4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
44 #else /* !CONFIG_USER_ONLY */
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
68 #include "migration/vmstate.h"
70 #include "qemu/range.h"
72 #include "qemu/mmap-alloc.h"
75 #include "monitor/monitor.h"
77 //#define DEBUG_SUBPAGE
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
83 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
85 static MemoryRegion
*system_memory
;
86 static MemoryRegion
*system_io
;
88 AddressSpace address_space_io
;
89 AddressSpace address_space_memory
;
91 MemoryRegion io_mem_rom
, io_mem_notdirty
;
92 static MemoryRegion io_mem_unassigned
;
95 #ifdef TARGET_PAGE_BITS_VARY
97 bool target_page_bits_decided
;
100 CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
102 /* current CPU in the current thread. It is only valid inside
104 __thread CPUState
*current_cpu
;
105 /* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
110 uintptr_t qemu_host_page_size
;
111 intptr_t qemu_host_page_mask
;
113 bool set_preferred_target_page_bits(int bits
)
115 /* The target page size is the lowest common denominator for all
116 * the CPUs in the system, so we can only make it smaller, never
117 * larger. And we can't make it smaller once we've committed to
120 #ifdef TARGET_PAGE_BITS_VARY
121 assert(bits
>= TARGET_PAGE_BITS_MIN
);
122 if (target_page_bits
== 0 || target_page_bits
> bits
) {
123 if (target_page_bits_decided
) {
126 target_page_bits
= bits
;
132 #if !defined(CONFIG_USER_ONLY)
134 static void finalize_target_page_bits(void)
136 #ifdef TARGET_PAGE_BITS_VARY
137 if (target_page_bits
== 0) {
138 target_page_bits
= TARGET_PAGE_BITS_MIN
;
140 target_page_bits_decided
= true;
144 typedef struct PhysPageEntry PhysPageEntry
;
146 struct PhysPageEntry
{
147 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
149 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
153 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
155 /* Size of the L2 (and L3, etc) page tables. */
156 #define ADDR_SPACE_BITS 64
159 #define P_L2_SIZE (1 << P_L2_BITS)
161 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
163 typedef PhysPageEntry Node
[P_L2_SIZE
];
165 typedef struct PhysPageMap
{
168 unsigned sections_nb
;
169 unsigned sections_nb_alloc
;
171 unsigned nodes_nb_alloc
;
173 MemoryRegionSection
*sections
;
176 struct AddressSpaceDispatch
{
177 MemoryRegionSection
*mru_section
;
178 /* This is a multi-level map on the physical address space.
179 * The bottom level has pointers to MemoryRegionSections.
181 PhysPageEntry phys_map
;
185 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186 typedef struct subpage_t
{
190 uint16_t sub_section
[];
193 #define PHYS_SECTION_UNASSIGNED 0
194 #define PHYS_SECTION_NOTDIRTY 1
195 #define PHYS_SECTION_ROM 2
196 #define PHYS_SECTION_WATCH 3
198 static void io_mem_init(void);
199 static void memory_map_init(void);
200 static void tcg_commit(MemoryListener
*listener
);
202 static MemoryRegion io_mem_watch
;
205 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
206 * @cpu: the CPU whose AddressSpace this is
207 * @as: the AddressSpace itself
208 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
209 * @tcg_as_listener: listener for tracking changes to the AddressSpace
211 struct CPUAddressSpace
{
214 struct AddressSpaceDispatch
*memory_dispatch
;
215 MemoryListener tcg_as_listener
;
218 struct DirtyBitmapSnapshot
{
221 unsigned long dirty
[];
226 #if !defined(CONFIG_USER_ONLY)
228 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
230 static unsigned alloc_hint
= 16;
231 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
232 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
233 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
234 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
235 alloc_hint
= map
->nodes_nb_alloc
;
239 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
246 ret
= map
->nodes_nb
++;
248 assert(ret
!= PHYS_MAP_NODE_NIL
);
249 assert(ret
!= map
->nodes_nb_alloc
);
251 e
.skip
= leaf
? 0 : 1;
252 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
253 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
254 memcpy(&p
[i
], &e
, sizeof(e
));
259 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
260 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
264 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
266 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
267 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
269 p
= map
->nodes
[lp
->ptr
];
270 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
272 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
273 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
279 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
285 static void phys_page_set(AddressSpaceDispatch
*d
,
286 hwaddr index
, hwaddr nb
,
289 /* Wildly overreserve - it doesn't matter much. */
290 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
292 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
295 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
296 * and update our entry so we can skip it and go directly to the destination.
298 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
300 unsigned valid_ptr
= P_L2_SIZE
;
305 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
310 for (i
= 0; i
< P_L2_SIZE
; i
++) {
311 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
318 phys_page_compact(&p
[i
], nodes
);
322 /* We can only compress if there's only one child. */
327 assert(valid_ptr
< P_L2_SIZE
);
329 /* Don't compress if it won't fit in the # of bits we have. */
330 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
334 lp
->ptr
= p
[valid_ptr
].ptr
;
335 if (!p
[valid_ptr
].skip
) {
336 /* If our only child is a leaf, make this a leaf. */
337 /* By design, we should have made this node a leaf to begin with so we
338 * should never reach here.
339 * But since it's so simple to handle this, let's do it just in case we
344 lp
->skip
+= p
[valid_ptr
].skip
;
348 void address_space_dispatch_compact(AddressSpaceDispatch
*d
)
350 if (d
->phys_map
.skip
) {
351 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
355 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
358 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
359 * the section must cover the entire address space.
361 return int128_gethi(section
->size
) ||
362 range_covers_byte(section
->offset_within_address_space
,
363 int128_getlo(section
->size
), addr
);
366 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr addr
)
368 PhysPageEntry lp
= d
->phys_map
, *p
;
369 Node
*nodes
= d
->map
.nodes
;
370 MemoryRegionSection
*sections
= d
->map
.sections
;
371 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
374 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
375 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
376 return §ions
[PHYS_SECTION_UNASSIGNED
];
379 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
382 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
383 return §ions
[lp
.ptr
];
385 return §ions
[PHYS_SECTION_UNASSIGNED
];
389 /* Called from RCU critical section */
390 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
392 bool resolve_subpage
)
394 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
397 if (!section
|| section
== &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] ||
398 !section_covers_addr(section
, addr
)) {
399 section
= phys_page_find(d
, addr
);
400 atomic_set(&d
->mru_section
, section
);
402 if (resolve_subpage
&& section
->mr
->subpage
) {
403 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
404 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
409 /* Called from RCU critical section */
410 static MemoryRegionSection
*
411 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
412 hwaddr
*plen
, bool resolve_subpage
)
414 MemoryRegionSection
*section
;
418 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
419 /* Compute offset within MemoryRegionSection */
420 addr
-= section
->offset_within_address_space
;
422 /* Compute offset within MemoryRegion */
423 *xlat
= addr
+ section
->offset_within_region
;
427 /* MMIO registers can be expected to perform full-width accesses based only
428 * on their address, without considering adjacent registers that could
429 * decode to completely different MemoryRegions. When such registers
430 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
431 * regions overlap wildly. For this reason we cannot clamp the accesses
434 * If the length is small (as is the case for address_space_ldl/stl),
435 * everything works fine. If the incoming length is large, however,
436 * the caller really has to do the clamping through memory_access_size.
438 if (memory_region_is_ram(mr
)) {
439 diff
= int128_sub(section
->size
, int128_make64(addr
));
440 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
446 * address_space_translate_iommu - translate an address through an IOMMU
447 * memory region and then through the target address space.
449 * @iommu_mr: the IOMMU memory region that we start the translation from
450 * @addr: the address to be translated through the MMU
451 * @xlat: the translated address offset within the destination memory region.
452 * It cannot be %NULL.
453 * @plen_out: valid read/write length of the translated address. It
455 * @page_mask_out: page mask for the translated address. This
456 * should only be meaningful for IOMMU translated
457 * addresses, since there may be huge pages that this bit
458 * would tell. It can be %NULL if we don't care about it.
459 * @is_write: whether the translation operation is for write
460 * @is_mmio: whether this can be MMIO, set true if it can
461 * @target_as: the address space targeted by the IOMMU
462 * @attrs: transaction attributes
464 * This function is called from RCU critical section. It is the common
465 * part of flatview_do_translate and address_space_translate_cached.
467 static MemoryRegionSection
address_space_translate_iommu(IOMMUMemoryRegion
*iommu_mr
,
470 hwaddr
*page_mask_out
,
473 AddressSpace
**target_as
,
476 MemoryRegionSection
*section
;
477 hwaddr page_mask
= (hwaddr
)-1;
481 IOMMUMemoryRegionClass
*imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
485 if (imrc
->attrs_to_index
) {
486 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
489 iotlb
= imrc
->translate(iommu_mr
, addr
, is_write
?
490 IOMMU_WO
: IOMMU_RO
, iommu_idx
);
492 if (!(iotlb
.perm
& (1 << is_write
))) {
496 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
497 | (addr
& iotlb
.addr_mask
));
498 page_mask
&= iotlb
.addr_mask
;
499 *plen_out
= MIN(*plen_out
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
500 *target_as
= iotlb
.target_as
;
502 section
= address_space_translate_internal(
503 address_space_to_dispatch(iotlb
.target_as
), addr
, xlat
,
506 iommu_mr
= memory_region_get_iommu(section
->mr
);
507 } while (unlikely(iommu_mr
));
510 *page_mask_out
= page_mask
;
515 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
519 * flatview_do_translate - translate an address in FlatView
521 * @fv: the flat view that we want to translate on
522 * @addr: the address to be translated in above address space
523 * @xlat: the translated address offset within memory region. It
525 * @plen_out: valid read/write length of the translated address. It
526 * can be @NULL when we don't care about it.
527 * @page_mask_out: page mask for the translated address. This
528 * should only be meaningful for IOMMU translated
529 * addresses, since there may be huge pages that this bit
530 * would tell. It can be @NULL if we don't care about it.
531 * @is_write: whether the translation operation is for write
532 * @is_mmio: whether this can be MMIO, set true if it can
533 * @target_as: the address space targeted by the IOMMU
534 * @attrs: memory transaction attributes
536 * This function is called from RCU critical section
538 static MemoryRegionSection
flatview_do_translate(FlatView
*fv
,
542 hwaddr
*page_mask_out
,
545 AddressSpace
**target_as
,
548 MemoryRegionSection
*section
;
549 IOMMUMemoryRegion
*iommu_mr
;
550 hwaddr plen
= (hwaddr
)(-1);
556 section
= address_space_translate_internal(
557 flatview_to_dispatch(fv
), addr
, xlat
,
560 iommu_mr
= memory_region_get_iommu(section
->mr
);
561 if (unlikely(iommu_mr
)) {
562 return address_space_translate_iommu(iommu_mr
, xlat
,
563 plen_out
, page_mask_out
,
568 /* Not behind an IOMMU, use default page size. */
569 *page_mask_out
= ~TARGET_PAGE_MASK
;
575 /* Called from RCU critical section */
576 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
577 bool is_write
, MemTxAttrs attrs
)
579 MemoryRegionSection section
;
580 hwaddr xlat
, page_mask
;
583 * This can never be MMIO, and we don't really care about plen,
586 section
= flatview_do_translate(address_space_to_flatview(as
), addr
, &xlat
,
587 NULL
, &page_mask
, is_write
, false, &as
,
590 /* Illegal translation */
591 if (section
.mr
== &io_mem_unassigned
) {
595 /* Convert memory region offset into address space offset */
596 xlat
+= section
.offset_within_address_space
-
597 section
.offset_within_region
;
599 return (IOMMUTLBEntry
) {
601 .iova
= addr
& ~page_mask
,
602 .translated_addr
= xlat
& ~page_mask
,
603 .addr_mask
= page_mask
,
604 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
609 return (IOMMUTLBEntry
) {0};
612 /* Called from RCU critical section */
613 MemoryRegion
*flatview_translate(FlatView
*fv
, hwaddr addr
, hwaddr
*xlat
,
614 hwaddr
*plen
, bool is_write
,
618 MemoryRegionSection section
;
619 AddressSpace
*as
= NULL
;
621 /* This can be MMIO, so setup MMIO bit. */
622 section
= flatview_do_translate(fv
, addr
, xlat
, plen
, NULL
,
623 is_write
, true, &as
, attrs
);
626 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
627 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
628 *plen
= MIN(page
, *plen
);
634 typedef struct TCGIOMMUNotifier
{
642 static void tcg_iommu_unmap_notify(IOMMUNotifier
*n
, IOMMUTLBEntry
*iotlb
)
644 TCGIOMMUNotifier
*notifier
= container_of(n
, TCGIOMMUNotifier
, n
);
646 if (!notifier
->active
) {
649 tlb_flush(notifier
->cpu
);
650 notifier
->active
= false;
651 /* We leave the notifier struct on the list to avoid reallocating it later.
652 * Generally the number of IOMMUs a CPU deals with will be small.
653 * In any case we can't unregister the iommu notifier from a notify
658 static void tcg_register_iommu_notifier(CPUState
*cpu
,
659 IOMMUMemoryRegion
*iommu_mr
,
662 /* Make sure this CPU has an IOMMU notifier registered for this
663 * IOMMU/IOMMU index combination, so that we can flush its TLB
664 * when the IOMMU tells us the mappings we've cached have changed.
666 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
667 TCGIOMMUNotifier
*notifier
;
670 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
671 notifier
= g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
);
672 if (notifier
->mr
== mr
&& notifier
->iommu_idx
== iommu_idx
) {
676 if (i
== cpu
->iommu_notifiers
->len
) {
677 /* Not found, add a new entry at the end of the array */
678 cpu
->iommu_notifiers
= g_array_set_size(cpu
->iommu_notifiers
, i
+ 1);
679 notifier
= g_new0(TCGIOMMUNotifier
, 1);
680 g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
) = notifier
;
683 notifier
->iommu_idx
= iommu_idx
;
685 /* Rather than trying to register interest in the specific part
686 * of the iommu's address space that we've accessed and then
687 * expand it later as subsequent accesses touch more of it, we
688 * just register interest in the whole thing, on the assumption
689 * that iommu reconfiguration will be rare.
691 iommu_notifier_init(¬ifier
->n
,
692 tcg_iommu_unmap_notify
,
693 IOMMU_NOTIFIER_UNMAP
,
697 memory_region_register_iommu_notifier(notifier
->mr
, ¬ifier
->n
);
700 if (!notifier
->active
) {
701 notifier
->active
= true;
705 static void tcg_iommu_free_notifier_list(CPUState
*cpu
)
707 /* Destroy the CPU's notifier list */
709 TCGIOMMUNotifier
*notifier
;
711 for (i
= 0; i
< cpu
->iommu_notifiers
->len
; i
++) {
712 notifier
= g_array_index(cpu
->iommu_notifiers
, TCGIOMMUNotifier
*, i
);
713 memory_region_unregister_iommu_notifier(notifier
->mr
, ¬ifier
->n
);
716 g_array_free(cpu
->iommu_notifiers
, true);
719 /* Called from RCU critical section */
720 MemoryRegionSection
*
721 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
722 hwaddr
*xlat
, hwaddr
*plen
,
723 MemTxAttrs attrs
, int *prot
)
725 MemoryRegionSection
*section
;
726 IOMMUMemoryRegion
*iommu_mr
;
727 IOMMUMemoryRegionClass
*imrc
;
730 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
733 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, false);
735 iommu_mr
= memory_region_get_iommu(section
->mr
);
740 imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
742 iommu_idx
= imrc
->attrs_to_index(iommu_mr
, attrs
);
743 tcg_register_iommu_notifier(cpu
, iommu_mr
, iommu_idx
);
744 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
745 * doesn't short-cut its translation table walk.
747 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, iommu_idx
);
748 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
749 | (addr
& iotlb
.addr_mask
));
750 /* Update the caller's prot bits to remove permissions the IOMMU
751 * is giving us a failure response for. If we get down to no
752 * permissions left at all we can give up now.
754 if (!(iotlb
.perm
& IOMMU_RO
)) {
755 *prot
&= ~(PAGE_READ
| PAGE_EXEC
);
757 if (!(iotlb
.perm
& IOMMU_WO
)) {
758 *prot
&= ~PAGE_WRITE
;
765 d
= flatview_to_dispatch(address_space_to_flatview(iotlb
.target_as
));
768 assert(!memory_region_is_iommu(section
->mr
));
773 return &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
];
777 #if !defined(CONFIG_USER_ONLY)
779 static int cpu_common_post_load(void *opaque
, int version_id
)
781 CPUState
*cpu
= opaque
;
783 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
784 version_id is increased. */
785 cpu
->interrupt_request
&= ~0x01;
788 /* loadvm has just updated the content of RAM, bypassing the
789 * usual mechanisms that ensure we flush TBs for writes to
790 * memory we've translated code from. So we must flush all TBs,
791 * which will now be stale.
798 static int cpu_common_pre_load(void *opaque
)
800 CPUState
*cpu
= opaque
;
802 cpu
->exception_index
= -1;
807 static bool cpu_common_exception_index_needed(void *opaque
)
809 CPUState
*cpu
= opaque
;
811 return tcg_enabled() && cpu
->exception_index
!= -1;
814 static const VMStateDescription vmstate_cpu_common_exception_index
= {
815 .name
= "cpu_common/exception_index",
817 .minimum_version_id
= 1,
818 .needed
= cpu_common_exception_index_needed
,
819 .fields
= (VMStateField
[]) {
820 VMSTATE_INT32(exception_index
, CPUState
),
821 VMSTATE_END_OF_LIST()
825 static bool cpu_common_crash_occurred_needed(void *opaque
)
827 CPUState
*cpu
= opaque
;
829 return cpu
->crash_occurred
;
832 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
833 .name
= "cpu_common/crash_occurred",
835 .minimum_version_id
= 1,
836 .needed
= cpu_common_crash_occurred_needed
,
837 .fields
= (VMStateField
[]) {
838 VMSTATE_BOOL(crash_occurred
, CPUState
),
839 VMSTATE_END_OF_LIST()
843 const VMStateDescription vmstate_cpu_common
= {
844 .name
= "cpu_common",
846 .minimum_version_id
= 1,
847 .pre_load
= cpu_common_pre_load
,
848 .post_load
= cpu_common_post_load
,
849 .fields
= (VMStateField
[]) {
850 VMSTATE_UINT32(halted
, CPUState
),
851 VMSTATE_UINT32(interrupt_request
, CPUState
),
852 VMSTATE_END_OF_LIST()
854 .subsections
= (const VMStateDescription
*[]) {
855 &vmstate_cpu_common_exception_index
,
856 &vmstate_cpu_common_crash_occurred
,
863 CPUState
*qemu_get_cpu(int index
)
868 if (cpu
->cpu_index
== index
) {
876 #if !defined(CONFIG_USER_ONLY)
877 void cpu_address_space_init(CPUState
*cpu
, int asidx
,
878 const char *prefix
, MemoryRegion
*mr
)
880 CPUAddressSpace
*newas
;
881 AddressSpace
*as
= g_new0(AddressSpace
, 1);
885 as_name
= g_strdup_printf("%s-%d", prefix
, cpu
->cpu_index
);
886 address_space_init(as
, mr
, as_name
);
889 /* Target code should have set num_ases before calling us */
890 assert(asidx
< cpu
->num_ases
);
893 /* address space 0 gets the convenience alias */
897 /* KVM cannot currently support multiple address spaces. */
898 assert(asidx
== 0 || !kvm_enabled());
900 if (!cpu
->cpu_ases
) {
901 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
904 newas
= &cpu
->cpu_ases
[asidx
];
908 newas
->tcg_as_listener
.commit
= tcg_commit
;
909 memory_listener_register(&newas
->tcg_as_listener
, as
);
913 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
915 /* Return the AddressSpace corresponding to the specified index */
916 return cpu
->cpu_ases
[asidx
].as
;
920 void cpu_exec_unrealizefn(CPUState
*cpu
)
922 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
924 cpu_list_remove(cpu
);
926 if (cc
->vmsd
!= NULL
) {
927 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
929 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
930 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
932 #ifndef CONFIG_USER_ONLY
933 tcg_iommu_free_notifier_list(cpu
);
937 Property cpu_common_props
[] = {
938 #ifndef CONFIG_USER_ONLY
939 /* Create a memory property for softmmu CPU object,
940 * so users can wire up its memory. (This can't go in qom/cpu.c
941 * because that file is compiled only once for both user-mode
942 * and system builds.) The default if no link is set up is to use
943 * the system address space.
945 DEFINE_PROP_LINK("memory", CPUState
, memory
, TYPE_MEMORY_REGION
,
948 DEFINE_PROP_END_OF_LIST(),
951 void cpu_exec_initfn(CPUState
*cpu
)
956 #ifndef CONFIG_USER_ONLY
957 cpu
->thread_id
= qemu_get_thread_id();
958 cpu
->memory
= system_memory
;
959 object_ref(OBJECT(cpu
->memory
));
963 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
965 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
966 static bool tcg_target_initialized
;
970 if (tcg_enabled() && !tcg_target_initialized
) {
971 tcg_target_initialized
= true;
972 cc
->tcg_initialize();
976 #ifndef CONFIG_USER_ONLY
977 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
978 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
980 if (cc
->vmsd
!= NULL
) {
981 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
984 cpu
->iommu_notifiers
= g_array_new(false, true, sizeof(TCGIOMMUNotifier
*));
988 const char *parse_cpu_option(const char *cpu_option
)
992 gchar
**model_pieces
;
993 const char *cpu_type
;
995 model_pieces
= g_strsplit(cpu_option
, ",", 2);
996 if (!model_pieces
[0]) {
997 error_report("-cpu option cannot be empty");
1001 oc
= cpu_class_by_name(CPU_RESOLVING_TYPE
, model_pieces
[0]);
1003 error_report("unable to find CPU model '%s'", model_pieces
[0]);
1004 g_strfreev(model_pieces
);
1008 cpu_type
= object_class_get_name(oc
);
1010 cc
->parse_features(cpu_type
, model_pieces
[1], &error_fatal
);
1011 g_strfreev(model_pieces
);
1015 #if defined(CONFIG_USER_ONLY)
1016 void tb_invalidate_phys_addr(target_ulong addr
)
1019 tb_invalidate_phys_page_range(addr
, addr
+ 1, 0);
1023 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
1025 tb_invalidate_phys_addr(pc
);
1028 void tb_invalidate_phys_addr(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
)
1030 ram_addr_t ram_addr
;
1034 if (!tcg_enabled()) {
1039 mr
= address_space_translate(as
, addr
, &addr
, &l
, false, attrs
);
1040 if (!(memory_region_is_ram(mr
)
1041 || memory_region_is_romd(mr
))) {
1045 ram_addr
= memory_region_get_ram_addr(mr
) + addr
;
1046 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1050 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
1053 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
1054 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
1056 /* Locks grabbed by tb_invalidate_phys_addr */
1057 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
1058 phys
| (pc
& ~TARGET_PAGE_MASK
), attrs
);
1063 #if defined(CONFIG_USER_ONLY)
1064 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
1069 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
1075 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
1079 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
1080 int flags
, CPUWatchpoint
**watchpoint
)
1085 /* Add a watchpoint. */
1086 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
1087 int flags
, CPUWatchpoint
**watchpoint
)
1091 /* forbid ranges which are empty or run off the end of the address space */
1092 if (len
== 0 || (addr
+ len
- 1) < addr
) {
1093 error_report("tried to set invalid watchpoint at %"
1094 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
1097 wp
= g_malloc(sizeof(*wp
));
1103 /* keep all GDB-injected watchpoints in front */
1104 if (flags
& BP_GDB
) {
1105 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
1107 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
1110 tlb_flush_page(cpu
, addr
);
1117 /* Remove a specific watchpoint. */
1118 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
1123 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1124 if (addr
== wp
->vaddr
&& len
== wp
->len
1125 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1126 cpu_watchpoint_remove_by_ref(cpu
, wp
);
1133 /* Remove a specific watchpoint by reference. */
1134 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
1136 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
1138 tlb_flush_page(cpu
, watchpoint
->vaddr
);
1143 /* Remove all matching watchpoints. */
1144 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
1146 CPUWatchpoint
*wp
, *next
;
1148 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
1149 if (wp
->flags
& mask
) {
1150 cpu_watchpoint_remove_by_ref(cpu
, wp
);
1155 /* Return true if this watchpoint address matches the specified
1156 * access (ie the address range covered by the watchpoint overlaps
1157 * partially or completely with the address range covered by the
1160 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
1164 /* We know the lengths are non-zero, but a little caution is
1165 * required to avoid errors in the case where the range ends
1166 * exactly at the top of the address space and so addr + len
1167 * wraps round to zero.
1169 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
1170 vaddr addrend
= addr
+ len
- 1;
1172 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
1177 /* Add a breakpoint. */
1178 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
1179 CPUBreakpoint
**breakpoint
)
1183 bp
= g_malloc(sizeof(*bp
));
1188 /* keep all GDB-injected breakpoints in front */
1189 if (flags
& BP_GDB
) {
1190 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
1192 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
1195 breakpoint_invalidate(cpu
, pc
);
1203 /* Remove a specific breakpoint. */
1204 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
1208 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
1209 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1210 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1217 /* Remove a specific breakpoint by reference. */
1218 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
1220 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
1222 breakpoint_invalidate(cpu
, breakpoint
->pc
);
1227 /* Remove all matching breakpoints. */
1228 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
1230 CPUBreakpoint
*bp
, *next
;
1232 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
1233 if (bp
->flags
& mask
) {
1234 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1239 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1240 CPU loop after each instruction */
1241 void cpu_single_step(CPUState
*cpu
, int enabled
)
1243 if (cpu
->singlestep_enabled
!= enabled
) {
1244 cpu
->singlestep_enabled
= enabled
;
1245 if (kvm_enabled()) {
1246 kvm_update_guest_debug(cpu
, 0);
1248 /* must flush all the translated code to avoid inconsistencies */
1249 /* XXX: only flush what is necessary */
1255 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
1262 fprintf(stderr
, "qemu: fatal: ");
1263 vfprintf(stderr
, fmt
, ap
);
1264 fprintf(stderr
, "\n");
1265 cpu_dump_state(cpu
, stderr
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1266 if (qemu_log_separate()) {
1268 qemu_log("qemu: fatal: ");
1269 qemu_log_vprintf(fmt
, ap2
);
1271 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1279 #if defined(CONFIG_USER_ONLY)
1281 struct sigaction act
;
1282 sigfillset(&act
.sa_mask
);
1283 act
.sa_handler
= SIG_DFL
;
1285 sigaction(SIGABRT
, &act
, NULL
);
1291 #if !defined(CONFIG_USER_ONLY)
1292 /* Called from RCU critical section */
1293 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1297 block
= atomic_rcu_read(&ram_list
.mru_block
);
1298 if (block
&& addr
- block
->offset
< block
->max_length
) {
1301 RAMBLOCK_FOREACH(block
) {
1302 if (addr
- block
->offset
< block
->max_length
) {
1307 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1311 /* It is safe to write mru_block outside the iothread lock. This
1316 * xxx removed from list
1320 * call_rcu(reclaim_ramblock, xxx);
1323 * atomic_rcu_set is not needed here. The block was already published
1324 * when it was placed into the list. Here we're just making an extra
1325 * copy of the pointer.
1327 ram_list
.mru_block
= block
;
1331 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1338 assert(tcg_enabled());
1339 end
= TARGET_PAGE_ALIGN(start
+ length
);
1340 start
&= TARGET_PAGE_MASK
;
1343 block
= qemu_get_ram_block(start
);
1344 assert(block
== qemu_get_ram_block(end
- 1));
1345 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1347 tlb_reset_dirty(cpu
, start1
, length
);
1352 /* Note: start and end must be within the same ram block. */
1353 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1357 DirtyMemoryBlocks
*blocks
;
1358 unsigned long end
, page
;
1361 uint64_t mr_offset
, mr_size
;
1367 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1368 page
= start
>> TARGET_PAGE_BITS
;
1372 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1373 ramblock
= qemu_get_ram_block(start
);
1374 /* Range sanity check on the ramblock */
1375 assert(start
>= ramblock
->offset
&&
1376 start
+ length
<= ramblock
->offset
+ ramblock
->used_length
);
1378 while (page
< end
) {
1379 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1380 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1381 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1383 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1388 mr_offset
= (ram_addr_t
)(page
<< TARGET_PAGE_BITS
) - ramblock
->offset
;
1389 mr_size
= (end
- page
) << TARGET_PAGE_BITS
;
1390 memory_region_clear_dirty_bitmap(ramblock
->mr
, mr_offset
, mr_size
);
1394 if (dirty
&& tcg_enabled()) {
1395 tlb_reset_dirty_range_all(start
, length
);
1401 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1402 (MemoryRegion
*mr
, hwaddr offset
, hwaddr length
, unsigned client
)
1404 DirtyMemoryBlocks
*blocks
;
1405 ram_addr_t start
= memory_region_get_ram_addr(mr
) + offset
;
1406 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1407 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1408 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1409 DirtyBitmapSnapshot
*snap
;
1410 unsigned long page
, end
, dest
;
1412 snap
= g_malloc0(sizeof(*snap
) +
1413 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1414 snap
->start
= first
;
1417 page
= first
>> TARGET_PAGE_BITS
;
1418 end
= last
>> TARGET_PAGE_BITS
;
1423 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1425 while (page
< end
) {
1426 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1427 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1428 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1430 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1431 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1432 offset
>>= BITS_PER_LEVEL
;
1434 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1435 blocks
->blocks
[idx
] + offset
,
1438 dest
+= num
>> BITS_PER_LEVEL
;
1443 if (tcg_enabled()) {
1444 tlb_reset_dirty_range_all(start
, length
);
1447 memory_region_clear_dirty_bitmap(mr
, offset
, length
);
1452 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1456 unsigned long page
, end
;
1458 assert(start
>= snap
->start
);
1459 assert(start
+ length
<= snap
->end
);
1461 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1462 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1464 while (page
< end
) {
1465 if (test_bit(page
, snap
->dirty
)) {
1473 /* Called from RCU critical section */
1474 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1475 MemoryRegionSection
*section
,
1477 hwaddr paddr
, hwaddr xlat
,
1479 target_ulong
*address
)
1484 if (memory_region_is_ram(section
->mr
)) {
1486 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1487 if (!section
->readonly
) {
1488 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1490 iotlb
|= PHYS_SECTION_ROM
;
1493 AddressSpaceDispatch
*d
;
1495 d
= flatview_to_dispatch(section
->fv
);
1496 iotlb
= section
- d
->map
.sections
;
1500 /* Make accesses to pages with watchpoints go via the
1501 watchpoint trap routines. */
1502 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1503 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1504 /* Avoid trapping reads of pages with a write breakpoint. */
1505 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1506 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1507 *address
|= TLB_MMIO
;
1515 #endif /* defined(CONFIG_USER_ONLY) */
1517 #if !defined(CONFIG_USER_ONLY)
1519 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1521 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
);
1523 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
, bool shared
) =
1524 qemu_anon_ram_alloc
;
1527 * Set a custom physical guest memory alloator.
1528 * Accelerators with unusual needs may need this. Hopefully, we can
1529 * get rid of it eventually.
1531 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
, bool shared
))
1533 phys_mem_alloc
= alloc
;
1536 static uint16_t phys_section_add(PhysPageMap
*map
,
1537 MemoryRegionSection
*section
)
1539 /* The physical section number is ORed with a page-aligned
1540 * pointer to produce the iotlb entries. Thus it should
1541 * never overflow into the page-aligned value.
1543 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1545 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1546 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1547 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1548 map
->sections_nb_alloc
);
1550 map
->sections
[map
->sections_nb
] = *section
;
1551 memory_region_ref(section
->mr
);
1552 return map
->sections_nb
++;
1555 static void phys_section_destroy(MemoryRegion
*mr
)
1557 bool have_sub_page
= mr
->subpage
;
1559 memory_region_unref(mr
);
1561 if (have_sub_page
) {
1562 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1563 object_unref(OBJECT(&subpage
->iomem
));
1568 static void phys_sections_free(PhysPageMap
*map
)
1570 while (map
->sections_nb
> 0) {
1571 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1572 phys_section_destroy(section
->mr
);
1574 g_free(map
->sections
);
1578 static void register_subpage(FlatView
*fv
, MemoryRegionSection
*section
)
1580 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1582 hwaddr base
= section
->offset_within_address_space
1584 MemoryRegionSection
*existing
= phys_page_find(d
, base
);
1585 MemoryRegionSection subsection
= {
1586 .offset_within_address_space
= base
,
1587 .size
= int128_make64(TARGET_PAGE_SIZE
),
1591 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1593 if (!(existing
->mr
->subpage
)) {
1594 subpage
= subpage_init(fv
, base
);
1596 subsection
.mr
= &subpage
->iomem
;
1597 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1598 phys_section_add(&d
->map
, &subsection
));
1600 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1602 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1603 end
= start
+ int128_get64(section
->size
) - 1;
1604 subpage_register(subpage
, start
, end
,
1605 phys_section_add(&d
->map
, section
));
1609 static void register_multipage(FlatView
*fv
,
1610 MemoryRegionSection
*section
)
1612 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1613 hwaddr start_addr
= section
->offset_within_address_space
;
1614 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1615 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1619 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1623 * The range in *section* may look like this:
1627 * where s stands for subpage and P for page.
1629 void flatview_add_to_dispatch(FlatView
*fv
, MemoryRegionSection
*section
)
1631 MemoryRegionSection remain
= *section
;
1632 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1634 /* register first subpage */
1635 if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1636 uint64_t left
= TARGET_PAGE_ALIGN(remain
.offset_within_address_space
)
1637 - remain
.offset_within_address_space
;
1639 MemoryRegionSection now
= remain
;
1640 now
.size
= int128_min(int128_make64(left
), now
.size
);
1641 register_subpage(fv
, &now
);
1642 if (int128_eq(remain
.size
, now
.size
)) {
1645 remain
.size
= int128_sub(remain
.size
, now
.size
);
1646 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1647 remain
.offset_within_region
+= int128_get64(now
.size
);
1650 /* register whole pages */
1651 if (int128_ge(remain
.size
, page_size
)) {
1652 MemoryRegionSection now
= remain
;
1653 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1654 register_multipage(fv
, &now
);
1655 if (int128_eq(remain
.size
, now
.size
)) {
1658 remain
.size
= int128_sub(remain
.size
, now
.size
);
1659 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1660 remain
.offset_within_region
+= int128_get64(now
.size
);
1663 /* register last subpage */
1664 register_subpage(fv
, &remain
);
1667 void qemu_flush_coalesced_mmio_buffer(void)
1670 kvm_flush_coalesced_mmio_buffer();
1673 void qemu_mutex_lock_ramlist(void)
1675 qemu_mutex_lock(&ram_list
.mutex
);
1678 void qemu_mutex_unlock_ramlist(void)
1680 qemu_mutex_unlock(&ram_list
.mutex
);
1683 void ram_block_dump(Monitor
*mon
)
1689 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1690 "Block Name", "PSize", "Offset", "Used", "Total");
1691 RAMBLOCK_FOREACH(block
) {
1692 psize
= size_to_str(block
->page_size
);
1693 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1694 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1695 (uint64_t)block
->offset
,
1696 (uint64_t)block
->used_length
,
1697 (uint64_t)block
->max_length
);
1705 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1706 * may or may not name the same files / on the same filesystem now as
1707 * when we actually open and map them. Iterate over the file
1708 * descriptors instead, and use qemu_fd_getpagesize().
1710 static int find_min_backend_pagesize(Object
*obj
, void *opaque
)
1712 long *hpsize_min
= opaque
;
1714 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1715 HostMemoryBackend
*backend
= MEMORY_BACKEND(obj
);
1716 long hpsize
= host_memory_backend_pagesize(backend
);
1718 if (host_memory_backend_is_mapped(backend
) && (hpsize
< *hpsize_min
)) {
1719 *hpsize_min
= hpsize
;
1726 static int find_max_backend_pagesize(Object
*obj
, void *opaque
)
1728 long *hpsize_max
= opaque
;
1730 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1731 HostMemoryBackend
*backend
= MEMORY_BACKEND(obj
);
1732 long hpsize
= host_memory_backend_pagesize(backend
);
1734 if (host_memory_backend_is_mapped(backend
) && (hpsize
> *hpsize_max
)) {
1735 *hpsize_max
= hpsize
;
1743 * TODO: We assume right now that all mapped host memory backends are
1744 * used as RAM, however some might be used for different purposes.
1746 long qemu_minrampagesize(void)
1748 long hpsize
= LONG_MAX
;
1749 long mainrampagesize
;
1750 Object
*memdev_root
;
1752 mainrampagesize
= qemu_mempath_getpagesize(mem_path
);
1754 /* it's possible we have memory-backend objects with
1755 * hugepage-backed RAM. these may get mapped into system
1756 * address space via -numa parameters or memory hotplug
1757 * hooks. we want to take these into account, but we
1758 * also want to make sure these supported hugepage
1759 * sizes are applicable across the entire range of memory
1760 * we may boot from, so we take the min across all
1761 * backends, and assume normal pages in cases where a
1762 * backend isn't backed by hugepages.
1764 memdev_root
= object_resolve_path("/objects", NULL
);
1766 object_child_foreach(memdev_root
, find_min_backend_pagesize
, &hpsize
);
1768 if (hpsize
== LONG_MAX
) {
1769 /* No additional memory regions found ==> Report main RAM page size */
1770 return mainrampagesize
;
1773 /* If NUMA is disabled or the NUMA nodes are not backed with a
1774 * memory-backend, then there is at least one node using "normal" RAM,
1775 * so if its page size is smaller we have got to report that size instead.
1777 if (hpsize
> mainrampagesize
&&
1778 (nb_numa_nodes
== 0 || numa_info
[0].node_memdev
== NULL
)) {
1781 error_report("Huge page support disabled (n/a for main memory).");
1784 return mainrampagesize
;
1790 long qemu_maxrampagesize(void)
1792 long pagesize
= qemu_mempath_getpagesize(mem_path
);
1793 Object
*memdev_root
= object_resolve_path("/objects", NULL
);
1796 object_child_foreach(memdev_root
, find_max_backend_pagesize
,
1802 long qemu_minrampagesize(void)
1804 return getpagesize();
1806 long qemu_maxrampagesize(void)
1808 return getpagesize();
1813 static int64_t get_file_size(int fd
)
1815 int64_t size
= lseek(fd
, 0, SEEK_END
);
1822 static int file_ram_open(const char *path
,
1823 const char *region_name
,
1828 char *sanitized_name
;
1834 fd
= open(path
, O_RDWR
);
1836 /* @path names an existing file, use it */
1839 if (errno
== ENOENT
) {
1840 /* @path names a file that doesn't exist, create it */
1841 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1846 } else if (errno
== EISDIR
) {
1847 /* @path names a directory, create a file there */
1848 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1849 sanitized_name
= g_strdup(region_name
);
1850 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1856 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1858 g_free(sanitized_name
);
1860 fd
= mkstemp(filename
);
1868 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1869 error_setg_errno(errp
, errno
,
1870 "can't open backing store %s for guest RAM",
1875 * Try again on EINTR and EEXIST. The latter happens when
1876 * something else creates the file between our two open().
1883 static void *file_ram_alloc(RAMBlock
*block
,
1889 MachineState
*ms
= MACHINE(qdev_get_machine());
1892 block
->page_size
= qemu_fd_getpagesize(fd
);
1893 if (block
->mr
->align
% block
->page_size
) {
1894 error_setg(errp
, "alignment 0x%" PRIx64
1895 " must be multiples of page size 0x%zx",
1896 block
->mr
->align
, block
->page_size
);
1898 } else if (block
->mr
->align
&& !is_power_of_2(block
->mr
->align
)) {
1899 error_setg(errp
, "alignment 0x%" PRIx64
1900 " must be a power of two", block
->mr
->align
);
1903 block
->mr
->align
= MAX(block
->page_size
, block
->mr
->align
);
1904 #if defined(__s390x__)
1905 if (kvm_enabled()) {
1906 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1910 if (memory
< block
->page_size
) {
1911 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1912 "or larger than page size 0x%zx",
1913 memory
, block
->page_size
);
1917 memory
= ROUND_UP(memory
, block
->page_size
);
1920 * ftruncate is not supported by hugetlbfs in older
1921 * hosts, so don't bother bailing out on errors.
1922 * If anything goes wrong with it under other filesystems,
1925 * Do not truncate the non-empty backend file to avoid corrupting
1926 * the existing data in the file. Disabling shrinking is not
1927 * enough. For example, the current vNVDIMM implementation stores
1928 * the guest NVDIMM labels at the end of the backend file. If the
1929 * backend file is later extended, QEMU will not be able to find
1930 * those labels. Therefore, extending the non-empty backend file
1931 * is disabled as well.
1933 if (truncate
&& ftruncate(fd
, memory
)) {
1934 perror("ftruncate");
1937 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1938 block
->flags
& RAM_SHARED
, block
->flags
& RAM_PMEM
);
1939 if (area
== MAP_FAILED
) {
1940 error_setg_errno(errp
, errno
,
1941 "unable to map backing store for guest RAM");
1946 os_mem_prealloc(fd
, area
, memory
, ms
->smp
.cpus
, errp
);
1947 if (errp
&& *errp
) {
1948 qemu_ram_munmap(fd
, area
, memory
);
1958 /* Allocate space within the ram_addr_t space that governs the
1960 * Called with the ramlist lock held.
1962 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1964 RAMBlock
*block
, *next_block
;
1965 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1967 assert(size
!= 0); /* it would hand out same offset multiple times */
1969 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1973 RAMBLOCK_FOREACH(block
) {
1974 ram_addr_t candidate
, next
= RAM_ADDR_MAX
;
1976 /* Align blocks to start on a 'long' in the bitmap
1977 * which makes the bitmap sync'ing take the fast path.
1979 candidate
= block
->offset
+ block
->max_length
;
1980 candidate
= ROUND_UP(candidate
, BITS_PER_LONG
<< TARGET_PAGE_BITS
);
1982 /* Search for the closest following block
1985 RAMBLOCK_FOREACH(next_block
) {
1986 if (next_block
->offset
>= candidate
) {
1987 next
= MIN(next
, next_block
->offset
);
1991 /* If it fits remember our place and remember the size
1992 * of gap, but keep going so that we might find a smaller
1993 * gap to fill so avoiding fragmentation.
1995 if (next
- candidate
>= size
&& next
- candidate
< mingap
) {
1997 mingap
= next
- candidate
;
2000 trace_find_ram_offset_loop(size
, candidate
, offset
, next
, mingap
);
2003 if (offset
== RAM_ADDR_MAX
) {
2004 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
2009 trace_find_ram_offset(size
, offset
);
2014 static unsigned long last_ram_page(void)
2017 ram_addr_t last
= 0;
2020 RAMBLOCK_FOREACH(block
) {
2021 last
= MAX(last
, block
->offset
+ block
->max_length
);
2024 return last
>> TARGET_PAGE_BITS
;
2027 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
2031 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2032 if (!machine_dump_guest_core(current_machine
)) {
2033 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
2035 perror("qemu_madvise");
2036 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
2037 "but dump_guest_core=off specified\n");
2042 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
2047 void *qemu_ram_get_host_addr(RAMBlock
*rb
)
2052 ram_addr_t
qemu_ram_get_offset(RAMBlock
*rb
)
2057 ram_addr_t
qemu_ram_get_used_length(RAMBlock
*rb
)
2059 return rb
->used_length
;
2062 bool qemu_ram_is_shared(RAMBlock
*rb
)
2064 return rb
->flags
& RAM_SHARED
;
2067 /* Note: Only set at the start of postcopy */
2068 bool qemu_ram_is_uf_zeroable(RAMBlock
*rb
)
2070 return rb
->flags
& RAM_UF_ZEROPAGE
;
2073 void qemu_ram_set_uf_zeroable(RAMBlock
*rb
)
2075 rb
->flags
|= RAM_UF_ZEROPAGE
;
2078 bool qemu_ram_is_migratable(RAMBlock
*rb
)
2080 return rb
->flags
& RAM_MIGRATABLE
;
2083 void qemu_ram_set_migratable(RAMBlock
*rb
)
2085 rb
->flags
|= RAM_MIGRATABLE
;
2088 void qemu_ram_unset_migratable(RAMBlock
*rb
)
2090 rb
->flags
&= ~RAM_MIGRATABLE
;
2093 /* Called with iothread lock held. */
2094 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
2099 assert(!new_block
->idstr
[0]);
2102 char *id
= qdev_get_dev_path(dev
);
2104 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
2108 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
2111 RAMBLOCK_FOREACH(block
) {
2112 if (block
!= new_block
&&
2113 !strcmp(block
->idstr
, new_block
->idstr
)) {
2114 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
2122 /* Called with iothread lock held. */
2123 void qemu_ram_unset_idstr(RAMBlock
*block
)
2125 /* FIXME: arch_init.c assumes that this is not called throughout
2126 * migration. Ignore the problem since hot-unplug during migration
2127 * does not work anyway.
2130 memset(block
->idstr
, 0, sizeof(block
->idstr
));
2134 size_t qemu_ram_pagesize(RAMBlock
*rb
)
2136 return rb
->page_size
;
2139 /* Returns the largest size of page in use */
2140 size_t qemu_ram_pagesize_largest(void)
2145 RAMBLOCK_FOREACH(block
) {
2146 largest
= MAX(largest
, qemu_ram_pagesize(block
));
2152 static int memory_try_enable_merging(void *addr
, size_t len
)
2154 if (!machine_mem_merge(current_machine
)) {
2155 /* disabled by the user */
2159 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
2162 /* Only legal before guest might have detected the memory size: e.g. on
2163 * incoming migration, or right after reset.
2165 * As memory core doesn't know how is memory accessed, it is up to
2166 * resize callback to update device state and/or add assertions to detect
2167 * misuse, if necessary.
2169 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
2173 newsize
= HOST_PAGE_ALIGN(newsize
);
2175 if (block
->used_length
== newsize
) {
2179 if (!(block
->flags
& RAM_RESIZEABLE
)) {
2180 error_setg_errno(errp
, EINVAL
,
2181 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2182 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
2183 newsize
, block
->used_length
);
2187 if (block
->max_length
< newsize
) {
2188 error_setg_errno(errp
, EINVAL
,
2189 "Length too large: %s: 0x" RAM_ADDR_FMT
2190 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
2191 newsize
, block
->max_length
);
2195 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
2196 block
->used_length
= newsize
;
2197 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
2199 memory_region_set_size(block
->mr
, newsize
);
2200 if (block
->resized
) {
2201 block
->resized(block
->idstr
, newsize
, block
->host
);
2206 /* Called with ram_list.mutex held */
2207 static void dirty_memory_extend(ram_addr_t old_ram_size
,
2208 ram_addr_t new_ram_size
)
2210 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
2211 DIRTY_MEMORY_BLOCK_SIZE
);
2212 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
2213 DIRTY_MEMORY_BLOCK_SIZE
);
2216 /* Only need to extend if block count increased */
2217 if (new_num_blocks
<= old_num_blocks
) {
2221 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
2222 DirtyMemoryBlocks
*old_blocks
;
2223 DirtyMemoryBlocks
*new_blocks
;
2226 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
2227 new_blocks
= g_malloc(sizeof(*new_blocks
) +
2228 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
2230 if (old_num_blocks
) {
2231 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
2232 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
2235 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
2236 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
2239 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
2242 g_free_rcu(old_blocks
, rcu
);
2247 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
, bool shared
)
2250 RAMBlock
*last_block
= NULL
;
2251 ram_addr_t old_ram_size
, new_ram_size
;
2254 old_ram_size
= last_ram_page();
2256 qemu_mutex_lock_ramlist();
2257 new_block
->offset
= find_ram_offset(new_block
->max_length
);
2259 if (!new_block
->host
) {
2260 if (xen_enabled()) {
2261 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
2262 new_block
->mr
, &err
);
2264 error_propagate(errp
, err
);
2265 qemu_mutex_unlock_ramlist();
2269 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
2270 &new_block
->mr
->align
, shared
);
2271 if (!new_block
->host
) {
2272 error_setg_errno(errp
, errno
,
2273 "cannot set up guest memory '%s'",
2274 memory_region_name(new_block
->mr
));
2275 qemu_mutex_unlock_ramlist();
2278 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
2282 new_ram_size
= MAX(old_ram_size
,
2283 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
2284 if (new_ram_size
> old_ram_size
) {
2285 dirty_memory_extend(old_ram_size
, new_ram_size
);
2287 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2288 * QLIST (which has an RCU-friendly variant) does not have insertion at
2289 * tail, so save the last element in last_block.
2291 RAMBLOCK_FOREACH(block
) {
2293 if (block
->max_length
< new_block
->max_length
) {
2298 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
2299 } else if (last_block
) {
2300 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
2301 } else { /* list is empty */
2302 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
2304 ram_list
.mru_block
= NULL
;
2306 /* Write list before version */
2309 qemu_mutex_unlock_ramlist();
2311 cpu_physical_memory_set_dirty_range(new_block
->offset
,
2312 new_block
->used_length
,
2315 if (new_block
->host
) {
2316 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
2317 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
2318 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2319 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
2320 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
2325 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
2326 uint32_t ram_flags
, int fd
,
2329 RAMBlock
*new_block
;
2330 Error
*local_err
= NULL
;
2333 /* Just support these ram flags by now. */
2334 assert((ram_flags
& ~(RAM_SHARED
| RAM_PMEM
)) == 0);
2336 if (xen_enabled()) {
2337 error_setg(errp
, "-mem-path not supported with Xen");
2341 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2343 "host lacks kvm mmu notifiers, -mem-path unsupported");
2347 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
2349 * file_ram_alloc() needs to allocate just like
2350 * phys_mem_alloc, but we haven't bothered to provide
2354 "-mem-path not supported with this accelerator");
2358 size
= HOST_PAGE_ALIGN(size
);
2359 file_size
= get_file_size(fd
);
2360 if (file_size
> 0 && file_size
< size
) {
2361 error_setg(errp
, "backing store %s size 0x%" PRIx64
2362 " does not match 'size' option 0x" RAM_ADDR_FMT
,
2363 mem_path
, file_size
, size
);
2367 new_block
= g_malloc0(sizeof(*new_block
));
2369 new_block
->used_length
= size
;
2370 new_block
->max_length
= size
;
2371 new_block
->flags
= ram_flags
;
2372 new_block
->host
= file_ram_alloc(new_block
, size
, fd
, !file_size
, errp
);
2373 if (!new_block
->host
) {
2378 ram_block_add(new_block
, &local_err
, ram_flags
& RAM_SHARED
);
2381 error_propagate(errp
, local_err
);
2389 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
2390 uint32_t ram_flags
, const char *mem_path
,
2397 fd
= file_ram_open(mem_path
, memory_region_name(mr
), &created
, errp
);
2402 block
= qemu_ram_alloc_from_fd(size
, mr
, ram_flags
, fd
, errp
);
2416 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
2417 void (*resized
)(const char*,
2420 void *host
, bool resizeable
, bool share
,
2421 MemoryRegion
*mr
, Error
**errp
)
2423 RAMBlock
*new_block
;
2424 Error
*local_err
= NULL
;
2426 size
= HOST_PAGE_ALIGN(size
);
2427 max_size
= HOST_PAGE_ALIGN(max_size
);
2428 new_block
= g_malloc0(sizeof(*new_block
));
2430 new_block
->resized
= resized
;
2431 new_block
->used_length
= size
;
2432 new_block
->max_length
= max_size
;
2433 assert(max_size
>= size
);
2435 new_block
->page_size
= getpagesize();
2436 new_block
->host
= host
;
2438 new_block
->flags
|= RAM_PREALLOC
;
2441 new_block
->flags
|= RAM_RESIZEABLE
;
2443 ram_block_add(new_block
, &local_err
, share
);
2446 error_propagate(errp
, local_err
);
2452 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2453 MemoryRegion
*mr
, Error
**errp
)
2455 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false,
2459 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, bool share
,
2460 MemoryRegion
*mr
, Error
**errp
)
2462 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false,
2466 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2467 void (*resized
)(const char*,
2470 MemoryRegion
*mr
, Error
**errp
)
2472 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true,
2476 static void reclaim_ramblock(RAMBlock
*block
)
2478 if (block
->flags
& RAM_PREALLOC
) {
2480 } else if (xen_enabled()) {
2481 xen_invalidate_map_cache_entry(block
->host
);
2483 } else if (block
->fd
>= 0) {
2484 qemu_ram_munmap(block
->fd
, block
->host
, block
->max_length
);
2488 qemu_anon_ram_free(block
->host
, block
->max_length
);
2493 void qemu_ram_free(RAMBlock
*block
)
2500 ram_block_notify_remove(block
->host
, block
->max_length
);
2503 qemu_mutex_lock_ramlist();
2504 QLIST_REMOVE_RCU(block
, next
);
2505 ram_list
.mru_block
= NULL
;
2506 /* Write list before version */
2509 call_rcu(block
, reclaim_ramblock
, rcu
);
2510 qemu_mutex_unlock_ramlist();
2514 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2521 RAMBLOCK_FOREACH(block
) {
2522 offset
= addr
- block
->offset
;
2523 if (offset
< block
->max_length
) {
2524 vaddr
= ramblock_ptr(block
, offset
);
2525 if (block
->flags
& RAM_PREALLOC
) {
2527 } else if (xen_enabled()) {
2531 if (block
->fd
>= 0) {
2532 flags
|= (block
->flags
& RAM_SHARED
?
2533 MAP_SHARED
: MAP_PRIVATE
);
2534 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2535 flags
, block
->fd
, offset
);
2538 * Remap needs to match alloc. Accelerators that
2539 * set phys_mem_alloc never remap. If they did,
2540 * we'd need a remap hook here.
2542 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2544 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2545 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2548 if (area
!= vaddr
) {
2549 error_report("Could not remap addr: "
2550 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"",
2554 memory_try_enable_merging(vaddr
, length
);
2555 qemu_ram_setup_dump(vaddr
, length
);
2560 #endif /* !_WIN32 */
2562 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2563 * This should not be used for general purpose DMA. Use address_space_map
2564 * or address_space_rw instead. For local memory (e.g. video ram) that the
2565 * device owns, use memory_region_get_ram_ptr.
2567 * Called within RCU critical section.
2569 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2571 RAMBlock
*block
= ram_block
;
2573 if (block
== NULL
) {
2574 block
= qemu_get_ram_block(addr
);
2575 addr
-= block
->offset
;
2578 if (xen_enabled() && block
->host
== NULL
) {
2579 /* We need to check if the requested address is in the RAM
2580 * because we don't want to map the entire memory in QEMU.
2581 * In that case just map until the end of the page.
2583 if (block
->offset
== 0) {
2584 return xen_map_cache(addr
, 0, 0, false);
2587 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2589 return ramblock_ptr(block
, addr
);
2592 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2593 * but takes a size argument.
2595 * Called within RCU critical section.
2597 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2598 hwaddr
*size
, bool lock
)
2600 RAMBlock
*block
= ram_block
;
2605 if (block
== NULL
) {
2606 block
= qemu_get_ram_block(addr
);
2607 addr
-= block
->offset
;
2609 *size
= MIN(*size
, block
->max_length
- addr
);
2611 if (xen_enabled() && block
->host
== NULL
) {
2612 /* We need to check if the requested address is in the RAM
2613 * because we don't want to map the entire memory in QEMU.
2614 * In that case just map the requested area.
2616 if (block
->offset
== 0) {
2617 return xen_map_cache(addr
, *size
, lock
, lock
);
2620 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, lock
);
2623 return ramblock_ptr(block
, addr
);
2626 /* Return the offset of a hostpointer within a ramblock */
2627 ram_addr_t
qemu_ram_block_host_offset(RAMBlock
*rb
, void *host
)
2629 ram_addr_t res
= (uint8_t *)host
- (uint8_t *)rb
->host
;
2630 assert((uintptr_t)host
>= (uintptr_t)rb
->host
);
2631 assert(res
< rb
->max_length
);
2637 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2640 * ptr: Host pointer to look up
2641 * round_offset: If true round the result offset down to a page boundary
2642 * *ram_addr: set to result ram_addr
2643 * *offset: set to result offset within the RAMBlock
2645 * Returns: RAMBlock (or NULL if not found)
2647 * By the time this function returns, the returned pointer is not protected
2648 * by RCU anymore. If the caller is not within an RCU critical section and
2649 * does not hold the iothread lock, it must have other means of protecting the
2650 * pointer, such as a reference to the region that includes the incoming
2653 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2657 uint8_t *host
= ptr
;
2659 if (xen_enabled()) {
2660 ram_addr_t ram_addr
;
2662 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2663 block
= qemu_get_ram_block(ram_addr
);
2665 *offset
= ram_addr
- block
->offset
;
2672 block
= atomic_rcu_read(&ram_list
.mru_block
);
2673 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2677 RAMBLOCK_FOREACH(block
) {
2678 /* This case append when the block is not mapped. */
2679 if (block
->host
== NULL
) {
2682 if (host
- block
->host
< block
->max_length
) {
2691 *offset
= (host
- block
->host
);
2693 *offset
&= TARGET_PAGE_MASK
;
2700 * Finds the named RAMBlock
2702 * name: The name of RAMBlock to find
2704 * Returns: RAMBlock (or NULL if not found)
2706 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2710 RAMBLOCK_FOREACH(block
) {
2711 if (!strcmp(name
, block
->idstr
)) {
2719 /* Some of the softmmu routines need to translate from a host pointer
2720 (typically a TLB entry) back to a ram offset. */
2721 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2726 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2728 return RAM_ADDR_INVALID
;
2731 return block
->offset
+ offset
;
2734 /* Called within RCU critical section. */
2735 void memory_notdirty_write_prepare(NotDirtyInfo
*ndi
,
2738 ram_addr_t ram_addr
,
2742 ndi
->ram_addr
= ram_addr
;
2743 ndi
->mem_vaddr
= mem_vaddr
;
2747 assert(tcg_enabled());
2748 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2749 ndi
->pages
= page_collection_lock(ram_addr
, ram_addr
+ size
);
2750 tb_invalidate_phys_page_fast(ndi
->pages
, ram_addr
, size
);
2754 /* Called within RCU critical section. */
2755 void memory_notdirty_write_complete(NotDirtyInfo
*ndi
)
2758 assert(tcg_enabled());
2759 page_collection_unlock(ndi
->pages
);
2763 /* Set both VGA and migration bits for simplicity and to remove
2764 * the notdirty callback faster.
2766 cpu_physical_memory_set_dirty_range(ndi
->ram_addr
, ndi
->size
,
2767 DIRTY_CLIENTS_NOCODE
);
2768 /* we remove the notdirty callback only if the code has been
2770 if (!cpu_physical_memory_is_clean(ndi
->ram_addr
)) {
2771 tlb_set_dirty(ndi
->cpu
, ndi
->mem_vaddr
);
2775 /* Called within RCU critical section. */
2776 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2777 uint64_t val
, unsigned size
)
2781 memory_notdirty_write_prepare(&ndi
, current_cpu
, current_cpu
->mem_io_vaddr
,
2784 stn_p(qemu_map_ram_ptr(NULL
, ram_addr
), size
, val
);
2785 memory_notdirty_write_complete(&ndi
);
2788 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2789 unsigned size
, bool is_write
,
2795 static const MemoryRegionOps notdirty_mem_ops
= {
2796 .write
= notdirty_mem_write
,
2797 .valid
.accepts
= notdirty_mem_accepts
,
2798 .endianness
= DEVICE_NATIVE_ENDIAN
,
2800 .min_access_size
= 1,
2801 .max_access_size
= 8,
2805 .min_access_size
= 1,
2806 .max_access_size
= 8,
2811 /* Generate a debug exception if a watchpoint has been hit. */
2812 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2814 CPUState
*cpu
= current_cpu
;
2815 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2819 assert(tcg_enabled());
2820 if (cpu
->watchpoint_hit
) {
2821 /* We re-entered the check after replacing the TB. Now raise
2822 * the debug interrupt so that is will trigger after the
2823 * current instruction. */
2824 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2827 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2828 vaddr
= cc
->adjust_watchpoint_address(cpu
, vaddr
, len
);
2829 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2830 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2831 && (wp
->flags
& flags
)) {
2832 if (flags
== BP_MEM_READ
) {
2833 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2835 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2837 wp
->hitaddr
= vaddr
;
2838 wp
->hitattrs
= attrs
;
2839 if (!cpu
->watchpoint_hit
) {
2840 if (wp
->flags
& BP_CPU
&&
2841 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2842 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2845 cpu
->watchpoint_hit
= wp
;
2848 tb_check_watchpoint(cpu
);
2849 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2850 cpu
->exception_index
= EXCP_DEBUG
;
2854 /* Force execution of one insn next time. */
2855 cpu
->cflags_next_tb
= 1 | curr_cflags();
2857 cpu_loop_exit_noexc(cpu
);
2861 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2866 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2867 so these check for a hit then pass through to the normal out-of-line
2869 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2870 unsigned size
, MemTxAttrs attrs
)
2874 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2875 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2877 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2880 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2883 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2886 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2889 data
= address_space_ldq(as
, addr
, attrs
, &res
);
2897 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2898 uint64_t val
, unsigned size
,
2902 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2903 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2905 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2908 address_space_stb(as
, addr
, val
, attrs
, &res
);
2911 address_space_stw(as
, addr
, val
, attrs
, &res
);
2914 address_space_stl(as
, addr
, val
, attrs
, &res
);
2917 address_space_stq(as
, addr
, val
, attrs
, &res
);
2924 static const MemoryRegionOps watch_mem_ops
= {
2925 .read_with_attrs
= watch_mem_read
,
2926 .write_with_attrs
= watch_mem_write
,
2927 .endianness
= DEVICE_NATIVE_ENDIAN
,
2929 .min_access_size
= 1,
2930 .max_access_size
= 8,
2934 .min_access_size
= 1,
2935 .max_access_size
= 8,
2940 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
2941 MemTxAttrs attrs
, uint8_t *buf
, hwaddr len
);
2942 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2943 const uint8_t *buf
, hwaddr len
);
2944 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, hwaddr len
,
2945 bool is_write
, MemTxAttrs attrs
);
2947 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2948 unsigned len
, MemTxAttrs attrs
)
2950 subpage_t
*subpage
= opaque
;
2954 #if defined(DEBUG_SUBPAGE)
2955 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2956 subpage
, len
, addr
);
2958 res
= flatview_read(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2962 *data
= ldn_p(buf
, len
);
2966 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2967 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2969 subpage_t
*subpage
= opaque
;
2972 #if defined(DEBUG_SUBPAGE)
2973 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2974 " value %"PRIx64
"\n",
2975 __func__
, subpage
, len
, addr
, value
);
2977 stn_p(buf
, len
, value
);
2978 return flatview_write(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2981 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2982 unsigned len
, bool is_write
,
2985 subpage_t
*subpage
= opaque
;
2986 #if defined(DEBUG_SUBPAGE)
2987 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2988 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2991 return flatview_access_valid(subpage
->fv
, addr
+ subpage
->base
,
2992 len
, is_write
, attrs
);
2995 static const MemoryRegionOps subpage_ops
= {
2996 .read_with_attrs
= subpage_read
,
2997 .write_with_attrs
= subpage_write
,
2998 .impl
.min_access_size
= 1,
2999 .impl
.max_access_size
= 8,
3000 .valid
.min_access_size
= 1,
3001 .valid
.max_access_size
= 8,
3002 .valid
.accepts
= subpage_accepts
,
3003 .endianness
= DEVICE_NATIVE_ENDIAN
,
3006 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
3011 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
3013 idx
= SUBPAGE_IDX(start
);
3014 eidx
= SUBPAGE_IDX(end
);
3015 #if defined(DEBUG_SUBPAGE)
3016 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
3017 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
3019 for (; idx
<= eidx
; idx
++) {
3020 mmio
->sub_section
[idx
] = section
;
3026 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
)
3030 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
3033 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
3034 NULL
, TARGET_PAGE_SIZE
);
3035 mmio
->iomem
.subpage
= true;
3036 #if defined(DEBUG_SUBPAGE)
3037 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
3038 mmio
, base
, TARGET_PAGE_SIZE
);
3040 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
3045 static uint16_t dummy_section(PhysPageMap
*map
, FlatView
*fv
, MemoryRegion
*mr
)
3048 MemoryRegionSection section
= {
3051 .offset_within_address_space
= 0,
3052 .offset_within_region
= 0,
3053 .size
= int128_2_64(),
3056 return phys_section_add(map
, §ion
);
3059 static void readonly_mem_write(void *opaque
, hwaddr addr
,
3060 uint64_t val
, unsigned size
)
3062 /* Ignore any write to ROM. */
3065 static bool readonly_mem_accepts(void *opaque
, hwaddr addr
,
3066 unsigned size
, bool is_write
,
3072 /* This will only be used for writes, because reads are special cased
3073 * to directly access the underlying host ram.
3075 static const MemoryRegionOps readonly_mem_ops
= {
3076 .write
= readonly_mem_write
,
3077 .valid
.accepts
= readonly_mem_accepts
,
3078 .endianness
= DEVICE_NATIVE_ENDIAN
,
3080 .min_access_size
= 1,
3081 .max_access_size
= 8,
3085 .min_access_size
= 1,
3086 .max_access_size
= 8,
3091 MemoryRegionSection
*iotlb_to_section(CPUState
*cpu
,
3092 hwaddr index
, MemTxAttrs attrs
)
3094 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3095 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
3096 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
3097 MemoryRegionSection
*sections
= d
->map
.sections
;
3099 return §ions
[index
& ~TARGET_PAGE_MASK
];
3102 static void io_mem_init(void)
3104 memory_region_init_io(&io_mem_rom
, NULL
, &readonly_mem_ops
,
3105 NULL
, NULL
, UINT64_MAX
);
3106 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
3109 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3110 * which can be called without the iothread mutex.
3112 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
3114 memory_region_clear_global_locking(&io_mem_notdirty
);
3116 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
3120 AddressSpaceDispatch
*address_space_dispatch_new(FlatView
*fv
)
3122 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
3125 n
= dummy_section(&d
->map
, fv
, &io_mem_unassigned
);
3126 assert(n
== PHYS_SECTION_UNASSIGNED
);
3127 n
= dummy_section(&d
->map
, fv
, &io_mem_notdirty
);
3128 assert(n
== PHYS_SECTION_NOTDIRTY
);
3129 n
= dummy_section(&d
->map
, fv
, &io_mem_rom
);
3130 assert(n
== PHYS_SECTION_ROM
);
3131 n
= dummy_section(&d
->map
, fv
, &io_mem_watch
);
3132 assert(n
== PHYS_SECTION_WATCH
);
3134 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
3139 void address_space_dispatch_free(AddressSpaceDispatch
*d
)
3141 phys_sections_free(&d
->map
);
3145 static void tcg_commit(MemoryListener
*listener
)
3147 CPUAddressSpace
*cpuas
;
3148 AddressSpaceDispatch
*d
;
3150 assert(tcg_enabled());
3151 /* since each CPU stores ram addresses in its TLB cache, we must
3152 reset the modified entries */
3153 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
3154 cpu_reloading_memory_map();
3155 /* The CPU and TLB are protected by the iothread lock.
3156 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3157 * may have split the RCU critical section.
3159 d
= address_space_to_dispatch(cpuas
->as
);
3160 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
3161 tlb_flush(cpuas
->cpu
);
3164 static void memory_map_init(void)
3166 system_memory
= g_malloc(sizeof(*system_memory
));
3168 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
3169 address_space_init(&address_space_memory
, system_memory
, "memory");
3171 system_io
= g_malloc(sizeof(*system_io
));
3172 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
3174 address_space_init(&address_space_io
, system_io
, "I/O");
3177 MemoryRegion
*get_system_memory(void)
3179 return system_memory
;
3182 MemoryRegion
*get_system_io(void)
3187 #endif /* !defined(CONFIG_USER_ONLY) */
3189 /* physical memory access (slow version, mainly for debug) */
3190 #if defined(CONFIG_USER_ONLY)
3191 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3192 uint8_t *buf
, target_ulong len
, int is_write
)
3195 target_ulong l
, page
;
3199 page
= addr
& TARGET_PAGE_MASK
;
3200 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3203 flags
= page_get_flags(page
);
3204 if (!(flags
& PAGE_VALID
))
3207 if (!(flags
& PAGE_WRITE
))
3209 /* XXX: this code should not depend on lock_user */
3210 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3213 unlock_user(p
, addr
, l
);
3215 if (!(flags
& PAGE_READ
))
3217 /* XXX: this code should not depend on lock_user */
3218 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3221 unlock_user(p
, addr
, 0);
3232 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
3235 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3236 addr
+= memory_region_get_ram_addr(mr
);
3238 /* No early return if dirty_log_mask is or becomes 0, because
3239 * cpu_physical_memory_set_dirty_range will still call
3240 * xen_modified_memory.
3242 if (dirty_log_mask
) {
3244 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
3246 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
3247 assert(tcg_enabled());
3248 tb_invalidate_phys_range(addr
, addr
+ length
);
3249 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3251 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
3254 void memory_region_flush_rom_device(MemoryRegion
*mr
, hwaddr addr
, hwaddr size
)
3257 * In principle this function would work on other memory region types too,
3258 * but the ROM device use case is the only one where this operation is
3259 * necessary. Other memory regions should use the
3260 * address_space_read/write() APIs.
3262 assert(memory_region_is_romd(mr
));
3264 invalidate_and_set_dirty(mr
, addr
, size
);
3267 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
3269 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
3271 /* Regions are assumed to support 1-4 byte accesses unless
3272 otherwise specified. */
3273 if (access_size_max
== 0) {
3274 access_size_max
= 4;
3277 /* Bound the maximum access by the alignment of the address. */
3278 if (!mr
->ops
->impl
.unaligned
) {
3279 unsigned align_size_max
= addr
& -addr
;
3280 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
3281 access_size_max
= align_size_max
;
3285 /* Don't attempt accesses larger than the maximum. */
3286 if (l
> access_size_max
) {
3287 l
= access_size_max
;
3294 static bool prepare_mmio_access(MemoryRegion
*mr
)
3296 bool unlocked
= !qemu_mutex_iothread_locked();
3297 bool release_lock
= false;
3299 if (unlocked
&& mr
->global_locking
) {
3300 qemu_mutex_lock_iothread();
3302 release_lock
= true;
3304 if (mr
->flush_coalesced_mmio
) {
3306 qemu_mutex_lock_iothread();
3308 qemu_flush_coalesced_mmio_buffer();
3310 qemu_mutex_unlock_iothread();
3314 return release_lock
;
3317 /* Called within RCU critical section. */
3318 static MemTxResult
flatview_write_continue(FlatView
*fv
, hwaddr addr
,
3321 hwaddr len
, hwaddr addr1
,
3322 hwaddr l
, MemoryRegion
*mr
)
3326 MemTxResult result
= MEMTX_OK
;
3327 bool release_lock
= false;
3330 if (!memory_access_is_direct(mr
, true)) {
3331 release_lock
|= prepare_mmio_access(mr
);
3332 l
= memory_access_size(mr
, l
, addr1
);
3333 /* XXX: could force current_cpu to NULL to avoid
3335 val
= ldn_p(buf
, l
);
3336 result
|= memory_region_dispatch_write(mr
, addr1
, val
, l
, attrs
);
3339 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3340 memcpy(ptr
, buf
, l
);
3341 invalidate_and_set_dirty(mr
, addr1
, l
);
3345 qemu_mutex_unlock_iothread();
3346 release_lock
= false;
3358 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
3364 /* Called from RCU critical section. */
3365 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
3366 const uint8_t *buf
, hwaddr len
)
3371 MemTxResult result
= MEMTX_OK
;
3374 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
3375 result
= flatview_write_continue(fv
, addr
, attrs
, buf
, len
,
3381 /* Called within RCU critical section. */
3382 MemTxResult
flatview_read_continue(FlatView
*fv
, hwaddr addr
,
3383 MemTxAttrs attrs
, uint8_t *buf
,
3384 hwaddr len
, hwaddr addr1
, hwaddr l
,
3389 MemTxResult result
= MEMTX_OK
;
3390 bool release_lock
= false;
3393 if (!memory_access_is_direct(mr
, false)) {
3395 release_lock
|= prepare_mmio_access(mr
);
3396 l
= memory_access_size(mr
, l
, addr1
);
3397 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, l
, attrs
);
3401 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3402 memcpy(buf
, ptr
, l
);
3406 qemu_mutex_unlock_iothread();
3407 release_lock
= false;
3419 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
3425 /* Called from RCU critical section. */
3426 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
3427 MemTxAttrs attrs
, uint8_t *buf
, hwaddr len
)
3434 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
3435 return flatview_read_continue(fv
, addr
, attrs
, buf
, len
,
3439 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
3440 MemTxAttrs attrs
, uint8_t *buf
, hwaddr len
)
3442 MemTxResult result
= MEMTX_OK
;
3447 fv
= address_space_to_flatview(as
);
3448 result
= flatview_read(fv
, addr
, attrs
, buf
, len
);
3455 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
,
3457 const uint8_t *buf
, hwaddr len
)
3459 MemTxResult result
= MEMTX_OK
;
3464 fv
= address_space_to_flatview(as
);
3465 result
= flatview_write(fv
, addr
, attrs
, buf
, len
);
3472 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
3473 uint8_t *buf
, hwaddr len
, bool is_write
)
3476 return address_space_write(as
, addr
, attrs
, buf
, len
);
3478 return address_space_read_full(as
, addr
, attrs
, buf
, len
);
3482 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
3483 hwaddr len
, int is_write
)
3485 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
3486 buf
, len
, is_write
);
3489 enum write_rom_type
{
3494 static inline MemTxResult
address_space_write_rom_internal(AddressSpace
*as
,
3499 enum write_rom_type type
)
3509 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true, attrs
);
3511 if (!(memory_region_is_ram(mr
) ||
3512 memory_region_is_romd(mr
))) {
3513 l
= memory_access_size(mr
, l
, addr1
);
3516 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3519 memcpy(ptr
, buf
, l
);
3520 invalidate_and_set_dirty(mr
, addr1
, l
);
3523 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
3535 /* used for ROM loading : can write in RAM and ROM */
3536 MemTxResult
address_space_write_rom(AddressSpace
*as
, hwaddr addr
,
3538 const uint8_t *buf
, hwaddr len
)
3540 return address_space_write_rom_internal(as
, addr
, attrs
,
3541 buf
, len
, WRITE_DATA
);
3544 void cpu_flush_icache_range(hwaddr start
, hwaddr len
)
3547 * This function should do the same thing as an icache flush that was
3548 * triggered from within the guest. For TCG we are always cache coherent,
3549 * so there is no need to flush anything. For KVM / Xen we need to flush
3550 * the host's instruction cache at least.
3552 if (tcg_enabled()) {
3556 address_space_write_rom_internal(&address_space_memory
,
3557 start
, MEMTXATTRS_UNSPECIFIED
,
3558 NULL
, len
, FLUSH_CACHE
);
3569 static BounceBuffer bounce
;
3571 typedef struct MapClient
{
3573 QLIST_ENTRY(MapClient
) link
;
3576 QemuMutex map_client_list_lock
;
3577 static QLIST_HEAD(, MapClient
) map_client_list
3578 = QLIST_HEAD_INITIALIZER(map_client_list
);
3580 static void cpu_unregister_map_client_do(MapClient
*client
)
3582 QLIST_REMOVE(client
, link
);
3586 static void cpu_notify_map_clients_locked(void)
3590 while (!QLIST_EMPTY(&map_client_list
)) {
3591 client
= QLIST_FIRST(&map_client_list
);
3592 qemu_bh_schedule(client
->bh
);
3593 cpu_unregister_map_client_do(client
);
3597 void cpu_register_map_client(QEMUBH
*bh
)
3599 MapClient
*client
= g_malloc(sizeof(*client
));
3601 qemu_mutex_lock(&map_client_list_lock
);
3603 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3604 if (!atomic_read(&bounce
.in_use
)) {
3605 cpu_notify_map_clients_locked();
3607 qemu_mutex_unlock(&map_client_list_lock
);
3610 void cpu_exec_init_all(void)
3612 qemu_mutex_init(&ram_list
.mutex
);
3613 /* The data structures we set up here depend on knowing the page size,
3614 * so no more changes can be made after this point.
3615 * In an ideal world, nothing we did before we had finished the
3616 * machine setup would care about the target page size, and we could
3617 * do this much later, rather than requiring board models to state
3618 * up front what their requirements are.
3620 finalize_target_page_bits();
3623 qemu_mutex_init(&map_client_list_lock
);
3626 void cpu_unregister_map_client(QEMUBH
*bh
)
3630 qemu_mutex_lock(&map_client_list_lock
);
3631 QLIST_FOREACH(client
, &map_client_list
, link
) {
3632 if (client
->bh
== bh
) {
3633 cpu_unregister_map_client_do(client
);
3637 qemu_mutex_unlock(&map_client_list_lock
);
3640 static void cpu_notify_map_clients(void)
3642 qemu_mutex_lock(&map_client_list_lock
);
3643 cpu_notify_map_clients_locked();
3644 qemu_mutex_unlock(&map_client_list_lock
);
3647 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, hwaddr len
,
3648 bool is_write
, MemTxAttrs attrs
)
3655 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3656 if (!memory_access_is_direct(mr
, is_write
)) {
3657 l
= memory_access_size(mr
, l
, addr
);
3658 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
, attrs
)) {
3669 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
,
3670 hwaddr len
, bool is_write
,
3677 fv
= address_space_to_flatview(as
);
3678 result
= flatview_access_valid(fv
, addr
, len
, is_write
, attrs
);
3684 flatview_extend_translation(FlatView
*fv
, hwaddr addr
,
3686 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3687 bool is_write
, MemTxAttrs attrs
)
3691 MemoryRegion
*this_mr
;
3697 if (target_len
== 0) {
3702 this_mr
= flatview_translate(fv
, addr
, &xlat
,
3703 &len
, is_write
, attrs
);
3704 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3710 /* Map a physical memory region into a host virtual address.
3711 * May map a subset of the requested range, given by and returned in *plen.
3712 * May return NULL if resources needed to perform the mapping are exhausted.
3713 * Use only for reads OR writes - not for read-modify-write operations.
3714 * Use cpu_register_map_client() to know when retrying the map operation is
3715 * likely to succeed.
3717 void *address_space_map(AddressSpace
*as
,
3735 fv
= address_space_to_flatview(as
);
3736 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3738 if (!memory_access_is_direct(mr
, is_write
)) {
3739 if (atomic_xchg(&bounce
.in_use
, true)) {
3743 /* Avoid unbounded allocations */
3744 l
= MIN(l
, TARGET_PAGE_SIZE
);
3745 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3749 memory_region_ref(mr
);
3752 flatview_read(fv
, addr
, MEMTXATTRS_UNSPECIFIED
,
3758 return bounce
.buffer
;
3762 memory_region_ref(mr
);
3763 *plen
= flatview_extend_translation(fv
, addr
, len
, mr
, xlat
,
3764 l
, is_write
, attrs
);
3765 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
, true);
3771 /* Unmaps a memory region previously mapped by address_space_map().
3772 * Will also mark the memory as dirty if is_write == 1. access_len gives
3773 * the amount of memory that was actually read or written by the caller.
3775 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3776 int is_write
, hwaddr access_len
)
3778 if (buffer
!= bounce
.buffer
) {
3782 mr
= memory_region_from_host(buffer
, &addr1
);
3785 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3787 if (xen_enabled()) {
3788 xen_invalidate_map_cache_entry(buffer
);
3790 memory_region_unref(mr
);
3794 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3795 bounce
.buffer
, access_len
);
3797 qemu_vfree(bounce
.buffer
);
3798 bounce
.buffer
= NULL
;
3799 memory_region_unref(bounce
.mr
);
3800 atomic_mb_set(&bounce
.in_use
, false);
3801 cpu_notify_map_clients();
3804 void *cpu_physical_memory_map(hwaddr addr
,
3808 return address_space_map(&address_space_memory
, addr
, plen
, is_write
,
3809 MEMTXATTRS_UNSPECIFIED
);
3812 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3813 int is_write
, hwaddr access_len
)
3815 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3818 #define ARG1_DECL AddressSpace *as
3821 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3822 #define RCU_READ_LOCK(...) rcu_read_lock()
3823 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3824 #include "memory_ldst.inc.c"
3826 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3832 AddressSpaceDispatch
*d
;
3839 cache
->fv
= address_space_get_flatview(as
);
3840 d
= flatview_to_dispatch(cache
->fv
);
3841 cache
->mrs
= *address_space_translate_internal(d
, addr
, &cache
->xlat
, &l
, true);
3844 memory_region_ref(mr
);
3845 if (memory_access_is_direct(mr
, is_write
)) {
3846 /* We don't care about the memory attributes here as we're only
3847 * doing this if we found actual RAM, which behaves the same
3848 * regardless of attributes; so UNSPECIFIED is fine.
3850 l
= flatview_extend_translation(cache
->fv
, addr
, len
, mr
,
3851 cache
->xlat
, l
, is_write
,
3852 MEMTXATTRS_UNSPECIFIED
);
3853 cache
->ptr
= qemu_ram_ptr_length(mr
->ram_block
, cache
->xlat
, &l
, true);
3859 cache
->is_write
= is_write
;
3863 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3867 assert(cache
->is_write
);
3868 if (likely(cache
->ptr
)) {
3869 invalidate_and_set_dirty(cache
->mrs
.mr
, addr
+ cache
->xlat
, access_len
);
3873 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3875 if (!cache
->mrs
.mr
) {
3879 if (xen_enabled()) {
3880 xen_invalidate_map_cache_entry(cache
->ptr
);
3882 memory_region_unref(cache
->mrs
.mr
);
3883 flatview_unref(cache
->fv
);
3884 cache
->mrs
.mr
= NULL
;
3888 /* Called from RCU critical section. This function has the same
3889 * semantics as address_space_translate, but it only works on a
3890 * predefined range of a MemoryRegion that was mapped with
3891 * address_space_cache_init.
3893 static inline MemoryRegion
*address_space_translate_cached(
3894 MemoryRegionCache
*cache
, hwaddr addr
, hwaddr
*xlat
,
3895 hwaddr
*plen
, bool is_write
, MemTxAttrs attrs
)
3897 MemoryRegionSection section
;
3899 IOMMUMemoryRegion
*iommu_mr
;
3900 AddressSpace
*target_as
;
3902 assert(!cache
->ptr
);
3903 *xlat
= addr
+ cache
->xlat
;
3906 iommu_mr
= memory_region_get_iommu(mr
);
3912 section
= address_space_translate_iommu(iommu_mr
, xlat
, plen
,
3913 NULL
, is_write
, true,
3918 /* Called from RCU critical section. address_space_read_cached uses this
3919 * out of line function when the target is an MMIO or IOMMU region.
3922 address_space_read_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3923 void *buf
, hwaddr len
)
3929 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, false,
3930 MEMTXATTRS_UNSPECIFIED
);
3931 flatview_read_continue(cache
->fv
,
3932 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3936 /* Called from RCU critical section. address_space_write_cached uses this
3937 * out of line function when the target is an MMIO or IOMMU region.
3940 address_space_write_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3941 const void *buf
, hwaddr len
)
3947 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, true,
3948 MEMTXATTRS_UNSPECIFIED
);
3949 flatview_write_continue(cache
->fv
,
3950 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3954 #define ARG1_DECL MemoryRegionCache *cache
3956 #define SUFFIX _cached_slow
3957 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3958 #define RCU_READ_LOCK() ((void)0)
3959 #define RCU_READ_UNLOCK() ((void)0)
3960 #include "memory_ldst.inc.c"
3962 /* virtual memory access for debug (includes writing to ROM) */
3963 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3964 uint8_t *buf
, target_ulong len
, int is_write
)
3967 target_ulong l
, page
;
3969 cpu_synchronize_state(cpu
);
3974 page
= addr
& TARGET_PAGE_MASK
;
3975 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3976 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3977 /* if no physical page mapped, return an error */
3978 if (phys_addr
== -1)
3980 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3983 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3985 address_space_write_rom(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3988 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3999 * Allows code that needs to deal with migration bitmaps etc to still be built
4000 * target independent.
4002 size_t qemu_target_page_size(void)
4004 return TARGET_PAGE_SIZE
;
4007 int qemu_target_page_bits(void)
4009 return TARGET_PAGE_BITS
;
4012 int qemu_target_page_bits_min(void)
4014 return TARGET_PAGE_BITS_MIN
;
4018 bool target_words_bigendian(void)
4020 #if defined(TARGET_WORDS_BIGENDIAN)
4027 #ifndef CONFIG_USER_ONLY
4028 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
4035 mr
= address_space_translate(&address_space_memory
,
4036 phys_addr
, &phys_addr
, &l
, false,
4037 MEMTXATTRS_UNSPECIFIED
);
4039 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
4044 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
4050 RAMBLOCK_FOREACH(block
) {
4051 ret
= func(block
, opaque
);
4061 * Unmap pages of memory from start to start+length such that
4062 * they a) read as 0, b) Trigger whatever fault mechanism
4063 * the OS provides for postcopy.
4064 * The pages must be unmapped by the end of the function.
4065 * Returns: 0 on success, none-0 on failure
4068 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
4072 uint8_t *host_startaddr
= rb
->host
+ start
;
4074 if ((uintptr_t)host_startaddr
& (rb
->page_size
- 1)) {
4075 error_report("ram_block_discard_range: Unaligned start address: %p",
4080 if ((start
+ length
) <= rb
->used_length
) {
4081 bool need_madvise
, need_fallocate
;
4082 uint8_t *host_endaddr
= host_startaddr
+ length
;
4083 if ((uintptr_t)host_endaddr
& (rb
->page_size
- 1)) {
4084 error_report("ram_block_discard_range: Unaligned end address: %p",
4089 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
4091 /* The logic here is messy;
4092 * madvise DONTNEED fails for hugepages
4093 * fallocate works on hugepages and shmem
4095 need_madvise
= (rb
->page_size
== qemu_host_page_size
);
4096 need_fallocate
= rb
->fd
!= -1;
4097 if (need_fallocate
) {
4098 /* For a file, this causes the area of the file to be zero'd
4099 * if read, and for hugetlbfs also causes it to be unmapped
4100 * so a userfault will trigger.
4102 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4103 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
4107 error_report("ram_block_discard_range: Failed to fallocate "
4108 "%s:%" PRIx64
" +%zx (%d)",
4109 rb
->idstr
, start
, length
, ret
);
4114 error_report("ram_block_discard_range: fallocate not available/file"
4115 "%s:%" PRIx64
" +%zx (%d)",
4116 rb
->idstr
, start
, length
, ret
);
4121 /* For normal RAM this causes it to be unmapped,
4122 * for shared memory it causes the local mapping to disappear
4123 * and to fall back on the file contents (which we just
4124 * fallocate'd away).
4126 #if defined(CONFIG_MADVISE)
4127 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
4130 error_report("ram_block_discard_range: Failed to discard range "
4131 "%s:%" PRIx64
" +%zx (%d)",
4132 rb
->idstr
, start
, length
, ret
);
4137 error_report("ram_block_discard_range: MADVISE not available"
4138 "%s:%" PRIx64
" +%zx (%d)",
4139 rb
->idstr
, start
, length
, ret
);
4143 trace_ram_block_discard_range(rb
->idstr
, host_startaddr
, length
,
4144 need_madvise
, need_fallocate
, ret
);
4146 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4147 "/%zx/" RAM_ADDR_FMT
")",
4148 rb
->idstr
, start
, length
, rb
->used_length
);
4155 bool ramblock_is_pmem(RAMBlock
*rb
)
4157 return rb
->flags
& RAM_PMEM
;
4162 void page_size_init(void)
4164 /* NOTE: we can always suppose that qemu_host_page_size >=
4166 if (qemu_host_page_size
== 0) {
4167 qemu_host_page_size
= qemu_real_host_page_size
;
4169 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
4170 qemu_host_page_size
= TARGET_PAGE_SIZE
;
4172 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;
4175 #if !defined(CONFIG_USER_ONLY)
4177 static void mtree_print_phys_entries(int start
, int end
, int skip
, int ptr
)
4179 if (start
== end
- 1) {
4180 qemu_printf("\t%3d ", start
);
4182 qemu_printf("\t%3d..%-3d ", start
, end
- 1);
4184 qemu_printf(" skip=%d ", skip
);
4185 if (ptr
== PHYS_MAP_NODE_NIL
) {
4186 qemu_printf(" ptr=NIL");
4188 qemu_printf(" ptr=#%d", ptr
);
4190 qemu_printf(" ptr=[%d]", ptr
);
4195 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4196 int128_sub((size), int128_one())) : 0)
4198 void mtree_print_dispatch(AddressSpaceDispatch
*d
, MemoryRegion
*root
)
4202 qemu_printf(" Dispatch\n");
4203 qemu_printf(" Physical sections\n");
4205 for (i
= 0; i
< d
->map
.sections_nb
; ++i
) {
4206 MemoryRegionSection
*s
= d
->map
.sections
+ i
;
4207 const char *names
[] = { " [unassigned]", " [not dirty]",
4208 " [ROM]", " [watch]" };
4210 qemu_printf(" #%d @" TARGET_FMT_plx
".." TARGET_FMT_plx
4213 s
->offset_within_address_space
,
4214 s
->offset_within_address_space
+ MR_SIZE(s
->mr
->size
),
4215 s
->mr
->name
? s
->mr
->name
: "(noname)",
4216 i
< ARRAY_SIZE(names
) ? names
[i
] : "",
4217 s
->mr
== root
? " [ROOT]" : "",
4218 s
== d
->mru_section
? " [MRU]" : "",
4219 s
->mr
->is_iommu
? " [iommu]" : "");
4222 qemu_printf(" alias=%s", s
->mr
->alias
->name
?
4223 s
->mr
->alias
->name
: "noname");
4228 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4229 P_L2_BITS
, P_L2_LEVELS
, d
->phys_map
.ptr
, d
->phys_map
.skip
);
4230 for (i
= 0; i
< d
->map
.nodes_nb
; ++i
) {
4233 Node
*n
= d
->map
.nodes
+ i
;
4235 qemu_printf(" [%d]\n", i
);
4237 for (j
= 0, jprev
= 0, prev
= *n
[0]; j
< ARRAY_SIZE(*n
); ++j
) {
4238 PhysPageEntry
*pe
= *n
+ j
;
4240 if (pe
->ptr
== prev
.ptr
&& pe
->skip
== prev
.skip
) {
4244 mtree_print_phys_entries(jprev
, j
, prev
.skip
, prev
.ptr
);
4250 if (jprev
!= ARRAY_SIZE(*n
)) {
4251 mtree_print_phys_entries(jprev
, j
, prev
.skip
, prev
.ptr
);