meson: convert wixl detection to Meson
[qemu/ar7.git] / target / arm / cpu64.c
blob5e851028c592ff0162270545fba4935dc8754bfb
1 /*
2 * QEMU AArch64 CPU
4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu/module.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "sysemu/kvm.h"
29 #include "kvm_arm.h"
30 #include "qapi/visitor.h"
31 #include "hw/qdev-properties.h"
34 #ifndef CONFIG_USER_ONLY
35 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
37 ARMCPU *cpu = env_archcpu(env);
39 /* Number of cores is in [25:24]; otherwise we RAZ */
40 return (cpu->core_count - 1) << 24;
42 #endif
44 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
45 #ifndef CONFIG_USER_ONLY
46 { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
47 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
48 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
49 .writefn = arm_cp_write_ignore },
50 { .name = "L2CTLR",
51 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
52 .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
53 .writefn = arm_cp_write_ignore },
54 #endif
55 { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
56 .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
57 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
58 { .name = "L2ECTLR",
59 .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
60 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
61 { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
62 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
63 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
64 { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
65 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
66 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
67 { .name = "CPUACTLR",
68 .cp = 15, .opc1 = 0, .crm = 15,
69 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
70 { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
71 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
72 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
73 { .name = "CPUECTLR",
74 .cp = 15, .opc1 = 1, .crm = 15,
75 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
76 { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
77 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
78 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
79 { .name = "CPUMERRSR",
80 .cp = 15, .opc1 = 2, .crm = 15,
81 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
82 { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
83 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
84 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
85 { .name = "L2MERRSR",
86 .cp = 15, .opc1 = 3, .crm = 15,
87 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
88 REGINFO_SENTINEL
91 static void aarch64_a57_initfn(Object *obj)
93 ARMCPU *cpu = ARM_CPU(obj);
95 cpu->dtb_compatible = "arm,cortex-a57";
96 set_feature(&cpu->env, ARM_FEATURE_V8);
97 set_feature(&cpu->env, ARM_FEATURE_NEON);
98 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
99 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
100 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
101 set_feature(&cpu->env, ARM_FEATURE_EL2);
102 set_feature(&cpu->env, ARM_FEATURE_EL3);
103 set_feature(&cpu->env, ARM_FEATURE_PMU);
104 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
105 cpu->midr = 0x411fd070;
106 cpu->revidr = 0x00000000;
107 cpu->reset_fpsid = 0x41034070;
108 cpu->isar.mvfr0 = 0x10110222;
109 cpu->isar.mvfr1 = 0x12111111;
110 cpu->isar.mvfr2 = 0x00000043;
111 cpu->ctr = 0x8444c004;
112 cpu->reset_sctlr = 0x00c50838;
113 cpu->isar.id_pfr0 = 0x00000131;
114 cpu->isar.id_pfr1 = 0x00011011;
115 cpu->isar.id_dfr0 = 0x03010066;
116 cpu->id_afr0 = 0x00000000;
117 cpu->isar.id_mmfr0 = 0x10101105;
118 cpu->isar.id_mmfr1 = 0x40000000;
119 cpu->isar.id_mmfr2 = 0x01260000;
120 cpu->isar.id_mmfr3 = 0x02102211;
121 cpu->isar.id_isar0 = 0x02101110;
122 cpu->isar.id_isar1 = 0x13112111;
123 cpu->isar.id_isar2 = 0x21232042;
124 cpu->isar.id_isar3 = 0x01112131;
125 cpu->isar.id_isar4 = 0x00011142;
126 cpu->isar.id_isar5 = 0x00011121;
127 cpu->isar.id_isar6 = 0;
128 cpu->isar.id_aa64pfr0 = 0x00002222;
129 cpu->isar.id_aa64dfr0 = 0x10305106;
130 cpu->isar.id_aa64isar0 = 0x00011120;
131 cpu->isar.id_aa64mmfr0 = 0x00001124;
132 cpu->isar.dbgdidr = 0x3516d000;
133 cpu->clidr = 0x0a200023;
134 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
135 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
136 cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
137 cpu->dcz_blocksize = 4; /* 64 bytes */
138 cpu->gic_num_lrs = 4;
139 cpu->gic_vpribits = 5;
140 cpu->gic_vprebits = 5;
141 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
144 static void aarch64_a53_initfn(Object *obj)
146 ARMCPU *cpu = ARM_CPU(obj);
148 cpu->dtb_compatible = "arm,cortex-a53";
149 set_feature(&cpu->env, ARM_FEATURE_V8);
150 set_feature(&cpu->env, ARM_FEATURE_NEON);
151 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
152 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
153 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
154 set_feature(&cpu->env, ARM_FEATURE_EL2);
155 set_feature(&cpu->env, ARM_FEATURE_EL3);
156 set_feature(&cpu->env, ARM_FEATURE_PMU);
157 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
158 cpu->midr = 0x410fd034;
159 cpu->revidr = 0x00000000;
160 cpu->reset_fpsid = 0x41034070;
161 cpu->isar.mvfr0 = 0x10110222;
162 cpu->isar.mvfr1 = 0x12111111;
163 cpu->isar.mvfr2 = 0x00000043;
164 cpu->ctr = 0x84448004; /* L1Ip = VIPT */
165 cpu->reset_sctlr = 0x00c50838;
166 cpu->isar.id_pfr0 = 0x00000131;
167 cpu->isar.id_pfr1 = 0x00011011;
168 cpu->isar.id_dfr0 = 0x03010066;
169 cpu->id_afr0 = 0x00000000;
170 cpu->isar.id_mmfr0 = 0x10101105;
171 cpu->isar.id_mmfr1 = 0x40000000;
172 cpu->isar.id_mmfr2 = 0x01260000;
173 cpu->isar.id_mmfr3 = 0x02102211;
174 cpu->isar.id_isar0 = 0x02101110;
175 cpu->isar.id_isar1 = 0x13112111;
176 cpu->isar.id_isar2 = 0x21232042;
177 cpu->isar.id_isar3 = 0x01112131;
178 cpu->isar.id_isar4 = 0x00011142;
179 cpu->isar.id_isar5 = 0x00011121;
180 cpu->isar.id_isar6 = 0;
181 cpu->isar.id_aa64pfr0 = 0x00002222;
182 cpu->isar.id_aa64dfr0 = 0x10305106;
183 cpu->isar.id_aa64isar0 = 0x00011120;
184 cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
185 cpu->isar.dbgdidr = 0x3516d000;
186 cpu->clidr = 0x0a200023;
187 cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
188 cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
189 cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
190 cpu->dcz_blocksize = 4; /* 64 bytes */
191 cpu->gic_num_lrs = 4;
192 cpu->gic_vpribits = 5;
193 cpu->gic_vprebits = 5;
194 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
197 static void aarch64_a72_initfn(Object *obj)
199 ARMCPU *cpu = ARM_CPU(obj);
201 cpu->dtb_compatible = "arm,cortex-a72";
202 set_feature(&cpu->env, ARM_FEATURE_V8);
203 set_feature(&cpu->env, ARM_FEATURE_NEON);
204 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
205 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
206 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
207 set_feature(&cpu->env, ARM_FEATURE_EL2);
208 set_feature(&cpu->env, ARM_FEATURE_EL3);
209 set_feature(&cpu->env, ARM_FEATURE_PMU);
210 cpu->midr = 0x410fd083;
211 cpu->revidr = 0x00000000;
212 cpu->reset_fpsid = 0x41034080;
213 cpu->isar.mvfr0 = 0x10110222;
214 cpu->isar.mvfr1 = 0x12111111;
215 cpu->isar.mvfr2 = 0x00000043;
216 cpu->ctr = 0x8444c004;
217 cpu->reset_sctlr = 0x00c50838;
218 cpu->isar.id_pfr0 = 0x00000131;
219 cpu->isar.id_pfr1 = 0x00011011;
220 cpu->isar.id_dfr0 = 0x03010066;
221 cpu->id_afr0 = 0x00000000;
222 cpu->isar.id_mmfr0 = 0x10201105;
223 cpu->isar.id_mmfr1 = 0x40000000;
224 cpu->isar.id_mmfr2 = 0x01260000;
225 cpu->isar.id_mmfr3 = 0x02102211;
226 cpu->isar.id_isar0 = 0x02101110;
227 cpu->isar.id_isar1 = 0x13112111;
228 cpu->isar.id_isar2 = 0x21232042;
229 cpu->isar.id_isar3 = 0x01112131;
230 cpu->isar.id_isar4 = 0x00011142;
231 cpu->isar.id_isar5 = 0x00011121;
232 cpu->isar.id_aa64pfr0 = 0x00002222;
233 cpu->isar.id_aa64dfr0 = 0x10305106;
234 cpu->isar.id_aa64isar0 = 0x00011120;
235 cpu->isar.id_aa64mmfr0 = 0x00001124;
236 cpu->isar.dbgdidr = 0x3516d000;
237 cpu->clidr = 0x0a200023;
238 cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
239 cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
240 cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
241 cpu->dcz_blocksize = 4; /* 64 bytes */
242 cpu->gic_num_lrs = 4;
243 cpu->gic_vpribits = 5;
244 cpu->gic_vprebits = 5;
245 define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
248 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
251 * If any vector lengths are explicitly enabled with sve<N> properties,
252 * then all other lengths are implicitly disabled. If sve-max-vq is
253 * specified then it is the same as explicitly enabling all lengths
254 * up to and including the specified maximum, which means all larger
255 * lengths will be implicitly disabled. If no sve<N> properties
256 * are enabled and sve-max-vq is not specified, then all lengths not
257 * explicitly disabled will be enabled. Additionally, all power-of-two
258 * vector lengths less than the maximum enabled length will be
259 * automatically enabled and all vector lengths larger than the largest
260 * disabled power-of-two vector length will be automatically disabled.
261 * Errors are generated if the user provided input that interferes with
262 * any of the above. Finally, if SVE is not disabled, then at least one
263 * vector length must be enabled.
265 DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ);
266 DECLARE_BITMAP(tmp, ARM_MAX_VQ);
267 uint32_t vq, max_vq = 0;
269 /* Collect the set of vector lengths supported by KVM. */
270 bitmap_zero(kvm_supported, ARM_MAX_VQ);
271 if (kvm_enabled() && kvm_arm_sve_supported()) {
272 kvm_arm_sve_get_vls(CPU(cpu), kvm_supported);
273 } else if (kvm_enabled()) {
274 assert(!cpu_isar_feature(aa64_sve, cpu));
278 * Process explicit sve<N> properties.
279 * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
280 * Check first for any sve<N> enabled.
282 if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
283 max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
285 if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
286 error_setg(errp, "cannot enable sve%d", max_vq * 128);
287 error_append_hint(errp, "sve%d is larger than the maximum vector "
288 "length, sve-max-vq=%d (%d bits)\n",
289 max_vq * 128, cpu->sve_max_vq,
290 cpu->sve_max_vq * 128);
291 return;
294 if (kvm_enabled()) {
296 * For KVM we have to automatically enable all supported unitialized
297 * lengths, even when the smaller lengths are not all powers-of-two.
299 bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq);
300 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
301 } else {
302 /* Propagate enabled bits down through required powers-of-two. */
303 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
304 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
305 set_bit(vq - 1, cpu->sve_vq_map);
309 } else if (cpu->sve_max_vq == 0) {
311 * No explicit bits enabled, and no implicit bits from sve-max-vq.
313 if (!cpu_isar_feature(aa64_sve, cpu)) {
314 /* SVE is disabled and so are all vector lengths. Good. */
315 return;
318 if (kvm_enabled()) {
319 /* Disabling a supported length disables all larger lengths. */
320 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
321 if (test_bit(vq - 1, cpu->sve_vq_init) &&
322 test_bit(vq - 1, kvm_supported)) {
323 break;
326 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
327 bitmap_andnot(cpu->sve_vq_map, kvm_supported,
328 cpu->sve_vq_init, max_vq);
329 if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
330 error_setg(errp, "cannot disable sve%d", vq * 128);
331 error_append_hint(errp, "Disabling sve%d results in all "
332 "vector lengths being disabled.\n",
333 vq * 128);
334 error_append_hint(errp, "With SVE enabled, at least one "
335 "vector length must be enabled.\n");
336 return;
338 } else {
339 /* Disabling a power-of-two disables all larger lengths. */
340 if (test_bit(0, cpu->sve_vq_init)) {
341 error_setg(errp, "cannot disable sve128");
342 error_append_hint(errp, "Disabling sve128 results in all "
343 "vector lengths being disabled.\n");
344 error_append_hint(errp, "With SVE enabled, at least one "
345 "vector length must be enabled.\n");
346 return;
348 for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
349 if (test_bit(vq - 1, cpu->sve_vq_init)) {
350 break;
353 max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
354 bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
357 max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
361 * Process the sve-max-vq property.
362 * Note that we know from the above that no bit above
363 * sve-max-vq is currently set.
365 if (cpu->sve_max_vq != 0) {
366 max_vq = cpu->sve_max_vq;
368 if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
369 test_bit(max_vq - 1, cpu->sve_vq_init)) {
370 error_setg(errp, "cannot disable sve%d", max_vq * 128);
371 error_append_hint(errp, "The maximum vector length must be "
372 "enabled, sve-max-vq=%d (%d bits)\n",
373 max_vq, max_vq * 128);
374 return;
377 /* Set all bits not explicitly set within sve-max-vq. */
378 bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
379 bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
383 * We should know what max-vq is now. Also, as we're done
384 * manipulating sve-vq-map, we ensure any bits above max-vq
385 * are clear, just in case anybody looks.
387 assert(max_vq != 0);
388 bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
390 if (kvm_enabled()) {
391 /* Ensure the set of lengths matches what KVM supports. */
392 bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq);
393 if (!bitmap_empty(tmp, max_vq)) {
394 vq = find_last_bit(tmp, max_vq) + 1;
395 if (test_bit(vq - 1, cpu->sve_vq_map)) {
396 if (cpu->sve_max_vq) {
397 error_setg(errp, "cannot set sve-max-vq=%d",
398 cpu->sve_max_vq);
399 error_append_hint(errp, "This KVM host does not support "
400 "the vector length %d-bits.\n",
401 vq * 128);
402 error_append_hint(errp, "It may not be possible to use "
403 "sve-max-vq with this KVM host. Try "
404 "using only sve<N> properties.\n");
405 } else {
406 error_setg(errp, "cannot enable sve%d", vq * 128);
407 error_append_hint(errp, "This KVM host does not support "
408 "the vector length %d-bits.\n",
409 vq * 128);
411 } else {
412 error_setg(errp, "cannot disable sve%d", vq * 128);
413 error_append_hint(errp, "The KVM host requires all "
414 "supported vector lengths smaller "
415 "than %d bits to also be enabled.\n",
416 max_vq * 128);
418 return;
420 } else {
421 /* Ensure all required powers-of-two are enabled. */
422 for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
423 if (!test_bit(vq - 1, cpu->sve_vq_map)) {
424 error_setg(errp, "cannot disable sve%d", vq * 128);
425 error_append_hint(errp, "sve%d is required as it "
426 "is a power-of-two length smaller than "
427 "the maximum, sve%d\n",
428 vq * 128, max_vq * 128);
429 return;
435 * Now that we validated all our vector lengths, the only question
436 * left to answer is if we even want SVE at all.
438 if (!cpu_isar_feature(aa64_sve, cpu)) {
439 error_setg(errp, "cannot enable sve%d", max_vq * 128);
440 error_append_hint(errp, "SVE must be enabled to enable vector "
441 "lengths.\n");
442 error_append_hint(errp, "Add sve=on to the CPU property list.\n");
443 return;
446 /* From now on sve_max_vq is the actual maximum supported length. */
447 cpu->sve_max_vq = max_vq;
450 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
451 void *opaque, Error **errp)
453 ARMCPU *cpu = ARM_CPU(obj);
454 uint32_t value;
456 /* All vector lengths are disabled when SVE is off. */
457 if (!cpu_isar_feature(aa64_sve, cpu)) {
458 value = 0;
459 } else {
460 value = cpu->sve_max_vq;
462 visit_type_uint32(v, name, &value, errp);
465 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
466 void *opaque, Error **errp)
468 ARMCPU *cpu = ARM_CPU(obj);
469 uint32_t max_vq;
471 if (!visit_type_uint32(v, name, &max_vq, errp)) {
472 return;
475 if (kvm_enabled() && !kvm_arm_sve_supported()) {
476 error_setg(errp, "cannot set sve-max-vq");
477 error_append_hint(errp, "SVE not supported by KVM on this host\n");
478 return;
481 if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
482 error_setg(errp, "unsupported SVE vector length");
483 error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
484 ARM_MAX_VQ);
485 return;
488 cpu->sve_max_vq = max_vq;
492 * Note that cpu_arm_get/set_sve_vq cannot use the simpler
493 * object_property_add_bool interface because they make use
494 * of the contents of "name" to determine which bit on which
495 * to operate.
497 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
498 void *opaque, Error **errp)
500 ARMCPU *cpu = ARM_CPU(obj);
501 uint32_t vq = atoi(&name[3]) / 128;
502 bool value;
504 /* All vector lengths are disabled when SVE is off. */
505 if (!cpu_isar_feature(aa64_sve, cpu)) {
506 value = false;
507 } else {
508 value = test_bit(vq - 1, cpu->sve_vq_map);
510 visit_type_bool(v, name, &value, errp);
513 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
514 void *opaque, Error **errp)
516 ARMCPU *cpu = ARM_CPU(obj);
517 uint32_t vq = atoi(&name[3]) / 128;
518 bool value;
520 if (!visit_type_bool(v, name, &value, errp)) {
521 return;
524 if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
525 error_setg(errp, "cannot enable %s", name);
526 error_append_hint(errp, "SVE not supported by KVM on this host\n");
527 return;
530 if (value) {
531 set_bit(vq - 1, cpu->sve_vq_map);
532 } else {
533 clear_bit(vq - 1, cpu->sve_vq_map);
535 set_bit(vq - 1, cpu->sve_vq_init);
538 static bool cpu_arm_get_sve(Object *obj, Error **errp)
540 ARMCPU *cpu = ARM_CPU(obj);
541 return cpu_isar_feature(aa64_sve, cpu);
544 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
546 ARMCPU *cpu = ARM_CPU(obj);
547 uint64_t t;
549 if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
550 error_setg(errp, "'sve' feature not supported by KVM on this host");
551 return;
554 t = cpu->isar.id_aa64pfr0;
555 t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
556 cpu->isar.id_aa64pfr0 = t;
559 void aarch64_add_sve_properties(Object *obj)
561 uint32_t vq;
563 object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
565 for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
566 char name[8];
567 sprintf(name, "sve%d", vq * 128);
568 object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
569 cpu_arm_set_sve_vq, NULL, NULL);
573 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
575 int arch_val = 0, impdef_val = 0;
576 uint64_t t;
578 /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
579 if (cpu->prop_pauth) {
580 if (cpu->prop_pauth_impdef) {
581 impdef_val = 1;
582 } else {
583 arch_val = 1;
585 } else if (cpu->prop_pauth_impdef) {
586 error_setg(errp, "cannot enable pauth-impdef without pauth");
587 error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
590 t = cpu->isar.id_aa64isar1;
591 t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
592 t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
593 t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
594 t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
595 cpu->isar.id_aa64isar1 = t;
598 static Property arm_cpu_pauth_property =
599 DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
600 static Property arm_cpu_pauth_impdef_property =
601 DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
603 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
604 * otherwise, a CPU with as many features enabled as our emulation supports.
605 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
606 * this only needs to handle 64 bits.
608 static void aarch64_max_initfn(Object *obj)
610 ARMCPU *cpu = ARM_CPU(obj);
612 if (kvm_enabled()) {
613 kvm_arm_set_cpu_features_from_host(cpu);
614 } else {
615 uint64_t t;
616 uint32_t u;
617 aarch64_a57_initfn(obj);
620 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
621 * one and try to apply errata workarounds or use impdef features we
622 * don't provide.
623 * An IMPLEMENTER field of 0 means "reserved for software use";
624 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
625 * to see which features are present";
626 * the VARIANT, PARTNUM and REVISION fields are all implementation
627 * defined and we choose to define PARTNUM just in case guest
628 * code needs to distinguish this QEMU CPU from other software
629 * implementations, though this shouldn't be needed.
631 t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
632 t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
633 t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
634 t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
635 t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
636 cpu->midr = t;
638 t = cpu->isar.id_aa64isar0;
639 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
640 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
641 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
642 t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
643 t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
644 t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
645 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
646 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
647 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
648 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
649 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
650 t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
651 t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
652 cpu->isar.id_aa64isar0 = t;
654 t = cpu->isar.id_aa64isar1;
655 t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
656 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
657 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
658 t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
659 t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
660 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
661 t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
662 cpu->isar.id_aa64isar1 = t;
664 t = cpu->isar.id_aa64pfr0;
665 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
666 t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
667 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
668 t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);
669 cpu->isar.id_aa64pfr0 = t;
671 t = cpu->isar.id_aa64pfr1;
672 t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
674 * Begin with full support for MTE. This will be downgraded to MTE=0
675 * during realize if the board provides no tag memory, much like
676 * we do for EL2 with the virtualization=on property.
678 t = FIELD_DP64(t, ID_AA64PFR1, MTE, 2);
679 cpu->isar.id_aa64pfr1 = t;
681 t = cpu->isar.id_aa64mmfr0;
682 t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 5); /* PARange: 48 bits */
683 cpu->isar.id_aa64mmfr0 = t;
685 t = cpu->isar.id_aa64mmfr1;
686 t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
687 t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
688 t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
689 t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
690 t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
691 t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */
692 cpu->isar.id_aa64mmfr1 = t;
694 t = cpu->isar.id_aa64mmfr2;
695 t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
696 t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
697 t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* TTST */
698 cpu->isar.id_aa64mmfr2 = t;
700 /* Replicate the same data to the 32-bit id registers. */
701 u = cpu->isar.id_isar5;
702 u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
703 u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
704 u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
705 u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
706 u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
707 u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
708 cpu->isar.id_isar5 = u;
710 u = cpu->isar.id_isar6;
711 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
712 u = FIELD_DP32(u, ID_ISAR6, DP, 1);
713 u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
714 u = FIELD_DP32(u, ID_ISAR6, SB, 1);
715 u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
716 cpu->isar.id_isar6 = u;
718 u = cpu->isar.id_mmfr3;
719 u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
720 cpu->isar.id_mmfr3 = u;
722 u = cpu->isar.id_mmfr4;
723 u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
724 u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
725 u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */
726 u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */
727 cpu->isar.id_mmfr4 = u;
729 t = cpu->isar.id_aa64dfr0;
730 t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
731 cpu->isar.id_aa64dfr0 = t;
733 u = cpu->isar.id_dfr0;
734 u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
735 cpu->isar.id_dfr0 = u;
737 u = cpu->isar.mvfr1;
738 u = FIELD_DP32(u, MVFR1, FPHP, 3); /* v8.2-FP16 */
739 u = FIELD_DP32(u, MVFR1, SIMDHP, 2); /* v8.2-FP16 */
740 cpu->isar.mvfr1 = u;
742 #ifdef CONFIG_USER_ONLY
743 /* For usermode -cpu max we can use a larger and more efficient DCZ
744 * blocksize since we don't have to follow what the hardware does.
746 cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
747 cpu->dcz_blocksize = 7; /* 512 bytes */
748 #endif
750 /* Default to PAUTH on, with the architected algorithm. */
751 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
752 qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
755 aarch64_add_sve_properties(obj);
756 object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
757 cpu_max_set_sve_max_vq, NULL, NULL);
760 static const ARMCPUInfo aarch64_cpus[] = {
761 { .name = "cortex-a57", .initfn = aarch64_a57_initfn },
762 { .name = "cortex-a53", .initfn = aarch64_a53_initfn },
763 { .name = "cortex-a72", .initfn = aarch64_a72_initfn },
764 { .name = "max", .initfn = aarch64_max_initfn },
767 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
769 ARMCPU *cpu = ARM_CPU(obj);
771 return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
774 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
776 ARMCPU *cpu = ARM_CPU(obj);
778 /* At this time, this property is only allowed if KVM is enabled. This
779 * restriction allows us to avoid fixing up functionality that assumes a
780 * uniform execution state like do_interrupt.
782 if (value == false) {
783 if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
784 error_setg(errp, "'aarch64' feature cannot be disabled "
785 "unless KVM is enabled and 32-bit EL1 "
786 "is supported");
787 return;
789 unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
790 } else {
791 set_feature(&cpu->env, ARM_FEATURE_AARCH64);
795 static void aarch64_cpu_finalizefn(Object *obj)
799 static gchar *aarch64_gdb_arch_name(CPUState *cs)
801 return g_strdup("aarch64");
804 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
806 CPUClass *cc = CPU_CLASS(oc);
808 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
809 cc->gdb_read_register = aarch64_cpu_gdb_read_register;
810 cc->gdb_write_register = aarch64_cpu_gdb_write_register;
811 cc->gdb_num_core_regs = 34;
812 cc->gdb_core_xml_file = "aarch64-core.xml";
813 cc->gdb_arch_name = aarch64_gdb_arch_name;
815 object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
816 aarch64_cpu_set_aarch64);
817 object_class_property_set_description(oc, "aarch64",
818 "Set on/off to enable/disable aarch64 "
819 "execution state ");
822 static void aarch64_cpu_instance_init(Object *obj)
824 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
826 acc->info->initfn(obj);
827 arm_cpu_post_init(obj);
830 static void cpu_register_class_init(ObjectClass *oc, void *data)
832 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
834 acc->info = data;
837 void aarch64_cpu_register(const ARMCPUInfo *info)
839 TypeInfo type_info = {
840 .parent = TYPE_AARCH64_CPU,
841 .instance_size = sizeof(ARMCPU),
842 .instance_init = aarch64_cpu_instance_init,
843 .class_size = sizeof(ARMCPUClass),
844 .class_init = info->class_init ?: cpu_register_class_init,
845 .class_data = (void *)info,
848 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
849 type_register(&type_info);
850 g_free((void *)type_info.name);
853 static const TypeInfo aarch64_cpu_type_info = {
854 .name = TYPE_AARCH64_CPU,
855 .parent = TYPE_ARM_CPU,
856 .instance_size = sizeof(ARMCPU),
857 .instance_finalize = aarch64_cpu_finalizefn,
858 .abstract = true,
859 .class_size = sizeof(AArch64CPUClass),
860 .class_init = aarch64_cpu_class_init,
863 static void aarch64_cpu_register_types(void)
865 size_t i;
867 type_register_static(&aarch64_cpu_type_info);
869 for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
870 aarch64_cpu_register(&aarch64_cpus[i]);
874 type_init(aarch64_cpu_register_types)