ACPI: Add definitions for the SPCR table
[qemu/ar7.git] / migration / ram.c
blob57368e15757da808b96322ddf6d57e8904b5a430
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
28 #include <stdint.h>
29 #include <zlib.h>
30 #include "qemu/bitops.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/timer.h"
33 #include "qemu/main-loop.h"
34 #include "migration/migration.h"
35 #include "exec/address-spaces.h"
36 #include "migration/page_cache.h"
37 #include "qemu/error-report.h"
38 #include "trace.h"
39 #include "exec/ram_addr.h"
40 #include "qemu/rcu_queue.h"
42 #ifdef DEBUG_MIGRATION_RAM
43 #define DPRINTF(fmt, ...) \
44 do { fprintf(stdout, "migration_ram: " fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
50 static bool mig_throttle_on;
51 static int dirty_rate_high_cnt;
52 static void check_guest_throttling(void);
54 static uint64_t bitmap_sync_count;
56 /***********************************************************/
57 /* ram save/restore */
59 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
60 #define RAM_SAVE_FLAG_COMPRESS 0x02
61 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
62 #define RAM_SAVE_FLAG_PAGE 0x08
63 #define RAM_SAVE_FLAG_EOS 0x10
64 #define RAM_SAVE_FLAG_CONTINUE 0x20
65 #define RAM_SAVE_FLAG_XBZRLE 0x40
66 /* 0x80 is reserved in migration.h start with 0x100 next */
67 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
69 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
71 static inline bool is_zero_range(uint8_t *p, uint64_t size)
73 return buffer_find_nonzero_offset(p, size) == size;
76 /* struct contains XBZRLE cache and a static page
77 used by the compression */
78 static struct {
79 /* buffer used for XBZRLE encoding */
80 uint8_t *encoded_buf;
81 /* buffer for storing page content */
82 uint8_t *current_buf;
83 /* Cache for XBZRLE, Protected by lock. */
84 PageCache *cache;
85 QemuMutex lock;
86 } XBZRLE;
88 /* buffer used for XBZRLE decoding */
89 static uint8_t *xbzrle_decoded_buf;
91 static void XBZRLE_cache_lock(void)
93 if (migrate_use_xbzrle())
94 qemu_mutex_lock(&XBZRLE.lock);
97 static void XBZRLE_cache_unlock(void)
99 if (migrate_use_xbzrle())
100 qemu_mutex_unlock(&XBZRLE.lock);
104 * called from qmp_migrate_set_cache_size in main thread, possibly while
105 * a migration is in progress.
106 * A running migration maybe using the cache and might finish during this
107 * call, hence changes to the cache are protected by XBZRLE.lock().
109 int64_t xbzrle_cache_resize(int64_t new_size)
111 PageCache *new_cache;
112 int64_t ret;
114 if (new_size < TARGET_PAGE_SIZE) {
115 return -1;
118 XBZRLE_cache_lock();
120 if (XBZRLE.cache != NULL) {
121 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
122 goto out_new_size;
124 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
125 TARGET_PAGE_SIZE);
126 if (!new_cache) {
127 error_report("Error creating cache");
128 ret = -1;
129 goto out;
132 cache_fini(XBZRLE.cache);
133 XBZRLE.cache = new_cache;
136 out_new_size:
137 ret = pow2floor(new_size);
138 out:
139 XBZRLE_cache_unlock();
140 return ret;
143 /* accounting for migration statistics */
144 typedef struct AccountingInfo {
145 uint64_t dup_pages;
146 uint64_t skipped_pages;
147 uint64_t norm_pages;
148 uint64_t iterations;
149 uint64_t xbzrle_bytes;
150 uint64_t xbzrle_pages;
151 uint64_t xbzrle_cache_miss;
152 double xbzrle_cache_miss_rate;
153 uint64_t xbzrle_overflows;
154 } AccountingInfo;
156 static AccountingInfo acct_info;
158 static void acct_clear(void)
160 memset(&acct_info, 0, sizeof(acct_info));
163 uint64_t dup_mig_bytes_transferred(void)
165 return acct_info.dup_pages * TARGET_PAGE_SIZE;
168 uint64_t dup_mig_pages_transferred(void)
170 return acct_info.dup_pages;
173 uint64_t skipped_mig_bytes_transferred(void)
175 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
178 uint64_t skipped_mig_pages_transferred(void)
180 return acct_info.skipped_pages;
183 uint64_t norm_mig_bytes_transferred(void)
185 return acct_info.norm_pages * TARGET_PAGE_SIZE;
188 uint64_t norm_mig_pages_transferred(void)
190 return acct_info.norm_pages;
193 uint64_t xbzrle_mig_bytes_transferred(void)
195 return acct_info.xbzrle_bytes;
198 uint64_t xbzrle_mig_pages_transferred(void)
200 return acct_info.xbzrle_pages;
203 uint64_t xbzrle_mig_pages_cache_miss(void)
205 return acct_info.xbzrle_cache_miss;
208 double xbzrle_mig_cache_miss_rate(void)
210 return acct_info.xbzrle_cache_miss_rate;
213 uint64_t xbzrle_mig_pages_overflow(void)
215 return acct_info.xbzrle_overflows;
218 /* This is the last block that we have visited serching for dirty pages
220 static RAMBlock *last_seen_block;
221 /* This is the last block from where we have sent data */
222 static RAMBlock *last_sent_block;
223 static ram_addr_t last_offset;
224 static unsigned long *migration_bitmap;
225 static uint64_t migration_dirty_pages;
226 static uint32_t last_version;
227 static bool ram_bulk_stage;
229 struct CompressParam {
230 bool start;
231 bool done;
232 QEMUFile *file;
233 QemuMutex mutex;
234 QemuCond cond;
235 RAMBlock *block;
236 ram_addr_t offset;
238 typedef struct CompressParam CompressParam;
240 struct DecompressParam {
241 bool start;
242 QemuMutex mutex;
243 QemuCond cond;
244 void *des;
245 uint8 *compbuf;
246 int len;
248 typedef struct DecompressParam DecompressParam;
250 static CompressParam *comp_param;
251 static QemuThread *compress_threads;
252 /* comp_done_cond is used to wake up the migration thread when
253 * one of the compression threads has finished the compression.
254 * comp_done_lock is used to co-work with comp_done_cond.
256 static QemuMutex *comp_done_lock;
257 static QemuCond *comp_done_cond;
258 /* The empty QEMUFileOps will be used by file in CompressParam */
259 static const QEMUFileOps empty_ops = { };
261 static bool compression_switch;
262 static bool quit_comp_thread;
263 static bool quit_decomp_thread;
264 static DecompressParam *decomp_param;
265 static QemuThread *decompress_threads;
266 static uint8_t *compressed_data_buf;
268 static int do_compress_ram_page(CompressParam *param);
270 static void *do_data_compress(void *opaque)
272 CompressParam *param = opaque;
274 while (!quit_comp_thread) {
275 qemu_mutex_lock(&param->mutex);
276 /* Re-check the quit_comp_thread in case of
277 * terminate_compression_threads is called just before
278 * qemu_mutex_lock(&param->mutex) and after
279 * while(!quit_comp_thread), re-check it here can make
280 * sure the compression thread terminate as expected.
282 while (!param->start && !quit_comp_thread) {
283 qemu_cond_wait(&param->cond, &param->mutex);
285 if (!quit_comp_thread) {
286 do_compress_ram_page(param);
288 param->start = false;
289 qemu_mutex_unlock(&param->mutex);
291 qemu_mutex_lock(comp_done_lock);
292 param->done = true;
293 qemu_cond_signal(comp_done_cond);
294 qemu_mutex_unlock(comp_done_lock);
297 return NULL;
300 static inline void terminate_compression_threads(void)
302 int idx, thread_count;
304 thread_count = migrate_compress_threads();
305 quit_comp_thread = true;
306 for (idx = 0; idx < thread_count; idx++) {
307 qemu_mutex_lock(&comp_param[idx].mutex);
308 qemu_cond_signal(&comp_param[idx].cond);
309 qemu_mutex_unlock(&comp_param[idx].mutex);
313 void migrate_compress_threads_join(void)
315 int i, thread_count;
317 if (!migrate_use_compression()) {
318 return;
320 terminate_compression_threads();
321 thread_count = migrate_compress_threads();
322 for (i = 0; i < thread_count; i++) {
323 qemu_thread_join(compress_threads + i);
324 qemu_fclose(comp_param[i].file);
325 qemu_mutex_destroy(&comp_param[i].mutex);
326 qemu_cond_destroy(&comp_param[i].cond);
328 qemu_mutex_destroy(comp_done_lock);
329 qemu_cond_destroy(comp_done_cond);
330 g_free(compress_threads);
331 g_free(comp_param);
332 g_free(comp_done_cond);
333 g_free(comp_done_lock);
334 compress_threads = NULL;
335 comp_param = NULL;
336 comp_done_cond = NULL;
337 comp_done_lock = NULL;
340 void migrate_compress_threads_create(void)
342 int i, thread_count;
344 if (!migrate_use_compression()) {
345 return;
347 quit_comp_thread = false;
348 compression_switch = true;
349 thread_count = migrate_compress_threads();
350 compress_threads = g_new0(QemuThread, thread_count);
351 comp_param = g_new0(CompressParam, thread_count);
352 comp_done_cond = g_new0(QemuCond, 1);
353 comp_done_lock = g_new0(QemuMutex, 1);
354 qemu_cond_init(comp_done_cond);
355 qemu_mutex_init(comp_done_lock);
356 for (i = 0; i < thread_count; i++) {
357 /* com_param[i].file is just used as a dummy buffer to save data, set
358 * it's ops to empty.
360 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
361 comp_param[i].done = true;
362 qemu_mutex_init(&comp_param[i].mutex);
363 qemu_cond_init(&comp_param[i].cond);
364 qemu_thread_create(compress_threads + i, "compress",
365 do_data_compress, comp_param + i,
366 QEMU_THREAD_JOINABLE);
371 * save_page_header: Write page header to wire
373 * If this is the 1st block, it also writes the block identification
375 * Returns: Number of bytes written
377 * @f: QEMUFile where to send the data
378 * @block: block that contains the page we want to send
379 * @offset: offset inside the block for the page
380 * in the lower bits, it contains flags
382 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
384 size_t size;
386 qemu_put_be64(f, offset);
387 size = 8;
389 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
390 qemu_put_byte(f, strlen(block->idstr));
391 qemu_put_buffer(f, (uint8_t *)block->idstr,
392 strlen(block->idstr));
393 size += 1 + strlen(block->idstr);
395 return size;
398 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
399 * The important thing is that a stale (not-yet-0'd) page be replaced
400 * by the new data.
401 * As a bonus, if the page wasn't in the cache it gets added so that
402 * when a small write is made into the 0'd page it gets XBZRLE sent
404 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
406 if (ram_bulk_stage || !migrate_use_xbzrle()) {
407 return;
410 /* We don't care if this fails to allocate a new cache page
411 * as long as it updated an old one */
412 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
413 bitmap_sync_count);
416 #define ENCODING_FLAG_XBZRLE 0x1
419 * save_xbzrle_page: compress and send current page
421 * Returns: 1 means that we wrote the page
422 * 0 means that page is identical to the one already sent
423 * -1 means that xbzrle would be longer than normal
425 * @f: QEMUFile where to send the data
426 * @current_data:
427 * @current_addr:
428 * @block: block that contains the page we want to send
429 * @offset: offset inside the block for the page
430 * @last_stage: if we are at the completion stage
431 * @bytes_transferred: increase it with the number of transferred bytes
433 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
434 ram_addr_t current_addr, RAMBlock *block,
435 ram_addr_t offset, bool last_stage,
436 uint64_t *bytes_transferred)
438 int encoded_len = 0, bytes_xbzrle;
439 uint8_t *prev_cached_page;
441 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
442 acct_info.xbzrle_cache_miss++;
443 if (!last_stage) {
444 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
445 bitmap_sync_count) == -1) {
446 return -1;
447 } else {
448 /* update *current_data when the page has been
449 inserted into cache */
450 *current_data = get_cached_data(XBZRLE.cache, current_addr);
453 return -1;
456 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
458 /* save current buffer into memory */
459 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
461 /* XBZRLE encoding (if there is no overflow) */
462 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
463 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
464 TARGET_PAGE_SIZE);
465 if (encoded_len == 0) {
466 DPRINTF("Skipping unmodified page\n");
467 return 0;
468 } else if (encoded_len == -1) {
469 DPRINTF("Overflow\n");
470 acct_info.xbzrle_overflows++;
471 /* update data in the cache */
472 if (!last_stage) {
473 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
474 *current_data = prev_cached_page;
476 return -1;
479 /* we need to update the data in the cache, in order to get the same data */
480 if (!last_stage) {
481 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
484 /* Send XBZRLE based compressed page */
485 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
486 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
487 qemu_put_be16(f, encoded_len);
488 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
489 bytes_xbzrle += encoded_len + 1 + 2;
490 acct_info.xbzrle_pages++;
491 acct_info.xbzrle_bytes += bytes_xbzrle;
492 *bytes_transferred += bytes_xbzrle;
494 return 1;
497 static inline
498 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
499 ram_addr_t start)
501 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
502 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
503 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
504 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
506 unsigned long next;
508 if (ram_bulk_stage && nr > base) {
509 next = nr + 1;
510 } else {
511 next = find_next_bit(migration_bitmap, size, nr);
514 if (next < size) {
515 clear_bit(next, migration_bitmap);
516 migration_dirty_pages--;
518 return (next - base) << TARGET_PAGE_BITS;
521 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
523 migration_dirty_pages +=
524 cpu_physical_memory_sync_dirty_bitmap(migration_bitmap, start, length);
528 /* Fix me: there are too many global variables used in migration process. */
529 static int64_t start_time;
530 static int64_t bytes_xfer_prev;
531 static int64_t num_dirty_pages_period;
532 static uint64_t xbzrle_cache_miss_prev;
533 static uint64_t iterations_prev;
535 static void migration_bitmap_sync_init(void)
537 start_time = 0;
538 bytes_xfer_prev = 0;
539 num_dirty_pages_period = 0;
540 xbzrle_cache_miss_prev = 0;
541 iterations_prev = 0;
544 /* Called with iothread lock held, to protect ram_list.dirty_memory[] */
545 static void migration_bitmap_sync(void)
547 RAMBlock *block;
548 uint64_t num_dirty_pages_init = migration_dirty_pages;
549 MigrationState *s = migrate_get_current();
550 int64_t end_time;
551 int64_t bytes_xfer_now;
553 bitmap_sync_count++;
555 if (!bytes_xfer_prev) {
556 bytes_xfer_prev = ram_bytes_transferred();
559 if (!start_time) {
560 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
563 trace_migration_bitmap_sync_start();
564 address_space_sync_dirty_bitmap(&address_space_memory);
566 rcu_read_lock();
567 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
568 migration_bitmap_sync_range(block->mr->ram_addr, block->used_length);
570 rcu_read_unlock();
572 trace_migration_bitmap_sync_end(migration_dirty_pages
573 - num_dirty_pages_init);
574 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
575 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
577 /* more than 1 second = 1000 millisecons */
578 if (end_time > start_time + 1000) {
579 if (migrate_auto_converge()) {
580 /* The following detection logic can be refined later. For now:
581 Check to see if the dirtied bytes is 50% more than the approx.
582 amount of bytes that just got transferred since the last time we
583 were in this routine. If that happens >N times (for now N==4)
584 we turn on the throttle down logic */
585 bytes_xfer_now = ram_bytes_transferred();
586 if (s->dirty_pages_rate &&
587 (num_dirty_pages_period * TARGET_PAGE_SIZE >
588 (bytes_xfer_now - bytes_xfer_prev)/2) &&
589 (dirty_rate_high_cnt++ > 4)) {
590 trace_migration_throttle();
591 mig_throttle_on = true;
592 dirty_rate_high_cnt = 0;
594 bytes_xfer_prev = bytes_xfer_now;
595 } else {
596 mig_throttle_on = false;
598 if (migrate_use_xbzrle()) {
599 if (iterations_prev != acct_info.iterations) {
600 acct_info.xbzrle_cache_miss_rate =
601 (double)(acct_info.xbzrle_cache_miss -
602 xbzrle_cache_miss_prev) /
603 (acct_info.iterations - iterations_prev);
605 iterations_prev = acct_info.iterations;
606 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
608 s->dirty_pages_rate = num_dirty_pages_period * 1000
609 / (end_time - start_time);
610 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
611 start_time = end_time;
612 num_dirty_pages_period = 0;
614 s->dirty_sync_count = bitmap_sync_count;
618 * save_zero_page: Send the zero page to the stream
620 * Returns: Number of pages written.
622 * @f: QEMUFile where to send the data
623 * @block: block that contains the page we want to send
624 * @offset: offset inside the block for the page
625 * @p: pointer to the page
626 * @bytes_transferred: increase it with the number of transferred bytes
628 static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
629 uint8_t *p, uint64_t *bytes_transferred)
631 int pages = -1;
633 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
634 acct_info.dup_pages++;
635 *bytes_transferred += save_page_header(f, block,
636 offset | RAM_SAVE_FLAG_COMPRESS);
637 qemu_put_byte(f, 0);
638 *bytes_transferred += 1;
639 pages = 1;
642 return pages;
646 * ram_save_page: Send the given page to the stream
648 * Returns: Number of pages written.
650 * @f: QEMUFile where to send the data
651 * @block: block that contains the page we want to send
652 * @offset: offset inside the block for the page
653 * @last_stage: if we are at the completion stage
654 * @bytes_transferred: increase it with the number of transferred bytes
656 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
657 bool last_stage, uint64_t *bytes_transferred)
659 int pages = -1;
660 uint64_t bytes_xmit;
661 ram_addr_t current_addr;
662 MemoryRegion *mr = block->mr;
663 uint8_t *p;
664 int ret;
665 bool send_async = true;
667 p = memory_region_get_ram_ptr(mr) + offset;
669 /* In doubt sent page as normal */
670 bytes_xmit = 0;
671 ret = ram_control_save_page(f, block->offset,
672 offset, TARGET_PAGE_SIZE, &bytes_xmit);
673 if (bytes_xmit) {
674 *bytes_transferred += bytes_xmit;
675 pages = 1;
678 XBZRLE_cache_lock();
680 current_addr = block->offset + offset;
682 if (block == last_sent_block) {
683 offset |= RAM_SAVE_FLAG_CONTINUE;
685 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
686 if (ret != RAM_SAVE_CONTROL_DELAYED) {
687 if (bytes_xmit > 0) {
688 acct_info.norm_pages++;
689 } else if (bytes_xmit == 0) {
690 acct_info.dup_pages++;
693 } else {
694 pages = save_zero_page(f, block, offset, p, bytes_transferred);
695 if (pages > 0) {
696 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
697 * page would be stale
699 xbzrle_cache_zero_page(current_addr);
700 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
701 pages = save_xbzrle_page(f, &p, current_addr, block,
702 offset, last_stage, bytes_transferred);
703 if (!last_stage) {
704 /* Can't send this cached data async, since the cache page
705 * might get updated before it gets to the wire
707 send_async = false;
712 /* XBZRLE overflow or normal page */
713 if (pages == -1) {
714 *bytes_transferred += save_page_header(f, block,
715 offset | RAM_SAVE_FLAG_PAGE);
716 if (send_async) {
717 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
718 } else {
719 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
721 *bytes_transferred += TARGET_PAGE_SIZE;
722 pages = 1;
723 acct_info.norm_pages++;
726 XBZRLE_cache_unlock();
728 return pages;
731 static int do_compress_ram_page(CompressParam *param)
733 int bytes_sent, blen;
734 uint8_t *p;
735 RAMBlock *block = param->block;
736 ram_addr_t offset = param->offset;
738 p = memory_region_get_ram_ptr(block->mr) + (offset & TARGET_PAGE_MASK);
740 bytes_sent = save_page_header(param->file, block, offset |
741 RAM_SAVE_FLAG_COMPRESS_PAGE);
742 blen = qemu_put_compression_data(param->file, p, TARGET_PAGE_SIZE,
743 migrate_compress_level());
744 bytes_sent += blen;
746 return bytes_sent;
749 static inline void start_compression(CompressParam *param)
751 param->done = false;
752 qemu_mutex_lock(&param->mutex);
753 param->start = true;
754 qemu_cond_signal(&param->cond);
755 qemu_mutex_unlock(&param->mutex);
758 static inline void start_decompression(DecompressParam *param)
760 qemu_mutex_lock(&param->mutex);
761 param->start = true;
762 qemu_cond_signal(&param->cond);
763 qemu_mutex_unlock(&param->mutex);
766 static uint64_t bytes_transferred;
768 static void flush_compressed_data(QEMUFile *f)
770 int idx, len, thread_count;
772 if (!migrate_use_compression()) {
773 return;
775 thread_count = migrate_compress_threads();
776 for (idx = 0; idx < thread_count; idx++) {
777 if (!comp_param[idx].done) {
778 qemu_mutex_lock(comp_done_lock);
779 while (!comp_param[idx].done && !quit_comp_thread) {
780 qemu_cond_wait(comp_done_cond, comp_done_lock);
782 qemu_mutex_unlock(comp_done_lock);
784 if (!quit_comp_thread) {
785 len = qemu_put_qemu_file(f, comp_param[idx].file);
786 bytes_transferred += len;
791 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
792 ram_addr_t offset)
794 param->block = block;
795 param->offset = offset;
798 static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block,
799 ram_addr_t offset,
800 uint64_t *bytes_transferred)
802 int idx, thread_count, bytes_xmit = -1, pages = -1;
804 thread_count = migrate_compress_threads();
805 qemu_mutex_lock(comp_done_lock);
806 while (true) {
807 for (idx = 0; idx < thread_count; idx++) {
808 if (comp_param[idx].done) {
809 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file);
810 set_compress_params(&comp_param[idx], block, offset);
811 start_compression(&comp_param[idx]);
812 pages = 1;
813 acct_info.norm_pages++;
814 *bytes_transferred += bytes_xmit;
815 break;
818 if (pages > 0) {
819 break;
820 } else {
821 qemu_cond_wait(comp_done_cond, comp_done_lock);
824 qemu_mutex_unlock(comp_done_lock);
826 return pages;
830 * ram_save_compressed_page: compress the given page and send it to the stream
832 * Returns: Number of pages written.
834 * @f: QEMUFile where to send the data
835 * @block: block that contains the page we want to send
836 * @offset: offset inside the block for the page
837 * @last_stage: if we are at the completion stage
838 * @bytes_transferred: increase it with the number of transferred bytes
840 static int ram_save_compressed_page(QEMUFile *f, RAMBlock *block,
841 ram_addr_t offset, bool last_stage,
842 uint64_t *bytes_transferred)
844 int pages = -1;
845 uint64_t bytes_xmit;
846 MemoryRegion *mr = block->mr;
847 uint8_t *p;
848 int ret;
850 p = memory_region_get_ram_ptr(mr) + offset;
852 bytes_xmit = 0;
853 ret = ram_control_save_page(f, block->offset,
854 offset, TARGET_PAGE_SIZE, &bytes_xmit);
855 if (bytes_xmit) {
856 *bytes_transferred += bytes_xmit;
857 pages = 1;
859 if (block == last_sent_block) {
860 offset |= RAM_SAVE_FLAG_CONTINUE;
862 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
863 if (ret != RAM_SAVE_CONTROL_DELAYED) {
864 if (bytes_xmit > 0) {
865 acct_info.norm_pages++;
866 } else if (bytes_xmit == 0) {
867 acct_info.dup_pages++;
870 } else {
871 /* When starting the process of a new block, the first page of
872 * the block should be sent out before other pages in the same
873 * block, and all the pages in last block should have been sent
874 * out, keeping this order is important, because the 'cont' flag
875 * is used to avoid resending the block name.
877 if (block != last_sent_block) {
878 flush_compressed_data(f);
879 pages = save_zero_page(f, block, offset, p, bytes_transferred);
880 if (pages == -1) {
881 set_compress_params(&comp_param[0], block, offset);
882 /* Use the qemu thread to compress the data to make sure the
883 * first page is sent out before other pages
885 bytes_xmit = do_compress_ram_page(&comp_param[0]);
886 acct_info.norm_pages++;
887 qemu_put_qemu_file(f, comp_param[0].file);
888 *bytes_transferred += bytes_xmit;
889 pages = 1;
891 } else {
892 pages = save_zero_page(f, block, offset, p, bytes_transferred);
893 if (pages == -1) {
894 pages = compress_page_with_multi_thread(f, block, offset,
895 bytes_transferred);
900 return pages;
904 * ram_find_and_save_block: Finds a dirty page and sends it to f
906 * Called within an RCU critical section.
908 * Returns: The number of pages written
909 * 0 means no dirty pages
911 * @f: QEMUFile where to send the data
912 * @last_stage: if we are at the completion stage
913 * @bytes_transferred: increase it with the number of transferred bytes
916 static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
917 uint64_t *bytes_transferred)
919 RAMBlock *block = last_seen_block;
920 ram_addr_t offset = last_offset;
921 bool complete_round = false;
922 int pages = 0;
923 MemoryRegion *mr;
925 if (!block)
926 block = QLIST_FIRST_RCU(&ram_list.blocks);
928 while (true) {
929 mr = block->mr;
930 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
931 if (complete_round && block == last_seen_block &&
932 offset >= last_offset) {
933 break;
935 if (offset >= block->used_length) {
936 offset = 0;
937 block = QLIST_NEXT_RCU(block, next);
938 if (!block) {
939 block = QLIST_FIRST_RCU(&ram_list.blocks);
940 complete_round = true;
941 ram_bulk_stage = false;
942 if (migrate_use_xbzrle()) {
943 /* If xbzrle is on, stop using the data compression at this
944 * point. In theory, xbzrle can do better than compression.
946 flush_compressed_data(f);
947 compression_switch = false;
950 } else {
951 if (compression_switch && migrate_use_compression()) {
952 pages = ram_save_compressed_page(f, block, offset, last_stage,
953 bytes_transferred);
954 } else {
955 pages = ram_save_page(f, block, offset, last_stage,
956 bytes_transferred);
959 /* if page is unmodified, continue to the next */
960 if (pages > 0) {
961 last_sent_block = block;
962 break;
967 last_seen_block = block;
968 last_offset = offset;
970 return pages;
973 void acct_update_position(QEMUFile *f, size_t size, bool zero)
975 uint64_t pages = size / TARGET_PAGE_SIZE;
976 if (zero) {
977 acct_info.dup_pages += pages;
978 } else {
979 acct_info.norm_pages += pages;
980 bytes_transferred += size;
981 qemu_update_position(f, size);
985 static ram_addr_t ram_save_remaining(void)
987 return migration_dirty_pages;
990 uint64_t ram_bytes_remaining(void)
992 return ram_save_remaining() * TARGET_PAGE_SIZE;
995 uint64_t ram_bytes_transferred(void)
997 return bytes_transferred;
1000 uint64_t ram_bytes_total(void)
1002 RAMBlock *block;
1003 uint64_t total = 0;
1005 rcu_read_lock();
1006 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1007 total += block->used_length;
1008 rcu_read_unlock();
1009 return total;
1012 void free_xbzrle_decoded_buf(void)
1014 g_free(xbzrle_decoded_buf);
1015 xbzrle_decoded_buf = NULL;
1018 static void migration_end(void)
1020 if (migration_bitmap) {
1021 memory_global_dirty_log_stop();
1022 g_free(migration_bitmap);
1023 migration_bitmap = NULL;
1026 XBZRLE_cache_lock();
1027 if (XBZRLE.cache) {
1028 cache_fini(XBZRLE.cache);
1029 g_free(XBZRLE.encoded_buf);
1030 g_free(XBZRLE.current_buf);
1031 XBZRLE.cache = NULL;
1032 XBZRLE.encoded_buf = NULL;
1033 XBZRLE.current_buf = NULL;
1035 XBZRLE_cache_unlock();
1038 static void ram_migration_cancel(void *opaque)
1040 migration_end();
1043 static void reset_ram_globals(void)
1045 last_seen_block = NULL;
1046 last_sent_block = NULL;
1047 last_offset = 0;
1048 last_version = ram_list.version;
1049 ram_bulk_stage = true;
1052 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1055 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1056 * long-running RCU critical section. When rcu-reclaims in the code
1057 * start to become numerous it will be necessary to reduce the
1058 * granularity of these critical sections.
1061 static int ram_save_setup(QEMUFile *f, void *opaque)
1063 RAMBlock *block;
1064 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
1066 mig_throttle_on = false;
1067 dirty_rate_high_cnt = 0;
1068 bitmap_sync_count = 0;
1069 migration_bitmap_sync_init();
1071 if (migrate_use_xbzrle()) {
1072 XBZRLE_cache_lock();
1073 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1074 TARGET_PAGE_SIZE,
1075 TARGET_PAGE_SIZE);
1076 if (!XBZRLE.cache) {
1077 XBZRLE_cache_unlock();
1078 error_report("Error creating cache");
1079 return -1;
1081 XBZRLE_cache_unlock();
1083 /* We prefer not to abort if there is no memory */
1084 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1085 if (!XBZRLE.encoded_buf) {
1086 error_report("Error allocating encoded_buf");
1087 return -1;
1090 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1091 if (!XBZRLE.current_buf) {
1092 error_report("Error allocating current_buf");
1093 g_free(XBZRLE.encoded_buf);
1094 XBZRLE.encoded_buf = NULL;
1095 return -1;
1098 acct_clear();
1101 /* iothread lock needed for ram_list.dirty_memory[] */
1102 qemu_mutex_lock_iothread();
1103 qemu_mutex_lock_ramlist();
1104 rcu_read_lock();
1105 bytes_transferred = 0;
1106 reset_ram_globals();
1108 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1109 migration_bitmap = bitmap_new(ram_bitmap_pages);
1110 bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
1113 * Count the total number of pages used by ram blocks not including any
1114 * gaps due to alignment or unplugs.
1116 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1118 memory_global_dirty_log_start();
1119 migration_bitmap_sync();
1120 qemu_mutex_unlock_ramlist();
1121 qemu_mutex_unlock_iothread();
1123 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
1125 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1126 qemu_put_byte(f, strlen(block->idstr));
1127 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
1128 qemu_put_be64(f, block->used_length);
1131 rcu_read_unlock();
1133 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
1134 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
1136 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1138 return 0;
1141 static int ram_save_iterate(QEMUFile *f, void *opaque)
1143 int ret;
1144 int i;
1145 int64_t t0;
1146 int pages_sent = 0;
1148 rcu_read_lock();
1149 if (ram_list.version != last_version) {
1150 reset_ram_globals();
1153 /* Read version before ram_list.blocks */
1154 smp_rmb();
1156 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
1158 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1159 i = 0;
1160 while ((ret = qemu_file_rate_limit(f)) == 0) {
1161 int pages;
1163 pages = ram_find_and_save_block(f, false, &bytes_transferred);
1164 /* no more pages to sent */
1165 if (pages == 0) {
1166 break;
1168 pages_sent += pages;
1169 acct_info.iterations++;
1170 check_guest_throttling();
1171 /* we want to check in the 1st loop, just in case it was the 1st time
1172 and we had to sync the dirty bitmap.
1173 qemu_get_clock_ns() is a bit expensive, so we only check each some
1174 iterations
1176 if ((i & 63) == 0) {
1177 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
1178 if (t1 > MAX_WAIT) {
1179 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
1180 t1, i);
1181 break;
1184 i++;
1186 flush_compressed_data(f);
1187 rcu_read_unlock();
1190 * Must occur before EOS (or any QEMUFile operation)
1191 * because of RDMA protocol.
1193 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
1195 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1196 bytes_transferred += 8;
1198 ret = qemu_file_get_error(f);
1199 if (ret < 0) {
1200 return ret;
1203 return pages_sent;
1206 /* Called with iothread lock */
1207 static int ram_save_complete(QEMUFile *f, void *opaque)
1209 rcu_read_lock();
1211 migration_bitmap_sync();
1213 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
1215 /* try transferring iterative blocks of memory */
1217 /* flush all remaining blocks regardless of rate limiting */
1218 while (true) {
1219 int pages;
1221 pages = ram_find_and_save_block(f, true, &bytes_transferred);
1222 /* no more blocks to sent */
1223 if (pages == 0) {
1224 break;
1228 flush_compressed_data(f);
1229 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
1230 migration_end();
1232 rcu_read_unlock();
1233 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1235 return 0;
1238 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
1240 uint64_t remaining_size;
1242 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1244 if (remaining_size < max_size) {
1245 qemu_mutex_lock_iothread();
1246 rcu_read_lock();
1247 migration_bitmap_sync();
1248 rcu_read_unlock();
1249 qemu_mutex_unlock_iothread();
1250 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1252 return remaining_size;
1255 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
1257 unsigned int xh_len;
1258 int xh_flags;
1260 if (!xbzrle_decoded_buf) {
1261 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
1264 /* extract RLE header */
1265 xh_flags = qemu_get_byte(f);
1266 xh_len = qemu_get_be16(f);
1268 if (xh_flags != ENCODING_FLAG_XBZRLE) {
1269 error_report("Failed to load XBZRLE page - wrong compression!");
1270 return -1;
1273 if (xh_len > TARGET_PAGE_SIZE) {
1274 error_report("Failed to load XBZRLE page - len overflow!");
1275 return -1;
1277 /* load data and decode */
1278 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
1280 /* decode RLE */
1281 if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
1282 TARGET_PAGE_SIZE) == -1) {
1283 error_report("Failed to load XBZRLE page - decode error!");
1284 return -1;
1287 return 0;
1290 /* Must be called from within a rcu critical section.
1291 * Returns a pointer from within the RCU-protected ram_list.
1293 static inline void *host_from_stream_offset(QEMUFile *f,
1294 ram_addr_t offset,
1295 int flags)
1297 static RAMBlock *block = NULL;
1298 char id[256];
1299 uint8_t len;
1301 if (flags & RAM_SAVE_FLAG_CONTINUE) {
1302 if (!block || block->max_length <= offset) {
1303 error_report("Ack, bad migration stream!");
1304 return NULL;
1307 return memory_region_get_ram_ptr(block->mr) + offset;
1310 len = qemu_get_byte(f);
1311 qemu_get_buffer(f, (uint8_t *)id, len);
1312 id[len] = 0;
1314 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1315 if (!strncmp(id, block->idstr, sizeof(id)) &&
1316 block->max_length > offset) {
1317 return memory_region_get_ram_ptr(block->mr) + offset;
1321 error_report("Can't find block %s!", id);
1322 return NULL;
1326 * If a page (or a whole RDMA chunk) has been
1327 * determined to be zero, then zap it.
1329 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1331 if (ch != 0 || !is_zero_range(host, size)) {
1332 memset(host, ch, size);
1336 static void *do_data_decompress(void *opaque)
1338 DecompressParam *param = opaque;
1339 unsigned long pagesize;
1341 while (!quit_decomp_thread) {
1342 qemu_mutex_lock(&param->mutex);
1343 while (!param->start && !quit_decomp_thread) {
1344 qemu_cond_wait(&param->cond, &param->mutex);
1345 pagesize = TARGET_PAGE_SIZE;
1346 if (!quit_decomp_thread) {
1347 /* uncompress() will return failed in some case, especially
1348 * when the page is dirted when doing the compression, it's
1349 * not a problem because the dirty page will be retransferred
1350 * and uncompress() won't break the data in other pages.
1352 uncompress((Bytef *)param->des, &pagesize,
1353 (const Bytef *)param->compbuf, param->len);
1355 param->start = false;
1357 qemu_mutex_unlock(&param->mutex);
1360 return NULL;
1363 void migrate_decompress_threads_create(void)
1365 int i, thread_count;
1367 thread_count = migrate_decompress_threads();
1368 decompress_threads = g_new0(QemuThread, thread_count);
1369 decomp_param = g_new0(DecompressParam, thread_count);
1370 compressed_data_buf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
1371 quit_decomp_thread = false;
1372 for (i = 0; i < thread_count; i++) {
1373 qemu_mutex_init(&decomp_param[i].mutex);
1374 qemu_cond_init(&decomp_param[i].cond);
1375 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
1376 qemu_thread_create(decompress_threads + i, "decompress",
1377 do_data_decompress, decomp_param + i,
1378 QEMU_THREAD_JOINABLE);
1382 void migrate_decompress_threads_join(void)
1384 int i, thread_count;
1386 quit_decomp_thread = true;
1387 thread_count = migrate_decompress_threads();
1388 for (i = 0; i < thread_count; i++) {
1389 qemu_mutex_lock(&decomp_param[i].mutex);
1390 qemu_cond_signal(&decomp_param[i].cond);
1391 qemu_mutex_unlock(&decomp_param[i].mutex);
1393 for (i = 0; i < thread_count; i++) {
1394 qemu_thread_join(decompress_threads + i);
1395 qemu_mutex_destroy(&decomp_param[i].mutex);
1396 qemu_cond_destroy(&decomp_param[i].cond);
1397 g_free(decomp_param[i].compbuf);
1399 g_free(decompress_threads);
1400 g_free(decomp_param);
1401 g_free(compressed_data_buf);
1402 decompress_threads = NULL;
1403 decomp_param = NULL;
1404 compressed_data_buf = NULL;
1407 static void decompress_data_with_multi_threads(uint8_t *compbuf,
1408 void *host, int len)
1410 int idx, thread_count;
1412 thread_count = migrate_decompress_threads();
1413 while (true) {
1414 for (idx = 0; idx < thread_count; idx++) {
1415 if (!decomp_param[idx].start) {
1416 memcpy(decomp_param[idx].compbuf, compbuf, len);
1417 decomp_param[idx].des = host;
1418 decomp_param[idx].len = len;
1419 start_decompression(&decomp_param[idx]);
1420 break;
1423 if (idx < thread_count) {
1424 break;
1429 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1431 int flags = 0, ret = 0;
1432 static uint64_t seq_iter;
1433 int len = 0;
1435 seq_iter++;
1437 if (version_id != 4) {
1438 ret = -EINVAL;
1441 /* This RCU critical section can be very long running.
1442 * When RCU reclaims in the code start to become numerous,
1443 * it will be necessary to reduce the granularity of this
1444 * critical section.
1446 rcu_read_lock();
1447 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
1448 ram_addr_t addr, total_ram_bytes;
1449 void *host;
1450 uint8_t ch;
1452 addr = qemu_get_be64(f);
1453 flags = addr & ~TARGET_PAGE_MASK;
1454 addr &= TARGET_PAGE_MASK;
1456 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
1457 case RAM_SAVE_FLAG_MEM_SIZE:
1458 /* Synchronize RAM block list */
1459 total_ram_bytes = addr;
1460 while (!ret && total_ram_bytes) {
1461 RAMBlock *block;
1462 char id[256];
1463 ram_addr_t length;
1465 len = qemu_get_byte(f);
1466 qemu_get_buffer(f, (uint8_t *)id, len);
1467 id[len] = 0;
1468 length = qemu_get_be64(f);
1470 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1471 if (!strncmp(id, block->idstr, sizeof(id))) {
1472 if (length != block->used_length) {
1473 Error *local_err = NULL;
1475 ret = qemu_ram_resize(block->offset, length, &local_err);
1476 if (local_err) {
1477 error_report_err(local_err);
1480 break;
1484 if (!block) {
1485 error_report("Unknown ramblock \"%s\", cannot "
1486 "accept migration", id);
1487 ret = -EINVAL;
1490 total_ram_bytes -= length;
1492 break;
1493 case RAM_SAVE_FLAG_COMPRESS:
1494 host = host_from_stream_offset(f, addr, flags);
1495 if (!host) {
1496 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1497 ret = -EINVAL;
1498 break;
1500 ch = qemu_get_byte(f);
1501 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1502 break;
1503 case RAM_SAVE_FLAG_PAGE:
1504 host = host_from_stream_offset(f, addr, flags);
1505 if (!host) {
1506 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1507 ret = -EINVAL;
1508 break;
1510 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1511 break;
1512 case RAM_SAVE_FLAG_COMPRESS_PAGE:
1513 host = host_from_stream_offset(f, addr, flags);
1514 if (!host) {
1515 error_report("Invalid RAM offset " RAM_ADDR_FMT, addr);
1516 ret = -EINVAL;
1517 break;
1520 len = qemu_get_be32(f);
1521 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
1522 error_report("Invalid compressed data length: %d", len);
1523 ret = -EINVAL;
1524 break;
1526 qemu_get_buffer(f, compressed_data_buf, len);
1527 decompress_data_with_multi_threads(compressed_data_buf, host, len);
1528 break;
1529 case RAM_SAVE_FLAG_XBZRLE:
1530 host = host_from_stream_offset(f, addr, flags);
1531 if (!host) {
1532 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1533 ret = -EINVAL;
1534 break;
1536 if (load_xbzrle(f, addr, host) < 0) {
1537 error_report("Failed to decompress XBZRLE page at "
1538 RAM_ADDR_FMT, addr);
1539 ret = -EINVAL;
1540 break;
1542 break;
1543 case RAM_SAVE_FLAG_EOS:
1544 /* normal exit */
1545 break;
1546 default:
1547 if (flags & RAM_SAVE_FLAG_HOOK) {
1548 ram_control_load_hook(f, flags);
1549 } else {
1550 error_report("Unknown combination of migration flags: %#x",
1551 flags);
1552 ret = -EINVAL;
1555 if (!ret) {
1556 ret = qemu_file_get_error(f);
1560 rcu_read_unlock();
1561 DPRINTF("Completed load of VM with exit code %d seq iteration "
1562 "%" PRIu64 "\n", ret, seq_iter);
1563 return ret;
1566 static SaveVMHandlers savevm_ram_handlers = {
1567 .save_live_setup = ram_save_setup,
1568 .save_live_iterate = ram_save_iterate,
1569 .save_live_complete = ram_save_complete,
1570 .save_live_pending = ram_save_pending,
1571 .load_state = ram_load,
1572 .cancel = ram_migration_cancel,
1575 void ram_mig_init(void)
1577 qemu_mutex_init(&XBZRLE.lock);
1578 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1580 /* Stub function that's gets run on the vcpu when its brought out of the
1581 VM to run inside qemu via async_run_on_cpu()*/
1583 static void mig_sleep_cpu(void *opq)
1585 qemu_mutex_unlock_iothread();
1586 g_usleep(30*1000);
1587 qemu_mutex_lock_iothread();
1590 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1591 much time in the VM. The migration thread will try to catchup.
1592 Workload will experience a performance drop.
1594 static void mig_throttle_guest_down(void)
1596 CPUState *cpu;
1598 qemu_mutex_lock_iothread();
1599 CPU_FOREACH(cpu) {
1600 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1602 qemu_mutex_unlock_iothread();
1605 static void check_guest_throttling(void)
1607 static int64_t t0;
1608 int64_t t1;
1610 if (!mig_throttle_on) {
1611 return;
1614 if (!t0) {
1615 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1616 return;
1619 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1621 /* If it has been more than 40 ms since the last time the guest
1622 * was throttled then do it again.
1624 if (40 < (t1-t0)/1000000) {
1625 mig_throttle_guest_down();
1626 t0 = t1;