docs: Build and install all the docs in a single manual
[qemu/ar7.git] / hw / ppc / spapr.c
blob6c47466fc2f19db55478f53a113fc50dd5f18144
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/visitor.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/hostmem.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/qtest.h"
36 #include "sysemu/reset.h"
37 #include "sysemu/runstate.h"
38 #include "qemu/log.h"
39 #include "hw/fw-path-provider.h"
40 #include "elf.h"
41 #include "net/net.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/cpus.h"
44 #include "sysemu/hw_accel.h"
45 #include "kvm_ppc.h"
46 #include "migration/misc.h"
47 #include "migration/qemu-file-types.h"
48 #include "migration/global_state.h"
49 #include "migration/register.h"
50 #include "migration/blocker.h"
51 #include "mmu-hash64.h"
52 #include "mmu-book3s-v3.h"
53 #include "cpu-models.h"
54 #include "hw/core/cpu.h"
56 #include "hw/boards.h"
57 #include "hw/ppc/ppc.h"
58 #include "hw/loader.h"
60 #include "hw/ppc/fdt.h"
61 #include "hw/ppc/spapr.h"
62 #include "hw/ppc/spapr_vio.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/pci-host/spapr.h"
65 #include "hw/pci/msi.h"
67 #include "hw/pci/pci.h"
68 #include "hw/scsi/scsi.h"
69 #include "hw/virtio/virtio-scsi.h"
70 #include "hw/virtio/vhost-scsi-common.h"
72 #include "exec/address-spaces.h"
73 #include "exec/ram_addr.h"
74 #include "hw/usb.h"
75 #include "qemu/config-file.h"
76 #include "qemu/error-report.h"
77 #include "trace.h"
78 #include "hw/nmi.h"
79 #include "hw/intc/intc.h"
81 #include "hw/ppc/spapr_cpu_core.h"
82 #include "hw/mem/memory-device.h"
83 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "hw/ppc/spapr_nvdimm.h"
85 #include "hw/ppc/spapr_numa.h"
87 #include "monitor/monitor.h"
89 #include <libfdt.h>
91 /* SLOF memory layout:
93 * SLOF raw image loaded at 0, copies its romfs right below the flat
94 * device-tree, then position SLOF itself 31M below that
96 * So we set FW_OVERHEAD to 40MB which should account for all of that
97 * and more
99 * We load our kernel at 4M, leaving space for SLOF initial image
101 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
102 #define FW_MAX_SIZE 0x400000
103 #define FW_FILE_NAME "slof.bin"
104 #define FW_OVERHEAD 0x2800000
105 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
107 #define MIN_RMA_SLOF (128 * MiB)
109 #define PHANDLE_INTC 0x00001111
111 /* These two functions implement the VCPU id numbering: one to compute them
112 * all and one to identify thread 0 of a VCORE. Any change to the first one
113 * is likely to have an impact on the second one, so let's keep them close.
115 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
117 MachineState *ms = MACHINE(spapr);
118 unsigned int smp_threads = ms->smp.threads;
120 assert(spapr->vsmt);
121 return
122 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
124 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
125 PowerPCCPU *cpu)
127 assert(spapr->vsmt);
128 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
131 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
133 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
134 * and newer QEMUs don't even have them. In both cases, we don't want
135 * to send anything on the wire.
137 return false;
140 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
141 .name = "icp/server",
142 .version_id = 1,
143 .minimum_version_id = 1,
144 .needed = pre_2_10_vmstate_dummy_icp_needed,
145 .fields = (VMStateField[]) {
146 VMSTATE_UNUSED(4), /* uint32_t xirr */
147 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
148 VMSTATE_UNUSED(1), /* uint8_t mfrr */
149 VMSTATE_END_OF_LIST()
153 static void pre_2_10_vmstate_register_dummy_icp(int i)
155 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
156 (void *)(uintptr_t) i);
159 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
161 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
162 (void *)(uintptr_t) i);
165 int spapr_max_server_number(SpaprMachineState *spapr)
167 MachineState *ms = MACHINE(spapr);
169 assert(spapr->vsmt);
170 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
173 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
174 int smt_threads)
176 int i, ret = 0;
177 uint32_t servers_prop[smt_threads];
178 uint32_t gservers_prop[smt_threads * 2];
179 int index = spapr_get_vcpu_id(cpu);
181 if (cpu->compat_pvr) {
182 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
183 if (ret < 0) {
184 return ret;
188 /* Build interrupt servers and gservers properties */
189 for (i = 0; i < smt_threads; i++) {
190 servers_prop[i] = cpu_to_be32(index + i);
191 /* Hack, direct the group queues back to cpu 0 */
192 gservers_prop[i*2] = cpu_to_be32(index + i);
193 gservers_prop[i*2 + 1] = 0;
195 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
196 servers_prop, sizeof(servers_prop));
197 if (ret < 0) {
198 return ret;
200 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
201 gservers_prop, sizeof(gservers_prop));
203 return ret;
206 static void spapr_dt_pa_features(SpaprMachineState *spapr,
207 PowerPCCPU *cpu,
208 void *fdt, int offset)
210 uint8_t pa_features_206[] = { 6, 0,
211 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
212 uint8_t pa_features_207[] = { 24, 0,
213 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
214 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
215 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
216 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
217 uint8_t pa_features_300[] = { 66, 0,
218 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
219 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
220 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
221 /* 6: DS207 */
222 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
223 /* 16: Vector */
224 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
225 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
226 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
227 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
228 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
229 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
230 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
231 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
233 /* 42: PM, 44: PC RA, 46: SC vec'd */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
235 /* 48: SIMD, 50: QP BFP, 52: String */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
237 /* 54: DecFP, 56: DecI, 58: SHA */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
239 /* 60: NM atomic, 62: RNG */
240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
242 uint8_t *pa_features = NULL;
243 size_t pa_size;
245 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
246 pa_features = pa_features_206;
247 pa_size = sizeof(pa_features_206);
249 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
250 pa_features = pa_features_207;
251 pa_size = sizeof(pa_features_207);
253 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
254 pa_features = pa_features_300;
255 pa_size = sizeof(pa_features_300);
257 if (!pa_features) {
258 return;
261 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
263 * Note: we keep CI large pages off by default because a 64K capable
264 * guest provisioned with large pages might otherwise try to map a qemu
265 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
266 * even if that qemu runs on a 4k host.
267 * We dd this bit back here if we are confident this is not an issue
269 pa_features[3] |= 0x20;
271 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
272 pa_features[24] |= 0x80; /* Transactional memory support */
274 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
275 /* Workaround for broken kernels that attempt (guest) radix
276 * mode when they can't handle it, if they see the radix bit set
277 * in pa-features. So hide it from them. */
278 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284 static hwaddr spapr_node0_size(MachineState *machine)
286 if (machine->numa_state->num_nodes) {
287 int i;
288 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
289 if (machine->numa_state->nodes[i].node_mem) {
290 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
291 machine->ram_size);
295 return machine->ram_size;
298 bool spapr_machine_using_legacy_numa(SpaprMachineState *spapr)
300 MachineState *machine = MACHINE(spapr);
301 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
303 return smc->pre_5_2_numa_associativity ||
304 machine->numa_state->num_nodes <= 1;
307 static void add_str(GString *s, const gchar *s1)
309 g_string_append_len(s, s1, strlen(s1) + 1);
312 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
313 hwaddr start, hwaddr size)
315 char mem_name[32];
316 uint64_t mem_reg_property[2];
317 int off;
319 mem_reg_property[0] = cpu_to_be64(start);
320 mem_reg_property[1] = cpu_to_be64(size);
322 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
323 off = fdt_add_subnode(fdt, 0, mem_name);
324 _FDT(off);
325 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
326 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
327 sizeof(mem_reg_property))));
328 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
329 return off;
332 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
334 MemoryDeviceInfoList *info;
336 for (info = list; info; info = info->next) {
337 MemoryDeviceInfo *value = info->value;
339 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
340 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
342 if (addr >= pcdimm_info->addr &&
343 addr < (pcdimm_info->addr + pcdimm_info->size)) {
344 return pcdimm_info->node;
349 return -1;
352 struct sPAPRDrconfCellV2 {
353 uint32_t seq_lmbs;
354 uint64_t base_addr;
355 uint32_t drc_index;
356 uint32_t aa_index;
357 uint32_t flags;
358 } QEMU_PACKED;
360 typedef struct DrconfCellQueue {
361 struct sPAPRDrconfCellV2 cell;
362 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
363 } DrconfCellQueue;
365 static DrconfCellQueue *
366 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
367 uint32_t drc_index, uint32_t aa_index,
368 uint32_t flags)
370 DrconfCellQueue *elem;
372 elem = g_malloc0(sizeof(*elem));
373 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
374 elem->cell.base_addr = cpu_to_be64(base_addr);
375 elem->cell.drc_index = cpu_to_be32(drc_index);
376 elem->cell.aa_index = cpu_to_be32(aa_index);
377 elem->cell.flags = cpu_to_be32(flags);
379 return elem;
382 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
383 int offset, MemoryDeviceInfoList *dimms)
385 MachineState *machine = MACHINE(spapr);
386 uint8_t *int_buf, *cur_index;
387 int ret;
388 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
389 uint64_t addr, cur_addr, size;
390 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
391 uint64_t mem_end = machine->device_memory->base +
392 memory_region_size(&machine->device_memory->mr);
393 uint32_t node, buf_len, nr_entries = 0;
394 SpaprDrc *drc;
395 DrconfCellQueue *elem, *next;
396 MemoryDeviceInfoList *info;
397 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
398 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
400 /* Entry to cover RAM and the gap area */
401 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
402 SPAPR_LMB_FLAGS_RESERVED |
403 SPAPR_LMB_FLAGS_DRC_INVALID);
404 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
405 nr_entries++;
407 cur_addr = machine->device_memory->base;
408 for (info = dimms; info; info = info->next) {
409 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
411 addr = di->addr;
412 size = di->size;
413 node = di->node;
416 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
417 * area is marked hotpluggable in the next iteration for the bigger
418 * chunk including the NVDIMM occupied area.
420 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
421 continue;
423 /* Entry for hot-pluggable area */
424 if (cur_addr < addr) {
425 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
426 g_assert(drc);
427 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
428 cur_addr, spapr_drc_index(drc), -1, 0);
429 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
430 nr_entries++;
433 /* Entry for DIMM */
434 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
435 g_assert(drc);
436 elem = spapr_get_drconf_cell(size / lmb_size, addr,
437 spapr_drc_index(drc), node,
438 (SPAPR_LMB_FLAGS_ASSIGNED |
439 SPAPR_LMB_FLAGS_HOTREMOVABLE));
440 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
441 nr_entries++;
442 cur_addr = addr + size;
445 /* Entry for remaining hotpluggable area */
446 if (cur_addr < mem_end) {
447 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
448 g_assert(drc);
449 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
450 cur_addr, spapr_drc_index(drc), -1, 0);
451 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
452 nr_entries++;
455 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
456 int_buf = cur_index = g_malloc0(buf_len);
457 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
458 cur_index += sizeof(nr_entries);
460 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
461 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
462 cur_index += sizeof(elem->cell);
463 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
464 g_free(elem);
467 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
468 g_free(int_buf);
469 if (ret < 0) {
470 return -1;
472 return 0;
475 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
476 int offset, MemoryDeviceInfoList *dimms)
478 MachineState *machine = MACHINE(spapr);
479 int i, ret;
480 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
481 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
482 uint32_t nr_lmbs = (machine->device_memory->base +
483 memory_region_size(&machine->device_memory->mr)) /
484 lmb_size;
485 uint32_t *int_buf, *cur_index, buf_len;
488 * Allocate enough buffer size to fit in ibm,dynamic-memory
490 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
491 cur_index = int_buf = g_malloc0(buf_len);
492 int_buf[0] = cpu_to_be32(nr_lmbs);
493 cur_index++;
494 for (i = 0; i < nr_lmbs; i++) {
495 uint64_t addr = i * lmb_size;
496 uint32_t *dynamic_memory = cur_index;
498 if (i >= device_lmb_start) {
499 SpaprDrc *drc;
501 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
502 g_assert(drc);
504 dynamic_memory[0] = cpu_to_be32(addr >> 32);
505 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
506 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
507 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
508 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
509 if (memory_region_present(get_system_memory(), addr)) {
510 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
511 } else {
512 dynamic_memory[5] = cpu_to_be32(0);
514 } else {
516 * LMB information for RMA, boot time RAM and gap b/n RAM and
517 * device memory region -- all these are marked as reserved
518 * and as having no valid DRC.
520 dynamic_memory[0] = cpu_to_be32(addr >> 32);
521 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
522 dynamic_memory[2] = cpu_to_be32(0);
523 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
524 dynamic_memory[4] = cpu_to_be32(-1);
525 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
526 SPAPR_LMB_FLAGS_DRC_INVALID);
529 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
531 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
532 g_free(int_buf);
533 if (ret < 0) {
534 return -1;
536 return 0;
540 * Adds ibm,dynamic-reconfiguration-memory node.
541 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
542 * of this device tree node.
544 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
545 void *fdt)
547 MachineState *machine = MACHINE(spapr);
548 int ret, offset;
549 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
550 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
551 cpu_to_be32(lmb_size & 0xffffffff)};
552 MemoryDeviceInfoList *dimms = NULL;
555 * Don't create the node if there is no device memory
557 if (machine->ram_size == machine->maxram_size) {
558 return 0;
561 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
563 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
564 sizeof(prop_lmb_size));
565 if (ret < 0) {
566 return ret;
569 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
570 if (ret < 0) {
571 return ret;
574 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
575 if (ret < 0) {
576 return ret;
579 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
580 dimms = qmp_memory_device_list();
581 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
582 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
583 } else {
584 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
586 qapi_free_MemoryDeviceInfoList(dimms);
588 if (ret < 0) {
589 return ret;
592 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
594 return ret;
597 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
599 MachineState *machine = MACHINE(spapr);
600 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
601 hwaddr mem_start, node_size;
602 int i, nb_nodes = machine->numa_state->num_nodes;
603 NodeInfo *nodes = machine->numa_state->nodes;
605 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
606 if (!nodes[i].node_mem) {
607 continue;
609 if (mem_start >= machine->ram_size) {
610 node_size = 0;
611 } else {
612 node_size = nodes[i].node_mem;
613 if (node_size > machine->ram_size - mem_start) {
614 node_size = machine->ram_size - mem_start;
617 if (!mem_start) {
618 /* spapr_machine_init() checks for rma_size <= node0_size
619 * already */
620 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
621 mem_start += spapr->rma_size;
622 node_size -= spapr->rma_size;
624 for ( ; node_size; ) {
625 hwaddr sizetmp = pow2floor(node_size);
627 /* mem_start != 0 here */
628 if (ctzl(mem_start) < ctzl(sizetmp)) {
629 sizetmp = 1ULL << ctzl(mem_start);
632 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
633 node_size -= sizetmp;
634 mem_start += sizetmp;
638 /* Generate ibm,dynamic-reconfiguration-memory node if required */
639 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
640 int ret;
642 g_assert(smc->dr_lmb_enabled);
643 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
644 if (ret) {
645 return ret;
649 return 0;
652 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
653 SpaprMachineState *spapr)
655 MachineState *ms = MACHINE(spapr);
656 PowerPCCPU *cpu = POWERPC_CPU(cs);
657 CPUPPCState *env = &cpu->env;
658 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
659 int index = spapr_get_vcpu_id(cpu);
660 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
661 0xffffffff, 0xffffffff};
662 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
663 : SPAPR_TIMEBASE_FREQ;
664 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
665 uint32_t page_sizes_prop[64];
666 size_t page_sizes_prop_size;
667 unsigned int smp_threads = ms->smp.threads;
668 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
669 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
670 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
671 SpaprDrc *drc;
672 int drc_index;
673 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
674 int i;
676 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
677 if (drc) {
678 drc_index = spapr_drc_index(drc);
679 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
682 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
683 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
685 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
686 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
687 env->dcache_line_size)));
688 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
689 env->dcache_line_size)));
690 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
691 env->icache_line_size)));
692 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
693 env->icache_line_size)));
695 if (pcc->l1_dcache_size) {
696 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
697 pcc->l1_dcache_size)));
698 } else {
699 warn_report("Unknown L1 dcache size for cpu");
701 if (pcc->l1_icache_size) {
702 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
703 pcc->l1_icache_size)));
704 } else {
705 warn_report("Unknown L1 icache size for cpu");
708 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
709 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
710 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
711 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
712 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
713 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
715 if (env->spr_cb[SPR_PURR].oea_read) {
716 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
718 if (env->spr_cb[SPR_SPURR].oea_read) {
719 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
722 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
723 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
724 segs, sizeof(segs))));
727 /* Advertise VSX (vector extensions) if available
728 * 1 == VMX / Altivec available
729 * 2 == VSX available
731 * Only CPUs for which we create core types in spapr_cpu_core.c
732 * are possible, and all of those have VMX */
733 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
734 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
735 } else {
736 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
739 /* Advertise DFP (Decimal Floating Point) if available
740 * 0 / no property == no DFP
741 * 1 == DFP available */
742 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
743 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
746 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
747 sizeof(page_sizes_prop));
748 if (page_sizes_prop_size) {
749 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
750 page_sizes_prop, page_sizes_prop_size)));
753 spapr_dt_pa_features(spapr, cpu, fdt, offset);
755 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
756 cs->cpu_index / vcpus_per_socket)));
758 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
759 pft_size_prop, sizeof(pft_size_prop))));
761 if (ms->numa_state->num_nodes > 1) {
762 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
765 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
767 if (pcc->radix_page_info) {
768 for (i = 0; i < pcc->radix_page_info->count; i++) {
769 radix_AP_encodings[i] =
770 cpu_to_be32(pcc->radix_page_info->entries[i]);
772 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
773 radix_AP_encodings,
774 pcc->radix_page_info->count *
775 sizeof(radix_AP_encodings[0]))));
779 * We set this property to let the guest know that it can use the large
780 * decrementer and its width in bits.
782 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
783 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
784 pcc->lrg_decr_bits)));
787 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
789 CPUState **rev;
790 CPUState *cs;
791 int n_cpus;
792 int cpus_offset;
793 char *nodename;
794 int i;
796 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
797 _FDT(cpus_offset);
798 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
799 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
802 * We walk the CPUs in reverse order to ensure that CPU DT nodes
803 * created by fdt_add_subnode() end up in the right order in FDT
804 * for the guest kernel the enumerate the CPUs correctly.
806 * The CPU list cannot be traversed in reverse order, so we need
807 * to do extra work.
809 n_cpus = 0;
810 rev = NULL;
811 CPU_FOREACH(cs) {
812 rev = g_renew(CPUState *, rev, n_cpus + 1);
813 rev[n_cpus++] = cs;
816 for (i = n_cpus - 1; i >= 0; i--) {
817 CPUState *cs = rev[i];
818 PowerPCCPU *cpu = POWERPC_CPU(cs);
819 int index = spapr_get_vcpu_id(cpu);
820 DeviceClass *dc = DEVICE_GET_CLASS(cs);
821 int offset;
823 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
824 continue;
827 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
828 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
829 g_free(nodename);
830 _FDT(offset);
831 spapr_dt_cpu(cs, fdt, offset, spapr);
834 g_free(rev);
837 static int spapr_dt_rng(void *fdt)
839 int node;
840 int ret;
842 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
843 if (node <= 0) {
844 return -1;
846 ret = fdt_setprop_string(fdt, node, "device_type",
847 "ibm,platform-facilities");
848 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
849 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
851 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
852 if (node <= 0) {
853 return -1;
855 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
857 return ret ? -1 : 0;
860 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
862 MachineState *ms = MACHINE(spapr);
863 int rtas;
864 GString *hypertas = g_string_sized_new(256);
865 GString *qemu_hypertas = g_string_sized_new(256);
866 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
867 memory_region_size(&MACHINE(spapr)->device_memory->mr);
868 uint32_t lrdr_capacity[] = {
869 cpu_to_be32(max_device_addr >> 32),
870 cpu_to_be32(max_device_addr & 0xffffffff),
871 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
872 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
873 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
876 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
878 /* hypertas */
879 add_str(hypertas, "hcall-pft");
880 add_str(hypertas, "hcall-term");
881 add_str(hypertas, "hcall-dabr");
882 add_str(hypertas, "hcall-interrupt");
883 add_str(hypertas, "hcall-tce");
884 add_str(hypertas, "hcall-vio");
885 add_str(hypertas, "hcall-splpar");
886 add_str(hypertas, "hcall-join");
887 add_str(hypertas, "hcall-bulk");
888 add_str(hypertas, "hcall-set-mode");
889 add_str(hypertas, "hcall-sprg0");
890 add_str(hypertas, "hcall-copy");
891 add_str(hypertas, "hcall-debug");
892 add_str(hypertas, "hcall-vphn");
893 add_str(qemu_hypertas, "hcall-memop1");
895 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
896 add_str(hypertas, "hcall-multi-tce");
899 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
900 add_str(hypertas, "hcall-hpt-resize");
903 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
904 hypertas->str, hypertas->len));
905 g_string_free(hypertas, TRUE);
906 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
907 qemu_hypertas->str, qemu_hypertas->len));
908 g_string_free(qemu_hypertas, TRUE);
910 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
913 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
914 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
916 * The system reset requirements are driven by existing Linux and PowerVM
917 * implementation which (contrary to PAPR) saves r3 in the error log
918 * structure like machine check, so Linux expects to find the saved r3
919 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
920 * does not look at the error value).
922 * System reset interrupts are not subject to interlock like machine
923 * check, so this memory area could be corrupted if the sreset is
924 * interrupted by a machine check (or vice versa) if it was shared. To
925 * prevent this, system reset uses per-CPU areas for the sreset save
926 * area. A system reset that interrupts a system reset handler could
927 * still overwrite this area, but Linux doesn't try to recover in that
928 * case anyway.
930 * The extra 8 bytes is required because Linux's FWNMI error log check
931 * is off-by-one.
933 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
934 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
935 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
936 RTAS_ERROR_LOG_MAX));
937 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
938 RTAS_EVENT_SCAN_RATE));
940 g_assert(msi_nonbroken);
941 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
944 * According to PAPR, rtas ibm,os-term does not guarantee a return
945 * back to the guest cpu.
947 * While an additional ibm,extended-os-term property indicates
948 * that rtas call return will always occur. Set this property.
950 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
952 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
953 lrdr_capacity, sizeof(lrdr_capacity)));
955 spapr_dt_rtas_tokens(fdt, rtas);
959 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
960 * and the XIVE features that the guest may request and thus the valid
961 * values for bytes 23..26 of option vector 5:
963 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
964 int chosen)
966 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
968 char val[2 * 4] = {
969 23, 0x00, /* XICS / XIVE mode */
970 24, 0x00, /* Hash/Radix, filled in below. */
971 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
972 26, 0x40, /* Radix options: GTSE == yes. */
975 if (spapr->irq->xics && spapr->irq->xive) {
976 val[1] = SPAPR_OV5_XIVE_BOTH;
977 } else if (spapr->irq->xive) {
978 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
979 } else {
980 assert(spapr->irq->xics);
981 val[1] = SPAPR_OV5_XIVE_LEGACY;
984 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
985 first_ppc_cpu->compat_pvr)) {
987 * If we're in a pre POWER9 compat mode then the guest should
988 * do hash and use the legacy interrupt mode
990 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
991 val[3] = 0x00; /* Hash */
992 } else if (kvm_enabled()) {
993 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
994 val[3] = 0x80; /* OV5_MMU_BOTH */
995 } else if (kvmppc_has_cap_mmu_radix()) {
996 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
997 } else {
998 val[3] = 0x00; /* Hash */
1000 } else {
1001 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1002 val[3] = 0xC0;
1004 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1005 val, sizeof(val)));
1008 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1010 MachineState *machine = MACHINE(spapr);
1011 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1012 int chosen;
1014 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1016 if (reset) {
1017 const char *boot_device = machine->boot_order;
1018 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1019 size_t cb = 0;
1020 char *bootlist = get_boot_devices_list(&cb);
1022 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1023 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1024 machine->kernel_cmdline));
1027 if (spapr->initrd_size) {
1028 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1029 spapr->initrd_base));
1030 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1031 spapr->initrd_base + spapr->initrd_size));
1034 if (spapr->kernel_size) {
1035 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1036 cpu_to_be64(spapr->kernel_size) };
1038 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1039 &kprop, sizeof(kprop)));
1040 if (spapr->kernel_le) {
1041 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1044 if (boot_menu) {
1045 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1047 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1048 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1049 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1051 if (cb && bootlist) {
1052 int i;
1054 for (i = 0; i < cb; i++) {
1055 if (bootlist[i] == '\n') {
1056 bootlist[i] = ' ';
1059 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1062 if (boot_device && strlen(boot_device)) {
1063 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1066 if (!spapr->has_graphics && stdout_path) {
1068 * "linux,stdout-path" and "stdout" properties are
1069 * deprecated by linux kernel. New platforms should only
1070 * use the "stdout-path" property. Set the new property
1071 * and continue using older property to remain compatible
1072 * with the existing firmware.
1074 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1075 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1079 * We can deal with BAR reallocation just fine, advertise it
1080 * to the guest
1082 if (smc->linux_pci_probe) {
1083 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1086 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1088 g_free(stdout_path);
1089 g_free(bootlist);
1092 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1095 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1097 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1098 * KVM to work under pHyp with some guest co-operation */
1099 int hypervisor;
1100 uint8_t hypercall[16];
1102 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1103 /* indicate KVM hypercall interface */
1104 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1105 if (kvmppc_has_cap_fixup_hcalls()) {
1107 * Older KVM versions with older guest kernels were broken
1108 * with the magic page, don't allow the guest to map it.
1110 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1111 sizeof(hypercall))) {
1112 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1113 hypercall, sizeof(hypercall)));
1118 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1120 MachineState *machine = MACHINE(spapr);
1121 MachineClass *mc = MACHINE_GET_CLASS(machine);
1122 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1123 uint32_t root_drc_type_mask = 0;
1124 int ret;
1125 void *fdt;
1126 SpaprPhbState *phb;
1127 char *buf;
1129 fdt = g_malloc0(space);
1130 _FDT((fdt_create_empty_tree(fdt, space)));
1132 /* Root node */
1133 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1134 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1135 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1137 /* Guest UUID & Name*/
1138 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1139 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1140 if (qemu_uuid_set) {
1141 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1143 g_free(buf);
1145 if (qemu_get_vm_name()) {
1146 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1147 qemu_get_vm_name()));
1150 /* Host Model & Serial Number */
1151 if (spapr->host_model) {
1152 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1153 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1154 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1155 g_free(buf);
1158 if (spapr->host_serial) {
1159 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1160 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1161 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1162 g_free(buf);
1165 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1166 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1168 /* /interrupt controller */
1169 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1171 ret = spapr_dt_memory(spapr, fdt);
1172 if (ret < 0) {
1173 error_report("couldn't setup memory nodes in fdt");
1174 exit(1);
1177 /* /vdevice */
1178 spapr_dt_vdevice(spapr->vio_bus, fdt);
1180 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1181 ret = spapr_dt_rng(fdt);
1182 if (ret < 0) {
1183 error_report("could not set up rng device in the fdt");
1184 exit(1);
1188 QLIST_FOREACH(phb, &spapr->phbs, list) {
1189 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1190 if (ret < 0) {
1191 error_report("couldn't setup PCI devices in fdt");
1192 exit(1);
1196 spapr_dt_cpus(fdt, spapr);
1198 /* ibm,drc-indexes and friends */
1199 if (smc->dr_lmb_enabled) {
1200 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1202 if (smc->dr_phb_enabled) {
1203 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1205 if (mc->nvdimm_supported) {
1206 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1208 if (root_drc_type_mask) {
1209 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1212 if (mc->has_hotpluggable_cpus) {
1213 int offset = fdt_path_offset(fdt, "/cpus");
1214 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1215 if (ret < 0) {
1216 error_report("Couldn't set up CPU DR device tree properties");
1217 exit(1);
1221 /* /event-sources */
1222 spapr_dt_events(spapr, fdt);
1224 /* /rtas */
1225 spapr_dt_rtas(spapr, fdt);
1227 /* /chosen */
1228 spapr_dt_chosen(spapr, fdt, reset);
1230 /* /hypervisor */
1231 if (kvm_enabled()) {
1232 spapr_dt_hypervisor(spapr, fdt);
1235 /* Build memory reserve map */
1236 if (reset) {
1237 if (spapr->kernel_size) {
1238 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1239 spapr->kernel_size)));
1241 if (spapr->initrd_size) {
1242 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1243 spapr->initrd_size)));
1247 /* NVDIMM devices */
1248 if (mc->nvdimm_supported) {
1249 spapr_dt_persistent_memory(spapr, fdt);
1252 return fdt;
1255 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1257 SpaprMachineState *spapr = opaque;
1259 return (addr & 0x0fffffff) + spapr->kernel_addr;
1262 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1263 PowerPCCPU *cpu)
1265 CPUPPCState *env = &cpu->env;
1267 /* The TCG path should also be holding the BQL at this point */
1268 g_assert(qemu_mutex_iothread_locked());
1270 if (msr_pr) {
1271 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1272 env->gpr[3] = H_PRIVILEGE;
1273 } else {
1274 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1278 struct LPCRSyncState {
1279 target_ulong value;
1280 target_ulong mask;
1283 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1285 struct LPCRSyncState *s = arg.host_ptr;
1286 PowerPCCPU *cpu = POWERPC_CPU(cs);
1287 CPUPPCState *env = &cpu->env;
1288 target_ulong lpcr;
1290 cpu_synchronize_state(cs);
1291 lpcr = env->spr[SPR_LPCR];
1292 lpcr &= ~s->mask;
1293 lpcr |= s->value;
1294 ppc_store_lpcr(cpu, lpcr);
1297 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1299 CPUState *cs;
1300 struct LPCRSyncState s = {
1301 .value = value,
1302 .mask = mask
1304 CPU_FOREACH(cs) {
1305 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1309 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1311 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1313 /* Copy PATE1:GR into PATE0:HR */
1314 entry->dw0 = spapr->patb_entry & PATE0_HR;
1315 entry->dw1 = spapr->patb_entry;
1318 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1319 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1320 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1321 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1322 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1325 * Get the fd to access the kernel htab, re-opening it if necessary
1327 static int get_htab_fd(SpaprMachineState *spapr)
1329 Error *local_err = NULL;
1331 if (spapr->htab_fd >= 0) {
1332 return spapr->htab_fd;
1335 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1336 if (spapr->htab_fd < 0) {
1337 error_report_err(local_err);
1340 return spapr->htab_fd;
1343 void close_htab_fd(SpaprMachineState *spapr)
1345 if (spapr->htab_fd >= 0) {
1346 close(spapr->htab_fd);
1348 spapr->htab_fd = -1;
1351 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1353 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1355 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1358 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1360 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1362 assert(kvm_enabled());
1364 if (!spapr->htab) {
1365 return 0;
1368 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1371 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1372 hwaddr ptex, int n)
1374 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1375 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1377 if (!spapr->htab) {
1379 * HTAB is controlled by KVM. Fetch into temporary buffer
1381 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1382 kvmppc_read_hptes(hptes, ptex, n);
1383 return hptes;
1387 * HTAB is controlled by QEMU. Just point to the internally
1388 * accessible PTEG.
1390 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1393 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1394 const ppc_hash_pte64_t *hptes,
1395 hwaddr ptex, int n)
1397 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1399 if (!spapr->htab) {
1400 g_free((void *)hptes);
1403 /* Nothing to do for qemu managed HPT */
1406 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1407 uint64_t pte0, uint64_t pte1)
1409 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1410 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1412 if (!spapr->htab) {
1413 kvmppc_write_hpte(ptex, pte0, pte1);
1414 } else {
1415 if (pte0 & HPTE64_V_VALID) {
1416 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1418 * When setting valid, we write PTE1 first. This ensures
1419 * proper synchronization with the reading code in
1420 * ppc_hash64_pteg_search()
1422 smp_wmb();
1423 stq_p(spapr->htab + offset, pte0);
1424 } else {
1425 stq_p(spapr->htab + offset, pte0);
1427 * When clearing it we set PTE0 first. This ensures proper
1428 * synchronization with the reading code in
1429 * ppc_hash64_pteg_search()
1431 smp_wmb();
1432 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1437 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1438 uint64_t pte1)
1440 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1441 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1443 if (!spapr->htab) {
1444 /* There should always be a hash table when this is called */
1445 error_report("spapr_hpte_set_c called with no hash table !");
1446 return;
1449 /* The HW performs a non-atomic byte update */
1450 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1453 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1454 uint64_t pte1)
1456 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1457 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1459 if (!spapr->htab) {
1460 /* There should always be a hash table when this is called */
1461 error_report("spapr_hpte_set_r called with no hash table !");
1462 return;
1465 /* The HW performs a non-atomic byte update */
1466 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1469 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1471 int shift;
1473 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1474 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1475 * that's much more than is needed for Linux guests */
1476 shift = ctz64(pow2ceil(ramsize)) - 7;
1477 shift = MAX(shift, 18); /* Minimum architected size */
1478 shift = MIN(shift, 46); /* Maximum architected size */
1479 return shift;
1482 void spapr_free_hpt(SpaprMachineState *spapr)
1484 g_free(spapr->htab);
1485 spapr->htab = NULL;
1486 spapr->htab_shift = 0;
1487 close_htab_fd(spapr);
1490 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1492 ERRP_GUARD();
1493 long rc;
1495 /* Clean up any HPT info from a previous boot */
1496 spapr_free_hpt(spapr);
1498 rc = kvmppc_reset_htab(shift);
1500 if (rc == -EOPNOTSUPP) {
1501 error_setg(errp, "HPT not supported in nested guests");
1502 return -EOPNOTSUPP;
1505 if (rc < 0) {
1506 /* kernel-side HPT needed, but couldn't allocate one */
1507 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1508 shift);
1509 error_append_hint(errp, "Try smaller maxmem?\n");
1510 return -errno;
1511 } else if (rc > 0) {
1512 /* kernel-side HPT allocated */
1513 if (rc != shift) {
1514 error_setg(errp,
1515 "Requested order %d HPT, but kernel allocated order %ld",
1516 shift, rc);
1517 error_append_hint(errp, "Try smaller maxmem?\n");
1518 return -ENOSPC;
1521 spapr->htab_shift = shift;
1522 spapr->htab = NULL;
1523 } else {
1524 /* kernel-side HPT not needed, allocate in userspace instead */
1525 size_t size = 1ULL << shift;
1526 int i;
1528 spapr->htab = qemu_memalign(size, size);
1529 memset(spapr->htab, 0, size);
1530 spapr->htab_shift = shift;
1532 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1533 DIRTY_HPTE(HPTE(spapr->htab, i));
1536 /* We're setting up a hash table, so that means we're not radix */
1537 spapr->patb_entry = 0;
1538 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1539 return 0;
1542 void spapr_setup_hpt(SpaprMachineState *spapr)
1544 int hpt_shift;
1546 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1547 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1548 } else {
1549 uint64_t current_ram_size;
1551 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1552 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1554 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1556 if (kvm_enabled()) {
1557 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1559 /* Check our RMA fits in the possible VRMA */
1560 if (vrma_limit < spapr->rma_size) {
1561 error_report("Unable to create %" HWADDR_PRIu
1562 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1563 spapr->rma_size / MiB, vrma_limit / MiB);
1564 exit(EXIT_FAILURE);
1569 static void spapr_machine_reset(MachineState *machine)
1571 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1572 PowerPCCPU *first_ppc_cpu;
1573 hwaddr fdt_addr;
1574 void *fdt;
1575 int rc;
1577 kvmppc_svm_off(&error_fatal);
1578 spapr_caps_apply(spapr);
1580 first_ppc_cpu = POWERPC_CPU(first_cpu);
1581 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1582 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1583 spapr->max_compat_pvr)) {
1585 * If using KVM with radix mode available, VCPUs can be started
1586 * without a HPT because KVM will start them in radix mode.
1587 * Set the GR bit in PATE so that we know there is no HPT.
1589 spapr->patb_entry = PATE1_GR;
1590 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1591 } else {
1592 spapr_setup_hpt(spapr);
1595 qemu_devices_reset();
1597 spapr_ovec_cleanup(spapr->ov5_cas);
1598 spapr->ov5_cas = spapr_ovec_new();
1600 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1603 * This is fixing some of the default configuration of the XIVE
1604 * devices. To be called after the reset of the machine devices.
1606 spapr_irq_reset(spapr, &error_fatal);
1609 * There is no CAS under qtest. Simulate one to please the code that
1610 * depends on spapr->ov5_cas. This is especially needed to test device
1611 * unplug, so we do that before resetting the DRCs.
1613 if (qtest_enabled()) {
1614 spapr_ovec_cleanup(spapr->ov5_cas);
1615 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1618 /* DRC reset may cause a device to be unplugged. This will cause troubles
1619 * if this device is used by another device (eg, a running vhost backend
1620 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1621 * situations, we reset DRCs after all devices have been reset.
1623 spapr_drc_reset_all(spapr);
1625 spapr_clear_pending_events(spapr);
1628 * We place the device tree and RTAS just below either the top of the RMA,
1629 * or just below 2GB, whichever is lower, so that it can be
1630 * processed with 32-bit real mode code if necessary
1632 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1634 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1636 rc = fdt_pack(fdt);
1638 /* Should only fail if we've built a corrupted tree */
1639 assert(rc == 0);
1641 /* Load the fdt */
1642 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1643 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1644 g_free(spapr->fdt_blob);
1645 spapr->fdt_size = fdt_totalsize(fdt);
1646 spapr->fdt_initial_size = spapr->fdt_size;
1647 spapr->fdt_blob = fdt;
1649 /* Set up the entry state */
1650 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1651 first_ppc_cpu->env.gpr[5] = 0;
1653 spapr->fwnmi_system_reset_addr = -1;
1654 spapr->fwnmi_machine_check_addr = -1;
1655 spapr->fwnmi_machine_check_interlock = -1;
1657 /* Signal all vCPUs waiting on this condition */
1658 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1660 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1663 static void spapr_create_nvram(SpaprMachineState *spapr)
1665 DeviceState *dev = qdev_new("spapr-nvram");
1666 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1668 if (dinfo) {
1669 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1670 &error_fatal);
1673 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1675 spapr->nvram = (struct SpaprNvram *)dev;
1678 static void spapr_rtc_create(SpaprMachineState *spapr)
1680 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1681 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1682 &error_fatal, NULL);
1683 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1684 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1685 "date");
1688 /* Returns whether we want to use VGA or not */
1689 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1691 switch (vga_interface_type) {
1692 case VGA_NONE:
1693 return false;
1694 case VGA_DEVICE:
1695 return true;
1696 case VGA_STD:
1697 case VGA_VIRTIO:
1698 case VGA_CIRRUS:
1699 return pci_vga_init(pci_bus) != NULL;
1700 default:
1701 error_setg(errp,
1702 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1703 return false;
1707 static int spapr_pre_load(void *opaque)
1709 int rc;
1711 rc = spapr_caps_pre_load(opaque);
1712 if (rc) {
1713 return rc;
1716 return 0;
1719 static int spapr_post_load(void *opaque, int version_id)
1721 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1722 int err = 0;
1724 err = spapr_caps_post_migration(spapr);
1725 if (err) {
1726 return err;
1730 * In earlier versions, there was no separate qdev for the PAPR
1731 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1732 * So when migrating from those versions, poke the incoming offset
1733 * value into the RTC device
1735 if (version_id < 3) {
1736 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1737 if (err) {
1738 return err;
1742 if (kvm_enabled() && spapr->patb_entry) {
1743 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1744 bool radix = !!(spapr->patb_entry & PATE1_GR);
1745 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1748 * Update LPCR:HR and UPRT as they may not be set properly in
1749 * the stream
1751 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1752 LPCR_HR | LPCR_UPRT);
1754 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1755 if (err) {
1756 error_report("Process table config unsupported by the host");
1757 return -EINVAL;
1761 err = spapr_irq_post_load(spapr, version_id);
1762 if (err) {
1763 return err;
1766 return err;
1769 static int spapr_pre_save(void *opaque)
1771 int rc;
1773 rc = spapr_caps_pre_save(opaque);
1774 if (rc) {
1775 return rc;
1778 return 0;
1781 static bool version_before_3(void *opaque, int version_id)
1783 return version_id < 3;
1786 static bool spapr_pending_events_needed(void *opaque)
1788 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1789 return !QTAILQ_EMPTY(&spapr->pending_events);
1792 static const VMStateDescription vmstate_spapr_event_entry = {
1793 .name = "spapr_event_log_entry",
1794 .version_id = 1,
1795 .minimum_version_id = 1,
1796 .fields = (VMStateField[]) {
1797 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1798 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1799 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1800 NULL, extended_length),
1801 VMSTATE_END_OF_LIST()
1805 static const VMStateDescription vmstate_spapr_pending_events = {
1806 .name = "spapr_pending_events",
1807 .version_id = 1,
1808 .minimum_version_id = 1,
1809 .needed = spapr_pending_events_needed,
1810 .fields = (VMStateField[]) {
1811 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1812 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1813 VMSTATE_END_OF_LIST()
1817 static bool spapr_ov5_cas_needed(void *opaque)
1819 SpaprMachineState *spapr = opaque;
1820 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1821 bool cas_needed;
1823 /* Prior to the introduction of SpaprOptionVector, we had two option
1824 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1825 * Both of these options encode machine topology into the device-tree
1826 * in such a way that the now-booted OS should still be able to interact
1827 * appropriately with QEMU regardless of what options were actually
1828 * negotiatied on the source side.
1830 * As such, we can avoid migrating the CAS-negotiated options if these
1831 * are the only options available on the current machine/platform.
1832 * Since these are the only options available for pseries-2.7 and
1833 * earlier, this allows us to maintain old->new/new->old migration
1834 * compatibility.
1836 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1837 * via default pseries-2.8 machines and explicit command-line parameters.
1838 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1839 * of the actual CAS-negotiated values to continue working properly. For
1840 * example, availability of memory unplug depends on knowing whether
1841 * OV5_HP_EVT was negotiated via CAS.
1843 * Thus, for any cases where the set of available CAS-negotiatable
1844 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1845 * include the CAS-negotiated options in the migration stream, unless
1846 * if they affect boot time behaviour only.
1848 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1849 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1850 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1852 /* We need extra information if we have any bits outside the mask
1853 * defined above */
1854 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1856 spapr_ovec_cleanup(ov5_mask);
1858 return cas_needed;
1861 static const VMStateDescription vmstate_spapr_ov5_cas = {
1862 .name = "spapr_option_vector_ov5_cas",
1863 .version_id = 1,
1864 .minimum_version_id = 1,
1865 .needed = spapr_ov5_cas_needed,
1866 .fields = (VMStateField[]) {
1867 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1868 vmstate_spapr_ovec, SpaprOptionVector),
1869 VMSTATE_END_OF_LIST()
1873 static bool spapr_patb_entry_needed(void *opaque)
1875 SpaprMachineState *spapr = opaque;
1877 return !!spapr->patb_entry;
1880 static const VMStateDescription vmstate_spapr_patb_entry = {
1881 .name = "spapr_patb_entry",
1882 .version_id = 1,
1883 .minimum_version_id = 1,
1884 .needed = spapr_patb_entry_needed,
1885 .fields = (VMStateField[]) {
1886 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1887 VMSTATE_END_OF_LIST()
1891 static bool spapr_irq_map_needed(void *opaque)
1893 SpaprMachineState *spapr = opaque;
1895 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1898 static const VMStateDescription vmstate_spapr_irq_map = {
1899 .name = "spapr_irq_map",
1900 .version_id = 1,
1901 .minimum_version_id = 1,
1902 .needed = spapr_irq_map_needed,
1903 .fields = (VMStateField[]) {
1904 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1905 VMSTATE_END_OF_LIST()
1909 static bool spapr_dtb_needed(void *opaque)
1911 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1913 return smc->update_dt_enabled;
1916 static int spapr_dtb_pre_load(void *opaque)
1918 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1920 g_free(spapr->fdt_blob);
1921 spapr->fdt_blob = NULL;
1922 spapr->fdt_size = 0;
1924 return 0;
1927 static const VMStateDescription vmstate_spapr_dtb = {
1928 .name = "spapr_dtb",
1929 .version_id = 1,
1930 .minimum_version_id = 1,
1931 .needed = spapr_dtb_needed,
1932 .pre_load = spapr_dtb_pre_load,
1933 .fields = (VMStateField[]) {
1934 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1935 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1936 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1937 fdt_size),
1938 VMSTATE_END_OF_LIST()
1942 static bool spapr_fwnmi_needed(void *opaque)
1944 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1946 return spapr->fwnmi_machine_check_addr != -1;
1949 static int spapr_fwnmi_pre_save(void *opaque)
1951 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1954 * Check if machine check handling is in progress and print a
1955 * warning message.
1957 if (spapr->fwnmi_machine_check_interlock != -1) {
1958 warn_report("A machine check is being handled during migration. The"
1959 "handler may run and log hardware error on the destination");
1962 return 0;
1965 static const VMStateDescription vmstate_spapr_fwnmi = {
1966 .name = "spapr_fwnmi",
1967 .version_id = 1,
1968 .minimum_version_id = 1,
1969 .needed = spapr_fwnmi_needed,
1970 .pre_save = spapr_fwnmi_pre_save,
1971 .fields = (VMStateField[]) {
1972 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1973 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1974 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1975 VMSTATE_END_OF_LIST()
1979 static const VMStateDescription vmstate_spapr = {
1980 .name = "spapr",
1981 .version_id = 3,
1982 .minimum_version_id = 1,
1983 .pre_load = spapr_pre_load,
1984 .post_load = spapr_post_load,
1985 .pre_save = spapr_pre_save,
1986 .fields = (VMStateField[]) {
1987 /* used to be @next_irq */
1988 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1990 /* RTC offset */
1991 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1993 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
1994 VMSTATE_END_OF_LIST()
1996 .subsections = (const VMStateDescription*[]) {
1997 &vmstate_spapr_ov5_cas,
1998 &vmstate_spapr_patb_entry,
1999 &vmstate_spapr_pending_events,
2000 &vmstate_spapr_cap_htm,
2001 &vmstate_spapr_cap_vsx,
2002 &vmstate_spapr_cap_dfp,
2003 &vmstate_spapr_cap_cfpc,
2004 &vmstate_spapr_cap_sbbc,
2005 &vmstate_spapr_cap_ibs,
2006 &vmstate_spapr_cap_hpt_maxpagesize,
2007 &vmstate_spapr_irq_map,
2008 &vmstate_spapr_cap_nested_kvm_hv,
2009 &vmstate_spapr_dtb,
2010 &vmstate_spapr_cap_large_decr,
2011 &vmstate_spapr_cap_ccf_assist,
2012 &vmstate_spapr_cap_fwnmi,
2013 &vmstate_spapr_fwnmi,
2014 NULL
2018 static int htab_save_setup(QEMUFile *f, void *opaque)
2020 SpaprMachineState *spapr = opaque;
2022 /* "Iteration" header */
2023 if (!spapr->htab_shift) {
2024 qemu_put_be32(f, -1);
2025 } else {
2026 qemu_put_be32(f, spapr->htab_shift);
2029 if (spapr->htab) {
2030 spapr->htab_save_index = 0;
2031 spapr->htab_first_pass = true;
2032 } else {
2033 if (spapr->htab_shift) {
2034 assert(kvm_enabled());
2039 return 0;
2042 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2043 int chunkstart, int n_valid, int n_invalid)
2045 qemu_put_be32(f, chunkstart);
2046 qemu_put_be16(f, n_valid);
2047 qemu_put_be16(f, n_invalid);
2048 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2049 HASH_PTE_SIZE_64 * n_valid);
2052 static void htab_save_end_marker(QEMUFile *f)
2054 qemu_put_be32(f, 0);
2055 qemu_put_be16(f, 0);
2056 qemu_put_be16(f, 0);
2059 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2060 int64_t max_ns)
2062 bool has_timeout = max_ns != -1;
2063 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2064 int index = spapr->htab_save_index;
2065 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2067 assert(spapr->htab_first_pass);
2069 do {
2070 int chunkstart;
2072 /* Consume invalid HPTEs */
2073 while ((index < htabslots)
2074 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2075 CLEAN_HPTE(HPTE(spapr->htab, index));
2076 index++;
2079 /* Consume valid HPTEs */
2080 chunkstart = index;
2081 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2082 && HPTE_VALID(HPTE(spapr->htab, index))) {
2083 CLEAN_HPTE(HPTE(spapr->htab, index));
2084 index++;
2087 if (index > chunkstart) {
2088 int n_valid = index - chunkstart;
2090 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2092 if (has_timeout &&
2093 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2094 break;
2097 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2099 if (index >= htabslots) {
2100 assert(index == htabslots);
2101 index = 0;
2102 spapr->htab_first_pass = false;
2104 spapr->htab_save_index = index;
2107 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2108 int64_t max_ns)
2110 bool final = max_ns < 0;
2111 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2112 int examined = 0, sent = 0;
2113 int index = spapr->htab_save_index;
2114 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2116 assert(!spapr->htab_first_pass);
2118 do {
2119 int chunkstart, invalidstart;
2121 /* Consume non-dirty HPTEs */
2122 while ((index < htabslots)
2123 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2124 index++;
2125 examined++;
2128 chunkstart = index;
2129 /* Consume valid dirty HPTEs */
2130 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2131 && HPTE_DIRTY(HPTE(spapr->htab, index))
2132 && HPTE_VALID(HPTE(spapr->htab, index))) {
2133 CLEAN_HPTE(HPTE(spapr->htab, index));
2134 index++;
2135 examined++;
2138 invalidstart = index;
2139 /* Consume invalid dirty HPTEs */
2140 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2141 && HPTE_DIRTY(HPTE(spapr->htab, index))
2142 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2143 CLEAN_HPTE(HPTE(spapr->htab, index));
2144 index++;
2145 examined++;
2148 if (index > chunkstart) {
2149 int n_valid = invalidstart - chunkstart;
2150 int n_invalid = index - invalidstart;
2152 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2153 sent += index - chunkstart;
2155 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2156 break;
2160 if (examined >= htabslots) {
2161 break;
2164 if (index >= htabslots) {
2165 assert(index == htabslots);
2166 index = 0;
2168 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2170 if (index >= htabslots) {
2171 assert(index == htabslots);
2172 index = 0;
2175 spapr->htab_save_index = index;
2177 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2180 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2181 #define MAX_KVM_BUF_SIZE 2048
2183 static int htab_save_iterate(QEMUFile *f, void *opaque)
2185 SpaprMachineState *spapr = opaque;
2186 int fd;
2187 int rc = 0;
2189 /* Iteration header */
2190 if (!spapr->htab_shift) {
2191 qemu_put_be32(f, -1);
2192 return 1;
2193 } else {
2194 qemu_put_be32(f, 0);
2197 if (!spapr->htab) {
2198 assert(kvm_enabled());
2200 fd = get_htab_fd(spapr);
2201 if (fd < 0) {
2202 return fd;
2205 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2206 if (rc < 0) {
2207 return rc;
2209 } else if (spapr->htab_first_pass) {
2210 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2211 } else {
2212 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2215 htab_save_end_marker(f);
2217 return rc;
2220 static int htab_save_complete(QEMUFile *f, void *opaque)
2222 SpaprMachineState *spapr = opaque;
2223 int fd;
2225 /* Iteration header */
2226 if (!spapr->htab_shift) {
2227 qemu_put_be32(f, -1);
2228 return 0;
2229 } else {
2230 qemu_put_be32(f, 0);
2233 if (!spapr->htab) {
2234 int rc;
2236 assert(kvm_enabled());
2238 fd = get_htab_fd(spapr);
2239 if (fd < 0) {
2240 return fd;
2243 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2244 if (rc < 0) {
2245 return rc;
2247 } else {
2248 if (spapr->htab_first_pass) {
2249 htab_save_first_pass(f, spapr, -1);
2251 htab_save_later_pass(f, spapr, -1);
2254 /* End marker */
2255 htab_save_end_marker(f);
2257 return 0;
2260 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2262 SpaprMachineState *spapr = opaque;
2263 uint32_t section_hdr;
2264 int fd = -1;
2265 Error *local_err = NULL;
2267 if (version_id < 1 || version_id > 1) {
2268 error_report("htab_load() bad version");
2269 return -EINVAL;
2272 section_hdr = qemu_get_be32(f);
2274 if (section_hdr == -1) {
2275 spapr_free_hpt(spapr);
2276 return 0;
2279 if (section_hdr) {
2280 int ret;
2282 /* First section gives the htab size */
2283 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2284 if (ret < 0) {
2285 error_report_err(local_err);
2286 return ret;
2288 return 0;
2291 if (!spapr->htab) {
2292 assert(kvm_enabled());
2294 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2295 if (fd < 0) {
2296 error_report_err(local_err);
2297 return fd;
2301 while (true) {
2302 uint32_t index;
2303 uint16_t n_valid, n_invalid;
2305 index = qemu_get_be32(f);
2306 n_valid = qemu_get_be16(f);
2307 n_invalid = qemu_get_be16(f);
2309 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2310 /* End of Stream */
2311 break;
2314 if ((index + n_valid + n_invalid) >
2315 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2316 /* Bad index in stream */
2317 error_report(
2318 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2319 index, n_valid, n_invalid, spapr->htab_shift);
2320 return -EINVAL;
2323 if (spapr->htab) {
2324 if (n_valid) {
2325 qemu_get_buffer(f, HPTE(spapr->htab, index),
2326 HASH_PTE_SIZE_64 * n_valid);
2328 if (n_invalid) {
2329 memset(HPTE(spapr->htab, index + n_valid), 0,
2330 HASH_PTE_SIZE_64 * n_invalid);
2332 } else {
2333 int rc;
2335 assert(fd >= 0);
2337 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2338 &local_err);
2339 if (rc < 0) {
2340 error_report_err(local_err);
2341 return rc;
2346 if (!spapr->htab) {
2347 assert(fd >= 0);
2348 close(fd);
2351 return 0;
2354 static void htab_save_cleanup(void *opaque)
2356 SpaprMachineState *spapr = opaque;
2358 close_htab_fd(spapr);
2361 static SaveVMHandlers savevm_htab_handlers = {
2362 .save_setup = htab_save_setup,
2363 .save_live_iterate = htab_save_iterate,
2364 .save_live_complete_precopy = htab_save_complete,
2365 .save_cleanup = htab_save_cleanup,
2366 .load_state = htab_load,
2369 static void spapr_boot_set(void *opaque, const char *boot_device,
2370 Error **errp)
2372 MachineState *machine = MACHINE(opaque);
2373 machine->boot_order = g_strdup(boot_device);
2376 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2378 MachineState *machine = MACHINE(spapr);
2379 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2380 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2381 int i;
2383 for (i = 0; i < nr_lmbs; i++) {
2384 uint64_t addr;
2386 addr = i * lmb_size + machine->device_memory->base;
2387 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2388 addr / lmb_size);
2393 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2394 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2395 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2397 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2399 int i;
2401 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2402 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2403 " is not aligned to %" PRIu64 " MiB",
2404 machine->ram_size,
2405 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2406 return;
2409 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2410 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2411 " is not aligned to %" PRIu64 " MiB",
2412 machine->ram_size,
2413 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2414 return;
2417 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2418 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2419 error_setg(errp,
2420 "Node %d memory size 0x%" PRIx64
2421 " is not aligned to %" PRIu64 " MiB",
2422 i, machine->numa_state->nodes[i].node_mem,
2423 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2424 return;
2429 /* find cpu slot in machine->possible_cpus by core_id */
2430 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2432 int index = id / ms->smp.threads;
2434 if (index >= ms->possible_cpus->len) {
2435 return NULL;
2437 if (idx) {
2438 *idx = index;
2440 return &ms->possible_cpus->cpus[index];
2443 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2445 MachineState *ms = MACHINE(spapr);
2446 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2447 Error *local_err = NULL;
2448 bool vsmt_user = !!spapr->vsmt;
2449 int kvm_smt = kvmppc_smt_threads();
2450 int ret;
2451 unsigned int smp_threads = ms->smp.threads;
2453 if (!kvm_enabled() && (smp_threads > 1)) {
2454 error_setg(errp, "TCG cannot support more than 1 thread/core "
2455 "on a pseries machine");
2456 return;
2458 if (!is_power_of_2(smp_threads)) {
2459 error_setg(errp, "Cannot support %d threads/core on a pseries "
2460 "machine because it must be a power of 2", smp_threads);
2461 return;
2464 /* Detemine the VSMT mode to use: */
2465 if (vsmt_user) {
2466 if (spapr->vsmt < smp_threads) {
2467 error_setg(errp, "Cannot support VSMT mode %d"
2468 " because it must be >= threads/core (%d)",
2469 spapr->vsmt, smp_threads);
2470 return;
2472 /* In this case, spapr->vsmt has been set by the command line */
2473 } else if (!smc->smp_threads_vsmt) {
2475 * Default VSMT value is tricky, because we need it to be as
2476 * consistent as possible (for migration), but this requires
2477 * changing it for at least some existing cases. We pick 8 as
2478 * the value that we'd get with KVM on POWER8, the
2479 * overwhelmingly common case in production systems.
2481 spapr->vsmt = MAX(8, smp_threads);
2482 } else {
2483 spapr->vsmt = smp_threads;
2486 /* KVM: If necessary, set the SMT mode: */
2487 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2488 ret = kvmppc_set_smt_threads(spapr->vsmt);
2489 if (ret) {
2490 /* Looks like KVM isn't able to change VSMT mode */
2491 error_setg(&local_err,
2492 "Failed to set KVM's VSMT mode to %d (errno %d)",
2493 spapr->vsmt, ret);
2494 /* We can live with that if the default one is big enough
2495 * for the number of threads, and a submultiple of the one
2496 * we want. In this case we'll waste some vcpu ids, but
2497 * behaviour will be correct */
2498 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2499 warn_report_err(local_err);
2500 } else {
2501 if (!vsmt_user) {
2502 error_append_hint(&local_err,
2503 "On PPC, a VM with %d threads/core"
2504 " on a host with %d threads/core"
2505 " requires the use of VSMT mode %d.\n",
2506 smp_threads, kvm_smt, spapr->vsmt);
2508 kvmppc_error_append_smt_possible_hint(&local_err);
2509 error_propagate(errp, local_err);
2513 /* else TCG: nothing to do currently */
2516 static void spapr_init_cpus(SpaprMachineState *spapr)
2518 MachineState *machine = MACHINE(spapr);
2519 MachineClass *mc = MACHINE_GET_CLASS(machine);
2520 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2521 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2522 const CPUArchIdList *possible_cpus;
2523 unsigned int smp_cpus = machine->smp.cpus;
2524 unsigned int smp_threads = machine->smp.threads;
2525 unsigned int max_cpus = machine->smp.max_cpus;
2526 int boot_cores_nr = smp_cpus / smp_threads;
2527 int i;
2529 possible_cpus = mc->possible_cpu_arch_ids(machine);
2530 if (mc->has_hotpluggable_cpus) {
2531 if (smp_cpus % smp_threads) {
2532 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2533 smp_cpus, smp_threads);
2534 exit(1);
2536 if (max_cpus % smp_threads) {
2537 error_report("max_cpus (%u) must be multiple of threads (%u)",
2538 max_cpus, smp_threads);
2539 exit(1);
2541 } else {
2542 if (max_cpus != smp_cpus) {
2543 error_report("This machine version does not support CPU hotplug");
2544 exit(1);
2546 boot_cores_nr = possible_cpus->len;
2549 if (smc->pre_2_10_has_unused_icps) {
2550 int i;
2552 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2553 /* Dummy entries get deregistered when real ICPState objects
2554 * are registered during CPU core hotplug.
2556 pre_2_10_vmstate_register_dummy_icp(i);
2560 for (i = 0; i < possible_cpus->len; i++) {
2561 int core_id = i * smp_threads;
2563 if (mc->has_hotpluggable_cpus) {
2564 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2565 spapr_vcpu_id(spapr, core_id));
2568 if (i < boot_cores_nr) {
2569 Object *core = object_new(type);
2570 int nr_threads = smp_threads;
2572 /* Handle the partially filled core for older machine types */
2573 if ((i + 1) * smp_threads >= smp_cpus) {
2574 nr_threads = smp_cpus - i * smp_threads;
2577 object_property_set_int(core, "nr-threads", nr_threads,
2578 &error_fatal);
2579 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2580 &error_fatal);
2581 qdev_realize(DEVICE(core), NULL, &error_fatal);
2583 object_unref(core);
2588 static PCIHostState *spapr_create_default_phb(void)
2590 DeviceState *dev;
2592 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2593 qdev_prop_set_uint32(dev, "index", 0);
2594 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2596 return PCI_HOST_BRIDGE(dev);
2599 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2601 MachineState *machine = MACHINE(spapr);
2602 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2603 hwaddr rma_size = machine->ram_size;
2604 hwaddr node0_size = spapr_node0_size(machine);
2606 /* RMA has to fit in the first NUMA node */
2607 rma_size = MIN(rma_size, node0_size);
2610 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2611 * never exceed that
2613 rma_size = MIN(rma_size, 1 * TiB);
2616 * Clamp the RMA size based on machine type. This is for
2617 * migration compatibility with older qemu versions, which limited
2618 * the RMA size for complicated and mostly bad reasons.
2620 if (smc->rma_limit) {
2621 rma_size = MIN(rma_size, smc->rma_limit);
2624 if (rma_size < MIN_RMA_SLOF) {
2625 error_setg(errp,
2626 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2627 "ldMiB guest RMA (Real Mode Area memory)",
2628 MIN_RMA_SLOF / MiB);
2629 return 0;
2632 return rma_size;
2635 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2637 MachineState *machine = MACHINE(spapr);
2638 int i;
2640 for (i = 0; i < machine->ram_slots; i++) {
2641 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2645 /* pSeries LPAR / sPAPR hardware init */
2646 static void spapr_machine_init(MachineState *machine)
2648 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2649 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2650 MachineClass *mc = MACHINE_GET_CLASS(machine);
2651 const char *bios_name = machine->firmware ?: FW_FILE_NAME;
2652 const char *kernel_filename = machine->kernel_filename;
2653 const char *initrd_filename = machine->initrd_filename;
2654 PCIHostState *phb;
2655 int i;
2656 MemoryRegion *sysmem = get_system_memory();
2657 long load_limit, fw_size;
2658 char *filename;
2659 Error *resize_hpt_err = NULL;
2661 msi_nonbroken = true;
2663 QLIST_INIT(&spapr->phbs);
2664 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2666 /* Determine capabilities to run with */
2667 spapr_caps_init(spapr);
2669 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2670 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2672 * If the user explicitly requested a mode we should either
2673 * supply it, or fail completely (which we do below). But if
2674 * it's not set explicitly, we reset our mode to something
2675 * that works
2677 if (resize_hpt_err) {
2678 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2679 error_free(resize_hpt_err);
2680 resize_hpt_err = NULL;
2681 } else {
2682 spapr->resize_hpt = smc->resize_hpt_default;
2686 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2688 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2690 * User requested HPT resize, but this host can't supply it. Bail out
2692 error_report_err(resize_hpt_err);
2693 exit(1);
2695 error_free(resize_hpt_err);
2697 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2699 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2700 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2703 * VSMT must be set in order to be able to compute VCPU ids, ie to
2704 * call spapr_max_server_number() or spapr_vcpu_id().
2706 spapr_set_vsmt_mode(spapr, &error_fatal);
2708 /* Set up Interrupt Controller before we create the VCPUs */
2709 spapr_irq_init(spapr, &error_fatal);
2711 /* Set up containers for ibm,client-architecture-support negotiated options
2713 spapr->ov5 = spapr_ovec_new();
2714 spapr->ov5_cas = spapr_ovec_new();
2716 if (smc->dr_lmb_enabled) {
2717 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2718 spapr_validate_node_memory(machine, &error_fatal);
2721 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2723 /* advertise support for dedicated HP event source to guests */
2724 if (spapr->use_hotplug_event_source) {
2725 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2728 /* advertise support for HPT resizing */
2729 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2730 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2733 /* advertise support for ibm,dyamic-memory-v2 */
2734 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2736 /* advertise XIVE on POWER9 machines */
2737 if (spapr->irq->xive) {
2738 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2741 /* init CPUs */
2742 spapr_init_cpus(spapr);
2745 * check we don't have a memory-less/cpu-less NUMA node
2746 * Firmware relies on the existing memory/cpu topology to provide the
2747 * NUMA topology to the kernel.
2748 * And the linux kernel needs to know the NUMA topology at start
2749 * to be able to hotplug CPUs later.
2751 if (machine->numa_state->num_nodes) {
2752 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2753 /* check for memory-less node */
2754 if (machine->numa_state->nodes[i].node_mem == 0) {
2755 CPUState *cs;
2756 int found = 0;
2757 /* check for cpu-less node */
2758 CPU_FOREACH(cs) {
2759 PowerPCCPU *cpu = POWERPC_CPU(cs);
2760 if (cpu->node_id == i) {
2761 found = 1;
2762 break;
2765 /* memory-less and cpu-less node */
2766 if (!found) {
2767 error_report(
2768 "Memory-less/cpu-less nodes are not supported (node %d)",
2770 exit(1);
2778 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2779 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2780 * called from vPHB reset handler so we initialize the counter here.
2781 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2782 * must be equally distant from any other node.
2783 * The final value of spapr->gpu_numa_id is going to be written to
2784 * max-associativity-domains in spapr_build_fdt().
2786 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2788 /* Init numa_assoc_array */
2789 spapr_numa_associativity_init(spapr, machine);
2791 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2792 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2793 spapr->max_compat_pvr)) {
2794 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2795 /* KVM and TCG always allow GTSE with radix... */
2796 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2798 /* ... but not with hash (currently). */
2800 if (kvm_enabled()) {
2801 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2802 kvmppc_enable_logical_ci_hcalls();
2803 kvmppc_enable_set_mode_hcall();
2805 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2806 kvmppc_enable_clear_ref_mod_hcalls();
2808 /* Enable H_PAGE_INIT */
2809 kvmppc_enable_h_page_init();
2812 /* map RAM */
2813 memory_region_add_subregion(sysmem, 0, machine->ram);
2815 /* always allocate the device memory information */
2816 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2818 /* initialize hotplug memory address space */
2819 if (machine->ram_size < machine->maxram_size) {
2820 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2822 * Limit the number of hotpluggable memory slots to half the number
2823 * slots that KVM supports, leaving the other half for PCI and other
2824 * devices. However ensure that number of slots doesn't drop below 32.
2826 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2827 SPAPR_MAX_RAM_SLOTS;
2829 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2830 max_memslots = SPAPR_MAX_RAM_SLOTS;
2832 if (machine->ram_slots > max_memslots) {
2833 error_report("Specified number of memory slots %"
2834 PRIu64" exceeds max supported %d",
2835 machine->ram_slots, max_memslots);
2836 exit(1);
2839 machine->device_memory->base = ROUND_UP(machine->ram_size,
2840 SPAPR_DEVICE_MEM_ALIGN);
2841 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2842 "device-memory", device_mem_size);
2843 memory_region_add_subregion(sysmem, machine->device_memory->base,
2844 &machine->device_memory->mr);
2847 if (smc->dr_lmb_enabled) {
2848 spapr_create_lmb_dr_connectors(spapr);
2851 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2852 /* Create the error string for live migration blocker */
2853 error_setg(&spapr->fwnmi_migration_blocker,
2854 "A machine check is being handled during migration. The handler"
2855 "may run and log hardware error on the destination");
2858 if (mc->nvdimm_supported) {
2859 spapr_create_nvdimm_dr_connectors(spapr);
2862 /* Set up RTAS event infrastructure */
2863 spapr_events_init(spapr);
2865 /* Set up the RTC RTAS interfaces */
2866 spapr_rtc_create(spapr);
2868 /* Set up VIO bus */
2869 spapr->vio_bus = spapr_vio_bus_init();
2871 for (i = 0; serial_hd(i); i++) {
2872 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2875 /* We always have at least the nvram device on VIO */
2876 spapr_create_nvram(spapr);
2879 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2880 * connectors (described in root DT node's "ibm,drc-types" property)
2881 * are pre-initialized here. additional child connectors (such as
2882 * connectors for a PHBs PCI slots) are added as needed during their
2883 * parent's realization.
2885 if (smc->dr_phb_enabled) {
2886 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2887 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2891 /* Set up PCI */
2892 spapr_pci_rtas_init();
2894 phb = spapr_create_default_phb();
2896 for (i = 0; i < nb_nics; i++) {
2897 NICInfo *nd = &nd_table[i];
2899 if (!nd->model) {
2900 nd->model = g_strdup("spapr-vlan");
2903 if (g_str_equal(nd->model, "spapr-vlan") ||
2904 g_str_equal(nd->model, "ibmveth")) {
2905 spapr_vlan_create(spapr->vio_bus, nd);
2906 } else {
2907 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2911 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2912 spapr_vscsi_create(spapr->vio_bus);
2915 /* Graphics */
2916 if (spapr_vga_init(phb->bus, &error_fatal)) {
2917 spapr->has_graphics = true;
2918 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2921 if (machine->usb) {
2922 if (smc->use_ohci_by_default) {
2923 pci_create_simple(phb->bus, -1, "pci-ohci");
2924 } else {
2925 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2928 if (spapr->has_graphics) {
2929 USBBus *usb_bus = usb_bus_find(-1);
2931 usb_create_simple(usb_bus, "usb-kbd");
2932 usb_create_simple(usb_bus, "usb-mouse");
2936 if (kernel_filename) {
2937 spapr->kernel_size = load_elf(kernel_filename, NULL,
2938 translate_kernel_address, spapr,
2939 NULL, NULL, NULL, NULL, 1,
2940 PPC_ELF_MACHINE, 0, 0);
2941 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2942 spapr->kernel_size = load_elf(kernel_filename, NULL,
2943 translate_kernel_address, spapr,
2944 NULL, NULL, NULL, NULL, 0,
2945 PPC_ELF_MACHINE, 0, 0);
2946 spapr->kernel_le = spapr->kernel_size > 0;
2948 if (spapr->kernel_size < 0) {
2949 error_report("error loading %s: %s", kernel_filename,
2950 load_elf_strerror(spapr->kernel_size));
2951 exit(1);
2954 /* load initrd */
2955 if (initrd_filename) {
2956 /* Try to locate the initrd in the gap between the kernel
2957 * and the firmware. Add a bit of space just in case
2959 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2960 + 0x1ffff) & ~0xffff;
2961 spapr->initrd_size = load_image_targphys(initrd_filename,
2962 spapr->initrd_base,
2963 load_limit
2964 - spapr->initrd_base);
2965 if (spapr->initrd_size < 0) {
2966 error_report("could not load initial ram disk '%s'",
2967 initrd_filename);
2968 exit(1);
2973 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2974 if (!filename) {
2975 error_report("Could not find LPAR firmware '%s'", bios_name);
2976 exit(1);
2978 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2979 if (fw_size <= 0) {
2980 error_report("Could not load LPAR firmware '%s'", filename);
2981 exit(1);
2983 g_free(filename);
2985 /* FIXME: Should register things through the MachineState's qdev
2986 * interface, this is a legacy from the sPAPREnvironment structure
2987 * which predated MachineState but had a similar function */
2988 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2989 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2990 &savevm_htab_handlers, spapr);
2992 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
2994 qemu_register_boot_set(spapr_boot_set, spapr);
2997 * Nothing needs to be done to resume a suspended guest because
2998 * suspending does not change the machine state, so no need for
2999 * a ->wakeup method.
3001 qemu_register_wakeup_support();
3003 if (kvm_enabled()) {
3004 /* to stop and start vmclock */
3005 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3006 &spapr->tb);
3008 kvmppc_spapr_enable_inkernel_multitce();
3011 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3014 #define DEFAULT_KVM_TYPE "auto"
3015 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3018 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3019 * accomodate the 'HV' and 'PV' formats that exists in the
3020 * wild. The 'auto' mode is being introduced already as
3021 * lower-case, thus we don't need to bother checking for
3022 * "AUTO".
3024 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3025 return 0;
3028 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3029 return 1;
3032 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3033 return 2;
3036 error_report("Unknown kvm-type specified '%s'", vm_type);
3037 exit(1);
3041 * Implementation of an interface to adjust firmware path
3042 * for the bootindex property handling.
3044 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3045 DeviceState *dev)
3047 #define CAST(type, obj, name) \
3048 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3049 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3050 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3051 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3053 if (d) {
3054 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3055 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3056 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3058 if (spapr) {
3060 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3061 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3062 * 0x8000 | (target << 8) | (bus << 5) | lun
3063 * (see the "Logical unit addressing format" table in SAM5)
3065 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3066 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3067 (uint64_t)id << 48);
3068 } else if (virtio) {
3070 * We use SRP luns of the form 01000000 | (target << 8) | lun
3071 * in the top 32 bits of the 64-bit LUN
3072 * Note: the quote above is from SLOF and it is wrong,
3073 * the actual binding is:
3074 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3076 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3077 if (d->lun >= 256) {
3078 /* Use the LUN "flat space addressing method" */
3079 id |= 0x4000;
3081 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3082 (uint64_t)id << 32);
3083 } else if (usb) {
3085 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3086 * in the top 32 bits of the 64-bit LUN
3088 unsigned usb_port = atoi(usb->port->path);
3089 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3090 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3091 (uint64_t)id << 32);
3096 * SLOF probes the USB devices, and if it recognizes that the device is a
3097 * storage device, it changes its name to "storage" instead of "usb-host",
3098 * and additionally adds a child node for the SCSI LUN, so the correct
3099 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3101 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3102 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3103 if (usb_host_dev_is_scsi_storage(usbdev)) {
3104 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3108 if (phb) {
3109 /* Replace "pci" with "pci@800000020000000" */
3110 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3113 if (vsc) {
3114 /* Same logic as virtio above */
3115 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3116 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3119 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3120 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3121 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3122 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3125 return NULL;
3128 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3130 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3132 return g_strdup(spapr->kvm_type);
3135 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3137 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3139 g_free(spapr->kvm_type);
3140 spapr->kvm_type = g_strdup(value);
3143 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3145 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3147 return spapr->use_hotplug_event_source;
3150 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3151 Error **errp)
3153 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3155 spapr->use_hotplug_event_source = value;
3158 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3160 return true;
3163 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3165 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3167 switch (spapr->resize_hpt) {
3168 case SPAPR_RESIZE_HPT_DEFAULT:
3169 return g_strdup("default");
3170 case SPAPR_RESIZE_HPT_DISABLED:
3171 return g_strdup("disabled");
3172 case SPAPR_RESIZE_HPT_ENABLED:
3173 return g_strdup("enabled");
3174 case SPAPR_RESIZE_HPT_REQUIRED:
3175 return g_strdup("required");
3177 g_assert_not_reached();
3180 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3182 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3184 if (strcmp(value, "default") == 0) {
3185 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3186 } else if (strcmp(value, "disabled") == 0) {
3187 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3188 } else if (strcmp(value, "enabled") == 0) {
3189 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3190 } else if (strcmp(value, "required") == 0) {
3191 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3192 } else {
3193 error_setg(errp, "Bad value for \"resize-hpt\" property");
3197 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3199 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3201 if (spapr->irq == &spapr_irq_xics_legacy) {
3202 return g_strdup("legacy");
3203 } else if (spapr->irq == &spapr_irq_xics) {
3204 return g_strdup("xics");
3205 } else if (spapr->irq == &spapr_irq_xive) {
3206 return g_strdup("xive");
3207 } else if (spapr->irq == &spapr_irq_dual) {
3208 return g_strdup("dual");
3210 g_assert_not_reached();
3213 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3215 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3217 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3218 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3219 return;
3222 /* The legacy IRQ backend can not be set */
3223 if (strcmp(value, "xics") == 0) {
3224 spapr->irq = &spapr_irq_xics;
3225 } else if (strcmp(value, "xive") == 0) {
3226 spapr->irq = &spapr_irq_xive;
3227 } else if (strcmp(value, "dual") == 0) {
3228 spapr->irq = &spapr_irq_dual;
3229 } else {
3230 error_setg(errp, "Bad value for \"ic-mode\" property");
3234 static char *spapr_get_host_model(Object *obj, Error **errp)
3236 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3238 return g_strdup(spapr->host_model);
3241 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3243 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3245 g_free(spapr->host_model);
3246 spapr->host_model = g_strdup(value);
3249 static char *spapr_get_host_serial(Object *obj, Error **errp)
3251 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3253 return g_strdup(spapr->host_serial);
3256 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3258 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3260 g_free(spapr->host_serial);
3261 spapr->host_serial = g_strdup(value);
3264 static void spapr_instance_init(Object *obj)
3266 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3267 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3268 MachineState *ms = MACHINE(spapr);
3269 MachineClass *mc = MACHINE_GET_CLASS(ms);
3272 * NVDIMM support went live in 5.1 without considering that, in
3273 * other archs, the user needs to enable NVDIMM support with the
3274 * 'nvdimm' machine option and the default behavior is NVDIMM
3275 * support disabled. It is too late to roll back to the standard
3276 * behavior without breaking 5.1 guests.
3278 if (mc->nvdimm_supported) {
3279 ms->nvdimms_state->is_enabled = true;
3282 spapr->htab_fd = -1;
3283 spapr->use_hotplug_event_source = true;
3284 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3285 object_property_add_str(obj, "kvm-type",
3286 spapr_get_kvm_type, spapr_set_kvm_type);
3287 object_property_set_description(obj, "kvm-type",
3288 "Specifies the KVM virtualization mode (auto,"
3289 " hv, pr). Defaults to 'auto'. This mode will use"
3290 " any available KVM module loaded in the host,"
3291 " where kvm_hv takes precedence if both kvm_hv and"
3292 " kvm_pr are loaded.");
3293 object_property_add_bool(obj, "modern-hotplug-events",
3294 spapr_get_modern_hotplug_events,
3295 spapr_set_modern_hotplug_events);
3296 object_property_set_description(obj, "modern-hotplug-events",
3297 "Use dedicated hotplug event mechanism in"
3298 " place of standard EPOW events when possible"
3299 " (required for memory hot-unplug support)");
3300 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3301 "Maximum permitted CPU compatibility mode");
3303 object_property_add_str(obj, "resize-hpt",
3304 spapr_get_resize_hpt, spapr_set_resize_hpt);
3305 object_property_set_description(obj, "resize-hpt",
3306 "Resizing of the Hash Page Table (enabled, disabled, required)");
3307 object_property_add_uint32_ptr(obj, "vsmt",
3308 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3309 object_property_set_description(obj, "vsmt",
3310 "Virtual SMT: KVM behaves as if this were"
3311 " the host's SMT mode");
3313 object_property_add_bool(obj, "vfio-no-msix-emulation",
3314 spapr_get_msix_emulation, NULL);
3316 object_property_add_uint64_ptr(obj, "kernel-addr",
3317 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3318 object_property_set_description(obj, "kernel-addr",
3319 stringify(KERNEL_LOAD_ADDR)
3320 " for -kernel is the default");
3321 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3322 /* The machine class defines the default interrupt controller mode */
3323 spapr->irq = smc->irq;
3324 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3325 spapr_set_ic_mode);
3326 object_property_set_description(obj, "ic-mode",
3327 "Specifies the interrupt controller mode (xics, xive, dual)");
3329 object_property_add_str(obj, "host-model",
3330 spapr_get_host_model, spapr_set_host_model);
3331 object_property_set_description(obj, "host-model",
3332 "Host model to advertise in guest device tree");
3333 object_property_add_str(obj, "host-serial",
3334 spapr_get_host_serial, spapr_set_host_serial);
3335 object_property_set_description(obj, "host-serial",
3336 "Host serial number to advertise in guest device tree");
3339 static void spapr_machine_finalizefn(Object *obj)
3341 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3343 g_free(spapr->kvm_type);
3346 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3348 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3349 PowerPCCPU *cpu = POWERPC_CPU(cs);
3350 CPUPPCState *env = &cpu->env;
3352 cpu_synchronize_state(cs);
3353 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3354 if (spapr->fwnmi_system_reset_addr != -1) {
3355 uint64_t rtas_addr, addr;
3357 /* get rtas addr from fdt */
3358 rtas_addr = spapr_get_rtas_addr();
3359 if (!rtas_addr) {
3360 qemu_system_guest_panicked(NULL);
3361 return;
3364 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3365 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3366 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3367 env->gpr[3] = addr;
3369 ppc_cpu_do_system_reset(cs);
3370 if (spapr->fwnmi_system_reset_addr != -1) {
3371 env->nip = spapr->fwnmi_system_reset_addr;
3375 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3377 CPUState *cs;
3379 CPU_FOREACH(cs) {
3380 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3384 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3385 void *fdt, int *fdt_start_offset, Error **errp)
3387 uint64_t addr;
3388 uint32_t node;
3390 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3391 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3392 &error_abort);
3393 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3394 SPAPR_MEMORY_BLOCK_SIZE);
3395 return 0;
3398 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3399 bool dedicated_hp_event_source)
3401 SpaprDrc *drc;
3402 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3403 int i;
3404 uint64_t addr = addr_start;
3405 bool hotplugged = spapr_drc_hotplugged(dev);
3407 for (i = 0; i < nr_lmbs; i++) {
3408 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3409 addr / SPAPR_MEMORY_BLOCK_SIZE);
3410 g_assert(drc);
3413 * memory_device_get_free_addr() provided a range of free addresses
3414 * that doesn't overlap with any existing mapping at pre-plug. The
3415 * corresponding LMB DRCs are thus assumed to be all attachable.
3417 spapr_drc_attach(drc, dev);
3418 if (!hotplugged) {
3419 spapr_drc_reset(drc);
3421 addr += SPAPR_MEMORY_BLOCK_SIZE;
3423 /* send hotplug notification to the
3424 * guest only in case of hotplugged memory
3426 if (hotplugged) {
3427 if (dedicated_hp_event_source) {
3428 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3429 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3430 g_assert(drc);
3431 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3432 nr_lmbs,
3433 spapr_drc_index(drc));
3434 } else {
3435 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3436 nr_lmbs);
3441 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3443 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3444 PCDIMMDevice *dimm = PC_DIMM(dev);
3445 uint64_t size, addr;
3446 int64_t slot;
3447 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3449 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3451 pc_dimm_plug(dimm, MACHINE(ms));
3453 if (!is_nvdimm) {
3454 addr = object_property_get_uint(OBJECT(dimm),
3455 PC_DIMM_ADDR_PROP, &error_abort);
3456 spapr_add_lmbs(dev, addr, size,
3457 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3458 } else {
3459 slot = object_property_get_int(OBJECT(dimm),
3460 PC_DIMM_SLOT_PROP, &error_abort);
3461 /* We should have valid slot number at this point */
3462 g_assert(slot >= 0);
3463 spapr_add_nvdimm(dev, slot);
3467 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3468 Error **errp)
3470 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3471 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3472 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3473 PCDIMMDevice *dimm = PC_DIMM(dev);
3474 Error *local_err = NULL;
3475 uint64_t size;
3476 Object *memdev;
3477 hwaddr pagesize;
3479 if (!smc->dr_lmb_enabled) {
3480 error_setg(errp, "Memory hotplug not supported for this machine");
3481 return;
3484 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3485 if (local_err) {
3486 error_propagate(errp, local_err);
3487 return;
3490 if (is_nvdimm) {
3491 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3492 return;
3494 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3495 error_setg(errp, "Hotplugged memory size must be a multiple of "
3496 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3497 return;
3500 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3501 &error_abort);
3502 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3503 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3504 return;
3507 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3510 struct SpaprDimmState {
3511 PCDIMMDevice *dimm;
3512 uint32_t nr_lmbs;
3513 QTAILQ_ENTRY(SpaprDimmState) next;
3516 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3517 PCDIMMDevice *dimm)
3519 SpaprDimmState *dimm_state = NULL;
3521 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3522 if (dimm_state->dimm == dimm) {
3523 break;
3526 return dimm_state;
3529 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3530 uint32_t nr_lmbs,
3531 PCDIMMDevice *dimm)
3533 SpaprDimmState *ds = NULL;
3536 * If this request is for a DIMM whose removal had failed earlier
3537 * (due to guest's refusal to remove the LMBs), we would have this
3538 * dimm already in the pending_dimm_unplugs list. In that
3539 * case don't add again.
3541 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3542 if (!ds) {
3543 ds = g_malloc0(sizeof(SpaprDimmState));
3544 ds->nr_lmbs = nr_lmbs;
3545 ds->dimm = dimm;
3546 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3548 return ds;
3551 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3552 SpaprDimmState *dimm_state)
3554 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3555 g_free(dimm_state);
3558 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3559 PCDIMMDevice *dimm)
3561 SpaprDrc *drc;
3562 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3563 &error_abort);
3564 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3565 uint32_t avail_lmbs = 0;
3566 uint64_t addr_start, addr;
3567 int i;
3569 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3570 &error_abort);
3572 addr = addr_start;
3573 for (i = 0; i < nr_lmbs; i++) {
3574 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3575 addr / SPAPR_MEMORY_BLOCK_SIZE);
3576 g_assert(drc);
3577 if (drc->dev) {
3578 avail_lmbs++;
3580 addr += SPAPR_MEMORY_BLOCK_SIZE;
3583 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3586 /* Callback to be called during DRC release. */
3587 void spapr_lmb_release(DeviceState *dev)
3589 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3590 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3591 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3593 /* This information will get lost if a migration occurs
3594 * during the unplug process. In this case recover it. */
3595 if (ds == NULL) {
3596 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3597 g_assert(ds);
3598 /* The DRC being examined by the caller at least must be counted */
3599 g_assert(ds->nr_lmbs);
3602 if (--ds->nr_lmbs) {
3603 return;
3607 * Now that all the LMBs have been removed by the guest, call the
3608 * unplug handler chain. This can never fail.
3610 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3611 object_unparent(OBJECT(dev));
3614 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3616 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3617 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3619 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3620 qdev_unrealize(dev);
3621 spapr_pending_dimm_unplugs_remove(spapr, ds);
3624 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3625 DeviceState *dev, Error **errp)
3627 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3628 PCDIMMDevice *dimm = PC_DIMM(dev);
3629 uint32_t nr_lmbs;
3630 uint64_t size, addr_start, addr;
3631 int i;
3632 SpaprDrc *drc;
3634 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3635 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3636 return;
3639 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3640 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3642 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3643 &error_abort);
3646 * An existing pending dimm state for this DIMM means that there is an
3647 * unplug operation in progress, waiting for the spapr_lmb_release
3648 * callback to complete the job (BQL can't cover that far). In this case,
3649 * bail out to avoid detaching DRCs that were already released.
3651 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3652 error_setg(errp, "Memory unplug already in progress for device %s",
3653 dev->id);
3654 return;
3657 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3659 addr = addr_start;
3660 for (i = 0; i < nr_lmbs; i++) {
3661 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3662 addr / SPAPR_MEMORY_BLOCK_SIZE);
3663 g_assert(drc);
3665 spapr_drc_detach(drc);
3666 addr += SPAPR_MEMORY_BLOCK_SIZE;
3669 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3670 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3671 g_assert(drc);
3672 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3673 nr_lmbs, spapr_drc_index(drc));
3676 /* Callback to be called during DRC release. */
3677 void spapr_core_release(DeviceState *dev)
3679 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3681 /* Call the unplug handler chain. This can never fail. */
3682 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3683 object_unparent(OBJECT(dev));
3686 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3688 MachineState *ms = MACHINE(hotplug_dev);
3689 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3690 CPUCore *cc = CPU_CORE(dev);
3691 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3693 if (smc->pre_2_10_has_unused_icps) {
3694 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3695 int i;
3697 for (i = 0; i < cc->nr_threads; i++) {
3698 CPUState *cs = CPU(sc->threads[i]);
3700 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3704 assert(core_slot);
3705 core_slot->cpu = NULL;
3706 qdev_unrealize(dev);
3709 static
3710 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3711 Error **errp)
3713 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3714 int index;
3715 SpaprDrc *drc;
3716 CPUCore *cc = CPU_CORE(dev);
3718 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3719 error_setg(errp, "Unable to find CPU core with core-id: %d",
3720 cc->core_id);
3721 return;
3723 if (index == 0) {
3724 error_setg(errp, "Boot CPU core may not be unplugged");
3725 return;
3728 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3729 spapr_vcpu_id(spapr, cc->core_id));
3730 g_assert(drc);
3732 if (!spapr_drc_unplug_requested(drc)) {
3733 spapr_drc_detach(drc);
3734 spapr_hotplug_req_remove_by_index(drc);
3738 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3739 void *fdt, int *fdt_start_offset, Error **errp)
3741 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3742 CPUState *cs = CPU(core->threads[0]);
3743 PowerPCCPU *cpu = POWERPC_CPU(cs);
3744 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3745 int id = spapr_get_vcpu_id(cpu);
3746 char *nodename;
3747 int offset;
3749 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3750 offset = fdt_add_subnode(fdt, 0, nodename);
3751 g_free(nodename);
3753 spapr_dt_cpu(cs, fdt, offset, spapr);
3755 *fdt_start_offset = offset;
3756 return 0;
3759 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3761 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3762 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3763 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3764 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3765 CPUCore *cc = CPU_CORE(dev);
3766 CPUState *cs;
3767 SpaprDrc *drc;
3768 CPUArchId *core_slot;
3769 int index;
3770 bool hotplugged = spapr_drc_hotplugged(dev);
3771 int i;
3773 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3774 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3776 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3777 spapr_vcpu_id(spapr, cc->core_id));
3779 g_assert(drc || !mc->has_hotpluggable_cpus);
3781 if (drc) {
3783 * spapr_core_pre_plug() already buys us this is a brand new
3784 * core being plugged into a free slot. Nothing should already
3785 * be attached to the corresponding DRC.
3787 spapr_drc_attach(drc, dev);
3789 if (hotplugged) {
3791 * Send hotplug notification interrupt to the guest only
3792 * in case of hotplugged CPUs.
3794 spapr_hotplug_req_add_by_index(drc);
3795 } else {
3796 spapr_drc_reset(drc);
3800 core_slot->cpu = OBJECT(dev);
3803 * Set compatibility mode to match the boot CPU, which was either set
3804 * by the machine reset code or by CAS. This really shouldn't fail at
3805 * this point.
3807 if (hotplugged) {
3808 for (i = 0; i < cc->nr_threads; i++) {
3809 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3810 &error_abort);
3814 if (smc->pre_2_10_has_unused_icps) {
3815 for (i = 0; i < cc->nr_threads; i++) {
3816 cs = CPU(core->threads[i]);
3817 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3822 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3823 Error **errp)
3825 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3826 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3827 CPUCore *cc = CPU_CORE(dev);
3828 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3829 const char *type = object_get_typename(OBJECT(dev));
3830 CPUArchId *core_slot;
3831 int index;
3832 unsigned int smp_threads = machine->smp.threads;
3834 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3835 error_setg(errp, "CPU hotplug not supported for this machine");
3836 return;
3839 if (strcmp(base_core_type, type)) {
3840 error_setg(errp, "CPU core type should be %s", base_core_type);
3841 return;
3844 if (cc->core_id % smp_threads) {
3845 error_setg(errp, "invalid core id %d", cc->core_id);
3846 return;
3850 * In general we should have homogeneous threads-per-core, but old
3851 * (pre hotplug support) machine types allow the last core to have
3852 * reduced threads as a compatibility hack for when we allowed
3853 * total vcpus not a multiple of threads-per-core.
3855 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3856 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3857 smp_threads);
3858 return;
3861 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3862 if (!core_slot) {
3863 error_setg(errp, "core id %d out of range", cc->core_id);
3864 return;
3867 if (core_slot->cpu) {
3868 error_setg(errp, "core %d already populated", cc->core_id);
3869 return;
3872 numa_cpu_pre_plug(core_slot, dev, errp);
3875 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3876 void *fdt, int *fdt_start_offset, Error **errp)
3878 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3879 int intc_phandle;
3881 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3882 if (intc_phandle <= 0) {
3883 return -1;
3886 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3887 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3888 return -1;
3891 /* generally SLOF creates these, for hotplug it's up to QEMU */
3892 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3894 return 0;
3897 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3898 Error **errp)
3900 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3901 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3902 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3903 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3904 SpaprDrc *drc;
3906 if (dev->hotplugged && !smc->dr_phb_enabled) {
3907 error_setg(errp, "PHB hotplug not supported for this machine");
3908 return false;
3911 if (sphb->index == (uint32_t)-1) {
3912 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3913 return false;
3916 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3917 if (drc && drc->dev) {
3918 error_setg(errp, "PHB %d already attached", sphb->index);
3919 return false;
3923 * This will check that sphb->index doesn't exceed the maximum number of
3924 * PHBs for the current machine type.
3926 return
3927 smc->phb_placement(spapr, sphb->index,
3928 &sphb->buid, &sphb->io_win_addr,
3929 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3930 windows_supported, sphb->dma_liobn,
3931 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3932 errp);
3935 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3937 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3938 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3939 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3940 SpaprDrc *drc;
3941 bool hotplugged = spapr_drc_hotplugged(dev);
3943 if (!smc->dr_phb_enabled) {
3944 return;
3947 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3948 /* hotplug hooks should check it's enabled before getting this far */
3949 assert(drc);
3951 /* spapr_phb_pre_plug() already checked the DRC is attachable */
3952 spapr_drc_attach(drc, dev);
3954 if (hotplugged) {
3955 spapr_hotplug_req_add_by_index(drc);
3956 } else {
3957 spapr_drc_reset(drc);
3961 void spapr_phb_release(DeviceState *dev)
3963 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3965 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3966 object_unparent(OBJECT(dev));
3969 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3971 qdev_unrealize(dev);
3974 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3975 DeviceState *dev, Error **errp)
3977 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3978 SpaprDrc *drc;
3980 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3981 assert(drc);
3983 if (!spapr_drc_unplug_requested(drc)) {
3984 spapr_drc_detach(drc);
3985 spapr_hotplug_req_remove_by_index(drc);
3989 static
3990 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3991 Error **errp)
3993 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3995 if (spapr->tpm_proxy != NULL) {
3996 error_setg(errp, "Only one TPM proxy can be specified for this machine");
3997 return false;
4000 return true;
4003 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4005 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4006 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4008 /* Already checked in spapr_tpm_proxy_pre_plug() */
4009 g_assert(spapr->tpm_proxy == NULL);
4011 spapr->tpm_proxy = tpm_proxy;
4014 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4016 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4018 qdev_unrealize(dev);
4019 object_unparent(OBJECT(dev));
4020 spapr->tpm_proxy = NULL;
4023 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4024 DeviceState *dev, Error **errp)
4026 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4027 spapr_memory_plug(hotplug_dev, dev);
4028 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4029 spapr_core_plug(hotplug_dev, dev);
4030 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4031 spapr_phb_plug(hotplug_dev, dev);
4032 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4033 spapr_tpm_proxy_plug(hotplug_dev, dev);
4037 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4038 DeviceState *dev, Error **errp)
4040 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4041 spapr_memory_unplug(hotplug_dev, dev);
4042 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4043 spapr_core_unplug(hotplug_dev, dev);
4044 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4045 spapr_phb_unplug(hotplug_dev, dev);
4046 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4047 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4051 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4053 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4055 * CAS will process all pending unplug requests.
4057 * HACK: a guest could theoretically have cleared all bits in OV5,
4058 * but none of the guests we care for do.
4060 spapr_ovec_empty(spapr->ov5_cas);
4063 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4064 DeviceState *dev, Error **errp)
4066 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4067 MachineClass *mc = MACHINE_GET_CLASS(sms);
4068 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4070 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4071 if (spapr_memory_hot_unplug_supported(sms)) {
4072 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4073 } else {
4074 error_setg(errp, "Memory hot unplug not supported for this guest");
4076 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4077 if (!mc->has_hotpluggable_cpus) {
4078 error_setg(errp, "CPU hot unplug not supported on this machine");
4079 return;
4081 spapr_core_unplug_request(hotplug_dev, dev, errp);
4082 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4083 if (!smc->dr_phb_enabled) {
4084 error_setg(errp, "PHB hot unplug not supported on this machine");
4085 return;
4087 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4088 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4089 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4093 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4094 DeviceState *dev, Error **errp)
4096 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4097 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4098 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4099 spapr_core_pre_plug(hotplug_dev, dev, errp);
4100 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4101 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4102 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4103 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4107 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4108 DeviceState *dev)
4110 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4111 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4112 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4113 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4114 return HOTPLUG_HANDLER(machine);
4116 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4117 PCIDevice *pcidev = PCI_DEVICE(dev);
4118 PCIBus *root = pci_device_root_bus(pcidev);
4119 SpaprPhbState *phb =
4120 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4121 TYPE_SPAPR_PCI_HOST_BRIDGE);
4123 if (phb) {
4124 return HOTPLUG_HANDLER(phb);
4127 return NULL;
4130 static CpuInstanceProperties
4131 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4133 CPUArchId *core_slot;
4134 MachineClass *mc = MACHINE_GET_CLASS(machine);
4136 /* make sure possible_cpu are intialized */
4137 mc->possible_cpu_arch_ids(machine);
4138 /* get CPU core slot containing thread that matches cpu_index */
4139 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4140 assert(core_slot);
4141 return core_slot->props;
4144 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4146 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4149 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4151 int i;
4152 unsigned int smp_threads = machine->smp.threads;
4153 unsigned int smp_cpus = machine->smp.cpus;
4154 const char *core_type;
4155 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4156 MachineClass *mc = MACHINE_GET_CLASS(machine);
4158 if (!mc->has_hotpluggable_cpus) {
4159 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4161 if (machine->possible_cpus) {
4162 assert(machine->possible_cpus->len == spapr_max_cores);
4163 return machine->possible_cpus;
4166 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4167 if (!core_type) {
4168 error_report("Unable to find sPAPR CPU Core definition");
4169 exit(1);
4172 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4173 sizeof(CPUArchId) * spapr_max_cores);
4174 machine->possible_cpus->len = spapr_max_cores;
4175 for (i = 0; i < machine->possible_cpus->len; i++) {
4176 int core_id = i * smp_threads;
4178 machine->possible_cpus->cpus[i].type = core_type;
4179 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4180 machine->possible_cpus->cpus[i].arch_id = core_id;
4181 machine->possible_cpus->cpus[i].props.has_core_id = true;
4182 machine->possible_cpus->cpus[i].props.core_id = core_id;
4184 return machine->possible_cpus;
4187 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4188 uint64_t *buid, hwaddr *pio,
4189 hwaddr *mmio32, hwaddr *mmio64,
4190 unsigned n_dma, uint32_t *liobns,
4191 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4194 * New-style PHB window placement.
4196 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4197 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4198 * windows.
4200 * Some guest kernels can't work with MMIO windows above 1<<46
4201 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4203 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4204 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4205 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4206 * 1TiB 64-bit MMIO windows for each PHB.
4208 const uint64_t base_buid = 0x800000020000000ULL;
4209 int i;
4211 /* Sanity check natural alignments */
4212 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4213 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4214 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4215 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4216 /* Sanity check bounds */
4217 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4218 SPAPR_PCI_MEM32_WIN_SIZE);
4219 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4220 SPAPR_PCI_MEM64_WIN_SIZE);
4222 if (index >= SPAPR_MAX_PHBS) {
4223 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4224 SPAPR_MAX_PHBS - 1);
4225 return false;
4228 *buid = base_buid + index;
4229 for (i = 0; i < n_dma; ++i) {
4230 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4233 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4234 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4235 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4237 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4238 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4239 return true;
4242 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4244 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4246 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4249 static void spapr_ics_resend(XICSFabric *dev)
4251 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4253 ics_resend(spapr->ics);
4256 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4258 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4260 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4263 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4264 Monitor *mon)
4266 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4268 spapr_irq_print_info(spapr, mon);
4269 monitor_printf(mon, "irqchip: %s\n",
4270 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4274 * This is a XIVE only operation
4276 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4277 uint8_t nvt_blk, uint32_t nvt_idx,
4278 bool cam_ignore, uint8_t priority,
4279 uint32_t logic_serv, XiveTCTXMatch *match)
4281 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4282 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4283 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4284 int count;
4286 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4287 priority, logic_serv, match);
4288 if (count < 0) {
4289 return count;
4293 * When we implement the save and restore of the thread interrupt
4294 * contexts in the enter/exit CPU handlers of the machine and the
4295 * escalations in QEMU, we should be able to handle non dispatched
4296 * vCPUs.
4298 * Until this is done, the sPAPR machine should find at least one
4299 * matching context always.
4301 if (count == 0) {
4302 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4303 nvt_blk, nvt_idx);
4306 return count;
4309 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4311 return cpu->vcpu_id;
4314 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4316 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4317 MachineState *ms = MACHINE(spapr);
4318 int vcpu_id;
4320 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4322 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4323 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4324 error_append_hint(errp, "Adjust the number of cpus to %d "
4325 "or try to raise the number of threads per core\n",
4326 vcpu_id * ms->smp.threads / spapr->vsmt);
4327 return false;
4330 cpu->vcpu_id = vcpu_id;
4331 return true;
4334 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4336 CPUState *cs;
4338 CPU_FOREACH(cs) {
4339 PowerPCCPU *cpu = POWERPC_CPU(cs);
4341 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4342 return cpu;
4346 return NULL;
4349 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4351 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4353 /* These are only called by TCG, KVM maintains dispatch state */
4355 spapr_cpu->prod = false;
4356 if (spapr_cpu->vpa_addr) {
4357 CPUState *cs = CPU(cpu);
4358 uint32_t dispatch;
4360 dispatch = ldl_be_phys(cs->as,
4361 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4362 dispatch++;
4363 if ((dispatch & 1) != 0) {
4364 qemu_log_mask(LOG_GUEST_ERROR,
4365 "VPA: incorrect dispatch counter value for "
4366 "dispatched partition %u, correcting.\n", dispatch);
4367 dispatch++;
4369 stl_be_phys(cs->as,
4370 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4374 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4376 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4378 if (spapr_cpu->vpa_addr) {
4379 CPUState *cs = CPU(cpu);
4380 uint32_t dispatch;
4382 dispatch = ldl_be_phys(cs->as,
4383 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4384 dispatch++;
4385 if ((dispatch & 1) != 1) {
4386 qemu_log_mask(LOG_GUEST_ERROR,
4387 "VPA: incorrect dispatch counter value for "
4388 "preempted partition %u, correcting.\n", dispatch);
4389 dispatch++;
4391 stl_be_phys(cs->as,
4392 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4396 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4398 MachineClass *mc = MACHINE_CLASS(oc);
4399 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4400 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4401 NMIClass *nc = NMI_CLASS(oc);
4402 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4403 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4404 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4405 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4406 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4408 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4409 mc->ignore_boot_device_suffixes = true;
4412 * We set up the default / latest behaviour here. The class_init
4413 * functions for the specific versioned machine types can override
4414 * these details for backwards compatibility
4416 mc->init = spapr_machine_init;
4417 mc->reset = spapr_machine_reset;
4418 mc->block_default_type = IF_SCSI;
4419 mc->max_cpus = 1024;
4420 mc->no_parallel = 1;
4421 mc->default_boot_order = "";
4422 mc->default_ram_size = 512 * MiB;
4423 mc->default_ram_id = "ppc_spapr.ram";
4424 mc->default_display = "std";
4425 mc->kvm_type = spapr_kvm_type;
4426 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4427 mc->pci_allow_0_address = true;
4428 assert(!mc->get_hotplug_handler);
4429 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4430 hc->pre_plug = spapr_machine_device_pre_plug;
4431 hc->plug = spapr_machine_device_plug;
4432 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4433 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4434 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4435 hc->unplug_request = spapr_machine_device_unplug_request;
4436 hc->unplug = spapr_machine_device_unplug;
4438 smc->dr_lmb_enabled = true;
4439 smc->update_dt_enabled = true;
4440 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4441 mc->has_hotpluggable_cpus = true;
4442 mc->nvdimm_supported = true;
4443 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4444 fwc->get_dev_path = spapr_get_fw_dev_path;
4445 nc->nmi_monitor_handler = spapr_nmi;
4446 smc->phb_placement = spapr_phb_placement;
4447 vhc->hypercall = emulate_spapr_hypercall;
4448 vhc->hpt_mask = spapr_hpt_mask;
4449 vhc->map_hptes = spapr_map_hptes;
4450 vhc->unmap_hptes = spapr_unmap_hptes;
4451 vhc->hpte_set_c = spapr_hpte_set_c;
4452 vhc->hpte_set_r = spapr_hpte_set_r;
4453 vhc->get_pate = spapr_get_pate;
4454 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4455 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4456 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4457 xic->ics_get = spapr_ics_get;
4458 xic->ics_resend = spapr_ics_resend;
4459 xic->icp_get = spapr_icp_get;
4460 ispc->print_info = spapr_pic_print_info;
4461 /* Force NUMA node memory size to be a multiple of
4462 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4463 * in which LMBs are represented and hot-added
4465 mc->numa_mem_align_shift = 28;
4466 mc->auto_enable_numa = true;
4468 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4469 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4470 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4471 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4472 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4473 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4474 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4475 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4476 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4477 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4478 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4479 spapr_caps_add_properties(smc);
4480 smc->irq = &spapr_irq_dual;
4481 smc->dr_phb_enabled = true;
4482 smc->linux_pci_probe = true;
4483 smc->smp_threads_vsmt = true;
4484 smc->nr_xirqs = SPAPR_NR_XIRQS;
4485 xfc->match_nvt = spapr_match_nvt;
4488 static const TypeInfo spapr_machine_info = {
4489 .name = TYPE_SPAPR_MACHINE,
4490 .parent = TYPE_MACHINE,
4491 .abstract = true,
4492 .instance_size = sizeof(SpaprMachineState),
4493 .instance_init = spapr_instance_init,
4494 .instance_finalize = spapr_machine_finalizefn,
4495 .class_size = sizeof(SpaprMachineClass),
4496 .class_init = spapr_machine_class_init,
4497 .interfaces = (InterfaceInfo[]) {
4498 { TYPE_FW_PATH_PROVIDER },
4499 { TYPE_NMI },
4500 { TYPE_HOTPLUG_HANDLER },
4501 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4502 { TYPE_XICS_FABRIC },
4503 { TYPE_INTERRUPT_STATS_PROVIDER },
4504 { TYPE_XIVE_FABRIC },
4509 static void spapr_machine_latest_class_options(MachineClass *mc)
4511 mc->alias = "pseries";
4512 mc->is_default = true;
4515 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4516 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4517 void *data) \
4519 MachineClass *mc = MACHINE_CLASS(oc); \
4520 spapr_machine_##suffix##_class_options(mc); \
4521 if (latest) { \
4522 spapr_machine_latest_class_options(mc); \
4525 static const TypeInfo spapr_machine_##suffix##_info = { \
4526 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4527 .parent = TYPE_SPAPR_MACHINE, \
4528 .class_init = spapr_machine_##suffix##_class_init, \
4529 }; \
4530 static void spapr_machine_register_##suffix(void) \
4532 type_register(&spapr_machine_##suffix##_info); \
4534 type_init(spapr_machine_register_##suffix)
4537 * pseries-6.0
4539 static void spapr_machine_6_0_class_options(MachineClass *mc)
4541 /* Defaults for the latest behaviour inherited from the base class */
4544 DEFINE_SPAPR_MACHINE(6_0, "6.0", true);
4547 * pseries-5.2
4549 static void spapr_machine_5_2_class_options(MachineClass *mc)
4551 spapr_machine_6_0_class_options(mc);
4552 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4555 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4558 * pseries-5.1
4560 static void spapr_machine_5_1_class_options(MachineClass *mc)
4562 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4564 spapr_machine_5_2_class_options(mc);
4565 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4566 smc->pre_5_2_numa_associativity = true;
4569 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4572 * pseries-5.0
4574 static void spapr_machine_5_0_class_options(MachineClass *mc)
4576 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4577 static GlobalProperty compat[] = {
4578 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4581 spapr_machine_5_1_class_options(mc);
4582 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4583 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4584 mc->numa_mem_supported = true;
4585 smc->pre_5_1_assoc_refpoints = true;
4588 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4591 * pseries-4.2
4593 static void spapr_machine_4_2_class_options(MachineClass *mc)
4595 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4597 spapr_machine_5_0_class_options(mc);
4598 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4599 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4600 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4601 smc->rma_limit = 16 * GiB;
4602 mc->nvdimm_supported = false;
4605 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4608 * pseries-4.1
4610 static void spapr_machine_4_1_class_options(MachineClass *mc)
4612 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4613 static GlobalProperty compat[] = {
4614 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4615 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4618 spapr_machine_4_2_class_options(mc);
4619 smc->linux_pci_probe = false;
4620 smc->smp_threads_vsmt = false;
4621 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4622 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4625 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4628 * pseries-4.0
4630 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4631 uint64_t *buid, hwaddr *pio,
4632 hwaddr *mmio32, hwaddr *mmio64,
4633 unsigned n_dma, uint32_t *liobns,
4634 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4636 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4637 liobns, nv2gpa, nv2atsd, errp)) {
4638 return false;
4641 *nv2gpa = 0;
4642 *nv2atsd = 0;
4643 return true;
4645 static void spapr_machine_4_0_class_options(MachineClass *mc)
4647 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4649 spapr_machine_4_1_class_options(mc);
4650 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4651 smc->phb_placement = phb_placement_4_0;
4652 smc->irq = &spapr_irq_xics;
4653 smc->pre_4_1_migration = true;
4656 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4659 * pseries-3.1
4661 static void spapr_machine_3_1_class_options(MachineClass *mc)
4663 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4665 spapr_machine_4_0_class_options(mc);
4666 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4668 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4669 smc->update_dt_enabled = false;
4670 smc->dr_phb_enabled = false;
4671 smc->broken_host_serial_model = true;
4672 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4673 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4674 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4675 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4678 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4681 * pseries-3.0
4684 static void spapr_machine_3_0_class_options(MachineClass *mc)
4686 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4688 spapr_machine_3_1_class_options(mc);
4689 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4691 smc->legacy_irq_allocation = true;
4692 smc->nr_xirqs = 0x400;
4693 smc->irq = &spapr_irq_xics_legacy;
4696 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4699 * pseries-2.12
4701 static void spapr_machine_2_12_class_options(MachineClass *mc)
4703 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4704 static GlobalProperty compat[] = {
4705 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4706 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4709 spapr_machine_3_0_class_options(mc);
4710 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4711 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4713 /* We depend on kvm_enabled() to choose a default value for the
4714 * hpt-max-page-size capability. Of course we can't do it here
4715 * because this is too early and the HW accelerator isn't initialzed
4716 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4718 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4721 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4723 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4725 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4727 spapr_machine_2_12_class_options(mc);
4728 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4729 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4730 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4733 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4736 * pseries-2.11
4739 static void spapr_machine_2_11_class_options(MachineClass *mc)
4741 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4743 spapr_machine_2_12_class_options(mc);
4744 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4745 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4748 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4751 * pseries-2.10
4754 static void spapr_machine_2_10_class_options(MachineClass *mc)
4756 spapr_machine_2_11_class_options(mc);
4757 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4760 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4763 * pseries-2.9
4766 static void spapr_machine_2_9_class_options(MachineClass *mc)
4768 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4769 static GlobalProperty compat[] = {
4770 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4773 spapr_machine_2_10_class_options(mc);
4774 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4775 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4776 smc->pre_2_10_has_unused_icps = true;
4777 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4780 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4783 * pseries-2.8
4786 static void spapr_machine_2_8_class_options(MachineClass *mc)
4788 static GlobalProperty compat[] = {
4789 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4792 spapr_machine_2_9_class_options(mc);
4793 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4794 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4795 mc->numa_mem_align_shift = 23;
4798 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4801 * pseries-2.7
4804 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4805 uint64_t *buid, hwaddr *pio,
4806 hwaddr *mmio32, hwaddr *mmio64,
4807 unsigned n_dma, uint32_t *liobns,
4808 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4810 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4811 const uint64_t base_buid = 0x800000020000000ULL;
4812 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4813 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4814 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4815 const uint32_t max_index = 255;
4816 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4818 uint64_t ram_top = MACHINE(spapr)->ram_size;
4819 hwaddr phb0_base, phb_base;
4820 int i;
4822 /* Do we have device memory? */
4823 if (MACHINE(spapr)->maxram_size > ram_top) {
4824 /* Can't just use maxram_size, because there may be an
4825 * alignment gap between normal and device memory regions
4827 ram_top = MACHINE(spapr)->device_memory->base +
4828 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4831 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4833 if (index > max_index) {
4834 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4835 max_index);
4836 return false;
4839 *buid = base_buid + index;
4840 for (i = 0; i < n_dma; ++i) {
4841 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4844 phb_base = phb0_base + index * phb_spacing;
4845 *pio = phb_base + pio_offset;
4846 *mmio32 = phb_base + mmio_offset;
4848 * We don't set the 64-bit MMIO window, relying on the PHB's
4849 * fallback behaviour of automatically splitting a large "32-bit"
4850 * window into contiguous 32-bit and 64-bit windows
4853 *nv2gpa = 0;
4854 *nv2atsd = 0;
4855 return true;
4858 static void spapr_machine_2_7_class_options(MachineClass *mc)
4860 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4861 static GlobalProperty compat[] = {
4862 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4863 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4864 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4865 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4868 spapr_machine_2_8_class_options(mc);
4869 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4870 mc->default_machine_opts = "modern-hotplug-events=off";
4871 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4872 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4873 smc->phb_placement = phb_placement_2_7;
4876 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4879 * pseries-2.6
4882 static void spapr_machine_2_6_class_options(MachineClass *mc)
4884 static GlobalProperty compat[] = {
4885 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4888 spapr_machine_2_7_class_options(mc);
4889 mc->has_hotpluggable_cpus = false;
4890 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4891 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4894 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4897 * pseries-2.5
4900 static void spapr_machine_2_5_class_options(MachineClass *mc)
4902 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4903 static GlobalProperty compat[] = {
4904 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4907 spapr_machine_2_6_class_options(mc);
4908 smc->use_ohci_by_default = true;
4909 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4910 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4913 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4916 * pseries-2.4
4919 static void spapr_machine_2_4_class_options(MachineClass *mc)
4921 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4923 spapr_machine_2_5_class_options(mc);
4924 smc->dr_lmb_enabled = false;
4925 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4928 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4931 * pseries-2.3
4934 static void spapr_machine_2_3_class_options(MachineClass *mc)
4936 static GlobalProperty compat[] = {
4937 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4939 spapr_machine_2_4_class_options(mc);
4940 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4941 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4943 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4946 * pseries-2.2
4949 static void spapr_machine_2_2_class_options(MachineClass *mc)
4951 static GlobalProperty compat[] = {
4952 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4955 spapr_machine_2_3_class_options(mc);
4956 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4957 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4958 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4960 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4963 * pseries-2.1
4966 static void spapr_machine_2_1_class_options(MachineClass *mc)
4968 spapr_machine_2_2_class_options(mc);
4969 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4971 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4973 static void spapr_machine_register_types(void)
4975 type_register_static(&spapr_machine_info);
4978 type_init(spapr_machine_register_types)