encodings,
617 pcc->radix_page_info->count *
618 sizeof(radix_AP_encodings[0]))));
622 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
624 CPUState *cs;
625 int cpus_offset;
626 char *nodename;
628 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
629 _FDT(cpus_offset);
630 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
631 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
634 * We walk the CPUs in reverse order to ensure that CPU DT nodes
635 * created by fdt_add_subnode() end up in the right order in FDT
636 * for the guest kernel the enumerate the CPUs correctly.
638 CPU_FOREACH_REVERSE(cs) {
639 PowerPCCPU *cpu = POWERPC_CPU(cs);
640 int index = spapr_get_vcpu_id(cpu);
641 DeviceClass *dc = DEVICE_GET_CLASS(cs);
642 int offset;
644 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
645 continue;
648 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
649 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
650 g_free(nodename);
651 _FDT(offset);
652 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
657 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
659 MemoryDeviceInfoList *info;
661 for (info = list; info; info = info->next) {
662 MemoryDeviceInfo *value = info->value;
664 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
665 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
667 if (pcdimm_info->addr >= addr &&
668 addr < (pcdimm_info->addr + pcdimm_info->size)) {
669 return pcdimm_info->node;
674 return -1;
677 struct sPAPRDrconfCellV2 {
678 uint32_t seq_lmbs;
679 uint64_t base_addr;
680 uint32_t drc_index;
681 uint32_t aa_index;
682 uint32_t flags;
683 } QEMU_PACKED;
685 typedef struct DrconfCellQueue {
686 struct sPAPRDrconfCellV2 cell;
687 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
688 } DrconfCellQueue;
690 static DrconfCellQueue *
691 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
692 uint32_t drc_index, uint32_t aa_index,
693 uint32_t flags)
695 DrconfCellQueue *elem;
697 elem = g_malloc0(sizeof(*elem));
698 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
699 elem->cell.base_addr = cpu_to_be64(base_addr);
700 elem->cell.drc_index = cpu_to_be32(drc_index);
701 elem->cell.aa_index = cpu_to_be32(aa_index);
702 elem->cell.flags = cpu_to_be32(flags);
704 return elem;
707 /* ibm,dynamic-memory-v2 */
708 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
709 int offset, MemoryDeviceInfoList *dimms)
711 MachineState *machine = MACHINE(spapr);
712 uint8_t *int_buf, *cur_index, buf_len;
713 int ret;
714 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
715 uint64_t addr, cur_addr, size;
716 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
717 uint64_t mem_end = machine->device_memory->base +
718 memory_region_size(&machine->device_memory->mr);
719 uint32_t node, nr_entries = 0;
720 sPAPRDRConnector *drc;
721 DrconfCellQueue *elem, *next;
722 MemoryDeviceInfoList *info;
723 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
724 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
726 /* Entry to cover RAM and the gap area */
727 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
728 SPAPR_LMB_FLAGS_RESERVED |
729 SPAPR_LMB_FLAGS_DRC_INVALID);
730 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
731 nr_entries++;
733 cur_addr = machine->device_memory->base;
734 for (info = dimms; info; info = info->next) {
735 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
737 addr = di->addr;
738 size = di->size;
739 node = di->node;
741 /* Entry for hot-pluggable area */
742 if (cur_addr < addr) {
743 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
744 g_assert(drc);
745 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
746 cur_addr, spapr_drc_index(drc), -1, 0);
747 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
748 nr_entries++;
751 /* Entry for DIMM */
752 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
753 g_assert(drc);
754 elem = spapr_get_drconf_cell(size / lmb_size, addr,
755 spapr_drc_index(drc), node,
756 SPAPR_LMB_FLAGS_ASSIGNED);
757 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
758 nr_entries++;
759 cur_addr = addr + size;
762 /* Entry for remaining hotpluggable area */
763 if (cur_addr < mem_end) {
764 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
765 g_assert(drc);
766 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
767 cur_addr, spapr_drc_index(drc), -1, 0);
768 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
769 nr_entries++;
772 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
773 int_buf = cur_index = g_malloc0(buf_len);
774 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
775 cur_index += sizeof(nr_entries);
777 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
778 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
779 cur_index += sizeof(elem->cell);
780 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
781 g_free(elem);
784 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
785 g_free(int_buf);
786 if (ret < 0) {
787 return -1;
789 return 0;
792 /* ibm,dynamic-memory */
793 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
794 int offset, MemoryDeviceInfoList *dimms)
796 MachineState *machine = MACHINE(spapr);
797 int i, ret;
798 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
799 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
800 uint32_t nr_lmbs = (machine->device_memory->base +
801 memory_region_size(&machine->device_memory->mr)) /
802 lmb_size;
803 uint32_t *int_buf, *cur_index, buf_len;
806 * Allocate enough buffer size to fit in ibm,dynamic-memory
808 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
809 cur_index = int_buf = g_malloc0(buf_len);
810 int_buf[0] = cpu_to_be32(nr_lmbs);
811 cur_index++;
812 for (i = 0; i < nr_lmbs; i++) {
813 uint64_t addr = i * lmb_size;
814 uint32_t *dynamic_memory = cur_index;
816 if (i >= device_lmb_start) {
817 sPAPRDRConnector *drc;
819 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
820 g_assert(drc);
822 dynamic_memory[0] = cpu_to_be32(addr >> 32);
823 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
824 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
825 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
826 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
827 if (memory_region_present(get_system_memory(), addr)) {
828 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
829 } else {
830 dynamic_memory[5] = cpu_to_be32(0);
832 } else {
834 * LMB information for RMA, boot time RAM and gap b/n RAM and
835 * device memory region -- all these are marked as reserved
836 * and as having no valid DRC.
838 dynamic_memory[0] = cpu_to_be32(addr >> 32);
839 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
840 dynamic_memory[2] = cpu_to_be32(0);
841 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
842 dynamic_memory[4] = cpu_to_be32(-1);
843 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
844 SPAPR_LMB_FLAGS_DRC_INVALID);
847 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
849 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
850 g_free(int_buf);
851 if (ret < 0) {
852 return -1;
854 return 0;
858 * Adds ibm,dynamic-reconfiguration-memory node.
859 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
860 * of this device tree node.
862 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
864 MachineState *machine = MACHINE(spapr);
865 int ret, i, offset;
866 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
867 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
868 uint32_t *int_buf, *cur_index, buf_len;
869 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
870 MemoryDeviceInfoList *dimms = NULL;
873 * Don't create the node if there is no device memory
875 if (machine->ram_size == machine->maxram_size) {
876 return 0;
879 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
881 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
882 sizeof(prop_lmb_size));
883 if (ret < 0) {
884 return ret;
887 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
888 if (ret < 0) {
889 return ret;
892 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
893 if (ret < 0) {
894 return ret;
897 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
898 dimms = qmp_memory_device_list();
899 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
900 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
901 } else {
902 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
904 qapi_free_MemoryDeviceInfoList(dimms);
906 if (ret < 0) {
907 return ret;
910 /* ibm,associativity-lookup-arrays */
911 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
912 cur_index = int_buf = g_malloc0(buf_len);
914 cur_index = int_buf;
915 int_buf[0] = cpu_to_be32(nr_nodes);
916 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
917 cur_index += 2;
918 for (i = 0; i < nr_nodes; i++) {
919 uint32_t associativity[] = {
920 cpu_to_be32(0x0),
921 cpu_to_be32(0x0),
922 cpu_to_be32(0x0),
923 cpu_to_be32(i)
925 memcpy(cur_index, associativity, sizeof(associativity));
926 cur_index += 4;
928 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
929 (cur_index - int_buf) * sizeof(uint32_t));
930 g_free(int_buf);
932 return ret;
935 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
936 sPAPROptionVector *ov5_updates)
938 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
939 int ret = 0, offset;
941 /* Generate ibm,dynamic-reconfiguration-memory node if required */
942 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
943 g_assert(smc->dr_lmb_enabled);
944 ret = spapr_populate_drconf_memory(spapr, fdt);
945 if (ret) {
946 goto out;
950 offset = fdt_path_offset(fdt, "/chosen");
951 if (offset < 0) {
952 offset = fdt_add_subnode(fdt, 0, "chosen");
953 if (offset < 0) {
954 return offset;
957 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
958 "ibm,architecture-vec-5");
960 out:
961 return ret;
964 static bool spapr_hotplugged_dev_before_cas(void)
966 Object *drc_container, *obj;
967 ObjectProperty *prop;
968 ObjectPropertyIterator iter;
970 drc_container = container_get(object_get_root(), "/dr-connector");
971 object_property_iter_init(&iter, drc_container);
972 while ((prop = object_property_iter_next(&iter))) {
973 if (!strstart(prop->type, "link<", NULL)) {
974 continue;
976 obj = object_property_get_link(drc_container, prop->name, NULL);
977 if (spapr_drc_needed(obj)) {
978 return true;
981 return false;
984 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
985 target_ulong addr, target_ulong size,
986 sPAPROptionVector *ov5_updates)
988 void *fdt, *fdt_skel;
989 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
991 if (spapr_hotplugged_dev_before_cas()) {
992 return 1;
995 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
996 error_report("SLOF provided an unexpected CAS buffer size "
997 TARGET_FMT_lu " (min: %zu, max: %u)",
998 size, sizeof(hdr), FW_MAX_SIZE);
999 exit(EXIT_FAILURE);
1002 size -= sizeof(hdr);
1004 /* Create skeleton */
1005 fdt_skel = g_malloc0(size);
1006 _FDT((fdt_create(fdt_skel, size)));
1007 _FDT((fdt_finish_reservemap(fdt_skel)));
1008 _FDT((fdt_begin_node(fdt_skel, "")));
1009 _FDT((fdt_end_node(fdt_skel)));
1010 _FDT((fdt_finish(fdt_skel)));
1011 fdt = g_malloc0(size);
1012 _FDT((fdt_open_into(fdt_skel, fdt, size)));
1013 g_free(fdt_skel);
1015 /* Fixup cpu nodes */
1016 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1018 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1019 return -1;
1022 /* Pack resulting tree */
1023 _FDT((fdt_pack(fdt)));
1025 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1026 trace_spapr_cas_failed(size);
1027 return -1;
1030 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1031 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1032 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1033 g_free(fdt);
1035 return 0;
1038 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1040 int rtas;
1041 GString *hypertas = g_string_sized_new(256);
1042 GString *qemu_hypertas = g_string_sized_new(256);
1043 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1044 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1045 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1046 uint32_t lrdr_capacity[] = {
1047 cpu_to_be32(max_device_addr >> 32),
1048 cpu_to_be32(max_device_addr & 0xffffffff),
1049 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1050 cpu_to_be32(max_cpus / smp_threads),
1052 uint32_t maxdomains[] = {
1053 cpu_to_be32(4),
1054 cpu_to_be32(0),
1055 cpu_to_be32(0),
1056 cpu_to_be32(0),
1057 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes - 1 : 0),
1060 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1062 /* hypertas */
1063 add_str(hypertas, "hcall-pft");
1064 add_str(hypertas, "hcall-term");
1065 add_str(hypertas, "hcall-dabr");
1066 add_str(hypertas, "hcall-interrupt");
1067 add_str(hypertas, "hcall-tce");
1068 add_str(hypertas, "hcall-vio");
1069 add_str(hypertas, "hcall-splpar");
1070 add_str(hypertas, "hcall-bulk");
1071 add_str(hypertas, "hcall-set-mode");
1072 add_str(hypertas, "hcall-sprg0");
1073 add_str(hypertas, "hcall-copy");
1074 add_str(hypertas, "hcall-debug");
1075 add_str(qemu_hypertas, "hcall-memop1");
1077 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1078 add_str(hypertas, "hcall-multi-tce");
1081 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1082 add_str(hypertas, "hcall-hpt-resize");
1085 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1086 hypertas->str, hypertas->len));
1087 g_string_free(hypertas, TRUE);
1088 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1089 qemu_hypertas->str, qemu_hypertas->len));
1090 g_string_free(qemu_hypertas, TRUE);
1092 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1093 refpoints, sizeof(refpoints)));
1095 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1096 maxdomains, sizeof(maxdomains)));
1098 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1099 RTAS_ERROR_LOG_MAX));
1100 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1101 RTAS_EVENT_SCAN_RATE));
1103 g_assert(msi_nonbroken);
1104 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1107 * According to PAPR, rtas ibm,os-term does not guarantee a return
1108 * back to the guest cpu.
1110 * While an additional ibm,extended-os-term property indicates
1111 * that rtas call return will always occur. Set this property.
1113 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1115 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1116 lrdr_capacity, sizeof(lrdr_capacity)));
1118 spapr_dt_rtas_tokens(fdt, rtas);
1121 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
1122 * that the guest may request and thus the valid values for bytes 24..26 of
1123 * option vector 5: */
1124 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
1126 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1128 char val[2 * 4] = {
1129 23, 0x00, /* Xive mode, filled in below. */
1130 24, 0x00, /* Hash/Radix, filled in below. */
1131 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1132 26, 0x40, /* Radix options: GTSE == yes. */
1135 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1136 first_ppc_cpu->compat_pvr)) {
1137 /* If we're in a pre POWER9 compat mode then the guest should do hash */
1138 val[3] = 0x00; /* Hash */
1139 } else if (kvm_enabled()) {
1140 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1141 val[3] = 0x80; /* OV5_MMU_BOTH */
1142 } else if (kvmppc_has_cap_mmu_radix()) {
1143 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1144 } else {
1145 val[3] = 0x00; /* Hash */
1147 } else {
1148 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1149 val[3] = 0xC0;
1151 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1152 val, sizeof(val)));
1155 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1157 MachineState *machine = MACHINE(spapr);
1158 int chosen;
1159 const char *boot_device = machine->boot_order;
1160 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1161 size_t cb = 0;
1162 char *bootlist = get_boot_devices_list(&cb, true);
1164 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1166 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1167 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1168 spapr->initrd_base));
1169 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1170 spapr->initrd_base + spapr->initrd_size));
1172 if (spapr->kernel_size) {
1173 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1174 cpu_to_be64(spapr->kernel_size) };
1176 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1177 &kprop, sizeof(kprop)));
1178 if (spapr->kernel_le) {
1179 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1182 if (boot_menu) {
1183 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1185 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1186 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1187 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1189 if (cb && bootlist) {
1190 int i;
1192 for (i = 0; i < cb; i++) {
1193 if (bootlist[i] == '\n') {
1194 bootlist[i] = ' ';
1197 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1200 if (boot_device && strlen(boot_device)) {
1201 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1204 if (!spapr->has_graphics && stdout_path) {
1206 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1207 * kernel. New platforms should only use the "stdout-path" property. Set
1208 * the new property and continue using older property to remain
1209 * compatible with the existing firmware.
1211 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1212 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1215 spapr_dt_ov5_platform_support(fdt, chosen);
1217 g_free(stdout_path);
1218 g_free(bootlist);
1221 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1223 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1224 * KVM to work under pHyp with some guest co-operation */
1225 int hypervisor;
1226 uint8_t hypercall[16];
1228 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1229 /* indicate KVM hypercall interface */
1230 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1231 if (kvmppc_has_cap_fixup_hcalls()) {
1233 * Older KVM versions with older guest kernels were broken
1234 * with the magic page, don't allow the guest to map it.
1236 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1237 sizeof(hypercall))) {
1238 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1239 hypercall, sizeof(hypercall)));
1244 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1245 hwaddr rtas_addr,
1246 hwaddr rtas_size)
1248 MachineState *machine = MACHINE(spapr);
1249 MachineClass *mc = MACHINE_GET_CLASS(machine);
1250 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1251 int ret;
1252 void *fdt;
1253 sPAPRPHBState *phb;
1254 char *buf;
1256 fdt = g_malloc0(FDT_MAX_SIZE);
1257 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1259 /* Root node */
1260 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1261 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1262 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1265 * Add info to guest to indentify which host is it being run on
1266 * and what is the uuid of the guest
1268 if (kvmppc_get_host_model(&buf)) {
1269 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1270 g_free(buf);
1272 if (kvmppc_get_host_serial(&buf)) {
1273 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1274 g_free(buf);
1277 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1279 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1280 if (qemu_uuid_set) {
1281 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1283 g_free(buf);
1285 if (qemu_get_vm_name()) {
1286 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1287 qemu_get_vm_name()));
1290 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1291 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1293 /* /interrupt controller */
1294 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1296 ret = spapr_populate_memory(spapr, fdt);
1297 if (ret < 0) {
1298 error_report("couldn't setup memory nodes in fdt");
1299 exit(1);
1302 /* /vdevice */
1303 spapr_dt_vdevice(spapr->vio_bus, fdt);
1305 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1306 ret = spapr_rng_populate_dt(fdt);
1307 if (ret < 0) {
1308 error_report("could not set up rng device in the fdt");
1309 exit(1);
1313 QLIST_FOREACH(phb, &spapr->phbs, list) {
1314 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1315 if (ret < 0) {
1316 error_report("couldn't setup PCI devices in fdt");
1317 exit(1);
1321 /* cpus */
1322 spapr_populate_cpus_dt_node(fdt, spapr);
1324 if (smc->dr_lmb_enabled) {
1325 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1328 if (mc->has_hotpluggable_cpus) {
1329 int offset = fdt_path_offset(fdt, "/cpus");
1330 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1331 SPAPR_DR_CONNECTOR_TYPE_CPU);
1332 if (ret < 0) {
1333 error_report("Couldn't set up CPU DR device tree properties");
1334 exit(1);
1338 /* /event-sources */
1339 spapr_dt_events(spapr, fdt);
1341 /* /rtas */
1342 spapr_dt_rtas(spapr, fdt);
1344 /* /chosen */
1345 spapr_dt_chosen(spapr, fdt);
1347 /* /hypervisor */
1348 if (kvm_enabled()) {
1349 spapr_dt_hypervisor(spapr, fdt);
1352 /* Build memory reserve map */
1353 if (spapr->kernel_size) {
1354 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1356 if (spapr->initrd_size) {
1357 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1360 /* ibm,client-architecture-support updates */
1361 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1362 if (ret < 0) {
1363 error_report("couldn't setup CAS properties fdt");
1364 exit(1);
1367 return fdt;
1370 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1372 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1375 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1376 PowerPCCPU *cpu)
1378 CPUPPCState *env = &cpu->env;
1380 /* The TCG path should also be holding the BQL at this point */
1381 g_assert(qemu_mutex_iothread_locked());
1383 if (msr_pr) {
1384 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1385 env->gpr[3] = H_PRIVILEGE;
1386 } else {
1387 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1391 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1393 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1395 return spapr->patb_entry;
1398 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1399 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1400 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1401 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1402 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1405 * Get the fd to access the kernel htab, re-opening it if necessary
1407 static int get_htab_fd(sPAPRMachineState *spapr)
1409 Error *local_err = NULL;
1411 if (spapr->htab_fd >= 0) {
1412 return spapr->htab_fd;
1415 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1416 if (spapr->htab_fd < 0) {
1417 error_report_err(local_err);
1420 return spapr->htab_fd;
1423 void close_htab_fd(sPAPRMachineState *spapr)
1425 if (spapr->htab_fd >= 0) {
1426 close(spapr->htab_fd);
1428 spapr->htab_fd = -1;
1431 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1433 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1435 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1438 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1440 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1442 assert(kvm_enabled());
1444 if (!spapr->htab) {
1445 return 0;
1448 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1451 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1452 hwaddr ptex, int n)
1454 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1455 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1457 if (!spapr->htab) {
1459 * HTAB is controlled by KVM. Fetch into temporary buffer
1461 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1462 kvmppc_read_hptes(hptes, ptex, n);
1463 return hptes;
1467 * HTAB is controlled by QEMU. Just point to the internally
1468 * accessible PTEG.
1470 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1473 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1474 const ppc_hash_pte64_t *hptes,
1475 hwaddr ptex, int n)
1477 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1479 if (!spapr->htab) {
1480 g_free((void *)hptes);
1483 /* Nothing to do for qemu managed HPT */
1486 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1487 uint64_t pte0, uint64_t pte1)
1489 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1490 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1492 if (!spapr->htab) {
1493 kvmppc_write_hpte(ptex, pte0, pte1);
1494 } else {
1495 stq_p(spapr->htab + offset, pte0);
1496 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1500 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1502 int shift;
1504 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1505 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1506 * that's much more than is needed for Linux guests */
1507 shift = ctz64(pow2ceil(ramsize)) - 7;
1508 shift = MAX(shift, 18); /* Minimum architected size */
1509 shift = MIN(shift, 46); /* Maximum architected size */
1510 return shift;
1513 void spapr_free_hpt(sPAPRMachineState *spapr)
1515 g_free(spapr->htab);
1516 spapr->htab = NULL;
1517 spapr->htab_shift = 0;
1518 close_htab_fd(spapr);
1521 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1522 Error **errp)
1524 long rc;
1526 /* Clean up any HPT info from a previous boot */
1527 spapr_free_hpt(spapr);
1529 rc = kvmppc_reset_htab(shift);
1530 if (rc < 0) {
1531 /* kernel-side HPT needed, but couldn't allocate one */
1532 error_setg_errno(errp, errno,
1533 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1534 shift);
1535 /* This is almost certainly fatal, but if the caller really
1536 * wants to carry on with shift == 0, it's welcome to try */
1537 } else if (rc > 0) {
1538 /* kernel-side HPT allocated */
1539 if (rc != shift) {
1540 error_setg(errp,
1541 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1542 shift, rc);
1545 spapr->htab_shift = shift;
1546 spapr->htab = NULL;
1547 } else {
1548 /* kernel-side HPT not needed, allocate in userspace instead */
1549 size_t size = 1ULL << shift;
1550 int i;
1552 spapr->htab = qemu_memalign(size, size);
1553 if (!spapr->htab) {
1554 error_setg_errno(errp, errno,
1555 "Could not allocate HPT of order %d", shift);
1556 return;
1559 memset(spapr->htab, 0, size);
1560 spapr->htab_shift = shift;
1562 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1563 DIRTY_HPTE(HPTE(spapr->htab, i));
1566 /* We're setting up a hash table, so that means we're not radix */
1567 spapr->patb_entry = 0;
1570 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1572 int hpt_shift;
1574 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1575 || (spapr->cas_reboot
1576 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1577 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1578 } else {
1579 uint64_t current_ram_size;
1581 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1582 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1584 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1586 if (spapr->vrma_adjust) {
1587 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1588 spapr->htab_shift);
1592 static int spapr_reset_drcs(Object *child, void *opaque)
1594 sPAPRDRConnector *drc =
1595 (sPAPRDRConnector *) object_dynamic_cast(child,
1596 TYPE_SPAPR_DR_CONNECTOR);
1598 if (drc) {
1599 spapr_drc_reset(drc);
1602 return 0;
1605 static void spapr_machine_reset(void)
1607 MachineState *machine = MACHINE(qdev_get_machine());
1608 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1609 PowerPCCPU *first_ppc_cpu;
1610 uint32_t rtas_limit;
1611 hwaddr rtas_addr, fdt_addr;
1612 void *fdt;
1613 int rc;
1615 spapr_caps_reset(spapr);
1617 first_ppc_cpu = POWERPC_CPU(first_cpu);
1618 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1619 ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1620 spapr->max_compat_pvr)) {
1621 /* If using KVM with radix mode available, VCPUs can be started
1622 * without a HPT because KVM will start them in radix mode.
1623 * Set the GR bit in PATB so that we know there is no HPT. */
1624 spapr->patb_entry = PATBE1_GR;
1625 } else {
1626 spapr_setup_hpt_and_vrma(spapr);
1629 /* if this reset wasn't generated by CAS, we should reset our
1630 * negotiated options and start from scratch */
1631 if (!spapr->cas_reboot) {
1632 spapr_ovec_cleanup(spapr->ov5_cas);
1633 spapr->ov5_cas = spapr_ovec_new();
1635 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1638 qemu_devices_reset();
1640 /* DRC reset may cause a device to be unplugged. This will cause troubles
1641 * if this device is used by another device (eg, a running vhost backend
1642 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1643 * situations, we reset DRCs after all devices have been reset.
1645 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1647 spapr_clear_pending_events(spapr);
1650 * We place the device tree and RTAS just below either the top of the RMA,
1651 * or just below 2GB, whichever is lowere, so that it can be
1652 * processed with 32-bit real mode code if necessary
1654 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1655 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1656 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1658 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1660 spapr_load_rtas(spapr, fdt, rtas_addr);
1662 rc = fdt_pack(fdt);
1664 /* Should only fail if we've built a corrupted tree */
1665 assert(rc == 0);
1667 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1668 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1669 fdt_totalsize(fdt), FDT_MAX_SIZE);
1670 exit(1);
1673 /* Load the fdt */
1674 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1675 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1676 g_free(fdt);
1678 /* Set up the entry state */
1679 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1680 first_ppc_cpu->env.gpr[5] = 0;
1682 spapr->cas_reboot = false;
1685 static void spapr_create_nvram(sPAPRMachineState *spapr)
1687 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1688 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1690 if (dinfo) {
1691 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1692 &error_fatal);
1695 qdev_init_nofail(dev);
1697 spapr->nvram = (struct sPAPRNVRAM *)dev;
1700 static void spapr_rtc_create(sPAPRMachineState *spapr)
1702 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1703 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1704 &error_fatal);
1705 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1706 &error_fatal);
1707 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1708 "date", &error_fatal);
1711 /* Returns whether we want to use VGA or not */
1712 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1714 switch (vga_interface_type) {
1715 case VGA_NONE:
1716 return false;
1717 case VGA_DEVICE:
1718 return true;
1719 case VGA_STD:
1720 case VGA_VIRTIO:
1721 return pci_vga_init(pci_bus) != NULL;
1722 default:
1723 error_setg(errp,
1724 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1725 return false;
1729 static int spapr_pre_load(void *opaque)
1731 int rc;
1733 rc = spapr_caps_pre_load(opaque);
1734 if (rc) {
1735 return rc;
1738 return 0;
1741 static int spapr_post_load(void *opaque, int version_id)
1743 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1744 int err = 0;
1746 err = spapr_caps_post_migration(spapr);
1747 if (err) {
1748 return err;
1751 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1752 CPUState *cs;
1753 CPU_FOREACH(cs) {
1754 PowerPCCPU *cpu = POWERPC_CPU(cs);
1755 icp_resend(ICP(cpu->intc));
1759 /* In earlier versions, there was no separate qdev for the PAPR
1760 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1761 * So when migrating from those versions, poke the incoming offset
1762 * value into the RTC device */
1763 if (version_id < 3) {
1764 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1767 if (kvm_enabled() && spapr->patb_entry) {
1768 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1769 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1770 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1772 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1773 if (err) {
1774 error_report("Process table config unsupported by the host");
1775 return -EINVAL;
1779 return err;
1782 static int spapr_pre_save(void *opaque)
1784 int rc;
1786 rc = spapr_caps_pre_save(opaque);
1787 if (rc) {
1788 return rc;
1791 return 0;
1794 static bool version_before_3(void *opaque, int version_id)
1796 return version_id < 3;
1799 static bool spapr_pending_events_needed(void *opaque)
1801 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1802 return !QTAILQ_EMPTY(&spapr->pending_events);
1805 static const VMStateDescription vmstate_spapr_event_entry = {
1806 .name = "spapr_event_log_entry",
1807 .version_id = 1,
1808 .minimum_version_id = 1,
1809 .fields = (VMStateField[]) {
1810 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1811 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1812 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1813 NULL, extended_length),
1814 VMSTATE_END_OF_LIST()
1818 static const VMStateDescription vmstate_spapr_pending_events = {
1819 .name = "spapr_pending_events",
1820 .version_id = 1,
1821 .minimum_version_id = 1,
1822 .needed = spapr_pending_events_needed,
1823 .fields = (VMStateField[]) {
1824 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1825 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1826 VMSTATE_END_OF_LIST()
1830 static bool spapr_ov5_cas_needed(void *opaque)
1832 sPAPRMachineState *spapr = opaque;
1833 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1834 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1835 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1836 bool cas_needed;
1838 /* Prior to the introduction of sPAPROptionVector, we had two option
1839 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1840 * Both of these options encode machine topology into the device-tree
1841 * in such a way that the now-booted OS should still be able to interact
1842 * appropriately with QEMU regardless of what options were actually
1843 * negotiatied on the source side.
1845 * As such, we can avoid migrating the CAS-negotiated options if these
1846 * are the only options available on the current machine/platform.
1847 * Since these are the only options available for pseries-2.7 and
1848 * earlier, this allows us to maintain old->new/new->old migration
1849 * compatibility.
1851 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1852 * via default pseries-2.8 machines and explicit command-line parameters.
1853 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1854 * of the actual CAS-negotiated values to continue working properly. For
1855 * example, availability of memory unplug depends on knowing whether
1856 * OV5_HP_EVT was negotiated via CAS.
1858 * Thus, for any cases where the set of available CAS-negotiatable
1859 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1860 * include the CAS-negotiated options in the migration stream, unless
1861 * if they affect boot time behaviour only.
1863 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1864 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1865 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1867 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1868 * the mask itself since in the future it's possible "legacy" bits may be
1869 * removed via machine options, which could generate a false positive
1870 * that breaks migration.
1872 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1873 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1875 spapr_ovec_cleanup(ov5_mask);
1876 spapr_ovec_cleanup(ov5_legacy);
1877 spapr_ovec_cleanup(ov5_removed);
1879 return cas_needed;
1882 static const VMStateDescription vmstate_spapr_ov5_cas = {
1883 .name = "spapr_option_vector_ov5_cas",
1884 .version_id = 1,
1885 .minimum_version_id = 1,
1886 .needed = spapr_ov5_cas_needed,
1887 .fields = (VMStateField[]) {
1888 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1889 vmstate_spapr_ovec, sPAPROptionVector),
1890 VMSTATE_END_OF_LIST()
1894 static bool spapr_patb_entry_needed(void *opaque)
1896 sPAPRMachineState *spapr = opaque;
1898 return !!spapr->patb_entry;
1901 static const VMStateDescription vmstate_spapr_patb_entry = {
1902 .name = "spapr_patb_entry",
1903 .version_id = 1,
1904 .minimum_version_id = 1,
1905 .needed = spapr_patb_entry_needed,
1906 .fields = (VMStateField[]) {
1907 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1908 VMSTATE_END_OF_LIST()
1912 static const VMStateDescription vmstate_spapr = {
1913 .name = "spapr",
1914 .version_id = 3,
1915 .minimum_version_id = 1,
1916 .pre_load = spapr_pre_load,
1917 .post_load = spapr_post_load,
1918 .pre_save = spapr_pre_save,
1919 .fields = (VMStateField[]) {
1920 /* used to be @next_irq */
1921 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1923 /* RTC offset */
1924 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1926 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1927 VMSTATE_END_OF_LIST()
1929 .subsections = (const VMStateDescription*[]) {
1930 &vmstate_spapr_ov5_cas,
1931 &vmstate_spapr_patb_entry,
1932 &vmstate_spapr_pending_events,
1933 &vmstate_spapr_cap_htm,
1934 &vmstate_spapr_cap_vsx,
1935 &vmstate_spapr_cap_dfp,
1936 &vmstate_spapr_cap_cfpc,
1937 &vmstate_spapr_cap_sbbc,
1938 &vmstate_spapr_cap_ibs,
1939 NULL
1943 static int htab_save_setup(QEMUFile *f, void *opaque)
1945 sPAPRMachineState *spapr = opaque;
1947 /* "Iteration" header */
1948 if (!spapr->htab_shift) {
1949 qemu_put_be32(f, -1);
1950 } else {
1951 qemu_put_be32(f, spapr->htab_shift);
1954 if (spapr->htab) {
1955 spapr->htab_save_index = 0;
1956 spapr->htab_first_pass = true;
1957 } else {
1958 if (spapr->htab_shift) {
1959 assert(kvm_enabled());
1964 return 0;
1967 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1968 int chunkstart, int n_valid, int n_invalid)
1970 qemu_put_be32(f, chunkstart);
1971 qemu_put_be16(f, n_valid);
1972 qemu_put_be16(f, n_invalid);
1973 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1974 HASH_PTE_SIZE_64 * n_valid);
1977 static void htab_save_end_marker(QEMUFile *f)
1979 qemu_put_be32(f, 0);
1980 qemu_put_be16(f, 0);
1981 qemu_put_be16(f, 0);
1984 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1985 int64_t max_ns)
1987 bool has_timeout = max_ns != -1;
1988 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1989 int index = spapr->htab_save_index;
1990 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1992 assert(spapr->htab_first_pass);
1994 do {
1995 int chunkstart;
1997 /* Consume invalid HPTEs */
1998 while ((index < htabslots)
1999 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2000 CLEAN_HPTE(HPTE(spapr->htab, index));
2001 index++;
2004 /* Consume valid HPTEs */
2005 chunkstart = index;
2006 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2007 && HPTE_VALID(HPTE(spapr->htab, index))) {
2008 CLEAN_HPTE(HPTE(spapr->htab, index));
2009 index++;
2012 if (index > chunkstart) {
2013 int n_valid = index - chunkstart;
2015 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2017 if (has_timeout &&
2018 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2019 break;
2022 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2024 if (index >= htabslots) {
2025 assert(index == htabslots);
2026 index = 0;
2027 spapr->htab_first_pass = false;
2029 spapr->htab_save_index = index;
2032 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2033 int64_t max_ns)
2035 bool final = max_ns < 0;
2036 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2037 int examined = 0, sent = 0;
2038 int index = spapr->htab_save_index;
2039 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2041 assert(!spapr->htab_first_pass);
2043 do {
2044 int chunkstart, invalidstart;
2046 /* Consume non-dirty HPTEs */
2047 while ((index < htabslots)
2048 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2049 index++;
2050 examined++;
2053 chunkstart = index;
2054 /* Consume valid dirty HPTEs */
2055 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2056 && HPTE_DIRTY(HPTE(spapr->htab, index))
2057 && HPTE_VALID(HPTE(spapr->htab, index))) {
2058 CLEAN_HPTE(HPTE(spapr->htab, index));
2059 index++;
2060 examined++;
2063 invalidstart = index;
2064 /* Consume invalid dirty HPTEs */
2065 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2066 && HPTE_DIRTY(HPTE(spapr->htab, index))
2067 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2068 CLEAN_HPTE(HPTE(spapr->htab, index));
2069 index++;
2070 examined++;
2073 if (index > chunkstart) {
2074 int n_valid = invalidstart - chunkstart;
2075 int n_invalid = index - invalidstart;
2077 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2078 sent += index - chunkstart;
2080 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2081 break;
2085 if (examined >= htabslots) {
2086 break;
2089 if (index >= htabslots) {
2090 assert(index == htabslots);
2091 index = 0;
2093 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2095 if (index >= htabslots) {
2096 assert(index == htabslots);
2097 index = 0;
2100 spapr->htab_save_index = index;
2102 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2105 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2106 #define MAX_KVM_BUF_SIZE 2048
2108 static int htab_save_iterate(QEMUFile *f, void *opaque)
2110 sPAPRMachineState *spapr = opaque;
2111 int fd;
2112 int rc = 0;
2114 /* Iteration header */
2115 if (!spapr->htab_shift) {
2116 qemu_put_be32(f, -1);
2117 return 1;
2118 } else {
2119 qemu_put_be32(f, 0);
2122 if (!spapr->htab) {
2123 assert(kvm_enabled());
2125 fd = get_htab_fd(spapr);
2126 if (fd < 0) {
2127 return fd;
2130 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2131 if (rc < 0) {
2132 return rc;
2134 } else if (spapr->htab_first_pass) {
2135 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2136 } else {
2137 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2140 htab_save_end_marker(f);
2142 return rc;
2145 static int htab_save_complete(QEMUFile *f, void *opaque)
2147 sPAPRMachineState *spapr = opaque;
2148 int fd;
2150 /* Iteration header */
2151 if (!spapr->htab_shift) {
2152 qemu_put_be32(f, -1);
2153 return 0;
2154 } else {
2155 qemu_put_be32(f, 0);
2158 if (!spapr->htab) {
2159 int rc;
2161 assert(kvm_enabled());
2163 fd = get_htab_fd(spapr);
2164 if (fd < 0) {
2165 return fd;
2168 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2169 if (rc < 0) {
2170 return rc;
2172 } else {
2173 if (spapr->htab_first_pass) {
2174 htab_save_first_pass(f, spapr, -1);
2176 htab_save_later_pass(f, spapr, -1);
2179 /* End marker */
2180 htab_save_end_marker(f);
2182 return 0;
2185 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2187 sPAPRMachineState *spapr = opaque;
2188 uint32_t section_hdr;
2189 int fd = -1;
2190 Error *local_err = NULL;
2192 if (version_id < 1 || version_id > 1) {
2193 error_report("htab_load() bad version");
2194 return -EINVAL;
2197 section_hdr = qemu_get_be32(f);
2199 if (section_hdr == -1) {
2200 spapr_free_hpt(spapr);
2201 return 0;
2204 if (section_hdr) {
2205 /* First section gives the htab size */
2206 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2207 if (local_err) {
2208 error_report_err(local_err);
2209 return -EINVAL;
2211 return 0;
2214 if (!spapr->htab) {
2215 assert(kvm_enabled());
2217 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2218 if (fd < 0) {
2219 error_report_err(local_err);
2220 return fd;
2224 while (true) {
2225 uint32_t index;
2226 uint16_t n_valid, n_invalid;
2228 index = qemu_get_be32(f);
2229 n_valid = qemu_get_be16(f);
2230 n_invalid = qemu_get_be16(f);
2232 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2233 /* End of Stream */
2234 break;
2237 if ((index + n_valid + n_invalid) >
2238 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2239 /* Bad index in stream */
2240 error_report(
2241 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2242 index, n_valid, n_invalid, spapr->htab_shift);
2243 return -EINVAL;
2246 if (spapr->htab) {
2247 if (n_valid) {
2248 qemu_get_buffer(f, HPTE(spapr->htab, index),
2249 HASH_PTE_SIZE_64 * n_valid);
2251 if (n_invalid) {
2252 memset(HPTE(spapr->htab, index + n_valid), 0,
2253 HASH_PTE_SIZE_64 * n_invalid);
2255 } else {
2256 int rc;
2258 assert(fd >= 0);
2260 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2261 if (rc < 0) {
2262 return rc;
2267 if (!spapr->htab) {
2268 assert(fd >= 0);
2269 close(fd);
2272 return 0;
2275 static void htab_save_cleanup(void *opaque)
2277 sPAPRMachineState *spapr = opaque;
2279 close_htab_fd(spapr);
2282 static SaveVMHandlers savevm_htab_handlers = {
2283 .save_setup = htab_save_setup,
2284 .save_live_iterate = htab_save_iterate,
2285 .save_live_complete_precopy = htab_save_complete,
2286 .save_cleanup = htab_save_cleanup,
2287 .load_state = htab_load,
2290 static void spapr_boot_set(void *opaque, const char *boot_device,
2291 Error **errp)
2293 MachineState *machine = MACHINE(opaque);
2294 machine->boot_order = g_strdup(boot_device);
2297 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2299 MachineState *machine = MACHINE(spapr);
2300 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2301 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2302 int i;
2304 for (i = 0; i < nr_lmbs; i++) {
2305 uint64_t addr;
2307 addr = i * lmb_size + machine->device_memory->base;
2308 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2309 addr / lmb_size);
2314 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2315 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2316 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2318 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2320 int i;
2322 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2323 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2324 " is not aligned to %llu MiB",
2325 machine->ram_size,
2326 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2327 return;
2330 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2331 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2332 " is not aligned to %llu MiB",
2333 machine->ram_size,
2334 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2335 return;
2338 for (i = 0; i < nb_numa_nodes; i++) {
2339 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2340 error_setg(errp,
2341 "Node %d memory size 0x%" PRIx64
2342 " is not aligned to %llu MiB",
2343 i, numa_info[i].node_mem,
2344 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2345 return;
2350 /* find cpu slot in machine->possible_cpus by core_id */
2351 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2353 int index = id / smp_threads;
2355 if (index >= ms->possible_cpus->len) {
2356 return NULL;
2358 if (idx) {
2359 *idx = index;
2361 return &ms->possible_cpus->cpus[index];
2364 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2366 Error *local_err = NULL;
2367 bool vsmt_user = !!spapr->vsmt;
2368 int kvm_smt = kvmppc_smt_threads();
2369 int ret;
2371 if (!kvm_enabled() && (smp_threads > 1)) {
2372 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2373 "on a pseries machine");
2374 goto out;
2376 if (!is_power_of_2(smp_threads)) {
2377 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2378 "machine because it must be a power of 2", smp_threads);
2379 goto out;
2382 /* Detemine the VSMT mode to use: */
2383 if (vsmt_user) {
2384 if (spapr->vsmt < smp_threads) {
2385 error_setg(&local_err, "Cannot support VSMT mode %d"
2386 " because it must be >= threads/core (%d)",
2387 spapr->vsmt, smp_threads);
2388 goto out;
2390 /* In this case, spapr->vsmt has been set by the command line */
2391 } else {
2393 * Default VSMT value is tricky, because we need it to be as
2394 * consistent as possible (for migration), but this requires
2395 * changing it for at least some existing cases. We pick 8 as
2396 * the value that we'd get with KVM on POWER8, the
2397 * overwhelmingly common case in production systems.
2399 spapr->vsmt = MAX(8, smp_threads);
2402 /* KVM: If necessary, set the SMT mode: */
2403 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2404 ret = kvmppc_set_smt_threads(spapr->vsmt);
2405 if (ret) {
2406 /* Looks like KVM isn't able to change VSMT mode */
2407 error_setg(&local_err,
2408 "Failed to set KVM's VSMT mode to %d (errno %d)",
2409 spapr->vsmt, ret);
2410 /* We can live with that if the default one is big enough
2411 * for the number of threads, and a submultiple of the one
2412 * we want. In this case we'll waste some vcpu ids, but
2413 * behaviour will be correct */
2414 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2415 warn_report_err(local_err);
2416 local_err = NULL;
2417 goto out;
2418 } else {
2419 if (!vsmt_user) {
2420 error_append_hint(&local_err,
2421 "On PPC, a VM with %d threads/core"
2422 " on a host with %d threads/core"
2423 " requires the use of VSMT mode %d.\n",
2424 smp_threads, kvm_smt, spapr->vsmt);
2426 kvmppc_hint_smt_possible(&local_err);
2427 goto out;
2431 /* else TCG: nothing to do currently */
2432 out:
2433 error_propagate(errp, local_err);
2436 static void spapr_init_cpus(sPAPRMachineState *spapr)
2438 MachineState *machine = MACHINE(spapr);
2439 MachineClass *mc = MACHINE_GET_CLASS(machine);
2440 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2441 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2442 const CPUArchIdList *possible_cpus;
2443 int boot_cores_nr = smp_cpus / smp_threads;
2444 int i;
2446 possible_cpus = mc->possible_cpu_arch_ids(machine);
2447 if (mc->has_hotpluggable_cpus) {
2448 if (smp_cpus % smp_threads) {
2449 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2450 smp_cpus, smp_threads);
2451 exit(1);
2453 if (max_cpus % smp_threads) {
2454 error_report("max_cpus (%u) must be multiple of threads (%u)",
2455 max_cpus, smp_threads);
2456 exit(1);
2458 } else {
2459 if (max_cpus != smp_cpus) {
2460 error_report("This machine version does not support CPU hotplug");
2461 exit(1);
2463 boot_cores_nr = possible_cpus->len;
2466 /* VSMT must be set in order to be able to compute VCPU ids, ie to
2467 * call xics_max_server_number() or spapr_vcpu_id().
2469 spapr_set_vsmt_mode(spapr, &error_fatal);
2471 if (smc->pre_2_10_has_unused_icps) {
2472 int i;
2474 for (i = 0; i < xics_max_server_number(spapr); i++) {
2475 /* Dummy entries get deregistered when real ICPState objects
2476 * are registered during CPU core hotplug.
2478 pre_2_10_vmstate_register_dummy_icp(i);
2482 for (i = 0; i < possible_cpus->len; i++) {
2483 int core_id = i * smp_threads;
2485 if (mc->has_hotpluggable_cpus) {
2486 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2487 spapr_vcpu_id(spapr, core_id));
2490 if (i < boot_cores_nr) {
2491 Object *core = object_new(type);
2492 int nr_threads = smp_threads;
2494 /* Handle the partially filled core for older machine types */
2495 if ((i + 1) * smp_threads >= smp_cpus) {
2496 nr_threads = smp_cpus - i * smp_threads;
2499 object_property_set_int(core, nr_threads, "nr-threads",
2500 &error_fatal);
2501 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2502 &error_fatal);
2503 object_property_set_bool(core, true, "realized", &error_fatal);
2508 /* pSeries LPAR / sPAPR hardware init */
2509 static void spapr_machine_init(MachineState *machine)
2511 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2512 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2513 const char *kernel_filename = machine->kernel_filename;
2514 const char *initrd_filename = machine->initrd_filename;
2515 PCIHostState *phb;
2516 int i;
2517 MemoryRegion *sysmem = get_system_memory();
2518 MemoryRegion *ram = g_new(MemoryRegion, 1);
2519 hwaddr node0_size = spapr_node0_size(machine);
2520 long load_limit, fw_size;
2521 char *filename;
2522 Error *resize_hpt_err = NULL;
2523 PowerPCCPU *first_ppc_cpu;
2525 msi_nonbroken = true;
2527 QLIST_INIT(&spapr->phbs);
2528 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2530 /* Check HPT resizing availability */
2531 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2532 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2534 * If the user explicitly requested a mode we should either
2535 * supply it, or fail completely (which we do below). But if
2536 * it's not set explicitly, we reset our mode to something
2537 * that works
2539 if (resize_hpt_err) {
2540 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2541 error_free(resize_hpt_err);
2542 resize_hpt_err = NULL;
2543 } else {
2544 spapr->resize_hpt = smc->resize_hpt_default;
2548 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2550 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2552 * User requested HPT resize, but this host can't supply it. Bail out
2554 error_report_err(resize_hpt_err);
2555 exit(1);
2558 spapr->rma_size = node0_size;
2560 /* With KVM, we don't actually know whether KVM supports an
2561 * unbounded RMA (PR KVM) or is limited by the hash table size
2562 * (HV KVM using VRMA), so we always assume the latter
2564 * In that case, we also limit the initial allocations for RTAS
2565 * etc... to 256M since we have no way to know what the VRMA size
2566 * is going to be as it depends on the size of the hash table
2567 * which isn't determined yet.
2569 if (kvm_enabled()) {
2570 spapr->vrma_adjust = 1;
2571 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2574 /* Actually we don't support unbounded RMA anymore since we added
2575 * proper emulation of HV mode. The max we can get is 16G which
2576 * also happens to be what we configure for PAPR mode so make sure
2577 * we don't do anything bigger than that
2579 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2581 if (spapr->rma_size > node0_size) {
2582 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2583 spapr->rma_size);
2584 exit(1);
2587 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2588 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2590 /* Set up Interrupt Controller before we create the VCPUs */
2591 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2593 /* Set up containers for ibm,client-architecture-support negotiated options
2595 spapr->ov5 = spapr_ovec_new();
2596 spapr->ov5_cas = spapr_ovec_new();
2598 if (smc->dr_lmb_enabled) {
2599 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2600 spapr_validate_node_memory(machine, &error_fatal);
2603 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2605 /* advertise support for dedicated HP event source to guests */
2606 if (spapr->use_hotplug_event_source) {
2607 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2610 /* advertise support for HPT resizing */
2611 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2612 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2615 /* advertise support for ibm,dyamic-memory-v2 */
2616 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2618 /* init CPUs */
2619 spapr_init_cpus(spapr);
2621 first_ppc_cpu = POWERPC_CPU(first_cpu);
2622 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2623 ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
2624 spapr->max_compat_pvr)) {
2625 /* KVM and TCG always allow GTSE with radix... */
2626 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2628 /* ... but not with hash (currently). */
2630 if (kvm_enabled()) {
2631 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2632 kvmppc_enable_logical_ci_hcalls();
2633 kvmppc_enable_set_mode_hcall();
2635 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2636 kvmppc_enable_clear_ref_mod_hcalls();
2639 /* allocate RAM */
2640 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2641 machine->ram_size);
2642 memory_region_add_subregion(sysmem, 0, ram);
2644 /* always allocate the device memory information */
2645 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2647 /* initialize hotplug memory address space */
2648 if (machine->ram_size < machine->maxram_size) {
2649 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2651 * Limit the number of hotpluggable memory slots to half the number
2652 * slots that KVM supports, leaving the other half for PCI and other
2653 * devices. However ensure that number of slots doesn't drop below 32.
2655 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2656 SPAPR_MAX_RAM_SLOTS;
2658 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2659 max_memslots = SPAPR_MAX_RAM_SLOTS;
2661 if (machine->ram_slots > max_memslots) {
2662 error_report("Specified number of memory slots %"
2663 PRIu64" exceeds max supported %d",
2664 machine->ram_slots, max_memslots);
2665 exit(1);
2668 machine->device_memory->base = ROUND_UP(machine->ram_size,
2669 SPAPR_DEVICE_MEM_ALIGN);
2670 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2671 "device-memory", device_mem_size);
2672 memory_region_add_subregion(sysmem, machine->device_memory->base,
2673 &machine->device_memory->mr);
2676 if (smc->dr_lmb_enabled) {
2677 spapr_create_lmb_dr_connectors(spapr);
2680 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2681 if (!filename) {
2682 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2683 exit(1);
2685 spapr->rtas_size = get_image_size(filename);
2686 if (spapr->rtas_size < 0) {
2687 error_report("Could not get size of LPAR rtas '%s'", filename);
2688 exit(1);
2690 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2691 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2692 error_report("Could not load LPAR rtas '%s'", filename);
2693 exit(1);
2695 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2696 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2697 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2698 exit(1);
2700 g_free(filename);
2702 /* Set up RTAS event infrastructure */
2703 spapr_events_init(spapr);
2705 /* Set up the RTC RTAS interfaces */
2706 spapr_rtc_create(spapr);
2708 /* Set up VIO bus */
2709 spapr->vio_bus = spapr_vio_bus_init();
2711 for (i = 0; i < serial_max_hds(); i++) {
2712 if (serial_hd(i)) {
2713 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2717 /* We always have at least the nvram device on VIO */
2718 spapr_create_nvram(spapr);
2720 /* Set up PCI */
2721 spapr_pci_rtas_init();
2723 phb = spapr_create_phb(spapr, 0);
2725 for (i = 0; i < nb_nics; i++) {
2726 NICInfo *nd = &nd_table[i];
2728 if (!nd->model) {
2729 nd->model = g_strdup("spapr-vlan");
2732 if (g_str_equal(nd->model, "spapr-vlan") ||
2733 g_str_equal(nd->model, "ibmveth")) {
2734 spapr_vlan_create(spapr->vio_bus, nd);
2735 } else {
2736 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2740 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2741 spapr_vscsi_create(spapr->vio_bus);
2744 /* Graphics */
2745 if (spapr_vga_init(phb->bus, &error_fatal)) {
2746 spapr->has_graphics = true;
2747 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2750 if (machine->usb) {
2751 if (smc->use_ohci_by_default) {
2752 pci_create_simple(phb->bus, -1, "pci-ohci");
2753 } else {
2754 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2757 if (spapr->has_graphics) {
2758 USBBus *usb_bus = usb_bus_find(-1);
2760 usb_create_simple(usb_bus, "usb-kbd");
2761 usb_create_simple(usb_bus, "usb-mouse");
2765 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2766 error_report(
2767 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2768 MIN_RMA_SLOF);
2769 exit(1);
2772 if (kernel_filename) {
2773 uint64_t lowaddr = 0;
2775 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2776 NULL, NULL, &lowaddr, NULL, 1,
2777 PPC_ELF_MACHINE, 0, 0);
2778 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2779 spapr->kernel_size = load_elf(kernel_filename,
2780 translate_kernel_address, NULL, NULL,
2781 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2782 0, 0);
2783 spapr->kernel_le = spapr->kernel_size > 0;
2785 if (spapr->kernel_size < 0) {
2786 error_report("error loading %s: %s", kernel_filename,
2787 load_elf_strerror(spapr->kernel_size));
2788 exit(1);
2791 /* load initrd */
2792 if (initrd_filename) {
2793 /* Try to locate the initrd in the gap between the kernel
2794 * and the firmware. Add a bit of space just in case
2796 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2797 + 0x1ffff) & ~0xffff;
2798 spapr->initrd_size = load_image_targphys(initrd_filename,
2799 spapr->initrd_base,
2800 load_limit
2801 - spapr->initrd_base);
2802 if (spapr->initrd_size < 0) {
2803 error_report("could not load initial ram disk '%s'",
2804 initrd_filename);
2805 exit(1);
2810 if (bios_name == NULL) {
2811 bios_name = FW_FILE_NAME;
2813 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2814 if (!filename) {
2815 error_report("Could not find LPAR firmware '%s'", bios_name);
2816 exit(1);
2818 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2819 if (fw_size <= 0) {
2820 error_report("Could not load LPAR firmware '%s'", filename);
2821 exit(1);
2823 g_free(filename);
2825 /* FIXME: Should register things through the MachineState's qdev
2826 * interface, this is a legacy from the sPAPREnvironment structure
2827 * which predated MachineState but had a similar function */
2828 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2829 register_savevm_live(NULL, "spapr/htab", -1, 1,
2830 &savevm_htab_handlers, spapr);
2832 qemu_register_boot_set(spapr_boot_set, spapr);
2834 if (kvm_enabled()) {
2835 /* to stop and start vmclock */
2836 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2837 &spapr->tb);
2839 kvmppc_spapr_enable_inkernel_multitce();
2843 static int spapr_kvm_type(const char *vm_type)
2845 if (!vm_type) {
2846 return 0;
2849 if (!strcmp(vm_type, "HV")) {
2850 return 1;
2853 if (!strcmp(vm_type, "PR")) {
2854 return 2;
2857 error_report("Unknown kvm-type specified '%s'", vm_type);
2858 exit(1);
2862 * Implementation of an interface to adjust firmware path
2863 * for the bootindex property handling.
2865 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2866 DeviceState *dev)
2868 #define CAST(type, obj, name) \
2869 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2870 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2871 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2872 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2874 if (d) {
2875 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2876 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2877 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2879 if (spapr) {
2881 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2882 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2883 * in the top 16 bits of the 64-bit LUN
2885 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2886 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2887 (uint64_t)id << 48);
2888 } else if (virtio) {
2890 * We use SRP luns of the form 01000000 | (target << 8) | lun
2891 * in the top 32 bits of the 64-bit LUN
2892 * Note: the quote above is from SLOF and it is wrong,
2893 * the actual binding is:
2894 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2896 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2897 if (d->lun >= 256) {
2898 /* Use the LUN "flat space addressing method" */
2899 id |= 0x4000;
2901 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2902 (uint64_t)id << 32);
2903 } else if (usb) {
2905 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2906 * in the top 32 bits of the 64-bit LUN
2908 unsigned usb_port = atoi(usb->port->path);
2909 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2910 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2911 (uint64_t)id << 32);
2916 * SLOF probes the USB devices, and if it recognizes that the device is a
2917 * storage device, it changes its name to "storage" instead of "usb-host",
2918 * and additionally adds a child node for the SCSI LUN, so the correct
2919 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2921 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2922 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2923 if (usb_host_dev_is_scsi_storage(usbdev)) {
2924 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2928 if (phb) {
2929 /* Replace "pci" with "pci@800000020000000" */
2930 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2933 if (vsc) {
2934 /* Same logic as virtio above */
2935 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2936 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2939 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2940 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2941 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2942 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2945 return NULL;
2948 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2950 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2952 return g_strdup(spapr->kvm_type);
2955 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2957 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2959 g_free(spapr->kvm_type);
2960 spapr->kvm_type = g_strdup(value);
2963 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2965 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2967 return spapr->use_hotplug_event_source;
2970 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2971 Error **errp)
2973 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2975 spapr->use_hotplug_event_source = value;
2978 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2980 return true;
2983 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2985 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2987 switch (spapr->resize_hpt) {
2988 case SPAPR_RESIZE_HPT_DEFAULT:
2989 return g_strdup("default");
2990 case SPAPR_RESIZE_HPT_DISABLED:
2991 return g_strdup("disabled");
2992 case SPAPR_RESIZE_HPT_ENABLED:
2993 return g_strdup("enabled");
2994 case SPAPR_RESIZE_HPT_REQUIRED:
2995 return g_strdup("required");
2997 g_assert_not_reached();
3000 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3002 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3004 if (strcmp(value, "default") == 0) {
3005 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3006 } else if (strcmp(value, "disabled") == 0) {
3007 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3008 } else if (strcmp(value, "enabled") == 0) {
3009 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3010 } else if (strcmp(value, "required") == 0) {
3011 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3012 } else {
3013 error_setg(errp, "Bad value for \"resize-hpt\" property");
3017 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3018 void *opaque, Error **errp)
3020 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3023 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3024 void *opaque, Error **errp)
3026 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3029 static void spapr_instance_init(Object *obj)
3031 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3033 spapr->htab_fd = -1;
3034 spapr->use_hotplug_event_source = true;
3035 object_property_add_str(obj, "kvm-type",
3036 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3037 object_property_set_description(obj, "kvm-type",
3038 "Specifies the KVM virtualization mode (HV, PR)",
3039 NULL);
3040 object_property_add_bool(obj, "modern-hotplug-events",
3041 spapr_get_modern_hotplug_events,
3042 spapr_set_modern_hotplug_events,
3043 NULL);
3044 object_property_set_description(obj, "modern-hotplug-events",
3045 "Use dedicated hotplug event mechanism in"
3046 " place of standard EPOW events when possible"
3047 " (required for memory hot-unplug support)",
3048 NULL);
3049 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3050 "Maximum permitted CPU compatibility mode",
3051 &error_fatal);
3053 object_property_add_str(obj, "resize-hpt",
3054 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3055 object_property_set_description(obj, "resize-hpt",
3056 "Resizing of the Hash Page Table (enabled, disabled, required)",
3057 NULL);
3058 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3059 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3060 object_property_set_description(obj, "vsmt",
3061 "Virtual SMT: KVM behaves as if this were"
3062 " the host's SMT mode", &error_abort);
3063 object_property_add_bool(obj, "vfio-no-msix-emulation",
3064 spapr_get_msix_emulation, NULL, NULL);
3067 static void spapr_machine_finalizefn(Object *obj)
3069 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3071 g_free(spapr->kvm_type);
3074 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3076 cpu_synchronize_state(cs);
3077 ppc_cpu_do_system_reset(cs);
3080 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3082 CPUState *cs;
3084 CPU_FOREACH(cs) {
3085 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3089 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3090 uint32_t node, bool dedicated_hp_event_source,
3091 Error **errp)
3093 sPAPRDRConnector *drc;
3094 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3095 int i, fdt_offset, fdt_size;
3096 void *fdt;
3097 uint64_t addr = addr_start;
3098 bool hotplugged = spapr_drc_hotplugged(dev);
3099 Error *local_err = NULL;
3101 for (i = 0; i < nr_lmbs; i++) {
3102 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3103 addr / SPAPR_MEMORY_BLOCK_SIZE);
3104 g_assert(drc);
3106 fdt = create_device_tree(&fdt_size);
3107 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3108 SPAPR_MEMORY_BLOCK_SIZE);
3110 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3111 if (local_err) {
3112 while (addr > addr_start) {
3113 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3114 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3115 addr / SPAPR_MEMORY_BLOCK_SIZE);
3116 spapr_drc_detach(drc);
3118 g_free(fdt);
3119 error_propagate(errp, local_err);
3120 return;
3122 if (!hotplugged) {
3123 spapr_drc_reset(drc);
3125 addr += SPAPR_MEMORY_BLOCK_SIZE;
3127 /* send hotplug notification to the
3128 * guest only in case of hotplugged memory
3130 if (hotplugged) {
3131 if (dedicated_hp_event_source) {
3132 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3133 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3134 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3135 nr_lmbs,
3136 spapr_drc_index(drc));
3137 } else {
3138 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3139 nr_lmbs);
3144 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3145 Error **errp)
3147 Error *local_err = NULL;
3148 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3149 PCDIMMDevice *dimm = PC_DIMM(dev);
3150 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3151 MemoryRegion *mr;
3152 uint64_t align, size, addr;
3153 uint32_t node;
3155 mr = ddc->get_memory_region(dimm, &local_err);
3156 if (local_err) {
3157 goto out;
3159 align = memory_region_get_alignment(mr);
3160 size = memory_region_size(mr);
3162 pc_dimm_memory_plug(dev, MACHINE(ms), align, &local_err);
3163 if (local_err) {
3164 goto out;
3167 addr = object_property_get_uint(OBJECT(dimm),
3168 PC_DIMM_ADDR_PROP, &local_err);
3169 if (local_err) {
3170 goto out_unplug;
3173 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3174 &error_abort);
3175 spapr_add_lmbs(dev, addr, size, node,
3176 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3177 &local_err);
3178 if (local_err) {
3179 goto out_unplug;
3182 return;
3184 out_unplug:
3185 pc_dimm_memory_unplug(dev, MACHINE(ms));
3186 out:
3187 error_propagate(errp, local_err);
3190 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3191 Error **errp)
3193 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3194 PCDIMMDevice *dimm = PC_DIMM(dev);
3195 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3196 MemoryRegion *mr;
3197 uint64_t size;
3198 char *mem_dev;
3200 if (!smc->dr_lmb_enabled) {
3201 error_setg(errp, "Memory hotplug not supported for this machine");
3202 return;
3205 mr = ddc->get_memory_region(dimm, errp);
3206 if (!mr) {
3207 return;
3209 size = memory_region_size(mr);
3211 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3212 error_setg(errp, "Hotplugged memory size must be a multiple of "
3213 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
3214 return;
3217 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3218 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3219 error_setg(errp, "Memory backend has bad page size. "
3220 "Use 'memory-backend-file' with correct mem-path.");
3221 goto out;
3224 out:
3225 g_free(mem_dev);
3228 struct sPAPRDIMMState {
3229 PCDIMMDevice *dimm;
3230 uint32_t nr_lmbs;
3231 QTAILQ_ENTRY(sPAPRDIMMState) next;
3234 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3235 PCDIMMDevice *dimm)
3237 sPAPRDIMMState *dimm_state = NULL;
3239 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3240 if (dimm_state->dimm == dimm) {
3241 break;
3244 return dimm_state;
3247 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3248 uint32_t nr_lmbs,
3249 PCDIMMDevice *dimm)
3251 sPAPRDIMMState *ds = NULL;
3254 * If this request is for a DIMM whose removal had failed earlier
3255 * (due to guest's refusal to remove the LMBs), we would have this
3256 * dimm already in the pending_dimm_unplugs list. In that
3257 * case don't add again.
3259 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3260 if (!ds) {
3261 ds = g_malloc0(sizeof(sPAPRDIMMState));
3262 ds->nr_lmbs = nr_lmbs;
3263 ds->dimm = dimm;
3264 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3266 return ds;
3269 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3270 sPAPRDIMMState *dimm_state)
3272 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3273 g_free(dimm_state);
3276 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3277 PCDIMMDevice *dimm)
3279 sPAPRDRConnector *drc;
3280 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3281 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3282 uint64_t size = memory_region_size(mr);
3283 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3284 uint32_t avail_lmbs = 0;
3285 uint64_t addr_start, addr;
3286 int i;
3288 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3289 &error_abort);
3291 addr = addr_start;
3292 for (i = 0; i < nr_lmbs; i++) {
3293 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3294 addr / SPAPR_MEMORY_BLOCK_SIZE);
3295 g_assert(drc);
3296 if (drc->dev) {
3297 avail_lmbs++;
3299 addr += SPAPR_MEMORY_BLOCK_SIZE;
3302 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3305 /* Callback to be called during DRC release. */
3306 void spapr_lmb_release(DeviceState *dev)
3308 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3309 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3310 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3312 /* This information will get lost if a migration occurs
3313 * during the unplug process. In this case recover it. */
3314 if (ds == NULL) {
3315 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3316 g_assert(ds);
3317 /* The DRC being examined by the caller at least must be counted */
3318 g_assert(ds->nr_lmbs);
3321 if (--ds->nr_lmbs) {
3322 return;
3326 * Now that all the LMBs have been removed by the guest, call the
3327 * unplug handler chain. This can never fail.
3329 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3332 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3334 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3335 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3337 pc_dimm_memory_unplug(dev, MACHINE(hotplug_dev));
3338 object_unparent(OBJECT(dev));
3339 spapr_pending_dimm_unplugs_remove(spapr, ds);
3342 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3343 DeviceState *dev, Error **errp)
3345 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3346 Error *local_err = NULL;
3347 PCDIMMDevice *dimm = PC_DIMM(dev);
3348 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3349 MemoryRegion *mr;
3350 uint32_t nr_lmbs;
3351 uint64_t size, addr_start, addr;
3352 int i;
3353 sPAPRDRConnector *drc;
3355 mr = ddc->get_memory_region(dimm, &local_err);
3356 if (local_err) {
3357 goto out;
3359 size = memory_region_size(mr);
3360 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3362 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3363 &local_err);
3364 if (local_err) {
3365 goto out;
3369 * An existing pending dimm state for this DIMM means that there is an
3370 * unplug operation in progress, waiting for the spapr_lmb_release
3371 * callback to complete the job (BQL can't cover that far). In this case,
3372 * bail out to avoid detaching DRCs that were already released.
3374 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3375 error_setg(&local_err,
3376 "Memory unplug already in progress for device %s",
3377 dev->id);
3378 goto out;
3381 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3383 addr = addr_start;
3384 for (i = 0; i < nr_lmbs; i++) {
3385 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3386 addr / SPAPR_MEMORY_BLOCK_SIZE);
3387 g_assert(drc);
3389 spapr_drc_detach(drc);
3390 addr += SPAPR_MEMORY_BLOCK_SIZE;
3393 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3394 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3395 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3396 nr_lmbs, spapr_drc_index(drc));
3397 out:
3398 error_propagate(errp, local_err);
3401 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3402 sPAPRMachineState *spapr)
3404 PowerPCCPU *cpu = POWERPC_CPU(cs);
3405 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3406 int id = spapr_get_vcpu_id(cpu);
3407 void *fdt;
3408 int offset, fdt_size;
3409 char *nodename;
3411 fdt = create_device_tree(&fdt_size);
3412 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3413 offset = fdt_add_subnode(fdt, 0, nodename);
3415 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3416 g_free(nodename);
3418 *fdt_offset = offset;
3419 return fdt;
3422 /* Callback to be called during DRC release. */
3423 void spapr_core_release(DeviceState *dev)
3425 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3427 /* Call the unplug handler chain. This can never fail. */
3428 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3431 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3433 MachineState *ms = MACHINE(hotplug_dev);
3434 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3435 CPUCore *cc = CPU_CORE(dev);
3436 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3438 if (smc->pre_2_10_has_unused_icps) {
3439 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3440 int i;
3442 for (i = 0; i < cc->nr_threads; i++) {
3443 CPUState *cs = CPU(sc->threads[i]);
3445 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3449 assert(core_slot);
3450 core_slot->cpu = NULL;
3451 object_unparent(OBJECT(dev));
3454 static
3455 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3456 Error **errp)
3458 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3459 int index;
3460 sPAPRDRConnector *drc;
3461 CPUCore *cc = CPU_CORE(dev);
3463 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3464 error_setg(errp, "Unable to find CPU core with core-id: %d",
3465 cc->core_id);
3466 return;
3468 if (index == 0) {
3469 error_setg(errp, "Boot CPU core may not be unplugged");
3470 return;
3473 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3474 spapr_vcpu_id(spapr, cc->core_id));
3475 g_assert(drc);
3477 spapr_drc_detach(drc);
3479 spapr_hotplug_req_remove_by_index(drc);
3482 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3483 Error **errp)
3485 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3486 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3487 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3488 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3489 CPUCore *cc = CPU_CORE(dev);
3490 CPUState *cs = CPU(core->threads[0]);
3491 sPAPRDRConnector *drc;
3492 Error *local_err = NULL;
3493 CPUArchId *core_slot;
3494 int index;
3495 bool hotplugged = spapr_drc_hotplugged(dev);
3497 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3498 if (!core_slot) {
3499 error_setg(errp, "Unable to find CPU core with core-id: %d",
3500 cc->core_id);
3501 return;
3503 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3504 spapr_vcpu_id(spapr, cc->core_id));
3506 g_assert(drc || !mc->has_hotpluggable_cpus);
3508 if (drc) {
3509 void *fdt;
3510 int fdt_offset;
3512 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3514 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3515 if (local_err) {
3516 g_free(fdt);
3517 error_propagate(errp, local_err);
3518 return;
3521 if (hotplugged) {
3523 * Send hotplug notification interrupt to the guest only
3524 * in case of hotplugged CPUs.
3526 spapr_hotplug_req_add_by_index(drc);
3527 } else {
3528 spapr_drc_reset(drc);
3532 core_slot->cpu = OBJECT(dev);
3534 if (smc->pre_2_10_has_unused_icps) {
3535 int i;
3537 for (i = 0; i < cc->nr_threads; i++) {
3538 cs = CPU(core->threads[i]);
3539 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3544 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3545 Error **errp)
3547 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3548 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3549 Error *local_err = NULL;
3550 CPUCore *cc = CPU_CORE(dev);
3551 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3552 const char *type = object_get_typename(OBJECT(dev));
3553 CPUArchId *core_slot;
3554 int index;
3556 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3557 error_setg(&local_err, "CPU hotplug not supported for this machine");
3558 goto out;
3561 if (strcmp(base_core_type, type)) {
3562 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3563 goto out;
3566 if (cc->core_id % smp_threads) {
3567 error_setg(&local_err, "invalid core id %d", cc->core_id);
3568 goto out;
3572 * In general we should have homogeneous threads-per-core, but old
3573 * (pre hotplug support) machine types allow the last core to have
3574 * reduced threads as a compatibility hack for when we allowed
3575 * total vcpus not a multiple of threads-per-core.
3577 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3578 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3579 cc->nr_threads, smp_threads);
3580 goto out;
3583 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3584 if (!core_slot) {
3585 error_setg(&local_err, "core id %d out of range", cc->core_id);
3586 goto out;
3589 if (core_slot->cpu) {
3590 error_setg(&local_err, "core %d already populated", cc->core_id);
3591 goto out;
3594 numa_cpu_pre_plug(core_slot, dev, &local_err);
3596 out:
3597 error_propagate(errp, local_err);
3600 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3601 DeviceState *dev, Error **errp)
3603 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3604 spapr_memory_plug(hotplug_dev, dev, errp);
3605 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3606 spapr_core_plug(hotplug_dev, dev, errp);
3610 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3611 DeviceState *dev, Error **errp)
3613 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3614 spapr_memory_unplug(hotplug_dev, dev);
3615 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3616 spapr_core_unplug(hotplug_dev, dev);
3620 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3621 DeviceState *dev, Error **errp)
3623 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3624 MachineClass *mc = MACHINE_GET_CLASS(sms);
3626 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3627 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3628 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3629 } else {
3630 /* NOTE: this means there is a window after guest reset, prior to
3631 * CAS negotiation, where unplug requests will fail due to the
3632 * capability not being detected yet. This is a bit different than
3633 * the case with PCI unplug, where the events will be queued and
3634 * eventually handled by the guest after boot
3636 error_setg(errp, "Memory hot unplug not supported for this guest");
3638 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3639 if (!mc->has_hotpluggable_cpus) {
3640 error_setg(errp, "CPU hot unplug not supported on this machine");
3641 return;
3643 spapr_core_unplug_request(hotplug_dev, dev, errp);
3647 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3648 DeviceState *dev, Error **errp)
3650 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3651 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3652 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3653 spapr_core_pre_plug(hotplug_dev, dev, errp);
3657 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3658 DeviceState *dev)
3660 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3661 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3662 return HOTPLUG_HANDLER(machine);
3664 return NULL;
3667 static CpuInstanceProperties
3668 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3670 CPUArchId *core_slot;
3671 MachineClass *mc = MACHINE_GET_CLASS(machine);
3673 /* make sure possible_cpu are intialized */
3674 mc->possible_cpu_arch_ids(machine);
3675 /* get CPU core slot containing thread that matches cpu_index */
3676 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3677 assert(core_slot);
3678 return core_slot->props;
3681 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3683 return idx / smp_cores % nb_numa_nodes;
3686 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3688 int i;
3689 const char *core_type;
3690 int spapr_max_cores = max_cpus / smp_threads;
3691 MachineClass *mc = MACHINE_GET_CLASS(machine);
3693 if (!mc->has_hotpluggable_cpus) {
3694 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3696 if (machine->possible_cpus) {
3697 assert(machine->possible_cpus->len == spapr_max_cores);
3698 return machine->possible_cpus;
3701 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3702 if (!core_type) {
3703 error_report("Unable to find sPAPR CPU Core definition");
3704 exit(1);
3707 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3708 sizeof(CPUArchId) * spapr_max_cores);
3709 machine->possible_cpus->len = spapr_max_cores;
3710 for (i = 0; i < machine->possible_cpus->len; i++) {
3711 int core_id = i * smp_threads;
3713 machine->possible_cpus->cpus[i].type = core_type;
3714 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3715 machine->possible_cpus->cpus[i].arch_id = core_id;
3716 machine->possible_cpus->cpus[i].props.has_core_id = true;
3717 machine->possible_cpus->cpus[i].props.core_id = core_id;
3719 return machine->possible_cpus;
3722 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3723 uint64_t *buid, hwaddr *pio,
3724 hwaddr *mmio32, hwaddr *mmio64,
3725 unsigned n_dma, uint32_t *liobns, Error **errp)
3728 * New-style PHB window placement.
3730 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3731 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3732 * windows.
3734 * Some guest kernels can't work with MMIO windows above 1<<46
3735 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3737 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3738 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3739 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3740 * 1TiB 64-bit MMIO windows for each PHB.
3742 const uint64_t base_buid = 0x800000020000000ULL;
3743 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3744 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3745 int i;
3747 /* Sanity check natural alignments */
3748 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3749 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3750 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3751 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3752 /* Sanity check bounds */
3753 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3754 SPAPR_PCI_MEM32_WIN_SIZE);
3755 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3756 SPAPR_PCI_MEM64_WIN_SIZE);
3758 if (index >= SPAPR_MAX_PHBS) {
3759 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3760 SPAPR_MAX_PHBS - 1);
3761 return;
3764 *buid = base_buid + index;
3765 for (i = 0; i < n_dma; ++i) {
3766 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3769 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3770 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3771 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3774 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3776 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3778 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3781 static void spapr_ics_resend(XICSFabric *dev)
3783 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3785 ics_resend(spapr->ics);
3788 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3790 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3792 return cpu ? ICP(cpu->intc) : NULL;
3795 #define ICS_IRQ_FREE(ics, srcno) \
3796 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3798 static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3800 int first, i;
3802 for (first = 0; first < ics->nr_irqs; first += alignnum) {
3803 if (num > (ics->nr_irqs - first)) {
3804 return -1;
3806 for (i = first; i < first + num; ++i) {
3807 if (!ICS_IRQ_FREE(ics, i)) {
3808 break;
3811 if (i == (first + num)) {
3812 return first;
3816 return -1;
3820 * Allocate the IRQ number and set the IRQ type, LSI or MSI
3822 static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi)
3824 ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi);
3827 int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi,
3828 Error **errp)
3830 ICSState *ics = spapr->ics;
3831 int irq;
3833 assert(ics);
3835 if (irq_hint) {
3836 if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) {
3837 error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint);
3838 return -1;
3840 irq = irq_hint;
3841 } else {
3842 irq = ics_find_free_block(ics, 1, 1);
3843 if (irq < 0) {
3844 error_setg(errp, "can't allocate IRQ: no IRQ left");
3845 return -1;
3847 irq += ics->offset;
3850 spapr_irq_set_lsi(spapr, irq, lsi);
3851 trace_spapr_irq_alloc(irq);
3853 return irq;
3857 * Allocate block of consecutive IRQs, and return the number of the first IRQ in
3858 * the block. If align==true, aligns the first IRQ number to num.
3860 int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi,
3861 bool align, Error **errp)
3863 ICSState *ics = spapr->ics;
3864 int i, first = -1;
3866 assert(ics);
3869 * MSIMesage::data is used for storing VIRQ so
3870 * it has to be aligned to num to support multiple
3871 * MSI vectors. MSI-X is not affected by this.
3872 * The hint is used for the first IRQ, the rest should
3873 * be allocated continuously.
3875 if (align) {
3876 assert((num == 1) || (num == 2) || (num == 4) ||
3877 (num == 8) || (num == 16) || (num == 32));
3878 first = ics_find_free_block(ics, num, num);
3879 } else {
3880 first = ics_find_free_block(ics, num, 1);
3882 if (first < 0) {
3883 error_setg(errp, "can't find a free %d-IRQ block", num);
3884 return -1;
3887 first += ics->offset;
3888 for (i = first; i < first + num; ++i) {
3889 spapr_irq_set_lsi(spapr, i, lsi);
3892 trace_spapr_irq_alloc_block(first, num, lsi, align);
3894 return first;
3897 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3899 ICSState *ics = spapr->ics;
3900 int srcno = irq - ics->offset;
3901 int i;
3903 if (ics_valid_irq(ics, irq)) {
3904 trace_spapr_irq_free(0, irq, num);
3905 for (i = srcno; i < srcno + num; ++i) {
3906 if (ICS_IRQ_FREE(ics, i)) {
3907 trace_spapr_irq_free_warn(0, i + ics->offset);
3909 memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3914 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3916 ICSState *ics = spapr->ics;
3918 if (ics_valid_irq(ics, irq)) {
3919 return ics->qirqs[irq - ics->offset];
3922 return NULL;
3925 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3926 Monitor *mon)
3928 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3929 CPUState *cs;
3931 CPU_FOREACH(cs) {
3932 PowerPCCPU *cpu = POWERPC_CPU(cs);
3934 icp_pic_print_info(ICP(cpu->intc), mon);
3937 ics_pic_print_info(spapr->ics, mon);
3940 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3942 return cpu->vcpu_id;
3945 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3947 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3948 int vcpu_id;
3950 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3952 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3953 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3954 error_append_hint(errp, "Adjust the number of cpus to %d "
3955 "or try to raise the number of threads per core\n",
3956 vcpu_id * smp_threads / spapr->vsmt);
3957 return;
3960 cpu->vcpu_id = vcpu_id;
3963 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3965 CPUState *cs;
3967 CPU_FOREACH(cs) {
3968 PowerPCCPU *cpu = POWERPC_CPU(cs);
3970 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3971 return cpu;
3975 return NULL;
3978 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3980 MachineClass *mc = MACHINE_CLASS(oc);
3981 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3982 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3983 NMIClass *nc = NMI_CLASS(oc);
3984 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3985 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3986 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3987 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3989 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3992 * We set up the default / latest behaviour here. The class_init
3993 * functions for the specific versioned machine types can override
3994 * these details for backwards compatibility
3996 mc->init = spapr_machine_init;
3997 mc->reset = spapr_machine_reset;
3998 mc->block_default_type = IF_SCSI;
3999 mc->max_cpus = 1024;
4000 mc->no_parallel = 1;
4001 mc->default_boot_order = "";
4002 mc->default_ram_size = 512 * M_BYTE;
4003 mc->kvm_type = spapr_kvm_type;
4004 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4005 mc->pci_allow_0_address = true;
4006 assert(!mc->get_hotplug_handler);
4007 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4008 hc->pre_plug = spapr_machine_device_pre_plug;
4009 hc->plug = spapr_machine_device_plug;
4010 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4011 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4012 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4013 hc->unplug_request = spapr_machine_device_unplug_request;
4014 hc->unplug = spapr_machine_device_unplug;
4016 smc->dr_lmb_enabled = true;
4017 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4018 mc->has_hotpluggable_cpus = true;
4019 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4020 fwc->get_dev_path = spapr_get_fw_dev_path;
4021 nc->nmi_monitor_handler = spapr_nmi;
4022 smc->phb_placement = spapr_phb_placement;
4023 vhc->hypercall = emulate_spapr_hypercall;
4024 vhc->hpt_mask = spapr_hpt_mask;
4025 vhc->map_hptes = spapr_map_hptes;
4026 vhc->unmap_hptes = spapr_unmap_hptes;
4027 vhc->store_hpte = spapr_store_hpte;
4028 vhc->get_patbe = spapr_get_patbe;
4029 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4030 xic->ics_get = spapr_ics_get;
4031 xic->ics_resend = spapr_ics_resend;
4032 xic->icp_get = spapr_icp_get;
4033 ispc->print_info = spapr_pic_print_info;
4034 /* Force NUMA node memory size to be a multiple of
4035 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4036 * in which LMBs are represented and hot-added
4038 mc->numa_mem_align_shift = 28;
4040 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4041 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4042 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4043 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4044 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4045 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4046 spapr_caps_add_properties(smc, &error_abort);
4049 static const TypeInfo spapr_machine_info = {
4050 .name = TYPE_SPAPR_MACHINE,
4051 .parent = TYPE_MACHINE,
4052 .abstract = true,
4053 .instance_size = sizeof(sPAPRMachineState),
4054 .instance_init = spapr_instance_init,
4055 .instance_finalize = spapr_machine_finalizefn,
4056 .class_size = sizeof(sPAPRMachineClass),
4057 .class_init = spapr_machine_class_init,
4058 .interfaces = (InterfaceInfo[]) {
4059 { TYPE_FW_PATH_PROVIDER },
4060 { TYPE_NMI },
4061 { TYPE_HOTPLUG_HANDLER },
4062 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4063 { TYPE_XICS_FABRIC },
4064 { TYPE_INTERRUPT_STATS_PROVIDER },
4069 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4070 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4071 void *data) \
4073 MachineClass *mc = MACHINE_CLASS(oc); \
4074 spapr_machine_##suffix##_class_options(mc); \
4075 if (latest) { \
4076 mc->alias = "pseries"; \
4077 mc->is_default = 1; \
4080 static void spapr_machine_##suffix##_instance_init(Object *obj) \
4082 MachineState *machine = MACHINE(obj); \
4083 spapr_machine_##suffix##_instance_options(machine); \
4085 static const TypeInfo spapr_machine_##suffix##_info = { \
4086 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4087 .parent = TYPE_SPAPR_MACHINE, \
4088 .class_init = spapr_machine_##suffix##_class_init, \
4089 .instance_init = spapr_machine_##suffix##_instance_init, \
4090 }; \
4091 static void spapr_machine_register_##suffix(void) \
4093 type_register(&spapr_machine_##suffix##_info); \
4095 type_init(spapr_machine_register_##suffix)
4098 * pseries-3.0
4100 static void spapr_machine_3_0_instance_options(MachineState *machine)
4104 static void spapr_machine_3_0_class_options(MachineClass *mc)
4106 /* Defaults for the latest behaviour inherited from the base class */
4109 DEFINE_SPAPR_MACHINE(3_0, "3.0", true);
4112 * pseries-2.12
4114 #define SPAPR_COMPAT_2_12 \
4115 HW_COMPAT_2_12 \
4117 .driver = TYPE_POWERPC_CPU, \
4118 .property = "pre-3.0-migration", \
4119 .value = "on", \
4120 }, \
4122 .driver = TYPE_SPAPR_CPU_CORE, \
4123 .property = "pre-3.0-migration", \
4124 .value = "on", \
4127 static void spapr_machine_2_12_instance_options(MachineState *machine)
4129 spapr_machine_3_0_instance_options(machine);
4132 static void spapr_machine_2_12_class_options(MachineClass *mc)
4134 spapr_machine_3_0_class_options(mc);
4135 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
4138 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4140 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
4142 spapr_machine_2_12_instance_options(machine);
4145 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4147 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4149 spapr_machine_2_12_class_options(mc);
4150 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4151 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4152 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4155 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4158 * pseries-2.11
4160 #define SPAPR_COMPAT_2_11 \
4161 HW_COMPAT_2_11
4163 static void spapr_machine_2_11_instance_options(MachineState *machine)
4165 spapr_machine_2_12_instance_options(machine);
4168 static void spapr_machine_2_11_class_options(MachineClass *mc)
4170 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4172 spapr_machine_2_12_class_options(mc);
4173 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4174 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4177 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4180 * pseries-2.10
4182 #define SPAPR_COMPAT_2_10 \
4183 HW_COMPAT_2_10
4185 static void spapr_machine_2_10_instance_options(MachineState *machine)
4187 spapr_machine_2_11_instance_options(machine);
4190 static void spapr_machine_2_10_class_options(MachineClass *mc)
4192 spapr_machine_2_11_class_options(mc);
4193 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4196 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4199 * pseries-2.9
4201 #define SPAPR_COMPAT_2_9 \
4202 HW_COMPAT_2_9 \
4204 .driver = TYPE_POWERPC_CPU, \
4205 .property = "pre-2.10-migration", \
4206 .value = "on", \
4207 }, \
4209 static void spapr_machine_2_9_instance_options(MachineState *machine)
4211 spapr_machine_2_10_instance_options(machine);
4214 static void spapr_machine_2_9_class_options(MachineClass *mc)
4216 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4218 spapr_machine_2_10_class_options(mc);
4219 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4220 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4221 smc->pre_2_10_has_unused_icps = true;
4222 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4225 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4228 * pseries-2.8
4230 #define SPAPR_COMPAT_2_8 \
4231 HW_COMPAT_2_8 \
4233 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4234 .property = "pcie-extended-configuration-space", \
4235 .value = "off", \
4238 static void spapr_machine_2_8_instance_options(MachineState *machine)
4240 spapr_machine_2_9_instance_options(machine);
4243 static void spapr_machine_2_8_class_options(MachineClass *mc)
4245 spapr_machine_2_9_class_options(mc);
4246 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4247 mc->numa_mem_align_shift = 23;
4250 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4253 * pseries-2.7
4255 #define SPAPR_COMPAT_2_7 \
4256 HW_COMPAT_2_7 \
4258 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4259 .property = "mem_win_size", \
4260 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4261 }, \
4263 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4264 .property = "mem64_win_size", \
4265 .value = "0", \
4266 }, \
4268 .driver = TYPE_POWERPC_CPU, \
4269 .property = "pre-2.8-migration", \
4270 .value = "on", \
4271 }, \
4273 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4274 .property = "pre-2.8-migration", \
4275 .value = "on", \
4278 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4279 uint64_t *buid, hwaddr *pio,
4280 hwaddr *mmio32, hwaddr *mmio64,
4281 unsigned n_dma, uint32_t *liobns, Error **errp)
4283 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4284 const uint64_t base_buid = 0x800000020000000ULL;
4285 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4286 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4287 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4288 const uint32_t max_index = 255;
4289 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4291 uint64_t ram_top = MACHINE(spapr)->ram_size;
4292 hwaddr phb0_base, phb_base;
4293 int i;
4295 /* Do we have device memory? */
4296 if (MACHINE(spapr)->maxram_size > ram_top) {
4297 /* Can't just use maxram_size, because there may be an
4298 * alignment gap between normal and device memory regions
4300 ram_top = MACHINE(spapr)->device_memory->base +
4301 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4304 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4306 if (index > max_index) {
4307 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4308 max_index);
4309 return;
4312 *buid = base_buid + index;
4313 for (i = 0; i < n_dma; ++i) {
4314 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4317 phb_base = phb0_base + index * phb_spacing;
4318 *pio = phb_base + pio_offset;
4319 *mmio32 = phb_base + mmio_offset;
4321 * We don't set the 64-bit MMIO window, relying on the PHB's
4322 * fallback behaviour of automatically splitting a large "32-bit"
4323 * window into contiguous 32-bit and 64-bit windows
4327 static void spapr_machine_2_7_instance_options(MachineState *machine)
4329 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4331 spapr_machine_2_8_instance_options(machine);
4332 spapr->use_hotplug_event_source = false;
4335 static void spapr_machine_2_7_class_options(MachineClass *mc)
4337 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4339 spapr_machine_2_8_class_options(mc);
4340 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4341 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4342 smc->phb_placement = phb_placement_2_7;
4345 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4348 * pseries-2.6
4350 #define SPAPR_COMPAT_2_6 \
4351 HW_COMPAT_2_6 \
4353 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4354 .property = "ddw",\
4355 .value = stringify(off),\
4358 static void spapr_machine_2_6_instance_options(MachineState *machine)
4360 spapr_machine_2_7_instance_options(machine);
4363 static void spapr_machine_2_6_class_options(MachineClass *mc)
4365 spapr_machine_2_7_class_options(mc);
4366 mc->has_hotpluggable_cpus = false;
4367 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4370 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4373 * pseries-2.5
4375 #define SPAPR_COMPAT_2_5 \
4376 HW_COMPAT_2_5 \
4378 .driver = "spapr-vlan", \
4379 .property = "use-rx-buffer-pools", \
4380 .value = "off", \
4383 static void spapr_machine_2_5_instance_options(MachineState *machine)
4385 spapr_machine_2_6_instance_options(machine);
4388 static void spapr_machine_2_5_class_options(MachineClass *mc)
4390 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4392 spapr_machine_2_6_class_options(mc);
4393 smc->use_ohci_by_default = true;
4394 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4397 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4400 * pseries-2.4
4402 #define SPAPR_COMPAT_2_4 \
4403 HW_COMPAT_2_4
4405 static void spapr_machine_2_4_instance_options(MachineState *machine)
4407 spapr_machine_2_5_instance_options(machine);
4410 static void spapr_machine_2_4_class_options(MachineClass *mc)
4412 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4414 spapr_machine_2_5_class_options(mc);
4415 smc->dr_lmb_enabled = false;
4416 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4419 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4422 * pseries-2.3
4424 #define SPAPR_COMPAT_2_3 \
4425 HW_COMPAT_2_3 \
4427 .driver = "spapr-pci-host-bridge",\
4428 .property = "dynamic-reconfiguration",\
4429 .value = "off",\
4432 static void spapr_machine_2_3_instance_options(MachineState *machine)
4434 spapr_machine_2_4_instance_options(machine);
4437 static void spapr_machine_2_3_class_options(MachineClass *mc)
4439 spapr_machine_2_4_class_options(mc);
4440 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4442 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4445 * pseries-2.2
4448 #define SPAPR_COMPAT_2_2 \
4449 HW_COMPAT_2_2 \
4451 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4452 .property = "mem_win_size",\
4453 .value = "0x20000000",\
4456 static void spapr_machine_2_2_instance_options(MachineState *machine)
4458 spapr_machine_2_3_instance_options(machine);
4459 machine->suppress_vmdesc = true;
4462 static void spapr_machine_2_2_class_options(MachineClass *mc)
4464 spapr_machine_2_3_class_options(mc);
4465 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4467 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4470 * pseries-2.1
4472 #define SPAPR_COMPAT_2_1 \
4473 HW_COMPAT_2_1
4475 static void spapr_machine_2_1_instance_options(MachineState *machine)
4477 spapr_machine_2_2_instance_options(machine);
4480 static void spapr_machine_2_1_class_options(MachineClass *mc)
4482 spapr_machine_2_2_class_options(mc);
4483 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4485 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4487 static void spapr_machine_register_types(void)
4489 type_register_static(&spapr_machine_info);
4492 type_init(spapr_machine_register_types)